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Abstract

HEX programs were originally introduced as a general framework for extending declarative
logic programming, under the stable model semantics, with the possibility of bidirection-
ally accessing external sources of knowledge and/or computation. The original framework,
however, does not deal satisfactorily with stateful external environments: the possibility of
predictably influencing external environments has thus not yet been considered explicitly.
This paper lifts HEX programs to ACTHEX programs: ACTHEX programs introduce the no-
tion of action atoms, which are associated to corresponding functions capable of actually
changing the state of external environments. The execution of specific sequences of action
atoms can be declaratively programmed. Furthermore, ACTHEX programs allow for select-
ing preferred actions, building on weights and corresponding cost functions. We introduce
syntax and semantics of ACTHEX programs; ACTHEX programs can successfully be exploited
as a general purpose language for the declarative implementation of executable specifica-
tions, which we illustrate by encodings of knowledge bases updates, action languages, and
an agent programming language. A system capable of executing ACTHEX programs has
been implemented and is publicly available.

1 Introduction

HEX programs (Eiter et al. 2005) were originally introduced as a general frame-
work for extending declarative logic programming, under the stable model seman-
tics, with the possibility of bidirectionally accessing external sources of knowledge
and/or computation. It has been illustrated how HEX-programs qualify themselves
for actual implementation of action and/or planning languages. As an example,
in (Eiter et al. 2005) it is shown how the so called code call construct of agent
programs as defined in (Eiter et al. 1999) can be embedded in HEX-programs us-
ing the notion of external predicate. The possibility of accessing multiple external
sources of knowledge has no significant constraint in HEX programs: in particular,
relational knowledge can flow from external sources to the logic program at hand
and viceversa.

As an example, HEX-programs constitute a generalization of description logic
programs as defined in (Eiter et al. 2008): it is made possible to push additional,
hypothetical assertions to an external description logic knowledge base L, and then
subjunctively query the augmented knowledge base L’. However, it is not possible
to push persistent assertions to L: in general, HEX-programs do not contemplate
the possibility of changing the state of external sources.



This is desired in a variety of contexts, mainly: 1), when the actual execution
of a plan is expected: in this setting, a change in the environment the agent at
hand is acting in is implicitly prescribed; indeed, this is the general setting which
logic-based action languages are devised to reason about (Gelf. and Lif. 1993); and
2) when an answer set solver is interfaced with other applications: the latter usually
elaborate on data depending on answer sets computed.

In the former case the logic programming community (and particularly, the non-
monotonic reasoning community ), has devoted extensive research towards reasoning
about actions and planning, but only a few works (see e.g. (Subrahmanian et al.
2000)) considered the support for actual execution of agent actions explicitly. In the
latter case, applications have been developed by the Answer Set Programming com-
munity usually resorting to handcrafted solutions, like ad hoc post-parsing of an-
swer sets!, or developing ad hoc libraries for invoking answer set solvers from other
development environments (see, e.g. (Ricca 2003; Pirrotta and Provetti 2008)).

It turns out that some structural limitations of HEX-programs prevent address-
ing this issue in a satisfactory way: first, external functions associated to external
predicates are inherently stateless. Second, but more importantly, HEX-programs
are fully declarative: this implies that when writing an HEX program, it is not
predictable whether and in which order an external function will be evaluated.

To this end, we lift HEX programs to ACTHEX programs. ACTHEX programs in-
troduce the notion of action predicate and action atom. Action predicates are asso-
ciated to corresponding (executable) functions. The framework allows a) to express
and infer a predictable order of execution for action atoms, b) to express soft (and
hard) preferences among a set of possible action atoms, and ¢) to actually execute a
set of action atoms according to a predictable schedule. It is worth remarking that
ACTHEX programs do not represent an action language in a strict sense. The main
goal of the language is ) to provide a complementary extension to logic program-
ming over which existing action, planning and agent languages can be grounded,
and 2) to provide a tighter and semantically sound framework for interfacing logic
programs with applications of arbitrary nature.

