
Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Nenofex

“Negation Normal Form Expansion”

Solver for Quantified Boolean Formulae (QBF)
propositional formula + quantified variables
generalizes SAT

Features
tree-based NNF representation
NNF expansion: less size increase for ∃-expansion than on CNF
tight, estimated expansion costs for greedy scheduling
NNF redundancy removal: techniques from circuit optimization

Results on QBFEVAL’07 benchmark set
less frequently out-of-memory than resolution-based Quantor [Biere-SAT04]
important, but expensive redundancy removal on NNF
strong performance on instances from adder familiy (QBFLIB, Ayari)

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Introduction

QBF
PSPACE-complete decision problem
exponentially more succint than SAT
CNF + quantifier prefix (prenex normal form):

S1S2 . . .Sn−1Sn| {z }
quantifier prefix

φ|{z}
CNF

Si : linearly ordered scopes
two notions: sets of quantified variables and quantifier scopes (as usual)
quantifier scope of x ∈ Si in prefix ranges over whole formula φ

Solving QBF by variable elimination:
from Sn to S1
expansion, Q-resolution or skolemization

Our focus: solve by expansion
Quantor: CNF-based, ∀-expansion for Sn−1, Q-resolution for Sn
Nenofex similar to Quantor but NNF-based, expansion only

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Motivation (1/2): NNF-expansion vs. CNF-resolution

Given: CNF φ ≡ R ∧ X0 ∧ X1 with only ∃-variables

R X0 X1

3 3

sets X0, X1, R: clauses with negative, positive or no literal of variable x

Resolve x: φres ≡ R ∧
V

c∈(X0×resX1) c

R X0 ×res X1

3 · 3 = 9

generally: add |X0| · |X1| resolvents
worst case: quadratic size increase

Expand x: φexp ≡ R ∧ ((X0 ∧ X1)[x/0] ∨ (X0 ∧ X1)[x/1])

R X ′0 X ′1
) ())((

3 1 3

add copy of φ by ∨, factor out R and assign x
worst case: linear size increase

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Motivation (2/2)

=⇒
[x/1]

0 0 1 11 1 0 0

[x/0]

General ∃-expansion on NNF
φexp grows linearly in the size of the subformula of x

NNF allows compact representation for expanding ∃-variables

size increase in ∀-expansions: NNF and CNF equivalent

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Core Algorithm

INIT

True/False

UNITS UNATES GF RR EXP SAT

Elimination of unit and pure literals (unates)
Redundancy Removal

on small subformula only, cutoff criterion
Expansion: S1 . . .Sn−1Sn φ

from Sn to S1, expand cheapest variable in Sn−1 or Sn by scores
score(x): tight upper bound on size increase of NNF when expanding x

partial score recomputation

SAT solving
only ∀(∃)-variables left→ generate CNF by Tseitin transformation
PicoSAT backend

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Formula Representation (1/2)

Negation Normal Form: only ∨ and ∧, ¬ applied to literals only

NNF-trees
internal nodes: operators ∨ and ∧
leaves: literal occurrence nodes (no sharing)

level(node) := distance to root

1

2a b

dc

a ∧ b ∧ (c ∨ ¬d)

Structural Restrictions: flat and compact NNF-trees (particularly for CNFs)
number of children n ≥ 2: operators denote n-ary boolean functions

n = 1 after deletion: merge nodes

1

2 c

a b

=⇒

1

a c

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Formula Representation (2/2)

alternating types: type(parent) 6= type(child)
apply associativity of ∨ and ∧
prerequisite: n-ary operators

1

2 c

a b

=⇒

1

a bc

one-level simplification: for var. x ,⊗ ∈ {∨,∧}, simplify x ⊗ x , x ⊗ ¬x
remove trivial redundancy
bottom-up recursive effects

1

2 c

a a

=⇒ c

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Expansion (1/2)

Local Expansion for NNF: copy only relevant parts
Def.: ers(x) := expansion-relevant subformula of variable x

smallest subformula which contains all occurrences of x

finding ers(x) by scope reduction [AyariBasin02] in prenex formulae:

Qx(φ⊗ ψ) ≡ Qx(φ)⊗ ψ x 6∈ Vars(ψ),Q ∈ {∀, ∃}, ⊗ ∈ {∨,∧}

In NNF-trees: for ers(x), find expansion-relevant subtree to be copied

correspondence: smallest subformulae and subtrees

Expansion-relevant LCAs of Variables: scope reduction in NNF-tree

LCA: least common ancestor of set of nodes

bottom-up approach for computing ers(x) starting from literals of x

expansion-relevant LCA of x denotes expansion-relevant subtree

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Expansion (2/2)

Expansion-relevant LCAs of Variables
Def.: expansion-relevant LCA of x := node lca(x) and set LCA-children
set LCA-children: (proper) subset of children of node lca(x)

LCA-child c: subtree of c contains at least one occurrence of variable x

Expansion: S1 . . .Sn−1Sn φ, x ∈ Sn, type(Sn) ∈ {∀, ∃}
replace ers(x) by (ers(x)[x/0]⊗ ers(x)[x/1]), ⊗ ∈ {∨,∧}

