Incrementally Computing Minimal Unsatisfiable Cores of
QBFs via a Clause Group Solver API

Florian Lonsing and Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology, Austria
http://www.kr.tuwien.ac.at/

18th International Conference on Theory and Applications of
Satistfiability Testing,
September 24 - 27, Austin, Texas, USA

Austrian Rigorous Systems Engineering kb s n m

Lonsing and Egly (TU Wien) 1/14


http://www.kr.tuwien.ac.at/

Overview

Quantified Boolean Formulas (QBF):
m Propositional logic with explicitly existentially/universally quantified variables.
m PSPACE-completeness: applications in Al, verification, synthesis,. . .

Incremental QBF Solving:
m Solving sequences of related QBFs while keeping learned information.

m Solver API called incrementally from application programs.

DepQBF:
m Incremental search-based QBF solver with clause and cube learning.

m Free software (GPLv3): http://lonsing.github.io/depgbf/

Lonsing and Egly (TU Wien) 2 /14


http://lonsing.github.io/depqbf/

Contributions (1/2)

Clause Groups:
m Clause group: set of clauses incrementally added to/removed from formula.

m First implemented in SAT solver zChaff (2001) using bit masking to track
learned clauses, no support of assumptions.

Lonsing and Egly (TU Wien) 3/14



Contributions (1/2)

Clause Groups:
m Clause group: set of clauses incrementally added to/removed from formula.

m First implemented in SAT solver zChaff (2001) using bit masking to track
learned clauses, no support of assumptions.

Novel Clause Group API in DepQBF:

m Clause groups implemented based on selector variables and incremental
solving under assumptions.

m Internally, solver augments added clauses by selector variables.

m Unique feature: handling of selector variables and assumptions entirely
carried out by the solver.

m User's perspective: encodings are not cluttered with selector variables.

Lonsing and Egly (TU Wien) 3/14



Contributions (2/2)

Minimal Unsatisfiable Cores (MUCs) of QBFs:
m Alternative terminology: minimal unsatisfiable subsets (MUS).
m Consider QBF @.qﬁ in prenex CNF with prefix @ and CNF ®.

m Let ¢’ C ¢ be a minimal subset such that Q.¢' is unsatisfiable, then Q.¢' is a
MUC of QBF Q.¢.

Computation of MUCs of QBFs:
m Well-studied problem for SAT but not for QBF.

m First experimental results for computation of MUCs of QBFs based on
DepQBF'’s novel clause group API.

m [terative refinement of nonminimal unsatisfiable cores.

Lonsing and Egly (TU Wien) 4 /14



Clause Group API Example (1/7)

Solver *s = create();
new_scope_at_nesting
(s,QTYPE_FORALL,1);
add(s,1);add(s,?2);add(s,0);
new_scope_at_nesting
(s,QTYPE_EXISTS,2);
add(s,3);add(s,4);add(s,0);

m create(): create solver instance.

Vx1, Xo3X3, Xg.

m new_scope_at_nesting(...): add new quantifier block to prefix.

m add(...): add variables to quantifier blocks, terminated by zero.

Lonsing and Egly (TU Wien)

5/14



Clause Group API Example (2/7)

ClauseGroupID idl =
new_cls_grp(s);

open_cls_grp(s,idl); Vx1, Xo3x3, Xg.
add(s,-1);add(s,-3); (s1V —x1 V —x3)
add(s,0);

close_cls_grp(s,idl);

m new_cls_grp(...): create new clause group and return its ID.

m open_cls_grp(id): open clause group id; clauses added in the following
are put into group id.

m add(...): add literals to clauses, terminated by zero.

m Internally, solver augments clauses in a group by a selector variable (sy).

m close_cls_grp(id): closes group id.

Lonsing and Egly (TU Wien) 6 /14



Clause Group API Example (3/7)

ClauseGroupID id2 =
new_cls_grp(s);
open_cls_grp(s,id2);
add(s,1);add(s,2);
add(s,4);add(s,0);
add(s,1);add(s,-4);
add(s,0);
close_cls_grp(s,id2);

VX1,XQE|X3, X4 .

(51 V =xy V _'X3) A
(52 VX1 VXV X4)/\
(Sz VX1V ﬁX4)

m Arbitrary number of clause groups can be created, identified by their IDs.

m Selector variables are invisible to the user.

m Name clashes between user-given variables and selector variables are avoided
by internal dynamic renaming of selector variables.

Lonsing and Egly (TU Wien)

7/14



Clause Group API Example (4/7)

Result res = sat(s);
assert(res == RESULT_UNSAT) ;
ClauseGroupID *rgrps =

get_relevant_cls_grps(s);
assert(rgrps[0] == id2);
reset(s);

Vxq, Xo3X3, Xa.
(LV—xqV-ox3) A
(L VX1V XV X4)/\
(LVx1V—xq)

m sat(...): solve formula, internally selector variables are assigned to activate
clause groups and their clauses (s; replaced by ).

m get_relevant_cls_grps(...): if formula v is unsatisfiable, returns a list
of group IDs which contain clauses participating in the resolution refutation.

m Unsatisfiable core (UC) of 4, not necessarily minimal.

m Internally, solver maps selector variables to IDs of clause groups.

Lonsing and Egly (TU Wien)

8 /14



Clause Group API Example (5/7)

deactivate_cls_grp(s,rgrps[0]);
res = sat(s);

assert(res == RESULT_SAT); Vx1, xo3x3, X4.
reset(s); (LV-—xgV—xz) A
(T Vo xg Vxg) A
T X4

m deactivate_cls_grp: internally selector variable of group id is temporarily
assigned to satisfy clauses (s; replaced by T).

m Deactivated groups stay deactivated in all forthcoming calls of sat(...).