2 Syntax and Semantics
Intuitively, ACTHEX programs extend HEX programs allowing rules like
#robot[move, D|{b, T}[2 : 1] « direction(D),time(T).

the above can be seen as a rule for scheduling a movement of a given robot in
direction D with execution order T'. Action atoms are executed according to execu-
tion schedules. The latter in turn depend on answer sets, which in their generalized
form, can contain action atoms. The order of execution within a schedule can be
specified using a precedence attribute (which in the above rule is set by the variable
T'); also actions can be associated with weights and priority levels (the values 2 and
1 above). Action atoms allow to specify whether they have to be executed bravely

1 An extensive list of known applications of ASP can be found at
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html



(the b switch above), cautiously or preferred cautiously, respectively meaning that
an action atom a can get executed if it appears in at least one, all, or all best cost
answer sets. We give next the formal syntax and semantics of the language.

Syntaz. Given a finite alphabet X, we denote as C, X, G, and A mutually dis-
joint subsets of ¥* whose elements are respectively called constant names, variable
names, external predicate names, and action predicate names. Elements from X
(resp., C) are denoted with first letter in upper case (resp., lower case), while ele-
ments from G (resp., A) are prefixed with “&” (resp. “#”). Note that names in C
serve both as constant and predicate names.

Elements from C U X are called terms. A higher-order atom (or atom) is a tuple
(Yo, Y1, ...Y,), where Yy,Y7,... Y, are terms; n > 0 is the arity of the atom.
Intuitively, Y} is the predicate name, and we thus also use the more familiar notation
Yo(Y7...Y,). The atom is ordinary, if Yy is a constant. For example, (z,type, c),
node(X), and D(a,b), are atoms; the first two are ordinary atoms. An external
atom (Eiter et al. 2005) is of the form &g[Y1,...,Y,](X1,...,X) where Y1,....Y,
and X1,...,X,, are two lists of terms (called input and output lists, respectively),
and &g € G is an external predicate name. We assume that &g has fixed lengths
in(&g) = n and out(&g) = m for input and output lists, respectively. An action
atom is of the form #g[Y7,...Y,]{o,r}[w:1] where Y1,...,Y, is a list of terms
(called input list), and #g is an action predicate name. We assume that #g has
fixed length in(#g) = n for its input list. o € {b, ¢, ¢,} is called the action option.
Depending on the value of o, the action atom is called brave, cautious, preferred
cautious, respectively. r,w and I, ranging over positive integers and variables?, are
called action precedence, action weight and action level respectively, and they are
all optional attributes. For an action atom a, we denote by pr(a),w(a), and I(a)
its precedence, weight, and level, respectively. The set of action atoms featuring
explicit weight and level values are denoted by AA,,(P).

Example 1 The action atom #robot[move, left]{b, 1} may be devised for moving a
robot to the left. Here, we have that in(#robot) =2. This atom features the option
b executed with precedence 1, while weight and level information are not given. O

A rule 7 is of the form a3 V...V ay < B1,...,0n, not Bny1,...,not By, where
m,n,k > 0, m > n, ay,...q are atoms or action atoms, and f3i,...03,, are
either atoms or external atoms. We define H(r) = {aq,...,ax} and B(r) =

Bt (r)UB~(r), where BT (r) = {f1,...,0,} and B~ (r) = {not Bp11,...,not B}
If H(r) = 0 and B(r) # 0, then r is a constraint, and if B(r) = 0, and H(r) # 0,
then r is a fact; v is ordinary, if it does not contain external or action atoms. An
ACTHEX program is a finite set P of rules. It is ordinary, if all rules are ordinary.

2 We assume here that C contains a finite subset of consecutive integers S = {0,...,"mazx}-
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Example 2 The following is a valid ACTHEX program:

evening V morning.
#robot[turnAlarm, on]{c,2} — evening.
#robot[turnAlarm, of f1{c,2} < morning.
#robot[move, all]{b, 1} «— &get Fuel[](high).
#robot[move, left]{b,1} — &getFuel[](low).
O

Semantics. The semantics of ACTHEX programs generalizes that of HEX-programs
given in (Eiter et al. 2005), which in turn generalizes traditional answer-set seman-
tics (Gelf. and Lif. 1991). In the sequel, let P be an ACTHEX program. We will
assume that P acts in a external environment E, over which action atoms poten-
tially triggered by P might have some effects. ACTHEX programs can in practice
be exploited in a variety of different environments (e.g. a relational database, a
file system, or the entire Web): we focus here on the semantics of P, and thus we
will make no particular assumption on the nature of E besides assuming it as a
finite collection of data structures of unspecified nature and size (to take the most
general view, assume FE as a finite, arbitrarily large, portion of a Turing machine
tape surrounded by blanks on both sides).

