Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

@ “Negation Normal Form Expansion”

@ Solver for Quantified Boolean Formulae (QBF)

e propositional formula + quantified variables
@ generalizes SAT

@ Features

o tree-based NNF representation

NNF expansion: less size increase for 3-expansion than on CNF
tight, estimated expansion costs for greedy scheduling

NNF redundancy removal: techniques from circuit optimization

@ Results on QBFEVAL07 benchmark set

o less frequently out-of-memory than resolution-based Quantor [Biere-SAT04]
e important, but expensive redundancy removal on NNF
@ strong performance on instances from adder familiy (QBFLIB, Ayari)

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Introduction

e QBF

o PSPACE-complete decision problem
e exponentially more succint than SAT
@ CNF + quantifier prefix (prenex normal form):

§182...5,-15n ¢
—_—
quantifier prefix CNF

e S;: linearly ordered scopes

@ two notions: sets of quantified variables and quantifier scopes (as usual)
@ quantifier scope of x € S; in prefix ranges over whole formula ¢

@ Solving QBF by variable elimination:

o from Spto Sy
@ expansion, Q-resolution or skolemization

@ Our focus: solve by expansion

o Quantor: CNF-based, V-expansion for S,_1, Q-resolution for Sp
o Nenofex similar to Quantor but NNF-based, expansion only

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Motivation (1/2): NNF-expansion vs. CNF-resolution

Given: CNF ¢ = R A Xo A Xi with only 3-variables
R Xo Xi
Y I IEE
3 3
@ sets Xp, Xi, R: clauses with negative, positive or no literal of variable x
Resolve x: ¢,es = R A Acexoxresxi) ©
Xo Xres Xi

I:I [[N N N O (N (O N
3.3=9

@ generally: add | Xp| - | Xi]| resolvents
@ worst case: quadratic size increase
Expand x: ¢exp = R A ((Xo A X1)[x/0] V (Xo A X1)[x/1])
R X3 X

I (MW (EEm)
3 1 3

@ add copy of ¢ by Vv, factor out R and assign x
@ worst case: linear size increase

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Motivation (2/2)

General 3-expansion on NNF
@ ¢exp grows linearly in the size of the subformula of x
@ NNF allows compact representation for expanding 3-variables
@ size increase in V-expansions: NNF and CNF equivalent

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Core Algorithm

@ Elimination of unit and pure literals (unates)
@ Redundancy Removal
@ on small subformula only, cutoff criterion
@ Expansion: Si...S5,.1S, ¢
e from Sy to Sy, expand cheapest variable in S,,_1 or S, by scores
@ score(x): tight upper bound on size increase of NNF when expanding x
@ partial score recomputation
@ SAT solving

e only V(3)-variables left — generate CNF by Tseitin transformation
@ PicoSAT backend

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Formula Representation (1/2)

Negation Normal Form: only v and A, — applied to literals only

NNF-trees A
@ internal nodes: operators vV and A
@ leaves: literal occurrence nodes (no sharing)
@ level(node) := distance to root (2] [v]

anbA(cVd)

Structural Restrictions: flat and compact NNF-trees (particularly for CNFs)
@ number of children n > 2: operators denote n-ary boolean functions
e n = 1 after deletion: merge nodes

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Formula Representation (2/2)

@ alternating types: type(parent) # type(child)
e apply associativity of v and A
@ prerequisite: n-ary operators

@ one-level simplification: for var. x,® € {Vv, A}, simplify x ® x, x ® —x
@ remove trivial redundancy
@ bottom-up recursive effects

[[

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Expansion (1/2)

Local Expansion for NNF: copy only relevant parts
@ Def.: ers(x) := expansion-relevant subformula of variable x
o smallest subformula which contains all occurrences of x

@ finding ers(x) by scope reduction [AyariBasin02] in prenex formulae:
x(p@) = x(p) @y x & Vars(y), Q € {V,3}, ® € {V,A}

In NNF-trees: for ers(x), find expansion-relevant subtree to be copied
@ correspondence: smallest subformulae and subtrees

Expansion-relevant LCAs of Variables: scope reduction in NNF-tree
@ LCA: least common ancestor of set of nodes
@ bottom-up approach for computing ers(x) starting from literals of x
@ expansion-relevant LCA of x denotes expansion-relevant subtree

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Expansion (2/2)

Expansion-relevant LCAs of Variables

@ Def.: expansion-relevant LCA of x := node Ica(x) and set LCA-children
@ set LCA-children: (proper) subset of children of node /ca(x)
e LCA-child c: subtree of ¢ contains at least one occurrence of variable x

Expansion: S;...S,_1S, ¢, x € Sy, type(Sy) € {V,3}
@ replace ers(x) by (ers(x)[x/0] ® ers(x)[x/1]), ® € {V,A}

Expansion: x € S,_1, type(Sp—1) =V
@ duplicate depending 3-variables Dy from S,

o

B¢
>

Df(°> = {y € S, |y hasliterals in ers(x)}
DY) .= {ze S, | zhaslliterals in ers(y’) for some y’ € DX}, k > 0
o = Yol i
§

@ Dy: extended from CNF [BubeckKBiining-SAT07] to NNF
@ universal expansion-relevant subformula urs(x)
e contains all literals of x and of depending variables in Dy

