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Abstract

We study the problem of resolving conflicts between
an action description and a set of conditions (possibly
obtained from observations), in the context of action
languages. In this formal framework, the meaning of
an action description can be represented by a transition
diagram—a directed graph whose nodes correspond to
states and whose edges correspond to transitions de-
scribing action occurrences. This allows us to charac-
terize conflicts by means of states and transitions of the
given action description that violate some given condi-
tions. We introduce a basic method to resolve such con-
flicts by modifying the action description, and discuss
how the user can be supported in obtaining more pre-
ferred solutions. For that, we identify helpful questions
the user may ask (e.g., which specific parts of the action
description cause a conflict with some given condition),
and we provide answers to them using properties of ac-
tion descriptions and transition diagrams. Finally, we
discuss the computational complexity of these questions
in terms of related decision problems.

Introduction
Action languages (Gelfond & Lifschitz 1998) are a formal
tool for reasoning about actions, where an agent’s knowl-
edge about a domain in question is represented by a declar-
ative action description that consists of logical formulas.
Consider for instance a light bulb with a switch. When
the light is off, then toggling the switch turns the light on;
this can be expressed in the action description language
C (Giunchiglia & Lifschitz 1998) by the formula

caused Light after Toggle ∧ ¬Light . (1)

On the other hand, at every state, if the light bulb is broken
then the light is off. This can be expressed by the formula

caused ¬Light if Broken. (2)

Other pieces of knowledge, like laws of inertia, may be also
included. The meaning of such an action description can be
represented by a transition diagram—a directed graph whose
nodes correspond to the states of the world and the edges to
the transitions describing action occurrences. For instance,

the transition diagram of the action description above (con-
sisting of (1), (1), and the inertia laws) is presented in Fig-
ure 1.

Note that the action description above is “buggy”, since
the effects of toggling the switch are not completely speci-
fied. Our goal is to “repair” such descriptions taking into ac-
count some additional information, such as observations or
axioms about the action domain, which can be represented
in an action query language (Gelfond & Lifschitz 1998). For
example, when the light bulb is broken, toggling the switch
may lead to a state where the light is off; this information is
possibly obtained from some observations of the agent, and
can be expressed in an action query language, e.g., by the
statement

possibly ¬Light after Toggle if Broken. (3)

Some of the additional information may conflict with the
action description. For instance, condition (3) does not hold
relative to the action description above, since at the state
where the light bulb is broken and the light is off, toggling
the light switch is not possible. Thus, there is a conflict be-
tween the action description and this condition.

In this paper, we consider such conflicts, and how the
agent’s action description can be modified to resolve them.
This may be accomplished in many different ways, and there
is no canonical method which works satisfactorily in all
cases. According to (Eiter et al. 2005), one might aim at
dropping a smallest set of candidate formulas to resolve the
conflict. In our example, dropping (1) would work. How-
ever, under further conditions, like

necessarily ¬Light after Toggle if Light , (4)

the conflict cannot be resolved just by dropping formulas:
removing any of (1), (2) and inertia laws will not lead to an
edge from a state where the light is on to a state where the
light is off. A refined approach is needed which, semanti-
cally, modifies the transition diagram by suitable changes of
the formulas to “repair” the action description such that the
given queries (i.e., conditions) hold.

This paper makes two main contributions in this direction:



¬Broken
Light

Broken
¬Light

¬Broken
¬Light

{} {}{}, {Toggle}

{Toggle}

Figure 1: Transition diagram of the action description { (1),
(2), (7) }.

1. It provides a precise notion of conflict between an action
description and a set of queries, and presents a basic algo-
rithm to resolve such conflicts. The idea is to modify the
transition diagram of the action description by adding or
deleting transitions so that all given conditions are satis-
fied; such a modification of the transition diagram is pos-
sible by adding, deleting or modifying some formulas in
the action description. Based on this idea, our algorithm
calculates a repair whenever it is possible.

2. Intuitive repair preferences might be difficult to formal-
ize (e.g., both syntactic and semantic aspects might play a
role) and thus to achieve with the basic algorithm above.
In such cases, the designer might want to ask questions
about the action description, the transition diagram, and
the extra information, whose answers could guide her
to come up with an appealing repair in an iterative re-
pair process. For that, we explore several kinds of such
questions and determine properties of action descriptions,
transition diagrams, and extra information which are help-
ful in answering them. We also analyze the computational
complexity of related problems.