The Herbrand base of P, denoted HBp, is the set of all possible ground versions
of atoms, external atoms and action atoms occurring in P obtained by replacing
variables with constants from C. The grounding of a rule r, grnd(r), is defined
accordingly, and the grounding of program P is given by grnd(P) = |J,cp grnd(r).
Unless specified otherwise, C, X, G, and A are implicitly given by P.

Example 3 Given C = {edge, arc,d, e, 1,2}, some ground instances of E(X, ¢) are
edge(d, e), arc(arc, e); #robot[d, N]{b, X} has ground instances #robot [d, e]{b, 1},
#robot [d, d|{b, 2}. O

An interpretation relative to P is any subset I C HBp containing atoms and
action atoms . We say that I is a model of atom a € HBp , denoted I [ a, if
a € I. With every external predicate name &g € G, we associate an (n+m+1)-
ary Boolean function fg4, assigning each tuple (I,y1,...,Yn,T1,,...,&n) either
0 or 1, where n = in(&g), m = out(&g), I C HBp , and z;,y; € C. Similarly,
with every action predicate name #¢g € A, we associate a (n + 2)-ary function
fuqg with input (E,I,y1,...,y,) and returning a new external environment E’ =
fug(E, I, y1,...,yn). Note that functions that are associated with action atoms do
not have output lists. We say that I C H Bp is a model of a ground external atom
a=&gy1,...,Yn) (@1,...,Tm), denoted I = a, iff foo(L,y1...Un,T1,.. ., Tm) = 1.

Intuitively, functions associated with external atoms model (stateless) calls to
external code and/or external sources of knowledge, as originally defined in (Eiter
et al. 2005). The newly introduced notion here is that of action predicates: func-
tions associated with action predicates serve the purpose of modelling the actual
execution of operations influencing F.

Example 4 We associate with &reach a function fgreach, 8-t fereach (I, G, A, B) =
1 iff B is reachable in the graph G from A. Let I = {e(b,c),e(c,d)}. Then, T is
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a model of &reachle, b](d), since fyreach(I,e,b,d) = 1. Also, let us associate with
#insert a function fuinsert, and assume that £ contains an encoding of a knowledge
base K expressed as a set of facts. When action atom #insert [edge, arc] {b, 1} needs
to be executed, then the function funser is called with inputs (E, I, edge, arc), for
an interpretation I. Intuitively, #insert might correspond to the act of adding to
the extension of the predicate edge in K the extension of the predicate arc in I. O

Let r be a ground rule. We define (i) I = H(r) iff there is some a € H(r) such
that I =a, (ii) I = B(r) iff I = a for all a € BT (r) and I }£ a for all a € B~ (r),
and (iii) I = r iff I = H(r) or I = B(r). We say that I is a model of an ACTHEX
program P, denoted I |= P, iff I |=r for all r € grnd(P). We call P satisfiable, if
it has some model. Given an ACTHEX program P, the FLP-reduct of P with respect
to I C HBp , denoted fP! | is the set of all r € grnd(P) such that I = B(r).
I C HBp is an answer set of P iff I is a minimal model of fP.

Note that we inherit from the framework of HEX programs the adoption of the
notion of reduct as defined by (Faber et al. 2004) (referred to as FLP-reduct hence-
forth). The FLP-reduct is equivalent to the traditional Gelfond-Lifschitz reduct
for ordinary programs, and in our context ensures answer-set minimality, even in
the presence of external atoms (see (Eiter et al. 2005) for details). Let AS(P) be
the collection of all the answer sets of program P; the set of best models BM(P)
contains the answer sets of P minimizing the objective function Hp as defined in
Appendix A. Hp(A) intuitively weighs an answer set A depending on the weights
of action atoms which are contained in A.

