
Incrementally Computing Minimal Unsatisfiable Cores of
QBFs via a Clause Group Solver API

Florian Lonsing and Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems

Vienna University of Technology, Austria
http://www.kr.tuwien.ac.at/

18th International Conference on Theory and Applications of
Satisfiability Testing,

September 24 - 27, Austin, Texas, USA

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.Lonsing and Egly (TU Wien) 1 / 14

http://www.kr.tuwien.ac.at/

Overview

Quantified Boolean Formulas (QBF):
Propositional logic with explicitly existentially/universally quantified variables.
PSPACE-completeness: applications in AI, verification, synthesis,. . .

Incremental QBF Solving:
Solving sequences of related QBFs while keeping learned information.
Solver API called incrementally from application programs.

DepQBF:
Incremental search-based QBF solver with clause and cube learning.
Free software (GPLv3): http://lonsing.github.io/depqbf/

Lonsing and Egly (TU Wien) 2 / 14

http://lonsing.github.io/depqbf/

Contributions (1/2)

Clause Groups:
Clause group: set of clauses incrementally added to/removed from formula.
First implemented in SAT solver zChaff (2001) using bit masking to track
learned clauses, no support of assumptions.

Novel Clause Group API in DepQBF:
Clause groups implemented based on selector variables and incremental
solving under assumptions.
Internally, solver augments added clauses by selector variables.
Unique feature: handling of selector variables and assumptions entirely
carried out by the solver.
User’s perspective: encodings are not cluttered with selector variables.

Lonsing and Egly (TU Wien) 3 / 14

Contributions (1/2)

Clause Groups:
Clause group: set of clauses incrementally added to/removed from formula.
First implemented in SAT solver zChaff (2001) using bit masking to track
learned clauses, no support of assumptions.

Novel Clause Group API in DepQBF:
Clause groups implemented based on selector variables and incremental
solving under assumptions.
Internally, solver augments added clauses by selector variables.
Unique feature: handling of selector variables and assumptions entirely
carried out by the solver.
User’s perspective: encodings are not cluttered with selector variables.

Lonsing and Egly (TU Wien) 3 / 14

Contributions (2/2)

Minimal Unsatisfiable Cores (MUCs) of QBFs:
Alternative terminology: minimal unsatisfiable subsets (MUS).
Consider QBF Q̂.φ in prenex CNF with prefix Q̂ and CNF φ.
Let φ′ ⊆ φ be a minimal subset such that Q̂.φ′ is unsatisfiable, then Q̂.φ′ is a
MUC of QBF Q̂.φ.

Computation of MUCs of QBFs:
Well-studied problem for SAT but not for QBF.
First experimental results for computation of MUCs of QBFs based on
DepQBF’s novel clause group API.
Iterative refinement of nonminimal unsatisfiable cores.

Lonsing and Egly (TU Wien) 4 / 14

Clause Group API Example (1/7)

Solver *s = create();
new_scope_at_nesting

(s,QTYPE_FORALL,1);
add(s,1);add(s,2);add(s,0);
new_scope_at_nesting

(s,QTYPE_EXISTS,2);
add(s,3);add(s,4);add(s,0);

∀x1, x2∃x3, x4.

create(): create solver instance.
new_scope_at_nesting(...): add new quantifier block to prefix.
add(...): add variables to quantifier blocks, terminated by zero.

Lonsing and Egly (TU Wien) 5 / 14

Clause Group API Example (2/7)

ClauseGroupID id1 =
new_cls_grp(s);

open_cls_grp(s,id1);
add(s,-1);add(s,-3);

add(s,0);
close_cls_grp(s,id1);

∀x1, x2∃x3, x4.
(s1 ∨ ¬x1 ∨ ¬x3)

new_cls_grp(...): create new clause group and return its ID.
open_cls_grp(id): open clause group id; clauses added in the following
are put into group id.
add(...): add literals to clauses, terminated by zero.
Internally, solver augments clauses in a group by a selector variable (s1).
close_cls_grp(id): closes group id.

Lonsing and Egly (TU Wien) 6 / 14

Clause Group API Example (3/7)

ClauseGroupID id2 =
new_cls_grp(s);

open_cls_grp(s,id2);
add(s,1);add(s,2);

add(s,4);add(s,0);
add(s,1);add(s,-4);

add(s,0);
close_cls_grp(s,id2);

∀x1, x2∃x3, x4.
(s1 ∨ ¬x1 ∨ ¬x3) ∧
(s2 ∨ x1 ∨ x2 ∨ x4)∧
(s2 ∨ x1 ∨ ¬x4)

Arbitrary number of clause groups can be created, identified by their IDs.
Selector variables are invisible to the user.
Name clashes between user-given variables and selector variables are avoided
by internal dynamic renaming of selector variables.