Lonsing and Egly (TU Wien) 9/14



Clause Group API Example (6/7)

activate_cls_grp(s,rgrps[0]);

free(rgrps);
VX1,X25|X3, X4.
(s1V—x1V —x3) A
(J_\/Xl VX2VX4)/\
(LVx1V-xq)

m activate_cls_grp: internally selector variable of group id is assigned to
not satisfy clauses.

m Activated groups stay activated in all forthcoming calls of sat(...).

m Newly created groups are always activated.

Lonsing and Egly (TU Wien) 10 / 14



Clause Group API Example (7/7)

delete_cls_grp(s,idl);

res = sat(s);

assert(res == RESULT_UNSAT);
delete(s);

Vxq, Xo3X3, Xa.
(Tr=sr=3) A
(J_\/Xl \/XQ\/X4)/\
(J_ vV X1 vV _|X4)

m delete_cls_grp: internally selector variable of group id is permanently

assigned to satisfy clauses.

m IDs of deleted groups are invalid, group can no longer be accessed via API.

m Clauses in deleted groups are physically removed from data structures in a

garbage collection phase.

Lonsing and Egly (TU Wien)

11 /14



Computing MUCs of QBFs by Clause Group API

Q Let @.(b be an unsatisfiable QBF. Every clause C € ¢ is put in an individual
clause group.

Lonsing and Egly (TU Wien) 12 /14



Computing MUCs of QBFs by Clause Group API

Q Let @.gb be an unsatisfiable QBF. Every clause C € ¢ is put in an individual
clause group.

Q Let Q.¢/ denote a (nonminimal) unsatisfiable core (UC) of Q.¢.
Q Initially, set Q.¢/ := Q.¢ (overapproximation of final MUC).

Lonsing and Egly (TU Wien) 12 /14



Computing MUCs of QBFs by Clause Group API

Q Let @.(;5 be an unsatisfiable QBF. Every clause C € ¢ is put in an individual
clause group.

Q Let Q.¢/ denote a (nonminimal) unsatisfiable core (UC) of Q.¢.
Q Initially, set Q.¢/ := Q.¢ (overapproximation of final MUC).

© Test removal of every clause C in UC Q.c/)’ by deactivate_cls_grp. If
Q.(¢' \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.

Lonsing and Egly (TU Wien) 12 /14



Computing MUCs of QBFs by Clause Group API

Let @.(;S be an unsatisfiable QBF. Every clause C € ¢ is put in an individual
clause group.

Let Q.¢ denote a (nonminimal) unsatisfiable core (UC) of @.¢.
Initially, set ©.¢’ = @.d) (overapproximation of final MUC).

Test removal of every clause C in UC Q.c/)’ by deactivate_cls_grp. If
Q.(¢' \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.
Otherwise, Q.(¢' \ {C}) is unsatisfiable. Replace Q.¢' by a UC of

Q.(¢" \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

© 0600 ©

Lonsing and Egly (TU Wien) 12 /14



Computing MUCs of QBFs by Clause Group API

© 0600 ©

© 0

Let @.(;S be an unsatisfiable QBF. Every clause C € ¢ is put in an individual
clause group.

Let Q.¢ denote a (nonminimal) unsatisfiable core (UC) of @.¢.
Initially, set ©.¢’ = @.d) (overapproximation of final MUC).

Test removal of every clause C in UC Q.c/)’ by deactivate_cls_grp. If
Q.(¢' \ {C}) satisfiable then C is part of an MUC, call activate_cls_grp.

Otherwise, Q.(¢' \ {C}) is unsatisfiable. Replace Q.¢' by a UC of
Q.(¢" \ {C}) obtained by get_relevant_cls_grps. Clauses not in the UC
are irrelevant and are deleted by delete_cls_grp.

Repeat steps 4 and 5 until every clause in current UC has been tested.
Finally, Q.(¢/ \ {C}) is satisfiable for every C € ¢/ and Q.¢/ is an MUC.

Lonsing and Egly (TU Wien) 12 /14



Experiments

MUCs |CNF| X|MUC| Solver Calls Avg. [MUC| Med. [MUC|
182 4,744,494 73,206 81,631 6.1% 2.9%

190 unsatisfiable instances from applications track of the QBF Gallery 2014.
All instances preprocessed by Bloqqer.

900s timeout for whole workflow (solving initial formula, computing MUC).

MUCs computed for 95% of solved unsatisfiable instances.

MUCs are small: 1.55% of total CNF sizes, small average and median sizes.
Worst case: one solver call for each clause in initial CNF.

UC extraction pays off: number of solver calls reduced by factor of 58.

Lonsing and Egly (TU Wien) 13 /14



Conclusion

Incremental QBF Solving based on Clause Groups:

m Incrementally add/remove sets of clauses via solver API.
API on top of state of art technology: selector variables and assumptions.
Unique feature: internal management of selector variables and assumptions.

Easier and less error-prone integration of solver in tool chains.

Implementation applicable to any SAT/QBF solver supporting assumptions.
Computation of Minimal Unsatisfiable Cores (MUCs):
m First experimental results based on clause group API.

m Further approaches from computation of SAT MUCs may be applied to QBF.

Extended version of paper with appendix: http://arxiv.org/abs/1502.02484
DepQBF source code: http://lonsing.github.io/depgbf/

Lonsing and Egly (TU Wien) 14 / 14


http://arxiv.org/abs/1502.02484
http://lonsing.github.io/depqbf/