Let a be an action atom of the form #g [y1,...yn]{0,7}, and A € AS(P); a is
said to be executable in A, if i) a is brave (i.e., 0 = b) and a € A, or i1) a is cautious
(i.e., 0 = ¢) and a € B for every B € AS(P), or iii) a is preferred cautious (i.e.,
0 =c¢p) and a € B for every B € BM(P). Roughly speaking, once an answer set
A is chosen as the one to be executed, action atoms to be executed are selected
depending on their action option. Note that, in this respect, the notion of brave
ezecutability differs from the traditional notion of brave entailment.

Given an answer set A € BM(P), an ezxecution schedule Eap = [a1,...,a,] IS
an ordered list containing all the action atoms executable in A, such that i < j if
pr(a;) < pr(a;), for each pair of atoms a;, a; appearing in E4 p.

Intuitively, an execution schedule for a program gives an order of the function
invocations compatible with the precedences specified in the program. Note that
for action atoms with the same precedence the execution order is not specified.

Given an execution schedule F4 p = [a1,...,a,], let By = E, and for i > 0,
Ei = fo,(Bic1, A y1, ..., ym). We define EX (E4 p) = E, as the execution outcome
of Eq p,and EX(P) ={Eap| A€ BM(P)}.

In general, given a program P, we consider AS(P), BM(P) and EX(P) as dif-
ferent facets of the semantics of P. In particular, the ezecution outcome of P is
EX(E4,p) for an execution schedule E4 p € EX(P) of choice. We simply assume
that a deterministic rule for choosing E4 p is given3.

3 For the sake of efficiency, our implementation executes the first execution schedule obtained
from the first computed answer set: other selection criteria are of course possible.



Example 5 Let Ay, A3, A3 be three answer sets of a given program P,,5, where
Ay, Ay € BM(P..5). Let a1 = #insert[e, g1] {b, 1}, as = #insert [e, g2] {c, 5}, az =
#insert [e, g3] {c, 2}, ay = #insert [e, ga] {cp, 2}, a5 = #insert [e, g5] {b, 1}, and let
Al = {al,ag,ag,a4,a5}, A2 = {ag,a4}, A3 = {ag,a5}. Since A3 ¢ BM(P6$5),
possible choices of answer sets are A; and As. If we choose Ay, brave atoms a1, as,
cautious atom as and preferred cautious atom a4 are executable since a1, a5 € Ay,
where ag appears in all the answer sets and a4 appears in both A; and A, . A; has
two possible execution schedules which are [a1, a5, a4, az2], and [as, a1, aq, as]. For
the case that Ao is selected, cautious atom as and preferred cautious atom a4 are
executable since ao appears in all answer sets, and a4 appears in A; and As. Thus,
the only possible execution schedule for As is [ay, as]. O

3 Applications of ACTHEX programs

In this section, we provide evidence for the versatility of ACTHEX by discussing
several application scenarios, including encodings of existing action-based KR for-
malisms.

Action languages. We use action language C (Giunchiglia and Lifschitz 1998) as
a representative for illustrating how action languages can be reduced to ACTHEX
programs. The relationship to logic programming is well-known: we follow a trans-
formation from (Lifschitz and Turner 1999).

The semantics of C is defined in terms of transition diagrams which put in rela-
tionship propositional action and fluent atoms. The possible state evolution spec-
ified in transition diagrams can equivalently be characterized as a logic program
expressed in terms of predicates having a time attribute, which are used for en-
coding truth values of different action and fluent variables at different times. Not
surprisingly, the precedence attribute of action atoms can intuitively capture the
notion of time as in (Lifschitz and Turner 1999). Consider causal laws defined as
either a static law of the form “caused F if L1 A --- A Ly,,”, or a dynamic law of
the form “caused F if Ly A---A L, after L,,,;1 A--- Ly ALpy1 A---ALg”, where
F' is a fluent literal, L; is a fluent literal for 1 < ¢ < n, and respectively an action
name for n + 1 <7 < k. An action description is a set of causal laws.