Preliminaries
Transition diagrams. We start with a propositional ac-
tion signature L = 〈F,A〉 that consists of a set F of fluent
names, and a set A of action names. Satisfaction of a propo-
sitional formulaG over atoms At ⊆ F∪A by an interpreta-
tion P 7→ I(P ) ∈ {t, f} for all P ∈ At as usual, is denoted
by I |= G. An action is an interpretation of A, denoted by
the set of action names that are mapped to t.

A transition diagram of L consists of a set S of states, a
function V : F × S → {f, t} such that each state s in S is
uniquely identified by the interpretation P 7→ V (P, s), for
all P ∈ F, and a subset R ⊆ S × 2A ×S of transitions. We
say that V (P, s) is the value of P in s. The states s′ such that
〈s,A, s′〉 ∈ R are the possible results of the execution of the
action A in the state s. We can think of a transition diagram
as a labeled directed graph. Every state s is represented by
a vertex labeled with the function P 7→ V (P, s) from flu-
ent names to truth values; we denote by s the set of fluent
literals satisfied by this function. Each triple 〈s,A, s′〉 ∈ R

is represented by an edge from s to s′ and labeled A. See
Figure 1 for an example.

Action descriptions. We consider a subset of the action
description language C (Giunchiglia & Lifschitz 1998) that

consists of two kinds of expressions (called causal laws):
static laws

caused L if G, (5)

where L is a fluent literal or False, and G is a propositional
combination of fluent names; and dynamic laws of the form

caused L if G after U , (6)

where L and G are as above, and U is a propositional com-
bination of fluent names and action names. In (5) and (6) the
part if G can be dropped if G is True.1 An action descrip-
tion is a set of causal laws. For instance, one formalization
of the light domain described in the introduction can be ex-
pressed in this language by the causal laws (1), (2), and the
inertia laws

inertial Light ,¬Light

inertial Broken,¬Broken.
(7)

Here an expression of the form inertial L1, ..., Lk stands for
the causal laws caused Li if Li after Li for i ∈ {1, ..., k}.

The meaning of an action description can be represented
by a transition diagram as follows. We say that a causal law l

is applicable to a transition 〈s,A, s′〉 in a transition diagram,
if

• l is a static law (5), such that s′ |= G; or

• l is a dynamic law (6), such that s′ |= G and s∪A |= U .2

We denote by D(tr) the set of all causal laws in an ac-
tion description D that are applicable to a transition tr; by
HD(tr) the set of the heads of all causal laws in D(tr); and
by sat(HD(tr)) the set of interpretations of F that satisfy
HD(tr).

Let D be an action description with a signature L =
〈F,A〉. Then the transition diagram 〈S, V,R〉 described
by D, denoted T (D), is defined as follows:

• S is the set of all interpretations s of F such that, for every
static law (5) in D, s |= G ⊃ L,

• V (P, s) = s(P ),

• R is the set of all 〈s,A, s′〉 such that
sat(HD(〈s,A, s′〉)) = {s′}.

We denote by S(D) (resp. R(D)) the set of states (resp.
transitions) of T (D). For instance the transition diagram
described by the action description consisting of (1), (2), (7)
is shown in Figure 1.

Conditions. For expressing extra conditions, we consider
here a language with two kinds of statements (“queries”)
about an action description: possibility queries and neces-
sity queries of the respective forms

possibly ψ after A if φ (8)
1
True (resp. False) is the empty conjunction (resp. disjunc-

tion).
2We identify states s with the interpretations P 7→ V (P, s).



necessarily ψ after A if φ (9)

where φ and ψ are propositional combinations of fluent
names, and A is an action. These queries are syntactically
different from the ones presented in (Gelfond & Lifschitz
1998) and (Eiter et al. 2005); on the other hand, semanti-
cally they constitute a fragment of an extension of the action
query language P (Gelfond & Lifschitz 1998) (from which
we draw the term “query”) and the condition language in
(Eiter et al. 2005) (see Related and Further Work for a dis-
cussion).

A query q of form (8) (resp., (9)) is satisfied at state s in
a transition diagram T , denoted T, s |= q, if either s 6|= φ,
or for some (resp., every) transition 〈s,A, s′〉 of T s′ |= ψ

holds. We say that T entails a set Q of queries (denoted
T |=Q), if T, s |= q for every q ∈ Q and for every state s in
T . Accordingly, an action description D entails Q (denoted
D |=Q) if T (D) |= Q.