Lonsing and Egly (TU Wien) 7 / 14

Clause Group API Example (4/7)

Result res = sat(s);
assert(res == RESULT_UNSAT);
ClauseGroupID *rgrps =

get_relevant_cls_grps(s);
assert(rgrps[0] == id2);
reset(s);

∀x1, x2∃x3, x4.
(⊥ ∨ ¬x1 ∨ ¬x3) ∧
(⊥ ∨ x1 ∨ x2 ∨ x4)∧
(⊥ ∨ x1 ∨ ¬x4)

sat(...): solve formula, internally selector variables are assigned to activate
clause groups and their clauses (si replaced by ⊥).
get_relevant_cls_grps(...): if formula ψ is unsatisfiable, returns a list
of group IDs which contain clauses participating in the resolution refutation.
Unsatisfiable core (UC) of ψ, not necessarily minimal.
Internally, solver maps selector variables to IDs of clause groups.

Lonsing and Egly (TU Wien) 8 / 14

Clause Group API Example (5/7)

deactivate_cls_grp(s,rgrps[0]);
res = sat(s);
assert(res == RESULT_SAT);
reset(s);

∀x1, x2∃x3, x4.
(⊥ ∨ ¬x1 ∨ ¬x3) ∧
((((((((
(> ∨ x1 ∨ x2 ∨ x4) ∧
(((((((
(> ∨ x1 ∨ ¬x4)

deactivate_cls_grp: internally selector variable of group id is temporarily
assigned to satisfy clauses (si replaced by >).
Deactivated groups stay deactivated in all forthcoming calls of sat(...).

Lonsing and Egly (TU Wien) 9 / 14

Clause Group API Example (6/7)

activate_cls_grp(s,rgrps[0]);
free(rgrps);

∀x1, x2∃x3, x4.
(s1 ∨ ¬x1 ∨ ¬x3) ∧
(⊥ ∨ x1 ∨ x2 ∨ x4) ∧
(⊥ ∨ x1 ∨ ¬x4)

activate_cls_grp: internally selector variable of group id is assigned to
not satisfy clauses.
Activated groups stay activated in all forthcoming calls of sat(...).
Newly created groups are always activated.

Lonsing and Egly (TU Wien) 10 / 14

Clause Group API Example (7/7)

delete_cls_grp(s,id1);
res = sat(s);
assert(res == RESULT_UNSAT);
delete(s);

∀x1, x2∃x3, x4.

((((((((hhhhhhhh(> ∨ ¬x1 ∨ ¬x3) ∧
(⊥ ∨ x1 ∨ x2 ∨ x4) ∧
(⊥ ∨ x1 ∨ ¬x4)

delete_cls_grp: internally selector variable of group id is permanently
assigned to satisfy clauses.
IDs of deleted groups are invalid, group can no longer be accessed via API.
Clauses in deleted groups are physically removed from data structures in a
garbage collection phase.

Lonsing and Egly (TU Wien) 11 / 14

Computing MUCs of QBFs by Clause Group API

1 Let Q̂.φ be an unsatisfiable QBF. Every clause C ∈ φ is put in an individual
clause group.

2 Let Q̂.φ′ denote a (nonminimal) unsatisfiable core (UC) of Q̂.φ.
3 Initially, set Q̂.φ′ := Q̂.φ (overapproximation of final MUC).
4 Test removal of every clause C in UC Q̂.φ′ by deactivate_cls_grp. If

Q̂.(φ′ \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
5 Otherwise, Q̂.(φ′ \ {C}) is unsatisfiable. Replace Q̂.φ′ by a UC of

Q̂.(φ′ \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

6 Repeat steps 4 and 5 until every clause in current UC has been tested.
7 Finally, Q̂.(φ′ \ {C}) is satisfiable for every C ∈ φ′ and Q̂.φ′ is an MUC.

Lonsing and Egly (TU Wien) 12 / 14

Computing MUCs of QBFs by Clause Group API

1 Let Q̂.φ be an unsatisfiable QBF. Every clause C ∈ φ is put in an individual
clause group.

2 Let Q̂.φ′ denote a (nonminimal) unsatisfiable core (UC) of Q̂.φ.
3 Initially, set Q̂.φ′ := Q̂.φ (overapproximation of final MUC).
4 Test removal of every clause C in UC Q̂.φ′ by deactivate_cls_grp. If

Q̂.(φ′ \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
5 Otherwise, Q̂.(φ′ \ {C}) is unsatisfiable. Replace Q̂.φ′ by a UC of

Q̂.(φ′ \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

6 Repeat steps 4 and 5 until every clause in current UC has been tested.
7 Finally, Q̂.(φ′ \ {C}) is satisfiable for every C ∈ φ′ and Q̂.φ′ is an MUC.