Given an action description D and a mazimum time t, following (Lifschitz and
Turner 1999), a dynamic law I € D of the form above can be translated to the
ordinary rule F/(T+1) — not L} (T+1), ... ,not L, (T +1)L,,.(T) ... L,(T).,
where F' is a unary predicate associated to fluent F', while L/, Z; are unary predi-
cates associated to fluents L;, 1 < i < n, respectively to actions L;, n+1 <i <k,
and their complements?. We then put in connection action atoms with actions by
means of rules #L;{0,T} « L;(T)., n+1 < i < k, where #L; is a newly intro-
duced action atom which is responsible of executing the action L;, and o is an action
option. By adding other auxiliary rules (e.g. guessing rules b(T) Vv b(T) « T < t

4 We can assume a constraint « L, (T),f; (T) is added for each L;. Note that the current im-

plementation of ACTHEX programs allows for strong negation, by which an atom ZI(T) can be
conveniently modelled as —L/(T).



for each action b), and setting o = b, we obtain a program Pp whose execution
schedules EX(Pp) correspond to so-called histories (paths) of length ¢ in D. An
execution plan e € EX(Pp) can then be materially executed. Similarly, preference
orderings between actions as in the language PP and variants thereof (Son and
Pontelli 2006), can be attached to action atoms: for an ordering Ly < --- < L,
among actions one can introduce corresponding integer weights w; < - -+ < w,, and
rules #LZ{O,T}[UJZ : 1] — Ll(T)

Knowledge Base Updates. As another potential usage of ACTHEX programs, we
mention the possibility of permanently updating knowledge bases, e.g., as achieved
by the predicates assert and retract in Prolog. We assume that external environ-
ments contain a collection C' of knowledge bases accessible by names, and con-
sider abstract action constructs assert(kb, f) and retract(kb, f), which respectively
should add or remove a statement f from a given knowledge base kb.

The above can be grounded to ACTHEX programs, introducing action predicates
#asserty, and #retracty, for k > 05. An atom #asserty|kb, a1, ..., ax]{o, p}, (resp.
#retracty[kb, a1, ..., ax]{o,p}) adds to (resp. removes from) the knowledge base
kb the assertion aq]...|ag, for a;|a;, being the string concatenation of a; and a;.
For instance, the rule #assertskb, “n(”, X, “).”|{b,1} «— node(X). encodes the
possible addition of facts n(c) for each ¢ such that node(c) € A, for an answer set
A. The above constructs can be fruitfully combined with reasoning over the given
knowledge bases: to this end, we introduce the action atom #executel[kb]{o,p}.
Assuming the kb is a valid ACTHEX program, when such an atom belongs to the
current execution schedule, it gets executed by evaluating kb and the resulting
subsequent execution schedule. The above constructs open a variety of possibilities,
e.g. belief revisions, and, in general, observe-think-act cycles (Kowalski and Sadri
1999). A sample ACTHEX program using update actions is given in Appendix B.
Note that evaluation of languages with this kind of construct might not terminate
in general: this issue is subject of ongoing study.

Translation of Agent Programs. Agent programs can also be realized in the ACTHEX
framework. We consider logic-based agent programs as developed in (Subrahmanian
et al. 2000), consisting of rules of the form Opgag < X, [~]Op1a1, ..., ["]Opmm,
governing an agent’s behaviour. The Op; are deontic modalities, the o; are action
status atoms, and y is a code-call condition. E.g., Do dial(N) « in(N, phone(P)),
O call(P), intuitively states that the agent should dial phone number N if she is
obliged to call P. In (Subrahmanian et al. 2000), a translation of an agent program
AG(P) to a logic program P is given, such that the answer sets of P correspond
to the so-called reasonable status sets of AG(P). We build on this transforma-
tion and model code-call conditions (which, e.g., provide access to actual sensor
readings) using external atoms as already described in (Eiter et al. 2005). Simi-
larly, we model Do atoms as action atoms in our framework using rules of the sort

5 Our implementation of ACTHEX programs conveniently allows to program and group families of
action atoms like the above using variable length parameter lists.



