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Nenofex

“Negation Normal Form Expansion”

Solver for Quantified Boolean Formulae (QBF)
propositional formula + quantified variables
generalizes SAT

Features
tree-based NNF representation
NNF expansion: less size increase for ∃-expansion than on CNF
tight, estimated expansion costs for greedy scheduling
NNF redundancy removal: techniques from circuit optimization

Results on QBFEVAL’07 benchmark set
less frequently out-of-memory than resolution-based Quantor [Biere-SAT04]
important, but expensive redundancy removal on NNF
strong performance on instances from adder familiy (QBFLIB, Ayari)
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Introduction

QBF
PSPACE-complete decision problem
exponentially more succint than SAT
CNF + quantifier prefix (prenex normal form):

S1S2 . . .Sn−1Sn| {z }
quantifier prefix

φ|{z}
CNF

Si : linearly ordered scopes
two notions: sets of quantified variables and quantifier scopes (as usual)
quantifier scope of x ∈ Si in prefix ranges over whole formula φ

Solving QBF by variable elimination:
from Sn to S1
expansion, Q-resolution or skolemization

Our focus: solve by expansion
Quantor: CNF-based, ∀-expansion for Sn−1, Q-resolution for Sn
Nenofex similar to Quantor but NNF-based, expansion only
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Motivation (1/2): NNF-expansion vs. CNF-resolution

Given: CNF φ ≡ R ∧ X0 ∧ X1 with only ∃-variables

R X0 X1

3 3

sets X0, X1, R: clauses with negative, positive or no literal of variable x

Resolve x: φres ≡ R ∧
V

c∈(X0×resX1) c

R X0 ×res X1

3 · 3 = 9

generally: add |X0| · |X1| resolvents
worst case: quadratic size increase

Expand x: φexp ≡ R ∧ ((X0 ∧ X1)[x/0] ∨ (X0 ∧ X1)[x/1])

R X ′0 X ′1
) ( ))((

3 1 3

add copy of φ by ∨, factor out R and assign x
worst case: linear size increase

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving



Motivation (2/2)

=⇒
[x/1]

0 0 1 11 1 0 0

[x/0]

General ∃-expansion on NNF
φexp grows linearly in the size of the subformula of x

NNF allows compact representation for expanding ∃-variables

size increase in ∀-expansions: NNF and CNF equivalent
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Core Algorithm

INIT

True/False

UNITS UNATES GF RR EXP SAT

Elimination of unit and pure literals (unates)
Redundancy Removal

on small subformula only, cutoff criterion
Expansion: S1 . . .Sn−1Sn φ

from Sn to S1, expand cheapest variable in Sn−1 or Sn by scores
score(x): tight upper bound on size increase of NNF when expanding x

partial score recomputation

SAT solving
only ∀(∃)-variables left→ generate CNF by Tseitin transformation
PicoSAT backend
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Formula Representation (1/2)

Negation Normal Form: only ∨ and ∧, ¬ applied to literals only

NNF-trees
internal nodes: operators ∨ and ∧
leaves: literal occurrence nodes (no sharing)

level(node) := distance to root

1

2a b

dc

a ∧ b ∧ (c ∨ ¬d)

Structural Restrictions: flat and compact NNF-trees (particularly for CNFs)
number of children n ≥ 2: operators denote n-ary boolean functions

n = 1 after deletion: merge nodes

1

2 c

a b

=⇒

1

a c
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Formula Representation (2/2)

alternating types: type(parent) 6= type(child)
apply associativity of ∨ and ∧
prerequisite: n-ary operators

1

2 c

a b

=⇒

1

a bc

one-level simplification: for var. x ,⊗ ∈ {∨,∧}, simplify x ⊗ x , x ⊗ ¬x
remove trivial redundancy
bottom-up recursive effects

1

2 c

a a

=⇒ c
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Expansion (1/2)

Local Expansion for NNF: copy only relevant parts
Def.: ers(x) := expansion-relevant subformula of variable x

smallest subformula which contains all occurrences of x

finding ers(x) by scope reduction [AyariBasin02] in prenex formulae:

Qx(φ⊗ ψ) ≡ Qx(φ)⊗ ψ x 6∈ Vars(ψ),Q ∈ {∀, ∃}, ⊗ ∈ {∨,∧}

In NNF-trees: for ers(x), find expansion-relevant subtree to be copied

correspondence: smallest subformulae and subtrees

Expansion-relevant LCAs of Variables: scope reduction in NNF-tree

LCA: least common ancestor of set of nodes

bottom-up approach for computing ers(x) starting from literals of x

expansion-relevant LCA of x denotes expansion-relevant subtree
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Expansion (2/2)

Expansion-relevant LCAs of Variables
Def.: expansion-relevant LCA of x := node lca(x) and set LCA-children
set LCA-children: (proper) subset of children of node lca(x)

LCA-child c: subtree of c contains at least one occurrence of variable x

Expansion: S1 . . .Sn−1Sn φ, x ∈ Sn, type(Sn) ∈ {∀, ∃}
replace ers(x) by (ers(x)[x/0]⊗ ers(x)[x/1]), ⊗ ∈ {∨,∧}

