Motivation ~ Overview DL-programs Support Sets for DL-atoms ~ Repair Answer Set Computation ~ Experiments ~ Conclusion

Towards Practical Deletion Repair of Inconsistent
DL-programs

Thomas Eiter Michael Fink Daria Stepanova

Knowledge-Based Systems Group,
Institute of Information Systems,
Vienna University of Technology

http://www.kr.tuwien.ac.at/

ECAI 2014 —August, 21, 2014

kbs”®

/12

http://www.kr.tuwien.ac.at/

Motivation Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments ~ Conclusion

Motivation

e DL-program: consistent ontology O + rules P
(loose coupling combination approach)

e DL-atoms serve as query interfaces to O

o Possibility to add information from P to O
prior to querying it allows for bidirectional
information flow

DL - Program

Ontology DL-atom 1

DL-atom n

12

Motivation

Motivation

e DL-program: consistent ontology O + rules P
(loose coupling combination approach)

e DL-atoms serve as query interfaces to O

o Possibility to add information from P to O
prior to querying it allows for bidirectional
information flow

However, information exchange between P and O can cause
inconsistency of the DL-program (absence of answer sets).

! [Eiter et al, IJCAI'2013] Repair answer sets and algorithm for repairing
ontology data part, but the latter lacks practicality.

Motivation

Motivation

e DL-program: consistent ontology O + rules P

DL - Program

(loose coupling combination approach)

e DL-atoms serve as query interfaces to O

o Possibility to add information from P to O

prior to querying it allows for bidirectional
information flow

However, information exchange between P and O can cause
inconsistency of the DL-program (absence of answer sets).

! [Eiter et al, IJCAI'2013] Repair answer sets and algorithm for repairing
ontology data part, but the latter lacks practicality.

In this work: Algorithm for DL-program repair based on support sets for
DL-atoms. Effective for ontologies in DL-Lite 4.

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms ~ Repair Answer Set Computation ~ Experiments ~ Conclusion

Overview

Motivation

DL-programs

Support Sets for DL-atoms
Repair Answer Set Computation
Experiments

Conclusion

2/12

DL-programs

DL-Lite 4

e Lightweight Description Logic for accessing large data sources

e Concepts and roles model sets of objects and their relationships
C—A|3R R— PP~

e A DL-Lite 4 ontology O = (T,.A) consists of:
e TBox 7 specifying constraints at the conceptual level
CiEC, CEC,
R C Rs, R C —Ry, (funct R)
e ABox A specifying the facts that hold in the domain
A(b) P(a, b)

12

DL-programs

DL-Lite 4

e Lightweight Description Logic for accessing large data sources

e Concepts and roles model sets of objects and their relationships
C—A|3R R— PP~

e A DL-Lite 4 ontology O = (T,.A) consists of:

e TBox 7 specifying constraints at the conceptual level
CiEC, CEC,
R C Rs, R C —Ry, (funct R)
e ABox A specifying the facts that hold in the domain
A(b) P(a, b)

Example
T_ Child € 3hasParent A= hasParent(john, pat)
~ | Female C —Male ~ | Male(john)

12

DL-programs

DL-Lite 4

Lightweight Description Logic for accessing large data sources

Concepts and roles model sets of objects and their relationships

C—A|3R R— PP

A DL-Lite 5 ontology O = (T, A) consists of:

e TBox 7 specifying constraints at the conceptual level
Ci C G, Ci CE =Gy,
R C Ry, Ry C —Ry, (funct R)
e ABox A specifying the facts that hold in the domain
A(b) P(a, b)

For query derivation: single ABox assertion
e Forinconsistency: at most two ABox assertions

o (Classification is tractable

[Calvanese et al., 2007]

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: DL-program

Mn

(O, P) is a DL-program

(1) Child C 3hasParent (4) Male(pat)
O ={ (2) Adopted C Child (5) Male(john)
(8) Female C ~Male (6) hasParent(john, pat)