#actiony|...]{b}. < Do a. A framework implementing this translation is available®,
featuring a) the translation of agent programs to ACTHEX programs b) incorporat-
ing the actual execution of Do-able actions and ¢) an implementation of message
box facilities for agents.

Other applications. ACTHEX programs can be exploited in a variety of other con-
texts, ranging from database access to interaction with actual web sources. The
example in Appendix C shows how to exploit reasoning in ASP for choosing meet-
ing schedules of two teams. Events are extracted from actual Google Calendars” of
two teams; meeting dates are selected using ASP reasoning; eventually, the chosen
events are posted to the calendars of the teams using an action atom of the form
#createEvent[Team, Url, “ActHexMeeting”, Date, User, Password]|{b, 1}.

4 Implementation Notes

An implementation of ACTHEX programs has been realized and is available® as
an extension to the dlvhex system®. With respect to the traditional workflow of
an answer set solver, the system computes execution schedules and executes one
of it according to: i) the semantics of ACTHEX programs, ii) the selection policy
of execution schedules described in Section 2, and i) the associated functions
provided for action predicates. The system is equipped with a toolkit enabling
users to develop their own libraries of action predicates: some example libraries
are available. In particular, the KBModaddon library constitutes a generalization of
update action atoms as shown in Section 3 (it is, e.g., possible to execute arbitrary
command line statements, and to assert and retract arbitrary statements from
knowledge bases). An example library allowing access and modification to Google
Calendars is also publicly available.

5 Related Work and Conclusions

Our work has points of contact with some lines of research which can be grouped
as follows. Action languages serve the purpose of providing a declarative language
for specifying causal theories (Giunchiglia and Lifschitz 1998; McCain and Turner
1997), allowing to assert not only the truth of a proposition, but also that there is a
cause for it to be true. In this respect, they provide a formalism for the declarative
representation of dynamic domains and gave rise to logic-based planning systems
such as CCLAC (Giunchiglia et al. 2004) and DLVX (Eiter et al. 2003). The two
systems mentioned are based on transformations (Lifschitz and Turner 1999; Gelf.
and Lif. 1993) to logic programming under the answer set semantics, however other
(nonmonotonic) reasoning engines can be exploited for causal reasoning in action
domains as well (cf, e.g., (Turner 1996; Kakas et al. 2001; Lin 2000)).

ACTHEX programs generalize HEX programs which in turn generalize ASP pro-
grams, and thus can be similarly used to implement planning systems based on
action languages (as shown in Section 3). When resorting to ACTHEX, however,

6 http://students.sabanciuniv.edu/~ozanerdem/AgentToHex.html

7 http://www.google.com/calendar

8 http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
9 http://www.kr.tuwien.ac.at/research/systems/dlvhex/



action atoms also encode their actual execution, enabling a variety of applications.
For instance, this allows for interweaving plan generation and action execution
seamlessly within a coherent declarative framework, which may, e.g., be utilized for
an integrated approach to monitoring plan execution. For instance, Nieuwenborgh
et al. (2007) extend the action language K towards conditional planning: building
on HEX programs, they introduce external function calls in causal rules to import
fluent information from an external source. The introduction of action atoms makes
it possible to extend the framework coping with action execution and monitoring
their success.

