IST 2001-37004 WASP
Working Group on Answer Set Programming
Work Package 5
Deliverable 5.2 — Panel Reports

Thomas Eiter, Wolfgang Faber, Axel Polleres, and Stefan Woltran

TUWIEN

1 Introduction

This document contains reports on three panels about important issues for Answer Set
Programming (ASP), namely

— on “Extensions of the Language of Logic Programming,”;
— on “Methodology of Answer Set Programming”; and
— on “Potential Areas for the Use of ASP”.

In each of the panels members from WASP actively participated, either as panelists
and/or organizers. The first two panels have been held at the

— Tth International Conference on Logic Programming and Non-Monotonic Reason-
ing (LPNMR-7) in Fort Lauderdale, Florida, January 6-8, 2004.

The third panel took place at the

— 9th European Conference on Logics in Artificial Intelligence (JELIA’04), held in
Lisbon, Portugal, September 27-30, 2004.

The two panels at LPNMR-7 can be seen as supplement of the panel report on potential
use areas of ASP, which has been postponed in the project plan to the end of the second
project year. The issues discussed in these two panels, however, are also of importance
for assessing potential use areas of ASP, which in turn have an influence on ASP de-
velopment. The panels gave WASP Members the opportunity to exchange views and
opinions about these issues among each other and with world-wide experts in the field
of non-monotonic logic programming outside Europe. In particular, most of the pan-
elists were from the United States, and their views and opinions provide valuable input
for the WASP activities.

Finally, the proposed panel on “Potential Areas for the Use of ASP” was held at
the JELIA’04 conference. Having a WASP steering-committee meeting at JELIA as
well, many WASP members attended this panel (either as panelists or in the audience)
but also numerous other JELIA participants showed up at this panel, resulting in an
audience of about 50 people. Therefore, this panel as well could successfully bring
together ASP-experts and experts from other fields of Al in order to discuss application
areas for ASP and in which ways the ASP-community should develop.

In what follows, the three panels are described in detail.

2 Panel “Extensions of the Language of Logic Programming”

The first panel at LPNMR-7, on “Extensions of the Language of Logic Programming”
took place on January 6, 2004.
The panelists were:

Gerd Brewka (WASP Member, University of Leipzig, Germany),
Michael Gelfond (Texas Tech University, USA),

Victor Marek (University of Kentucky at Lexington, USA), and
Terrance Swift (State University of New York, Stony Brook, USA).

The moderator of the panel was Mirek Truszczynski (University of Kentucky at Lex-
ington, USA).

2.1 Questions

The panel chair raised the following questions:

Q1: Are any general principles of the design of Logic Programming (LP)/ASP lan-
guages emerging?

Q2: What is the role of applications as advisory force for the design of LP/ASP lan-
guages?

Q3: What is the role of constraint modeling and solving as a driving force for the
design of LP/ASP languages?

Q4: Are these two contradictory, complementary?

Q5: Adopting SQL (database query languages) for ASP. Is there any potential, are
there any lessons to learn there?

Q6: Programming language issues for LP/ASP: APIs, 1/O, integration with other pro-
gramming languages, ...

Q7: The next ASP language — your vision, three to five essential features.

Q8: How to accomplish that?

2.2 Statements of the panelists

The panelists were asked for their in situ statements on the questions above and further
comments.

Gerd Brewka started with a plead for true language extensions. As he pointed out,
extensions can be of different nature:

— On the one hand, “syntactic sugar” in terms of macros or application-dependent
frontends, which can be easily reduced to ordinary LP/ASP.

— On the other hand, there are extensions which are not (easily) reducible to ordinary
LP/ASP, and which require modifications of the semantics.

This raises the question what ordinary LP/ASP is. In Brewka’s opinion, this is dif-
ficult to answer since there is a set of core LP languages rather than a single one, in
particular for ASP. As for having true language extensions, he reminds of John Mc-
Carthy’s famous “Modalities, si, modal logics, no” statement, which he recast to the
LP/ASP issue as “Expressiveness, si, language extensions, no.” However, Brewka does
not hold this statement, and expresses his belief that we can not and should not do
without extensions of LP/ASP.