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: DL-program

M= (O, P) is a DL-program
(1) Child C 3hasParent (4) Male(pat)
O = { (2) Adopted C Child (5) Male(john)
(8) Female C ~Male (6) hasParent(john, pat)
(7) ischildof(john, alex); (8) boy(john);
P = ¢ (9) hasfather(john, pat) < DL[Male & boy; Male](pat),

DL[; hasParent](john, pat)

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: DL-program

M= (O, P) is a DL-program

(1) Child C 3hasParent (4) Male(pat)
O ={ (2) Adopted C Child (5) Male(john)
(8) Female C ~Male (6) hasParent(john, pat)
(7) ischildof(john, alex); (8) boy(john);
P = ¢ (9) hasfather(john, pat) < DL[Male & boy; Male](pat),

DL[; hasParent](john, pat)

Interpretation: | = {ischildof(john, alex), boy(john), hasfather(john, pat)}

Satisfaction relation: I [=© boy(john); | =€ DL|[; hasParent](john, pat)
I =© DL[Male w boy; Male](pat)

Semantics: in terms of answer sets, i.e. founded models (weak, flp, ...)

l'is a weak and flp answer set

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: Inconsistent DL-program

n=(0,P)

(1) Child C 3hasParent (4) Male(pat)

(2) Adopted C Child (5) Male(john)

(8) Female C —Male (6) hasParent(john, pat)
(7)

9)

7) ischildof(john, alex); (8) boy(john);
9) hasfather(john, pat) < DL[Male & boy; Male](pat),
DL[; hasParent](john, pat);
(10) L < not DL[; Adopted|(john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child & boy; —Male](alex)

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: Inconsistent DL-program

n=(0,P)

(1) Child C 3hasParent (4) Male(pat)

(2) Adopted C Child (5) Male(john)

(8) Female C —Male (6) hasParent(john, pat)
(7)

9)

7) ischildof(john, alex); (8) boy(john);
9) hasfather(john, pat) < DL[Male & boy; Male](pat),
DL[; hasParent](john, pat);
(10) L < not DL[; Adopted|(john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child & boy; —Male](alex)

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: Inconsistent DL-program

n=(0,P)

(1) Child C 3hasParent (4) Male(pat)

(2) Adopted C Child (5) Male(john)

(8) Female C —Male (6) hasParent(john, pat)
(7)

9)

7) ischildof(john, alex); (8) boy(john);
9) hasfather(john, pat) < DL[Male & boy; Male](pat),
DL[; hasParent](john, pat);
(10) L < not DL[; Adopted|(john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child & boy; —Male](alex)

Motivation ~ Overview DL-programs Support Sets for DL-atoms ~ Repair Answer Set Computation ~ Experiments ~ Conclusion

Example: Inconsistent DL-program

N = (O, P) is inconsistent!

(1) Child C 3hasParent (4) Male(pat)

(2) Adopted C Child (5) Male(john)

(8) Female C —Male (6) hasParent(john, pat)
)

9)

7) ischildof(john, alex); (8) boy(john);
9) hasfather(john, pat) < DL[Male & boy; Male](pat),
DL[; hasParent](john, pat);
(10) L < not DL[; Adopted](john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child © boy; —Male](alex).

No answer sets

/12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: Inconsistent DL-program

N = (0, P) is consistent!

(1) Child C JhasParent
O = (2) Adopted C Child (5) Male(john)

(8) Female C ~Male (6) hasParent(john, pat)

(7) ischildof(john, alex); (8) boy(john);

(9) hasfather(john, pat) <— DL[Male & boy; Male](pat),
P DL[; hasParent](john, pat);

(10) L < not DL[; Adopted](john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child & boy; —Male](alex)

Iy = {ischildof(john, alex), boy(john)}

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Example: Inconsistent DL-program

N = (0, P) is consistent!