Logic-based agent programming constitutes a further natural application domain
for ACTHEX programs: intelligent agents require reasoning and/or planning capa-
bilities for acting in dynamic environments, and using logic programming for the
declarative specification of a respective observe-think-act cycle (Kowalski and Sadri
1999) is a reasonable choice. ACTHEX may serve as an implementation layer for
agent systems built according to this paradigm. We exemplified its suitability pro-
viding a transformation of IMPACT agent programs (Subrahmanian et al. 2000)
into corresponding ACTHEX programs. The evaluation of IMPACT agent programs
is restricted to stratified negation in its current implementation. The given AC-
THEX encoding does not require such a restriction and can handle general agent
programs as formally conceived. Similarly, compared to ACTHEX, agent-oriented
logic programming languages based on Horn clause languages (e.g., DALI (Costan-
tini and Tocchio 2004), or ALP (Drescher et al. 2009)) lack a declarative concept
of negation, which is important from an expressive and practical modelling point
of view, for instance to express exceptions. On the other hand, most nonmonotonic
logic programming based approaches to agent-oriented programming, e.g., (Alferes
et al. 2006, 2008, Nieuwenborgh et al. 2006; De Vos et al. 2005; Leite et al. 2001),
detach the reasoning process from the actual execution of an agent’s actions (which
often are termed ‘external’) and only their (expected) effects are taken into account
for further deliberation. For such agent frameworks, ACTHEX can provide the plat-
form for an integrated implementation. In conclusion, ACTHEX is a declarative logic
programming framework including a representation for actions that are executed
and have an impact on an external environment. Properties of the language and
further extensions (e.g. parallel execution schedules) are subject to ongoing work.
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Appendix A The objective function Hp(A)

We report here the definition of the objective function Hp(A) (generalized from
(Leone et al. 2006)). For an answer set A, Hp(A) is defined in terms of an auxiliary
function f, as follows:

fr(1) =1, (A1)
fe(n) = fr(n—1) - (|AAw(grnd(P))|) - wiae + 1,n > 1 (A2)
rae
Hp(A)= Y (fr(i)- Y. weight(a)) (A3)
=1 aeMFP (A)

where wl =~ and IF .
weighted action atoms in grnd(P), respectively; M (A) denotes the set of action
atoms with weight and level ¢ that appear in A, and weight(a) denotes the weight

of resp. action atom a.

denote the maximum weight and maximum level over

Appendix B
An example of observe-think-act cycle with ACTHEX programs

Using knowledge base update actions, ACTHEX programs provide a convenient
medium for modelling iteration and optimization tasks'®. We can model optimiza-
tion problems as a series of decision problems where each decision problem corre-
sponds to an ACTHEX program. The action atoms can coordinate these series of
decision problems to find the optimal solution. An example can be the mazximal
clique problem.

Let G be a graph encoded by means of vertez and edge predicates. A fact size(n)
(initially n = 1) is put within a knowledge base called cligue, together with the
following program:

in(X)V —in(X) «— vertex(X).
—in(X),in(Y),notedge(X,Y), X #Y.

— &count[in](X), X < N, size(N).

#retract[clique, “size(”, N, “).”]{b, 1} < size(N).
#assert[clique, “size(”, M, “).”]{b,2} «— size(N),M = N + 1.
#execute|clique]{b, 3}.

At each call to this program, we find whether there exist a clique of size N'!. If a
clique of such a size exists, the selected execution plan removes former assertions for
the size predicate and then the assertion size(N + 1) is pushed to cligue by means
of an appropriate #assert action: clique is then executed again. The precedence
value of the #execute action atom is the largest among the other action atoms
which ensures that reexecution of the program is issued after all the changes to
the program are done. Notice that execution terminates for some size N’ (which is
the optimal clique size augmented by 1) for which clique turns in an inconsistent
program (having thus no execution schedules).

10 The example is illustrative of knowledge update action constructs only and is not to be consid-
ered as an alternative proposal for choices and other optimization construct known in ASP.

I The external atom &count[in](X) can be seen as as equivalent to the DLV (Leone et al. 2006)
aggregate construct #count{Y :in(Y)} = X.
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Appendix C
An example of update to a Web source after reasoning under ASP
semantics

The ACTHEX program below (in dlvhex native syntax) illustrates how to import
knowledge from known web sources and perform subsequent reasoning; we exploit
a #createFEvent action predicate for updating the web sources at hand. Many
constructs allowed in the dlvhex system are conveniently exploited, e.g. namespace
declarations, the &rdf import predicate, string and aggregate external functions:
the reader can find useful documentation about dlvhex constructs on the system
web site!2.

%authentication information
user(“acthex”).
password(“secretpassword”).