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

NNF Redundancy Removal

Global Flow (GF): global analysis of logical flow of values
@ implications: transform circuit to reduce size
X=0—-y=0: y=xAy x=1—-y=1:y=xVy

Redundancy Removal (RR) by Automatic Test Pattern Generation (ATPG)
@ ATPG: structural testing of circuits (NP-complete)
@ assume fault f at single signal s in circuit C: stuck-at-{0,1} fault model
@ find input v = (piy, ..., pi,) such that C(v) # C;(v) uniquely caused by f
@ no such v: f is not testable, does not affect C, can remove HW at s

GF+RR implementation: incomplete, polynomial-time

= A

[o] [c]

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Experimental Results (1/2): QBFEVALQ7

@ full benchmark set (1136 instances) from QBFEVAL07

@ Pentium IV 3.0 GHz, Ubuntu Linux, limits 900 seconds and 1.5 GB

@ Quantor as reference: CNF-based, similar strategy
o three versions of Nenofex: GF, RR enabled/disabled

Results

[Nenofex |
[Quantor [| GFRR [noGF RR | noGF noRR |
Solved 421 361 352 313
00T 32 124 103 83
OOoM 683 651 681 740
MEM-U 1.10e6 1.15e6 1.17e6 1.23e6
MEM-N 10473 18472 19693 28422
Quantor only Both Nenofex only Sum
Solved 79 342 19 440
OOT 18 14 110 142
Oom 80 603 48 731

@ less space-outs than CNF-based Quantor
e node implementation in Nenofex not optimized for memory

@ redundancy removal expensive but crucial for performance

e GF, RR cause more time outs
@ 19 uniquely solved instances

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

Experimental Results (2/2): Ayari’'s adder benchmarks

@ equivalence checking of n-bit ripple-carry adders [AyariBasin02]
e structured QBF-encodings of monadic second order formulae

e hard instances in previous QBF evaluations

optimizations enabled optimizations disabled
Name SAT-Vars SAT-Clauses Time (Exp.) Mem SAT-Vars SAT-Clauses Time (Exp.) Mem
adder-2-unsat Gl 9% 0.07 (0.07) B 76 106 <0.01 B
adder-4-unsat 240 585 0.37 (0.36) 26 284 712 0.06 (0.04) Bl
adder-6-unsat 722 1748 132 (1.22) 42 892 2241 0.23 (0.10) 42
adder-8-unsat 1586 3776 2.89 (2.60) 6.6 2004 5038 0.66 (0.24) 6.6
adder-10-unsat 3098 7277 5.62 (4.67) 10.2 3892 9745 7.88 (0.50) 10.2
adder-12-unsat 5126 12007 9.58 (7.47) 15.1 6644 16552 5.04 (0.89) 15.1
adder-14-unsat 8064 18755 15.48 (11.10) 213 10448 25999 13.31 (1.54) 21.3
adder-16-unsat 11921 27565 24.90 (15.35) 29.2 15596 38638 31.13 (2.47) 292
adder-2-sat 60 133 0.04 (0.04) < 76 118 <0.01 B
adder-4-sat 236 549 0.39 (0.38) 24 550 7386 0.05 (0.04) &
adder-6-sat 1358 3259 1,58 (1.42) 33 1855 4779 0.39 (0.13) 33
adder-8-sat 5016 14663 4.9 (3.23) 50 5073 13127 764 (0.39) 47
adder-10-sat 8563 20901 8.87 (5.86) 6.9 10421 26988 5.94 (1.24) 77
adder-12-sat 17099 41795 20.10 (10.24) 114 20518 52481 17.86 (3.34) 146
adder-14-sat 56947 141095 92.29 (23.45) 67.4 39935 103316 53.32 (9.21) 235
adder-16-sat 85836 213038 173.80 (42.94) | 465 119018 309598 372.58 (41.50) | 656
@ Results
@ SAT-solving time dominates expansion time in large instances
@ no optimizations: less expansion time but larger CNFs
e Quantor, sKizzo, squolem, ebddres:
@ comparable on adder-{2,4}-{sat,unsat}, sKizzo slower on adder-{2,...,10}-sat

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

@ abort on adder-{12,14,16}-{sat,unsat}, adder-{6,..,16}-unsat

Summary: Nenofex

@ Expansion-based QBF solver for NNF
e J-expansion: linear vs. quadratic size increase on NNF and CNF
o NNF-trees: flat formula representation
Local expansion: scope reduction by quantifier rules
e expansion-relevant subformulae, subtrees and LCAs
@ Variables scores for greedy scheduling
o tight upper bound on actual size increase of NNF-tree
Redundancy removal: treat NNF-tree as circuit
e GF: deriving implications for circuit transformations
o ATPG-based RR: untestable faults correspond to redundant HW
e implementation: incomplete, on small subtree only
@ Experiments
o less space-outs than CNF-based solver Quantor
o GF+RR crucial for performance, although NNF more compact than CNF
e adder-benchmarks
Future work

@ optimize for run time and memory
e incremental maintainance of scores

Florian Lonsing and Armin Biere Nenofex: Expanding NNF for QBF Solving