As for Q2, Brewka said that Knowledge Representation has a tremendous poten-
tial, but the Al community does not take much notice of it. This is a serious problem
which should be worked upon. As a particular example of the potential, he presented
preference handling, illustrating it on some examples. The need for preference handling
emerges in areas like abduction, revision, inconsistency handling, planning, diagnosis,
decision making, configuration etc etc. As for LP/ASP, the detailed preference handling
showing a rich ontology of prioritized LP/ASP languages that are needed. As an impor-
tant issue he pointed out modular versus non-modular preference handling. As for Q3,
Brewka said that work on constraints is important.

Gerd Brewka’s vision of ASP was that it provides facilities for qualitative optimiza-
tion, that it shall be used in hybrid systems, and that ASP, following the example of the
Description Logic community, will be one of the most successful computational logic
streams in the future.

Michael Gelfond opened his statement with reminding the purpose of a programming
language, quoting C.A.R. Hoare:

“The main purpose of a programming language is to help the programmer
in the practise of his art.”

and its influence, quoting E.W. Dijkstra:
“A ... programming language ... influences our thinking.”

He then proposed some principles for the design of declarative (programming) lan-
guages:

1. Take epistemology serious.

2. A new language feature should be accompanied by an in depth discussion of the
methodology of its use.

3. Such a method can only be developed on the basis of a solid mathematical theory.

4. Use principles of the design of procedural languages.

As for item 1, Gelfond reminded that we represent knowledge about different items,
objects and relations, e.g., hierarchy of classes, causal effects of actions etc. Under this
perspective, the epistemological assumptions of ASP have to be critically reviewed.
Knowledge about relations between objects is given by facts and rules, which together
with the semantics assumption elicit further relations.

As for item 2, Gelfond thinks that the language methodology should provide a
unique translation of the important natural language constructs into their formal coun-
terparts. As an example, he discussed different translations of the statement “A block
can not occupy different locations.”

Regarding the questions of the moderator, on Q2 Gelfond said that KR has a main
role, but that design of the language and implementation should be separated. On Q3,
he said that the design of inference engines is important, and on Q7, that the next ASP
language should provide

universal quantifiers, of the form a — (Vap(z))q(x),
efficient reasoning with numbers,

reasonably efficient and general probabilistic reasoning, and
learning.

Victor Marek focused in his reply on linking ASP and SQL as well as programming
languages (i.e., Q5 and Q6). As he pointed out, models of a logic program can be viewed
as Boolean strings, which can be naturally stored in database tables, where atoms are
viewed as columns and the entries are 0 or 1, depending on whether an atom is false or
true, respectively.

Using this, embedding of ASP into SQL could be realized, following the scheme

sel ect <atons>
from stab(P)
where <condition>
at _nost <k>

where st ab(P) is the collection of stable models of a logic program P and <k>
bounds the number of models considered.

Marek pointed out that a slightly subtler approach has been already suggested, in
which relational structures are encoded by such tuples representing models, and that
first order logic is used as the language for conditions. In this context, it is important
that conditions can come from a language not related to ASP (e.g., Smodels has hooks
for this).

For integrating imperative languages and ASP, Marek proposed that instead of build-
ing a declarative interface to ASP, classes or templates should be build which can be
pulled into an imperative language. This has been tried before, and as examples for
other declarative languages Marek mentioned Prolog solvers for JAVA, and a C++ li-
brary for CLP by ILog. Within ASP syntax, escapes to an imperative language from
within the clauses have already been proposed in the ASP community.

Marek said that to pull either ASP into imperative languages (or conversely), suit-
able APIs are needed, and inspiration for that can be taken from ODBC and especially
JDBC drivers, and other interfacing software may be the key.

Terrance Swift opened his statement with the following questions:

— To what extent is ASP programming?
— Is ASP a specification or an assembler language?

In order to answer these issues, Swift pointed out first some well-known model driven
architectures and languages:

— Ontology-driven architectures and agents

e OWL
e Ontology-driven agents
— UML-driven architectures
e Java IDEs, Delphi.net
e Business engines like Bold, Epic, J2EE
e OCL expressions
— Workflow-type models (e.g. WfMC)
e Open Business Engine

Swift then raised and answered some more questions:

— What particular strengths does ASP bring to these problems?
In his opinion, these are
e Non-monotonic reasoning (and preferences)
o Fixpoint operator
e Impressively fast engines (usually)
— How should ASP be used in these BIG systems?
e As a specification language?
e As an assembly language? e.g. a reasoning co-processor?
— What are the biggest weaknesses of current ASP systems?
o Nearly non-existent user interface (need to think beyond emacs!)
e APIs inadequate for widespread use

Swift then pointed out that using APIs in ASP (e.g., the C-API of Smodels) is a “labor
of love” for the following reasons:

It is difficult to translate atoms to internal representation.
It does not translate weight constraints.