#namespace(rdf, “http://www.w3.org/1999/02/22-rdf-syntax-ns\#”)
#namespace(ical, “http://www.w3.0rg/2002/12/cal/ical\#”)
#namespace(gcal, “http://wuw.google.com/calendar/feeds/”)
#namespace(cals, “http://www.kanzaki.com/courier/ical2rdf?u=
http://www.google.com/calendar/ical/”)

meetingDate(*?2010-02-02"").% The extra apostrophe is necessary

%calendar ids of each team

googleCalendar(teaml, “gcal :02ngn7n8s87£i600jbn06sredg
Ogroup.calendar.google.com/private/full”).

googleCalendar(team?2, “gcal : 3h4m35be5g8q35hrb17df qdubk
Qgroup.calendar.google.com/private/full”).

%rdf sources of each teams calendar

calendar(team1, “cals:02ngn7n8s87fi600jbn06sredg
Ogroup.calendar.google.com/public/basic”).

calendar (team2, “cals: 3h4m35be5g8q35hrb17df qdubk
Qgroup.calendar.google.com/public/basic”).

%Getting rdf triples from calendars

calendarTriples(P, X,Y, Z) :— calendar(P, Q), &rdf (Q|(X,Y, Z).
event(M, X) :— calendarTriples(M, X, , “rdf : type”, “ical:Vevent”).
aboutEvents(M, X,Y, Z) :— event(M, X), calendarTriples(M, X, Y, Z).

% Legenda

% M = Person Name (teaml, team2, team3 ... )

% X = Event ID

% S = Event Start Time in ICAL format

% F = Event Finish Time in ICAL format

% T = Event type (transparent, opaque).

% Opaque Events have higher priority than transparent ones.
eventDetails(M, X, S, F,T) :— calendarTriples(M, X, “ical:dtstart”, S1),
calendarTriples(M, S1, “ical:dateTime”, S),
calendarTriples(M, X, “ical:dtend”, F'1),
calendarTriples(M, F1, “ical:dateTime”, F'),
calendarTriples(M, X, “ical:transp”’,T).

12 http://www.kr.tuwien.ac.at/research/systems/dlvhex/.
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% Given two ternary predicates test range and busy in format (EventCode,StartTime,EndTime)
% overlap(E1,E2) returns whether events overlap with each other

nonoverlap(X,Y, Z) :— testRange(X, Sz, Fz),busy(Y, Sy, Fy, Z), Fx <= Sy.
nonoverlap(X,Y, Z) :— busy(X, Sz, Fz, Z), testRange(Y, Sy, Fy), Fx <= Sy.
nonoverlap(X,Y, Z) :— nonoverlap(Y, X, Z).

overlap(X,Y, Z) :— testRange(X, _, _),busy(Y, -, -, Z), X <> Y, not nonoverlap(X,Y, Z).
overlap(X,Y, Z) :— busy(X, -, -, Z), testRange(Y, -, ), X <> Y, notnonoverlap(X,Y, Z).

% Select a meeting hour nondeterministically

any(X) V —any(X) :— inrange(X).
—any(X),any(Y), X <>Y.

:—not one.

one :—inrange(X), any(X).

%Subprogram for finding the slots in which a participant is busy

%
% Legenda: busy(PersonID,Start Time,End Time, TypeOfMeeting)

busy(M, S, F,T) :— meetingDate(D), eventDetails(M, X, S, F, T), &split[S, “T”,0](D).
busy(M, S, F,T) :— meetingDate(D), eventDetails(M, X, S, F,T), &split[F, “T”, 0](D).
succ(Last, F) :— meetingDate(D),

&concat[D, “?T19:00:00Z°”](Last), &concat[D, “’T20:00:00Z°”](F').
suce(S, F) :—inrange(S), inrange(F), S < F, not someinthemiddle(S, F').
someinthemiddle(S, F) :—inrange(S), inrange(F), inrange(M), S < M, M < F.
chosenSlot(all, S) :— any(S).
testRange(all, S, F) :— chosenSlot(all, S), succ(S, F).

:~ overlap(all,Y, “?0PAQUE’”).[1 : 1]

#create Event[Team, Url, “ActHexMeeting”, Date, User, Password]{b, 1}
:— password(Password), user(User), googleCalendar(Team, Url), chosenSlot(_, Date).
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