(1) Child C 3hasParent (4) Male(pat)
O = ((2) Adopted C Child (5) Male(john)

(3) Female C —Male

(7) ischildof(john, alex); (8) boy(john);

(9) hasfather(john, pat) <— DL[Male & boy; Male](pat),
P DL[; hasParent](john, pat);

(10) L < not DL[; Adopted](john), pat # alex,
hasfather(john, pat), ischildof(john, alex),
not DL[Child & boy; —Male](alex)

Iy = {ischildof(john, alex), boy(john)}

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms ~ Repair Answer Set Computation

Ground Support Sets

d = DL[Male & boy; Male](pat); T = {Female C —Male}

When is d true under interpretation /?

Experiments

Conclusion

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments

Ground Support Sets

d = DL[Male @ boy; Male](pat); T = {Female C —~Male}

When is d true under interpretation /?
e Male(pat) € A
e boy(pat) € |
e boy(alex) € I, Female(alex) € A

Conclusion

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Ground Support Sets

A
—_—~
d = DL[Male & boy; Male|(pat); T4 = { Female C —~Male; Maley,, C Male}

When is d true under interpretation /?

e Male(pat) € A

o Maleyoy(pat) € Ag, s.t. boy(pat) € |

o Malepoy(alex) € Ag, s.t. boy(alex) € I, Female(alex) € A
where Ag = {Po(t) | PW pe A} U{=Py(t) | Pdpe A}

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Ground Support Sets

Definition
S C AU Ay is asupport set for d = DL[A; Q](t) w.rt. O = (T, A) if either
(i) S={P(c)}and T4 U S = Q(t) or @

(i) S={P(c), P'(d)},s.t. T4 U Sis inconsistent.

Suppo(d) is a set of all support sets for d.

d = DL[Male @ boy; Male](pat); Tq = { Female T —Male; Malep,, C Male}

Support sets:
e Sy = {Male(pat)}, coherent with any /
o S, = {Malepoy(pat)}, coherent with | O boy(pat)

® S; = {Maley, (alex); Female(alex)}, coherent with / O boy(alex)

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms ~ Repair Answer Set Computation ~ Experiments ~ Conclusion

Ground Support Sets

Definition
S C AU Ay is a support set for d = DL[A; Q](t) w.rt. O = (T, A) if either

(i) S={P(c)} and T, U S = Q(t) or
(i) S={P(c),P'(d)},s.t. T4 U Sis inconsistent.

Suppo(d) is a set of all support sets for d.

I =9 d iff there exists S € Suppo(d), which is coherent with /. J

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonground Support Sets

d = DL[Male @ boy; Male](pat), Tq = { Female T —Male; Malep,, T Male}

Support sets:
e Sy = {Male(pat)}
o S, = {Malepoy(pat)}
o S; = {Maleyyy,(c); Female(c)} ceC

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments

Nonground Support Sets

d = DL[Male @ boy; Male](X), T4 = {Female T ~Male; Male,,, C Male}

Nonground support sets:
e S = {Male(X)}
o S, = {Malepoy (X)}
o S; = {Maleyo,(Y); Female(Y)}

Conclusion

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonground Support Sets

Definition

S={P(Y),P'(Y)} (S={P(Y)}) is a nonground support set for a DL-atom
d(X) w.rt. T if forevery 6 : V — C it holds that S@ is a support set for d(X6)
w.r.t. Oc = (T, Ac), where A¢ is a set of all possible assertions over C.

d = DL[Male @ boy; Male](X), T4 = {Female C —~Male; Maley,, C Male}

Nonground support sets:
e S = {Male(X)}
o S, = {Malepoy (X)}
® S3 = {Maleyy,(Y); Female(Y)}

12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonground Support Sets

Definition

S ={P(Y),P(Y)} (S={P(Y)}) is a nonground support set for a DL-atom
d(X) w.r.t. T if forevery 6 : V — C it holds that S8 is a support set for d(X6)
w.r.t. Oc = (T, Ac), where A is a set of all possible assertions over C.

Nonground support sets are compact representations of ground ones. J

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonground Support Sets

Definition

S={P(Y),P'(Y)} (S={P(Y)}) is a nonground support set for a DL-atom
d(X) w.r.t. T if forevery 6 : V — C it holds that S8 is a support set for d(X6)
w.r.t. Oc = (T, Ac), where A is a set of all possible assertions over C.