All constants must be known before commit.

There is no incremental commit.

— All rules must be known before commit.

— There are no “background theories.”

In comparing ASP with CLP, Swift pointed out the following observations.

— Good operational understanding of how constraint store can fit with Prolog, C++,
etc.

— CLPQR is used in Sicstus, XSB, Yap, etc but not in ASP yet.

— Constraint handling rules allow programmers to model new constraint theories.

Finally, Swift pointed out some possibilities for improvements:

— Incremental commit of rules and programs
e For compilation, and for “abductive” programs.
e Would allow incremental addition of ASP rules on forward execution
o Would allow retraction of rules on backtracking via trail hooks, backtrackable
updates
o Would allow “pruning” of search space, like CLP
— “Background Theories” e.g. inheritance
o Allow guards in the bodies of rules
o if the guards fire, a callback to an outside system is made, to incrementally
ground call.
e Semantically meaningful, programmer is only doing lazily what she would oth-
erwise do eagerly.

2.3 Discussion and remarks from the audience

In the general discussion, Victor Marek expressed with regard to Swifts’s questions his
view that LP may be conceived as an assembly language, which is too complicated for
the real programmer.

Michael Gelfond replied that in his view, LP and ASP in particular is both an as-
sembly and a specification language. Furthermore, in his view it is not the case that ASP
is not widely used because it is a complicated language, but rather because few people
know about it at present.

Mirek Truszczyhski adds to this that in his opinion, the distinction line between an
assembly and a higher level programming language is by the handling of the programs
through the engine.

With respect to using ASP for applications, an integration in hybrid systems, in
extension to Victor Marek’s comments the development of libraries is pointed out as an
important issue. Michael Gelfond suggests to focus on two kinds of libraries:

— Nontrivial libraries which require a lot of development.
— Planning libraries.

He also adds that the development of ASP application is not well-accepted by the
research community, and that it is difficult to publish such work. He sees this a major
problem for the dissemination of ASP to applications. Gerd Brewka seconds this and
raises the issue how to get credit for applications in the research community. There is
some discussion but no real conclusion.

The views on applications are different. Chitta Baral points out Microsoft’s initiative
for next generation knowledge bases, and in particular the AP Chemistry Test as a
knowledge-based systems challenge, and suggests that the ASP community works on
or towards this application. An application like this could attract a lot of interest on ASP.
In connection with this, John Schlipf asked whether a killer application might help, but
remained reserved about this.

Mirek Truszczyhski said that perhaps the ASP researchers should not do the de-
velopment of applications themselves, but should see about that applications are done.
This, however, leaves the question how knowledgeable and well-skilled persons can be
found for the applications. According to Michael Gelfond suggestions, students could
be for an initial step be the ideal candidates.

Finally, Victor Marek points out that, after a longer period of foundational research,
now ASP systems are available, and expresses his confidence that applications will
follow.

2.4 Summary and Impression

The panel on extensions of the language of Logic Programming has considered a num-
ber of important issues in this respect, and in particular discussed this issue for the
Answer Set Programming Paradigm.

There seems to be general agreement that extensions to the language of LP/ASP are
necessary, and that there is a variety of possibilities for such extensions. Some guiding
principles have been pointed out for the design of such extensions, which might prove

valuable. While applications and usage of LP/ASP might be a driving force for LP/ASP
extensions, the knowledge representation and epistemological perspective of LP should
not be forgotten about, and carefully respected.

Couplings of ASP with other programming languages, or database query languages,
is an interesting issue, which at present is not solved and requires more work.

Overall, the panel and the discussion made a very optimistic impression about the
further development of extensions to ASP and LP.

3 Panel “Methodology of Answer Set Programming”

The second panel at LPNMR-7, on “Methodology of Answer Set Programming,” took
place on January 8, 2004.
The panelists were

Chitta Baral (University of Arizona, USA),

Michael Gelfond (Texas Tech University, USA),

Tomi Janhunen (WASP Member, Technical University of Helsinki, Finland), and
Hudon Turner (University of Duluth, USA).