Expansion: x ∈ Sn−1, type(Sn−1) = ∀
duplicate depending ∃-variables Dx from Sn

D(0)
x := {y ∈ Sn | y has literals in ers(x)}

D(k+1)
x := {z ∈ Sn | z has literals in ers(y ′) for some y ′ ∈ Dk

x }, k ≥ 0

Dx :=
[

k

Dk
x

Dx : extended from CNF [BubeckKBüning-SAT07] to NNF
universal expansion-relevant subformula urs(x)

contains all literals of x and of depending variables in Dx

1

2 3 b

4

x y

5

x z

x a
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NNF Redundancy Removal

Global Flow (GF): global analysis of logical flow of values

implications: transform circuit to reduce size

x = 0→ y = 0 : y ≡ x ∧ y x = 1→ y = 1 : y ≡ x ∨ y

Redundancy Removal (RR) by Automatic Test Pattern Generation (ATPG)
ATPG: structural testing of circuits (NP-complete)

assume fault f at single signal s in circuit C: stuck-at-{0,1} fault model

find input v = (pi0, . . . , pin) such that C(v) 6= Cf (v) uniquely caused by f

no such v : f is not testable, does not affect C, can remove HW at s

GF+RR implementation: incomplete, polynomial-time

1

2 3

a b a c

=⇒
1

2 3

a b a c

4

a

=⇒ 1

b c

4

a
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Experimental Results (1/2): QBFEVAL’07

full benchmark set (1136 instances) from QBFEVAL’07
Pentium IV 3.0 GHz, Ubuntu Linux, limits 900 seconds and 1.5 GB
Quantor as reference: CNF-based, similar strategy

three versions of Nenofex: GF, RR enabled/disabled

Nenofex
Quantor GF, RR no GF, RR no GF, no RR

Solved 421 361 352 313
OOT 32 124 103 83
OOM 683 651 681 740

MEM-∪ 1.10e6 1.15e6 1.17e6 1.23e6
MEM-∩ 10473 18472 19693 28422

Quantor only Both Nenofex only Sum
Solved 79 342 19 440
OOT 18 14 110 142
OOM 80 603 48 731

Results
less space-outs than CNF-based Quantor

node implementation in Nenofex not optimized for memory
redundancy removal expensive but crucial for performance

GF, RR cause more time outs

19 uniquely solved instances
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Experimental Results (2/2): Ayari’s adder benchmarks

equivalence checking of n-bit ripple-carry adders [AyariBasin02]
structured QBF-encodings of monadic second order formulae
hard instances in previous QBF evaluations

optimizations enabled optimizations disabled
Name SAT-Vars SAT-Clauses Time (Exp.) Mem SAT-Vars SAT-Clauses Time (Exp.) Mem

adder-2-unsat 41 94 0.07 (0.07) <1 46 106 <0.01 <1
adder-4-unsat 240 585 0.37 (0.36) 2.6 284 712 0.06 (0.04) <1
adder-6-unsat 722 1748 1.32 (1.22) 4.2 892 2241 0.23 (0.10) 4.2
adder-8-unsat 1586 3776 2.89 (2.60) 6.6 2004 5038 0.66 (0.24) 6.6

adder-10-unsat 3098 7277 5.62 (4.67) 10.2 3892 9745 1.88 (0.50) 10.2
adder-12-unsat 5126 12007 9.58 (7.47) 15.1 6644 16552 5.04 (0.89) 15.1
adder-14-unsat 8064 18755 15.48 (11.10) 21.3 10448 25999 13.31 (1.54) 21.3
adder-16-unsat 11921 27565 24.90 (15.35) 29.2 15596 38638 31.13 (2.47) 29.2

adder-2-sat 60 133 0.04 (0.04) <1 76 118 <0.01 <1
adder-4-sat 236 549 0.39 (0.38) 2.4 550 1386 0.05 (0.04) <1
adder-6-sat 1358 3259 1.58 (1.42) 3.3 1855 4779 0.39 (0.13) 3.3
adder-8-sat 6016 14663 4.91 (3.23) 5.0 5073 13127 1.64 (0.39) 4.7
adder-10-sat 8563 20901 8.87 (5.86) 6.9 10421 26988 5.94 (1.24) 7.7
adder-12-sat 17099 41795 20.10 (10.24) 11.4 20518 52481 17.86 (3.34) 14.6
adder-14-sat 56947 141095 92.29 (23.45) 67.4 39935 103316 53.32 (9.21) 23.5
adder-16-sat 85836 213038 173.80 (42.94) 46.5 119018 309598 372.58 (41.50) 65.6

Results
SAT-solving time dominates expansion time in large instances
no optimizations: less expansion time but larger CNFs
Quantor, sKizzo, squolem, ebddres:

comparable on adder-{2,4}-{sat,unsat}, sKizzo slower on adder-{2,...,10}-sat
abort on adder-{12,14,16}-{sat,unsat}, adder-{6,..,16}-unsat
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Summary: Nenofex

Expansion-based QBF solver for NNF
∃-expansion: linear vs. quadratic size increase on NNF and CNF
NNF-trees: flat formula representation

Local expansion: scope reduction by quantifier rules
expansion-relevant subformulae, subtrees and LCAs

Variables scores for greedy scheduling
tight upper bound on actual size increase of NNF-tree

Redundancy removal: treat NNF-tree as circuit
GF: deriving implications for circuit transformations
ATPG-based RR: untestable faults correspond to redundant HW
implementation: incomplete, on small subtree only

Experiments
less space-outs than CNF-based solver Quantor
GF+RR crucial for performance, although NNF more compact than CNF
adder-benchmarks

Future work
optimize for run time and memory
incremental maintainance of scores
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