Example 1 Let us consider the light domain described in
the introduction as our running example. LetD be the action
description consisting of (2), (1), and (7); and Q be the set
of two queries: possibility query (3) and the necessity query
(4), denoted by qp and qn respectively. Figure 1 shows T (D)
(i.e., the transition diagram of D). Then it can be easily
verified that, at state {¬Light , Broken}, since there is no
transition from this state with action Toggle , the query qn is
trivially satisfied while qp is not satisfied.

What a query describes is different from what a causal law
does: action descriptions allow us to describe a transition
diagram, based on causal explanations (what “is caused”),
whereas queries allow us to state assertions (what “holds”)
about transition diagrams. These assertions may, e.g., be
observations or axioms about the action domain. (See (Gel-
fond & Lifschitz 1998) for a discussion on action query lan-
guages.)

Conflicts in Action Descriptions
Given an action description D and a set Q of queries, we
say that there is a conflict between D and Q, if D 6|= Q.
Our goal is to resolve these conflicts by modifying the action
description.

Conflicts can be characterized, from a semantic point of
view, in terms of states and transitions “violating” some
queries. We assume that the states of the world are correctly
described by the given action description. Thus conflicts are
existing transitions (for the violation of a necessity query)
and non-existing transitions (for the violation of a possibil-
ity query) that cause such conflicts. The idea is then to “re-
pair” an action description by a syntactic modification, such
as adding, deleting, or modifying some of its causal laws,
so that the detected conflicts are resolved by adding and/or
deleting some transitions in the transition diagram.

For an action description D and a set Q of queries,
the states and transitions violating possibility and necessity

queries in Q, respectively, are as follows.

• A state s of T (D) violates a possibility query q of form (8)
in Q, if T (D), s 6|= q.

• A transition tr = 〈s,A, s′〉 of T (D) violates a necessity
query q of form (9) in Q (denoted tr 6|= q), if s |= φ and
s′ 6|= ψ.

Example 2 (cont’d) From T (D) we can identify the
following conflicts: the single state violating the
possibility query qp is {¬Light , Broken}, and the
single transition violating the necessity query qn is
〈{Light ,¬Broken}, {Toggle}, {Light ,¬Broken}〉.

Since we suppose that states of the world are correctly
described by D, we do not need to modify the static laws in
D for a repair.

A Method for Resolving Conflicts
Under the assumption above, we can resolve conflicts be-
tween an action description D and a set Q of queries by the
algorithm presented in Figure 2. Before we explain how this
algorithm works, let us describe the notation used in it.

For a set Q of queries, we denote by Qp (resp. Qn) the
set of possibility (resp. necessity) queries in Q. Then

confp(D,Q) = {(q, s) | q ∈ Qp, s∈S(D), T (D), s 6|= q}
confn(D,Q) = {(q, tr) | q ∈ Qn, tr∈R(D), tr 6|= q}.

For a triple tr = 〈s,A, s′〉, where s and s′ are states
and A is an action, and a dynamic causal law l =
caused L if U after G, 〈s,A, s′〉 |= l if either l is not ap-
plicable to tr, or s′ |= L.

A repair item is an expression of form (modify , l, l′), or
(add , l), where l and l′ are dynamic causal laws. A repair is
a set of repair items. For an action description D and a re-
pairM , we denote byM(D) the action description obtained
from D by applying the modifications specified by the re-
pair items in a repair M : (add , l) modifies D by adding l;
(modify , l, l′) modifies D by replacing l with l′; all repair
items are executed in parallel, i.e., if M comprises several
modify items for the same law l, all corresponding modifi-
cations l′ are generated and eventually replace l. The repairs
used by the algorithm RESOLVE(D,Q) are as follows (in
causal laws, a state s stands for

∧
L∈s L, and an action A for∧

X∈AX ∧
∧

X∈A\A ¬X):

Delete(〈s,A, s′〉) = {(add , caused False if s′ after A ∧ s)}
Insert(Tr ,D) =
{(add , caused L if s′ after A ∧ s) | 〈s,A,s′〉∈Tr , L∈s′} ∪

{(modify , l, caused L if G after U ∧ α(Tr , l)),
(modify , l, caused L if G ∧ L after U ∧A ∧ s) |
l=caused L if G after U, l∈D, 〈s,A,s′〉∈Tr , 〈s,A,s′〉 6|= l}

where α(Tr , l) =
∧

〈s,A,s′〉∈Tr ,〈s,A,s′〉6|=l ¬A ∨ ¬s.