The moderator of the panel was Vladimir Lifschitz (University of Texas at Austin,
USA).

3.1 Questions

In the beginning of the panel, Vladimir Lifschitz raised the following four questions on
the methodology of Answer Set Programming:

Q1: How do we write provably correct answer set programs?

Q2: How do we optimize answer set programs?

Q3: When we start developing an answer set program: Is it necessary to decide before-
hand which solver we use?

Q4: What is the relations between ASP and Prolog programming?

3.2 Statements of the panelists

The panelists were asked to comment on these questions and give their statements.

Chitta Baral raised in his comments one more question: In most approaches, ASP
solutions to a problem are represented by answer sets. While doing answer set pro-
gramming, is one still interested in entailment?

His answers to questions 1.-4. are:

Ad Q1. Although most languages/language extensions have a clean formal character-
istics, we still lack of more useful building block results (like e.g. splitting sets) for
proofs.

Ad Q4. In answer set programming solutions are answer sets, while in prolog, solu-
tions are substitutions. If we deal with lists/sets of assignments, this makes a major
difference.

An interesting point is when we deal with problems in P vs problems in NP. For
problems in P there are nice efficient solutions in Prolog, while in ASP we have not
so much control on the search and we have to effectively indirectly guess solutions. A
motivating example is List concatenation:

conc([],L,L).
conc([H L1],L2,[H L3]) :- conc(Ll,L2,L3).

While in Prolog this can be done efficiently, in ASP we can represent the data structures
to some extent but guess all solutions, i.e. lists in some sense.

Chitta reminded at this point Piero Bonatti’s approach for finitary programs and
restricted use of function symbols in this context.

Michael Gelfond made the following statements:

Ad Q1. For correct programs, start with - empirical evidence - proofs are needed based
on precise specifications, e.g. by
(a) transition diagrams
(b) electrical circuit viewed as a function from input to output
(c) inheritance hierarchies based on independently defined semantics
The problem which comes up is here complete vs. incomplete specification.

Ad Q2. First, one needs a good design. Second, small tricks, which preserve equiva-
lence in some sense (strong, unif., weak). Michael shows two examples:

1.
a - -b. [a - not b.
-b :- not b. <===> -b :- not b.

- a, b. add
- -a,cC. ===> - b, c.

Ad Q4. We miss function symbols.

T. Janhunen made the following comments:

Ad Q1. The correctness of solvers is crucial (can at least be checked on pseudocode-
descriptions) - independent answer set verifiers can be introduced.

Ad Q2. Optimization is always a tradeoff between length of the program P (compact
representation) and execution time 7" needed to solve the program.

Ad Q3. As for the compact representation: Suitable Lemmas might often help to solve
a problem, so the most compact representation is not always the best wrt. T'.
The relation of 7" and P, i.e. efficiency of different encodings might be highly
dependent on different solvers.
Equivalence preserving transformations are and different notions of equivalence are
an important point, effects to performance however, are not completely clear.
One possibility would be “blind” optimizations (e.g. by dropping rules), using
equivalence verifiers as recently proposed.
Ad Q3. As for the proprietary syntax: It would help if suitable translations should be
provided wherever possible.
— normal and disjunctive logic programs now form a safe subset to start with.
— problems might arise if different solvers treat recent syntactic extensions dif-
ferently.
— Is a low-level format (like DIMACS for SAT-Solvers) achievable?
Ad Q4. ASP can be implemented in Prolog, but also the following issues might be
considered:
— Remote ASP solver calls can be realized in Prolog
— Prolog has problems with negation as failure
— Order of subgoals matters in Prolog
— we should identify common subsets.

Hudson Turner commented as follows.

Ad Q1. He points out again that the generate and test paradigm is a nice general ap-
proach for this direction. Furthermore, Turner’s reported about his own experience
from using ASP in reasoning about actions.

Proving correctness means proving one to one correspondence between models and
solutions.

Theorems like splitting set and generalizations are useful for proving correctness.
For devising translations maybe a few ideas are needed. These ideas should be used
as idioms. One example is completeness:

a :- not -a.
-a .- not a.
intertia:

fi1:- f0, not -f1.
-f1 :- f0, not f1.