Lonsing and Egly (TU Wien) 12 / 14

Computing MUCs of QBFs by Clause Group API

1 Let Q̂.φ be an unsatisfiable QBF. Every clause C ∈ φ is put in an individual
clause group.

2 Let Q̂.φ′ denote a (nonminimal) unsatisfiable core (UC) of Q̂.φ.
3 Initially, set Q̂.φ′ := Q̂.φ (overapproximation of final MUC).
4 Test removal of every clause C in UC Q̂.φ′ by deactivate_cls_grp. If

Q̂.(φ′ \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
5 Otherwise, Q̂.(φ′ \ {C}) is unsatisfiable. Replace Q̂.φ′ by a UC of

Q̂.(φ′ \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

6 Repeat steps 4 and 5 until every clause in current UC has been tested.
7 Finally, Q̂.(φ′ \ {C}) is satisfiable for every C ∈ φ′ and Q̂.φ′ is an MUC.

Lonsing and Egly (TU Wien) 12 / 14

Computing MUCs of QBFs by Clause Group API

1 Let Q̂.φ be an unsatisfiable QBF. Every clause C ∈ φ is put in an individual
clause group.

2 Let Q̂.φ′ denote a (nonminimal) unsatisfiable core (UC) of Q̂.φ.
3 Initially, set Q̂.φ′ := Q̂.φ (overapproximation of final MUC).
4 Test removal of every clause C in UC Q̂.φ′ by deactivate_cls_grp. If

Q̂.(φ′ \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
5 Otherwise, Q̂.(φ′ \ {C}) is unsatisfiable. Replace Q̂.φ′ by a UC of

Q̂.(φ′ \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

6 Repeat steps 4 and 5 until every clause in current UC has been tested.
7 Finally, Q̂.(φ′ \ {C}) is satisfiable for every C ∈ φ′ and Q̂.φ′ is an MUC.

Lonsing and Egly (TU Wien) 12 / 14

Computing MUCs of QBFs by Clause Group API

1 Let Q̂.φ be an unsatisfiable QBF. Every clause C ∈ φ is put in an individual
clause group.

2 Let Q̂.φ′ denote a (nonminimal) unsatisfiable core (UC) of Q̂.φ.
3 Initially, set Q̂.φ′ := Q̂.φ (overapproximation of final MUC).
4 Test removal of every clause C in UC Q̂.φ′ by deactivate_cls_grp. If

Q̂.(φ′ \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
5 Otherwise, Q̂.(φ′ \ {C}) is unsatisfiable. Replace Q̂.φ′ by a UC of

Q̂.(φ′ \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

6 Repeat steps 4 and 5 until every clause in current UC has been tested.
7 Finally, Q̂.(φ′ \ {C}) is satisfiable for every C ∈ φ′ and Q̂.φ′ is an MUC.

Lonsing and Egly (TU Wien) 12 / 14

Experiments

MUCs Σ|CNF | Σ|MUC | Solver Calls Avg. |MUC | Med. |MUC |
182 4,744,494 73,206 81,631 6.1% 2.9%

190 unsatisfiable instances from applications track of the QBF Gallery 2014.
All instances preprocessed by Bloqqer.
900s timeout for whole workflow (solving initial formula, computing MUC).
MUCs computed for 95% of solved unsatisfiable instances.
MUCs are small: 1.55% of total CNF sizes, small average and median sizes.
Worst case: one solver call for each clause in initial CNF.
UC extraction pays off: number of solver calls reduced by factor of 58.

Lonsing and Egly (TU Wien) 13 / 14

Conclusion

Incremental QBF Solving based on Clause Groups:
Incrementally add/remove sets of clauses via solver API.
API on top of state of art technology: selector variables and assumptions.
Unique feature: internal management of selector variables and assumptions.
Easier and less error-prone integration of solver in tool chains.
Implementation applicable to any SAT/QBF solver supporting assumptions.

Computation of Minimal Unsatisfiable Cores (MUCs):
First experimental results based on clause group API.
Further approaches from computation of SAT MUCs may be applied to QBF.

Extended version of paper with appendix: http://arxiv.org/abs/1502.02484
DepQBF source code: http://lonsing.github.io/depqbf/

Lonsing and Egly (TU Wien) 14 / 14

http://arxiv.org/abs/1502.02484
http://lonsing.github.io/depqbf/