In the algorithm above, first every transition tr violating
the necessity queries in Q is removed, by adding to D the



Algorithm RESOLVE(D,Q) : Mod , Incon

Input: An action description, D, and a set of queries, Q.
Output: A repair, Mod , and a set of queries, Incon .

Mod := ∅; Incon := ∅;
for all (q, tr) ∈ confn(D,Q) do

Mod := Mod ∪ Delete(tr);
D′ := Mod(D); Ins := ∅;
for all (q, s) ∈ confp(D′, Q) do

(q = possibly ψ after A if φ)
Cands := {〈s,A, s′〉 | s′ ∈ S(D), s′ |= ψ,

〈s,A, s′〉 |= q′,∀q′ ∈ Qn};
if (Cands 6= ∅) then

select tr ∈ Cands;
Ins := Ins ∪ {tr};

else
Incon := Incon ∪ {q};

return Mod ∪ Insert(Ins, D′), Incon;

Figure 2: An algorithm to resolve conflicts.

causal laws Delete(tr). The new action description, D′, en-
tails Qn. Then, for each state s violating a possibility query
q = possibly ψ after A if φ in Q relative to D′, a set Cands

of transition candidates tr (triples of form 〈s,A, s′〉 where
s′ ∈ S(D)) that, when added to T (D′), would satisfy q at s
(i.e., s′ |= ψ) but not violate any necessity queries in Q (i.e.,
tr |= q′,∀q′ ∈ Qn), is computed. If such transition can-
didates exist (i.e., Cands 6= ∅), by introducing only one of
these candidates into T (D′), the violation of q at s is pre-
vented; otherwise no repair of D exists for Q (i.e., Incon is
not empty, and it contains the possibility queries that con-
flict with some necessity query in Q). The set Ins denotes
all the transition candidates to be introduced into T (D′) so
that no possibility query is violated in any state. Adding Ins

to T (D′) can be achieved by adding to D′ the causal laws
Insert(Ins ,D ′).

Theorem 1 For any repair Mod and set Incon of queries
output by RESOLVE(D,Q), the following hold:

1. D |= Q iff Mod = ∅ and Incon = ∅;

2. Incon = ∅ iff ∃D′ such that S(D) = S(D′) andD′ |=Q;

3. if Incon = ∅, then Mod(D) |= Q.

The selection of a transition candidate tr ∈ Cands for
repairing a possibility query constitutes a choice point of
the algorithm, where further heuristics can be employed to
prune the set of repairs. We could, e.g., prefer transition
candidates that respect inertia conditions or compute mini-
mal modifications, i.e., repairs such that the modifications to
T (D) are minimal w.r.t. addition or deletion of transitions.

Example 3 (cont’d) Stipulating preference of transition
candidates that respect inertia, the basic method resolves the
conflicts as follows. First, the only transition violating qn

(i.e., 〈s1,{Toggle},s1〉, where s1 = {Light ,¬Broken}) is
deleted from T (D) by adding the law:

caused False if Light∧¬Broken after
Toggle∧Light∧¬Broken.

Then, to resolve conflicts with qp, the only transition can-
didate respecting inertia (i.e., {〈s2,{Toggle},s2〉}, s2 =
{¬Light ,Broken}) is introduced into T (D′) by replacing
(1) with the laws:

caused ¬Light if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

caused Broken if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

caused Light if Light after Toggle∧¬Light∧Broken,

caused Light after Toggle∧¬Light∧¬Broken.

We remark that algorithm RESOLVE can be implemented
to use polynomial work space, producing its output, which
is exponential in general, as a stream. After computing
RESOLVE(D,Q), to get a more concise description, one
may drop redundant causal laws that might have been in-
troduced (e.g., (6) where U ≡ False), and apply some
equivalence preserving transformations (e.g., replacing two
laws caused L after A∧U and caused L after A∧¬U with
caused L after A.) Note also, that if there exists a re-
pair for D, then there always also exists a repair D′ of
polynomial size. Informally speaking, D′ can be obtained
by expressing all necessity queries as dynamic laws and
dispensing causality for all actions occurring in queries
(caused L if L after A, for every literal L). Such a repair
is independent of D apart from static laws and semanti-
cally it amounts to a complete transition graph w.r.t. actions
occurring in queries modulo transitions violating necessity
queries. Thus, it is even less appealing than solutions com-
puted by RESOLVE(D,Q), which aim at making modifica-
tions as local as possible on single transitions (in order to
retain the original semantics of D as much as possible even
in case of further modifications). In most cases, however,
neither of these basic repairs will be satisfactory. This moti-
vates the utilization of additional knowledge of certain prop-
erties for repair.