Nonground support sets are compact representations of ground ones. J

Completeness: family of nonground support sets S for d(X) is complete w.r.t. O
if for every 6 : X — C and S € Suppp(d(X0)) some S’ € S exists, s.t. S= S'0'.

Complete support families alow to avoid access to © during DL-atom evaluation.J

v

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation

Experiments

Nonround Support Set Computation

d = DL[Male W boy; Male](X); T = { Female C —Male}

e Construct 75:

e Compute classification CI(7T4) (e.g. using ASP techniques):

e Extract suport sets from CI(7y):

Conclusion

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonround Support Set Computation
d = DL[Male W boy; Male](X); T = {Female C —Male}
e Construct 74:
Ta =T U {Malep,, T Male}

e Compute classification CI(7T4) (e.g. using ASP techniques):

e Extract suport sets from CI(7y):

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonround Support Set Computation
d = DL[Male W boy; Male](X); T = {Female C —Male}

e Construct 75:
Ta =T U {Malep,, T Male}

e Compute classification CI(7T4) (e.g. using ASP techniques):
cl(7q) = TaU{Male C —Female; Maley,, C ~Female}U{PC_ P | P € P}

e Extract suport sets from CI(7y):

12

Motivation

Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation Experiments

Nonround Support Set Computation

d = DL[Male W boy; Male](X); T = { Female C —Male}

Construct 7g:
Ta = T U {Maley,, C Male}

Compute classification CI(74) (e.g. using ASP techniques):

Conclusion

cl(7q) = TaU{Male C —Female; Maley,, C ~Female}U{PC_ P | P € P}

Extract suport sets from CI(75):

o 81 = {Male(X)}
= {Malepo, (X)}
83 = {Malepoy (Y), ~Male(Y)}
Ss = {Malepoy (Y), Female(Y)}
S5 = {Male(Y),—~Male(Y)}
= {Male(Y), Female(Y)}

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonround Support Set Computation
d = DL[Male W boy; Male](X); T = { Female C —Male}

e Construct 75:
Ta =T U {Malep,, T Male}

e Compute classification CI(7T4) (e.g. using ASP techniques):
cl(7q) = TaU{Male C —Female; Maley,, C ~Female}U{PC_ P | P € P}

e Extract suport sets from CI(7y):

o 81 = {Male(X)}
= {Malepo, (X)}
83 = {Malepo, (Y), ~Male(Y)}
Ss = {Malepoy (Y), Female(Y)}
S5 = {Male(Y),—~Male(Y)}
= {Male(Y), Female(Y)}

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonround Support Set Computation
d = DL[Male © boy; Male|(X); T = {Female C —~Male}

e Construct 75:
Ta =T U {Malep,, T Male}

e Compute classification CI/(74) (e.g. using ASP techniques):
cl(7q) = TaU{Male C —Female; Maley,, C ~Female}U{P C_ P | P € P}

e Extract suport sets from CI(7q):

S = {Male(X)}
Sg = {Maleboy(X)}

S; = {Maleboy(Y), ﬂMaIe(Y)}
Ss = {Malepo, (Y), Female(Y)}
W
o S = {Mal Female(Y)}

} O is consistent!

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Nonround Support Set Computation

d = DL[Male W boy; Male](X); T = {Female C —Male}

e Construct 7g:
Ta =T U {Malep,, T Male}

e Compute classification C/(74) (e.g. using ASP techniques):
cl(7q) = TaU{Male C —Female; Maley,, C ~Female}U{P C_ P | P € P}

e Extract suport sets from C/(7q):

Si = {Male(X)}

ng{Maleboy(X)} S S S: SV lete!
S1 = {Maloyey(¥), ~Male(y)} (155 S0 Sil is complete!
Ss = {Malepoy (Y), Female(Y)}

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments

Repair Answer Set Computation

v" Compute complete support families S for all DL-atoms of I1

e Construct 1 from I = (O, P):