Expansion: x ∈ Sn−1, type(Sn−1) = ∀
duplicate depending ∃-variables Dx from Sn

D(0)
x := {y ∈ Sn | y has literals in ers(x)}

D(k+1)
x := {z ∈ Sn | z has literals in ers(y ′) for some y ′ ∈ Dk

x }, k ≥ 0

Dx :=
[

k

Dk
x

Dx : extended from CNF [BubeckKBüning-SAT07] to NNF
universal expansion-relevant subformula urs(x)

contains all literals of x and of depending variables in Dx

1

2 3 b

4

x y

5

x z

x a

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

NNF Redundancy Removal

Global Flow (GF): global analysis of logical flow of values

implications: transform circuit to reduce size

x = 0→ y = 0 : y ≡ x ∧ y x = 1→ y = 1 : y ≡ x ∨ y

Redundancy Removal (RR) by Automatic Test Pattern Generation (ATPG)
ATPG: structural testing of circuits (NP-complete)

assume fault f at single signal s in circuit C: stuck-at-{0,1} fault model

find input v = (pi0, . . . , pin) such that C(v) 6= Cf (v) uniquely caused by f

no such v : f is not testable, does not affect C, can remove HW at s

GF+RR implementation: incomplete, polynomial-time

1

2 3

a b a c

=⇒
1

2 3

a b a c

4

a

=⇒ 1

b c

4

a

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Experimental Results (1/2): QBFEVAL’07

full benchmark set (1136 instances) from QBFEVAL’07
Pentium IV 3.0 GHz, Ubuntu Linux, limits 900 seconds and 1.5 GB
Quantor as reference: CNF-based, similar strategy

three versions of Nenofex: GF, RR enabled/disabled

Nenofex
Quantor GF, RR no GF, RR no GF, no RR

Solved 421 361 352 313
OOT 32 124 103 83
OOM 683 651 681 740

MEM-∪ 1.10e6 1.15e6 1.17e6 1.23e6
MEM-∩ 10473 18472 19693 28422

Quantor only Both Nenofex only Sum
Solved 79 342 19 440
OOT 18 14 110 142
OOM 80 603 48 731

Results
less space-outs than CNF-based Quantor

node implementation in Nenofex not optimized for memory
redundancy removal expensive but crucial for performance

GF, RR cause more time outs

19 uniquely solved instances

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Experimental Results (2/2): Ayari’s adder benchmarks

equivalence checking of n-bit ripple-carry adders [AyariBasin02]
structured QBF-encodings of monadic second order formulae
hard instances in previous QBF evaluations

optimizations enabled optimizations disabled
Name SAT-Vars SAT-Clauses Time (Exp.) Mem SAT-Vars SAT-Clauses Time (Exp.) Mem

adder-2-unsat 41 94 0.07 (0.07) <1 46 106 <0.01 <1
adder-4-unsat 240 585 0.37 (0.36) 2.6 284 712 0.06 (0.04) <1
adder-6-unsat 722 1748 1.32 (1.22) 4.2 892 2241 0.23 (0.10) 4.2
adder-8-unsat 1586 3776 2.89 (2.60) 6.6 2004 5038 0.66 (0.24) 6.6

adder-10-unsat 3098 7277 5.62 (4.67) 10.2 3892 9745 1.88 (0.50) 10.2
adder-12-unsat 5126 12007 9.58 (7.47) 15.1 6644 16552 5.04 (0.89) 15.1
adder-14-unsat 8064 18755 15.48 (11.10) 21.3 10448 25999 13.31 (1.54) 21.3
adder-16-unsat 11921 27565 24.90 (15.35) 29.2 15596 38638 31.13 (2.47) 29.2

adder-2-sat 60 133 0.04 (0.04) <1 76 118 <0.01 <1
adder-4-sat 236 549 0.39 (0.38) 2.4 550 1386 0.05 (0.04) <1
adder-6-sat 1358 3259 1.58 (1.42) 3.3 1855 4779 0.39 (0.13) 3.3
adder-8-sat 6016 14663 4.91 (3.23) 5.0 5073 13127 1.64 (0.39) 4.7
adder-10-sat 8563 20901 8.87 (5.86) 6.9 10421 26988 5.94 (1.24) 7.7
adder-12-sat 17099 41795 20.10 (10.24) 11.4 20518 52481 17.86 (3.34) 14.6
adder-14-sat 56947 141095 92.29 (23.45) 67.4 39935 103316 53.32 (9.21) 23.5
adder-16-sat 85836 213038 173.80 (42.94) 46.5 119018 309598 372.58 (41.50) 65.6

Results
SAT-solving time dominates expansion time in large instances
no optimizations: less expansion time but larger CNFs
Quantor, sKizzo, squolem, ebddres:

comparable on adder-{2,4}-{sat,unsat}, sKizzo slower on adder-{2,...,10}-sat
abort on adder-{12,14,16}-{sat,unsat}, adder-{6,..,16}-unsat

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Summary: Nenofex

Expansion-based QBF solver for NNF
∃-expansion: linear vs. quadratic size increase on NNF and CNF
NNF-trees: flat formula representation

Local expansion: scope reduction by quantifier rules
expansion-relevant subformulae, subtrees and LCAs

Variables scores for greedy scheduling
tight upper bound on actual size increase of NNF-tree

Redundancy removal: treat NNF-tree as circuit
GF: deriving implications for circuit transformations
ATPG-based RR: untestable faults correspond to redundant HW
implementation: incomplete, on small subtree only

Experiments
less space-outs than CNF-based solver Quantor
GF+RR crucial for performance, although NNF more compact than CNF
adder-benchmarks

Future work
optimize for run time and memory
incremental maintainance of scores

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