Towards User-Assisted Repairs
With the method described above we can automatically re-
pair an action description D with respect to a set Q of
queries, under the assumption that the states of the world
are described correctly byD. However, we may end up with
an action description with many causal laws, some possibly
redundant or implausible. To get a more appealing descrip-
tion most often requires respecting additional knowledge or
intuitions of the designer about the action description.



Usually, this knowledge cannot be easily formalized, as
the following example illustrates:

Example 4 The designer of D might use her knowledge
about the domain, i.e., light bulbs and switches, to infer from
the conflict with the observation expressed in qn that the du-
ality of the toggle action has not been modeled correctly,
and that the conflict with qp is due to neglecting the effects
of toggling when the bulb is broken. Hence, instead of D,
she might consider D′ consisting of (2), (7), and:

caused Light after Toggle ∧ ¬Light ∧ ¬Broken

caused ¬Light after Toggle ∧ Light ∧ ¬Broken.
(10)

Note that this description is more concise and plausible than
the one generated by the basic method (see Example 3).

For (interactively) providing support to a designer repair-
ing an action description, we present some questions that
she may ask about Q, D, and T (D). Answers to these ques-
tions are obtained from useful properties of queries, action
descriptions, and transition diagrams.

Questions about queries and causal laws. To better un-
derstand the reasons for conflicts, the designer may want to
check the given queriesQmake sense with each other. Then
the question is:

D1: If Q is contradictory relative to D, which queries
in Q are contradictory?

We understand contradiction in a set Q as follows:

Definition 1 A set Q of queries is contradictory relative to
an action description D, if there is no action description D′

such that S(D) = S(D′) and D′ |= Q.

With an answer to D1, the designer may drop contradictory
queries from Q. Here are some sufficient conditions to find
these queries.

Proposition 1 A set Q of queries is contradictory relative
to D, if Q includes some query (8) such that some s∈S(D)
satisfies φ, but no s∈S(D) satisfies ψ.

Proposition 2 A set Q of queries is contradic-
tory relative to D, if Q includes a necessity query
necessarily ψ′ after A if φ′ and a possibility query (8) such
that some state in S(D) satisfies φ ∧ φ′, but no state in
S(D) satisfies ψ ∧ ψ′.

Example 5 In our running example (i.e., Exam-
ple 1), if Q had contained the query possibly Light ∧
Broken after Toggle if True then, due to Proposition 1, Q
would be contradictory relative to D.

If the given set of queries is not contradictory, then she may
ask:

D2: If D does not satisfy a particular necessity query
q in Q, which dynamic causal laws in D violate q?

We understand violation of a query as follows:

Definition 2 A dynamic causal law l∈D violates a given
necessity query q, if there is a transition tc = 〈s,A, s′〉
in T (D) such that tc violates q, l is applicable to tc, and
s′ satisfies the head of l.

Once the designer finds out which causal laws violate
which queries, she may want to repair the action descrip-
tion in a way that some causal laws (e.g., the inertia laws)
are not modified at all:

D3: Can we resolve a conflict between D and Q, with-
out modifying a set D0 of causal laws in D?

To answer D3 the following definition and proposition are
helpful.

Definition 3 A transition diagram T satisfies a set D of
causal laws (denoted T |= D), if, for each transition tc =
〈s,A, s′〉 in T , for each causal law l∈D, l is not applicable
to tc or s′ satisfies the head of l.

Proposition 3 Let D be an action description, and Q be
a set of queries. If there exists a transition diagram T such
that T |= D and T |= Q, then there exists an action descrip-
tionD′, such that S(D) = S(D′),D ⊆ D′ and T = T (D′).

With this proposition, we can answer D3 by checking if any
transition diagram, having states S(D), that satisfiesD0 also
entails Q.

Example 6 In our running example it is possible to repairD
without modifying the inertia laws: there exists an action de-
scription containing the inertia laws and satisfying the given
queries (cf. Example 4).