Avre these intuitively correct? With these idioms in mind high-level languages work.
Implementations of high-level languages are important to test bigger examples!

3.3 Discussion and remarks from the audience

After the panelists made their statements, the possibility to comment on the questions
to the panelists and to raise questions was granted to all attendants.

The first who commented was Marc Denecker: He remarked that the different inter-
pretations of “not” and “:-” still give him an unease feeling when actually formalizing
problems.

Mirek Truszczyhski made a general comment to Q1: What does it mean that a pro-
gram is correct?

Alexander Bochman raises the controversial point that DLP is not a Logic at all.
This led to some discussion.

Marc Denecker commented on Q4 that Prolog forces one to use different vocabu-
lary than one would use for an intuitive declarative description of a program, because
it disallows guesses and there is nothing such as constraints. This enforces “meta-
programming.”

Another interesting point raised by Tomi Janhunen in personal discussion off-track
concerning Q1: We have only a semantics in terms of the whole program, not in terms
of single rules which makes correctness checks harder of course, because one always
has to consider the whole program. Can we e.g. define the semantics of a rule separately
wrt. to a given program? Does this make some sense?

3.4 Summary and Impression

In summary, the statements of the panelists and the general discussion have raised the
following impressions and observations:

— Language extensions of ASP, and function symbols in particular, seem to be an
issue, and should be further explored.

— Thereisan interest in formal building-block results like splitting set theorem, equal-
ity testing, etc which allow to “engineer” Answer Set Programs.

— Some researchers, including Michael Gelfond and Hudson Tuner, point out that
problem encodings without complete/total information tend to be incorrect. This,
of course, challenges common-sense reasoning, and has to be seen in connection
with elaboration tolerance.

— The view of ASP as a “logic” and formalization of common-sense reasoning is a
predominant issue for some researchers, while the full power of ASP as a problem
solving paradigm (in the computational sense) is of lesser interest to them.

— Interaction between ASP-Solvers and Prolog systems might be promising, as well
as interacting applications.

4 Panel “Potential Areas for the Use of ASP”

This panel took place at the 9th European Conference on Logics in Artificial Intelli-
gence (JELIA’04), Lisbon, Portugal, on September 27, 2004. The panelists were

José Julio Alferes (Universidade Nova de Lisboa, Portugal),

Nicola Leone (Universita della Calabria, Italy, WASP member),

Torsten Schaub (Universitdt Potsdam, Germany, WASP member),

Ken Satoh (National Institute of Informatics, Japan),

Yannis Dimopoulos (University of Cyprus, Cyprus, WASP member), and
Tomi Janhunen (Helsinki University of Technology, Finland, WASP member).

The panel was organized by the WASP members

10

— Gerhard Brewka (Universitat Leipzig, Germany),
— Jirgen Dix (Technische Universitat Clausthal, Germany), and
— Thomas Eiter (Technische Universitit Wien, Austria).

with grateful help from the local JELIA Organizing Committee.

4.1 Questions

The panel chair, Jirgen Dix, listed the questions posed to the panelists:

Q1: Killer Applications for ASP (should one care about?)

Q2: For which application areas is ASP well-suited, for which it is unsuitable?

Q3: In which ways should ASP be used?

Q4: What is the advantage of ASP over other approaches (e.g. LP techniques) for ap-
plications?

Q5: Which language extensions and features of ASP are missing to make it useful for
practical applications?

Q6: Is ASP a hype that will soon be over?

4.2 Statements of the panelists
J.J. Alferes started with the following statements:

Ad Q1. People should care about killer applications. Since ASP is already application-
oriented, a killer application is needed.

Ad Q2. ASP is used for several application areas, for which it is well-suited, while it is
sometimes also used in areas where constraint solvers (CLP) are better suited (e.g.
the 8-queens problem).

Ad Q3. ASP should be used in conjunction with other systems (e.g. smodels+XSB,
DLV+DB, etc.) for full applications. Important issue: Localization (magic sets,
reducts etc).

Ad Q5. Debugging, visualization. In general: Programming tools (he refers to the demo
by Thomas Linke on the same day). This is a difficult, but important task.

Ad Q6. “I don’t hope so.”

Nicola Leone made the following comments:

Ad Q1. Agrees with J.J. Alferes to some extent: One should definitely care about killer
applications. “But is there a single killer application?”