¢ Replace all DL-atoms a with normal atoms e,
e Add guessing rules on values of a: e; V ne,

o ForallTec AS(Ml): D, ={a | eacl}; Dy={a| nescl}
v Ground support sets in S wrt. 7and A: SZ], — Gr(S,1, A)
v Find A’, such that

v Foralld € Dy: forall S e S;,(a’):

Conclusion

v’ Forall ae Dp: thereis S € S;,(a), s.t. w ’
/
SNA #DorSC A, p°§ QD

SNA'=0and S Z Ay
v" Minimality check of /|q wrt. " = (O', P), O’ = (T, A’

Motivation

Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments Conclusion

Repair Answer Set Computation

Algorithm 1: SupR AnsSet: all deletion repair answer sets

(b)
(c)
@
(e)

)

(2)
(h)

Input: [7=(T UA, P)

Output: fipRAS(IT)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in 7
for I ¢ AS(II) do

end

D,

—{a|e, €I} D, € {a]|ne, Ef};SgT — Gr(S,1,A);

ingT(a) # 0 fora € D, and every S € SgT(a)fora € D, fulfills SN A # () then

end

foralla € D, do
if some S € Sgr(a) exists s.t. S N A = 0 then pick next a
else remove each S from Sgr(a) st SNANUgrep, Sgr(a') #0
if SgT(a) = () then pick next |

end

A = A\Uyep, Sir(a);

if fipFND (I, (T U.A’,P)) then output 1|1

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation ~ Experiments

Repair Answer Set Computation

Conclusion

Algorithm 1: SupR AnsSet: all deletion repair answer sets

Input: [7=(T UA, P)

Output: fipRAS(IT)
(a) compute a complete set S of nongr. supp. sets for the DL-atoms in 7
® for I € AS(IT) do

SupRAnsSet is sound and complete
wrt. deletion repair answer sets!

(e if some S € Sy, (a) exists s.t. SN .A = () then pick next a
else remove each S from S}, (a) s.t. SN AN Uaren, Si(a)#0
0] if SgT(a) = () then pick next I
end
@ A = A\Uyep, Sor(a');
() if fipFND (I, (T U.A’,P)) then output 1|1
end
end

Motivation

seconds

Overview

60

40

20

DL-programs ~ Support Sets for DL-atoms

Experiments

T T T
oo o o |~ A5 AS
—u— Asgrep [
—o— Ajgpo AS
—— Augoo rep

M |

b
—
=)
—
@
)
S
o
3l
@w
S
w
bt

instance

s oty o

Repair Answer Set Computation

seconds

60

40

20

Experiments

—— P, AS
—a— P, rep
—o— Pjuess AS

—— Pyyess Tep [

I I I I I

20 40 60 80 100
instance

Conclusion

10/12

Motivation ~ Overview DL-programs Support Sets for DL-atoms Repair Answer Set Computation Experiments ~ Conclusion

Related Work

Inconsistenies in DL-Lite 4 ontologies:

e Consistent query answering over DL-Lite ontologies
based on repair technique [Lembo et al., 2010], [Bienvenu, 2012]

e QA to DL-Lite 4 ontologies that miss expected tuples
(abductive explanations corresponding to repairs)
[Calvanese et al., 2012]

Support sets in other works:

e Support sets for HEX-programs [Eiter et al, AAAI'2014]
as more abstract structures

11/12

Conclusion

Conclusion and Future Work

i \\;
Conclusions: > y
o
e Ground and nonground support sets for DL-atoms o /

o Allow evaluation of DL-atoms avoiding ontology access \/
e Support sets for DL-Lite 4 are small and efficiently computable

o Effective sound and complete algorithm SupRAnsSet for deletion
repair computation based on support sets

e Implementation in DLVHEX and evaluation on a set of benchmarks

Further and future work:
e Extensions to other DLs (e.g. ££)

e Computing preferred repairs
(e.g. o-selection [Eiter et al, IJCAI’2013])

12/12

References |

¥ Meghyn Bienvenu.
On the complexity of consistent query answering in the presence of
simple ontologies.
In Proceedings of the 26th AAAI Conference on Artificial Intelligence,
pages 705-711, Toronto, Ontario, Canada, July 2012. American
Association for Artificial Intelligence.