In another scenario, the designer may suspect that the def-
inition of a particular fluent causes problems, so she may
want to know whether some particular laws have to be mod-
ified in order to obtain a repair:

D4: Do we have to modify a set D0 of dynamic causal
laws in D to resolve a conflict between D and Q?

For this, due to the proposition below, we can check whether
none of the transition diagrams, with the same states as D
(and thus as D0), that satisfy D0, entails Q.

Proposition 4 Let D0 be an action description, and Q be a
set of queries. If there exists an action description D, such
that S(D0) = S(D),D0 ⊆ D andD |= Q, then there exists
a transition diagram T such that T |= D0 and T |= Q.

Questions about states and transitions. Alternatively,
the designer may want to extract some information from
T (D). For instance, an answer to the following question
gives information about states violating a query q in Q:

T1: Which states of T (D) that satisfy a given formula
φ′, violate q?



Example 7 In Example 1, if we just consider states where
the light is on (i.e., φ′ = Light), then the only state at which
a query of Q is violated is {Light ,¬Broken}.

An answer to the following question gives information
about transitions violating a necessity query q in Q:

T2: Given formulas ψ′ and φ′, which transitions
〈s,A, s′〉 of T (D) such that s satisfies φ′ and s′ sat-
isfies ψ′, violate q?

With such information extracted from the transition dia-
gram, the designer might decide how to modify the action
description D.

Suppose that D does not satisfy a possibility query (8)
in Q. The designer may want to learn about possible transi-
tion candidates that, when added to T (D) by modifying the
definition of some literal L in D, might lead to a repair:

T3: Given a literal L, for every state s of T (D) such
that s satisfies φ, is there some under-specified transi-
tion candidate tc = 〈s,A, s′〉 for D such that s′ satis-
fies ψ ∧ L and L is under-specified relative to tc? If
there is, then what are they?

Here under-specification is understood as follows:

Definition 4 A transition candidate tc = 〈s,A, s′〉 for D
is under-specified, if {s′} ⊂ sat(HD(tc)). A literal L
is under-specified relative to a transition candidate tc, if
{L,L} ∩HD(tc) = ∅.

With a positive answer to T3, the designer may
try to modify the description D, e.g., by adding
caused L if ψ after A ∧ φ.

Complexity Results
In this section, we consider computational aspects of the
problems in the previous section and report complexity re-
sults for associated decision problems, respectively exis-
tence problems.

First let us remind the following result from (Eiter et al.
2005): Given an action descriptionD and a setQ of queries,
decidingD |= Q is Πp

2
-complete in general. Note that, when

Q contains the single query possibly True after A if True,
which expresses the executability of an action A at every
state, this result conforms with the ones reported in (Turner
2002; Lang, Lin, & Marquis 2003).

In the following, we formally state two central results and,
informally discuss how to obtain further results. The first
main result is about the existence of a conflict resolution be-
tween an action description D and Q without modifying a
subset D0 of D.

Theorem 2 Given D, Q, and D0 ⊆ D, deciding if there
exists some D′, such that S(D)=S(D′), D0⊆D

′, and
D′ |=Q, is Πp

2
-complete.

We can show Πp
2
-hardness even for D0 = ∅; for such D0,

complexity drops only if in additionQ is restricted to queries

Table 1: Complexity results (completeness) for problems
D1–D4, T1–T3.

Problem D1 D2 D3 D4 T1 T2 T3
Σp

2
NP Πp

2
Σp

2
Σp

2
NP Πp

2

Qn = ∅ PNP

|| O(1) Πp

2
Σp

2
Σp

2
O(1) Πp

2

Qp = ∅ O(1) NP O(1) O(1) NP NP Πp

2

of form (8) (to PNP

|| -completeness, i.e., polynomial time
with parallel queries to an NP-oracle, see, e.g., (Johnson
1990)).

The second main result is about the existence of a conflict
resolution between an action description D and Q without
modifying the transition diagram described by D.

Theorem 3 Given D and Q, deciding if there exists some
D′, such that S(D)=S(D′), D′ |=Q, andR(D)⊆R(D′), is
Πp

2
-complete.

We remark that if some repair of D for Q is known to
exist, then deciding the above problem is coNP-complete.

Table 1 shows complexity results for the decision prob-
lems resp. existence problems related to the questions above
(denoted D1–D4, resp. T1–T3) for the general case, and
when Qn=∅, or Qp=∅.