Ad Q2. Connected to Q1. Agrees with J.J. Alferes that often ASP is used improperly.

But there are many areas where it is well-suited: Complex knowledge, incomplete
knowledge and reason about it.
One concrete case is the data integration setting presented in the systems track:
Interaction with a database is needed, “evolution” of a data has to be considered,
reasoning by cases and solving a co-NP task is needed (so well-founded semantics
is not appropriate), query answering is fundamental. Magic Set techniques make
this task practical.

11

Another application area is reasoning about ontologies. Query answering over huge
and complex amounts of data is necessary there.

Yet another area is the classification of documents (as presented in the system ses-
sion before the panel), where constraint satisfaction is definitely not appropriate
(since there is no query).

Ad Q3. ASP should usually be used by knowledge engineers and be encapsulated in
a “computational kernel”. Frontends should be built around this kernel in order to
grant non-expert users easier access.

Ad Q5. Agrees with J.J. Alferes. The need for debugging tools is emphasized. Other
minor issues are raised (e.g., real numbers).

Torsten Schaub answered the questions as follows:

Ad Q1. One should care about applications. If they are killer, that’s fine. Candidates:
Michael Gelfond etal’s work for the Space Shuttle. Chitta Baral etal’s work in
Bioinformatics. This is the way to go: Try to move to application areas in other
communities. The “Guess and Check” Paradigm can often be fruitfully applied
there.

N-queens is useful for teaching. Emphasis on visualizations: E.g., Sokoban, Quake
(as presented by Alessandro Provetti in the system session before the panel). Wrap-
pers exist around ASP for visualization.

Ad Q3. there are two directions: “general high-level language” vs. “assembler lan-
guage” (like SAT). The latter is used for encoding other formalisms.

Ad Q4. Shift from query oriented (Automated Theorem Proving view) to model ori-
ented (Knowledge Representation/SAT view). Working on models is yet to be ex-
plored.

Ad Q5. The “assembler language” direction gives rise to language extensions. E.g.,
model checking, Linux configuration (refers to the work at Helsinki University of
Technology).

Ad Q6. ASP is necessary. If it does not stay, it will be re-invented.

Ken Satoh first presented his general view on ASP. Its key issue is to provide declarative
and concise specifications, but no (explicit) control. Therefore, we have:

+ people not wanting a search algorithm are happy;
—no direct influence and control.

Programming is different than for standard logic programming, but somewhat similar
to linear/integer programming. Satoh’s answers to the concrete questions are:

Ad Q1. A candidate for a killer application could be from the area of linear/integer
programming, where modeling using numbers is hard.

Ad Q2. Not suitable for interactive systems.

Ad Q3. Use ASP as a batch system, combined with standard (procedural) languages.
E.g., Quake as in the presentation by Alessandro Provetti in the JELIA’04 system-
demonstration session.

Ad Q5. Missing: declarative control mechanism, combination methods with procedu-
ral methods.

Ad Q6. “Work hard!”

12

Yannis Dimopoulos pointed out his general view: ASP is a CLP language; in particular
LP with SAT and minimality. Competitors are identified as SAT and constraint pro-
gramming. The main weak points for ASP is the lack of debuggers and programming
tools.

ASP needs to exploit the relation to deductive databases and to inductive logic pro-
gramming (e.g., bioinformatics). All applications where minimality comes into play are
important. Agreement with previous panelists that 8-queens is not well-suited as ASP
application, because there is no minimality involved.

A bad point is that an “LP language” is not learned understood by many people. In
contrast, CP networks are easy to understand with “standard education”.

Tomi Janhunen concludes the round of panelists with the following comments:

ad Q1+Q2. Configuration. One issue is that specification is not always clear. There-
fore revising the KR language is often necessary. Examples: Chemical engineering,
chromatography. Problems: Inexact definitions, errors in the data.

ad Q3. Programmers often do not know how to characterize the solutions. ASP seems
to be suitable for “trial and error” approaches.

ad Q4. Compared to Prolog, ASP is more efficient and truly declarative. Mathematical
definitions exist.

ad Q5. Modularity is needed, e.g. subprograms, aggregates, and other abstract features.
Software Engineering techniques and tools are needed. Combination with random-
ized computations (e.g., random assignments for student exercises) is desirable.

ad Q6. Engineers are already trained to use ASP, so chances are low that ASP is just a
hype which will disappear soon. So the current state is promising.