¥ Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati.
Tractable reasoning and efficient query answering in description
logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385—429, October 2007.

References Il

¥ Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio
Stefanoni.
The complexity of explaining negative query answers in DL-Lite.
In Proceedings of the 13th International Conference on the
Principles of Knowledge Representation and Reasoning, Rome,
Italy, June 2012. American Association for Artificial Intelligence.

¥ Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco
Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logic ontologies.
In Proceedings of the 19th Italian Symposium on Advanced
Database Systems, pages 103—117, Bressanone/Brixen, ltaly,
September 2010. Springer.

DL-program: syntax

Signature: ¥ = (C,1,P,C, R), where

-Yo = (I,C,R) is a DL signature;

- C D lis a set of constant symbols;

- P is a finite set of predicate symbols of arity > 0, s.t. PN {CUR} = 0.
DL-atom is of the form DL[S;0p1p1, - . ., SmOPmPm; Q](t), m > 0, where
Si€ CUR,;
op; € {Lﬂv d, Q},
pi € P (unary or binary);

Q(t) is a DL-query:

(] C(t1), —|C(f1), t=1,where C €C;

(] H(t1, tg), ﬁR(ﬁ, fg), t=1*4,5H, where R € R.

e CCLD,CZD,t=¢,whereC,DeCU{T,L};

DL-program: N = (O, P), O is a DL ontology, P is a set of DL-rules:
arV...Vap< by,...bx,not bgyq,...,not by,
m > k > 0, a; is a classical literal; b; is a classical literal or a DL-atom.

DL-program: semantics
Consider grounding grd(M)= (O, grd(P)) of N = (O, P) over C and P.

Interpretation / is a consistent set of ground literals over C and P.
e for ground literal ¢: | =€ (iff £ € I
e for ground DL-atom a = DL[S;10p1p1, - - . , SmOPmPm; Q](c):
=9 a
) E Q(c), where 7(O) is a modular translation of O to
FOL, A(a) = U, Ai(1) is a DL-update of O under / by a:

pi(t) € 1}, for op; = 1;
| pi(t) € 1}, for op; = ©;
| pi(t) & 1}, for A.

|
—~

il
%

FLP-reduct pg,P' of P is a set of ground DL-rules r s.t. | = b*(r), I £ b= (r).

Weak-reduct pyeax P! of P: removes all DL-atoms b;, 1 < i < k and all not b;,
k < j < mfrom the rules of pgpP'.

| is an x-answer set of P iff / is a minimal model of its x-reduct.

Network Benchmark

(1) Iforbid = Block (4) edge ni, nj) ST
O = { (2) Broken C Block (5) ... :}:ﬁ
(3) Block C —Avail (6) ...]

1) go(X,Y) < open(X), open(Y),DL[; edge](X, Y).

2) route(X,Z) < route(X, Y), route(Y,Z).

P) (8) route(X, Y) < not DL[Block W& block; forbid](X, Y), go(X, Y).
9uess =\ (4) open(X) V block(X) <« not DL[; —Availl(X), node(X)

5) negls(X) < node(X), route(X,Y),X £Y.

6)

(
(
(
(
(
(6) L < node(X), not negls(X).

Pcon =

(
(
(
(
(%)
(6')

Network Benchmark

(1) 3forbid T Block (4) edge(n;, nj)
O = < (2) Broken C Block (5) ...
(3) Block C —Avail (6) ...

) go(X,Y) < open(X), open(Y),DL[; edge](X, Y).
) route(X,Z) < route(X,Y), route(Y, Z).

") route(X,Y) < go(X, Y), notDL][; forbid](X, Y).
") open(X) < node(X), not DL[; —Avail](X).

5) negls(X) < node(X), route(X,Y),X £ Y.

6') L < in(X),out(Y), not route(X, Y).

1
2
3
4

	Motivation
	DL-programs
	Support Sets for DL-atoms
	Repair Answer Set Computation
	Experiments
	Conclusion
	Appendix