Deciding whether Q is contradictory w.r.t. D (D1) is Σp
2
-

complete in general. Intuitively, this is because deciding the
violation of a possibility query q is Σp

2
-complete. We have

to guess a violating state and verify, by means of an NP-
oracle, for corresponding transition candidates that they do
not satisfy q. Since we can express necessity queries by dy-
namic causal laws, this source of complexity carries over to
deciding whether a set of (mixed) queriesQ is contradictory.
From these observations, Σp

2
-completeness of the existence

version of T1 (i.e., whether such a state exists) is straight-
forward. However, ifQn=∅, to show thatQ is contradictory
w.r.t. D, it is sufficient to test whether, for some query (8)
in Qp, some state satisfies φ but no state satisfies ψ. This
amounts to a Boolean combination of SAT instances, whose
evaluation is in PNP

|| . For Qp=∅, note that a set Qn of ne-
cessity queries cannot be contradictory.

On the other hand, deciding whether a necessity query q
is violated is in NP: Guess and verify in polynomial time a
transition violating q. Thus, e.g., deciding whether a causal
law l∈D violates q∈Qn (i.e., D2) is NP-complete, as well
as the existence version of T2.

D3 is the problem considered in Theorem 2, D4 is the
complementary problem, and corresponding results have
been discussed above. Finally, the property of T3 fails
if there exists a state s satisfying φ, such that no under-
specified transition candidate tc = 〈s,A, s′〉 for D exists,
such that s′ |= ψ ∧ L. Since for a given s, this can be
checked with an NP-oracle, failure of the property is in Σp

2
.



Related and Further Work
In (Eiter et al. 2005), the authors describe a method to
minimally modify an action description, when new causal
laws are added, by deleting some causal laws, so that given
queries are satisfied. In the method above, we obtain an ac-
tion description by adding or modifying some causal laws,
motivated by some reasons for conflicts. For some prob-
lems, as discussed in the introduction, just dropping causal
laws as in (Eiter et al. 2005) does not lead to a solution,
whereas our method above does.

Similar to (Eiter et al. 2005), (Sakama & Inoue 2003)
discusses how to minimally update a logic program syntac-
tically so that given observations are satisfied. A seman-
tical approach to updating a logic program by changes to
Kripke structures (which are related to transition diagrams)
is given in (Sefránek 2000), but no conditions are consid-
ered. In (Zhang, Foo, & Wang 2005) the authors describe
how to resolve conflicts between a logic program and a set
of constraints by “forgetting” some atoms in the program;
in (Zhang & Foo 2005), they describe how logic programs
can be updated following this approach.

That an action description can be transformed into a
logic program (resp. a propositional theory) (Lifschitz &
Turner 1999) might suggest applying update approaches for
logic programming mentioned above (resp. for proposi-
tional logic (Winslett 1990; Katsuno & Mendelzon 1991)),
when applicable (there is no given condition, the action de-
scription is inconsistent, etc.), and then obtaining an action
description from the respective output. However, such trans-
formations (to and from action descriptions) may lose infor-
mation about the causal structure of the action domain and
yield large and unintuitive action descriptions. In our work,
we aim at preserving the causal structure, and keeping the
action description intuitive and concise.

In (Balduccini & Gelfond 2003), the authors extend an
action description, encoded as a logic program, with “con-
sistency restoring” rules, so that when the action description
and given observations are incompatible, these rules can be
“applied” to get some consistent answer set. This, however,
is more geared towards handling exceptions. Lifschitz de-
scribes in (Lifschitz 2000) an action domain in language C
such that every causal law is defeasible (by means of an ab-
normality predicate). Then, to formulate some other varia-
tions of the domain (e.g., to satisfy some observations), the
agent can just add new causal laws. Some of these laws are
to “disable” some existing causal laws. In (Balduccini &
Gelfond 2003) and (Lifschitz 2000), the causal laws of the
original domain description are not modified.

Ongoing and future work includes an implementation of
the method described above for resolving conflicts, and the
investigation of the use of a SAT solver or an answer set
solver to answer the questions discussed above (as suggested
by the computational complexity results of the correspond-
ing decision problems, presented in Table 1). Furthermore,

(Eiter et al. 2005) employs a richer language for conditions,
in which like in an extension of action query language P
(Gelfond & Lifschitz 1998), e.g., conditions on sequences
of action occurrences can be expressed. However, “repair”
of such conditions is not immediate (e.g., many possibili-
ties exist to eliminate “bad” trajectories from the transition
diagram in general). This remains for future study.
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