J. Dix thanks the panelists and opens the discussion.

4.3 Discussion and remarks from the audience

L.M. Pereira shares views with J.J. Alferes. ASP should be integrated into “standard”
LP systems to get the best out of the two worlds. He mentions problems with infinite
grounding and that interpreters are missing and problematic to produce. Top-down is
not feasible for ASP.

For abduction there is the problem that it is usually encoded in ASP as an even loop,
therefore relevance is not guaranteed. Magic Sets can be used, but only to a certain de-
gree. Finally he identifies a problem with odd loops, especially with respect to updates.
Proposes an alternative semantics termed “revised stable models”.

Marco Cadoli first points out three important features of Ilog solvers:

1. Not rule-based.
2. Rich syntax.
3. Declarative way to express procedural aspects.

Even with this, people are reluctant to buy these solvers. Along these features, ASP
needs to:

1. Hide rules.
2. Enrich the syntax.
3. Provide a declarative way to “guide” search.

13

Yannis Dimopoulos asks in response to L.M. Pereira: Why shift from ““top-down” (goal-
oriented, resolution) to “bottom-up” (model-oriented, Davis-Putnam)? The answer is
efficiency. The well-founded semantics is not sufficiently expressive.

F. Banti comments on the relation between ASP and Artificial Intelligence, in particular
in the area of agents. He points out that ASP has something to say here, and ASP should
be seen as a tool for agents, although ASP is not suitable for everything in an agent.
However, one should aim at integrating ASP and goal-oriented approaches.

4.4 Summary and Impression

The panel on “Potential Areas for the Use of ASP” considered and deepened a hum-
ber of issues, which already have become apparent in the two previously held panels.
In particular, the question for “killer application” was once more central. On the other
hand, it was addressed that sometimes ASP is used for problems where other program-
ming languages are better suited. However, the suggestions how to use ASP still show
a broad application range. As well, there was a certain focus on discussing which par-
ticular directions ASP should take in the future, in particular pointing out the need for
debugging methods which lack both theoretical foundations and sophisticated practical
realizations.

With an audience of about 50 people this panel definitely was a remarkable success,
since many experts from other fields in Al attended the panel. Therefore this event
significantly contributed to the Working Group’s goal to make ASP well known in the
scientific community.

5 Concluding Remarks

The three panels show that there is a vivid discussion on fundamental issues in ASP
going on. This is good news since one has to bear in mind that ASP as a programming
paradigm is still at an early stage and therefore a broad and intensive process of dis-
cussion is necessary in order to fine-tune ASP into a successful and widely accepted
programming language. We summarize some of the fundamental questions raised in all
panels:

— there are different opinions, which in direction ASP should evolve: (i) ASP seen as
a “core”, resp. “assembler”’-language, with several front-ends providing dedicated
application-specific interfaces to users; (ii) with focus to be used in connection with
other languages, e.g. database query languages; or (iii) development of ASP into a
“general high-level language” providing numerous libraries etc.

— Especially in connection with (iii), some shortcomings have been identified, in par-
ticular the lack of utilities which support the programmer. It was mentioned several
times that debugging and visualization tools are issues which have to be solved
(both theoretically and practically). As long as answer-set programming lags be-
hind other programming paradigms in these particular aspects, it would be hard to
turn ASP into an accepted and popular methodology for a broader class of users.

14

— Finally, there have been discussions which applications are well suited for ASP, and
in which areas ASP could succeed compared to established competitor paradigms.
It was mentioned that concrete promising realizations using ASP, including a di-
agnosis system for the space shuttle or in the area of bio-informatics should guide
the direction. Further examples mentioned have been data integration and reasoning
over complex knowledge, for instance, within ontologies. This application-oriented
view also goes conform with comments on more theoretical comments on appli-
cation areas, where the key words in the panelists’ comments are combinatorial
problems combined with a minimization problem.

To conclude, all the panels announced an optimistic view on the further development
of ASP. This view was also supported by attending scientists which are not that tightly
linked to the ASP-community. The overall impression about the outcome of these panels
is therefore definitely positive and gives an optimistic opinion on the future of ASP.

15

