Facts do not Cease to Exist Because They are Ignored:
Relativised Uniform Equivalence with Answer-Set Projecton*

Johannes Oetsch, Hans Tompits, and Stefan Woltran
Technische Universitat Wien, Institut fur Informaticysteme 184/3,
FavoritenstraBe 9-11, A-1040 Vienna, Austria
{oetsch,tompits,stefa@kr.tuwien.ac.at

Abstract

Recent research in answer-set programming (ASP) fo-
cuses on different notions of equivalence between pro-
grams which are relevant for program optimisation and
modular programming. Prominent among these notions
is uniform equivalencewhich checks whether two pro-
grams have the same semantics when joined with an ar-
bitrary set of facts. In this paper, we study a family
of more fine-grained versions of uniform equivalence,
where the alphabet of the added facts as well as the pro-
jection of answer sets is taken into account. The lat-
ter feature, in particular, allows the removal of auxil-
iary atoms in computation, which is important for prac-
tical programming aspects. We introduce novel seman-
tic characterisations for the equivalence problems un-
der consideration and analyse the computational com-
plexity for checking these problems. We furthermore
provide efficient reductions to quantified propositional
logic, yielding a rapid-prototyping system for equiva-
lence checking.

Introduction

An important issue in software development is to determine
whether two encodings of a given problem are equivalent,
i.e., whether they compute the same result on a given prob-
lem instance. Although the question is well known to be
undecidable for Turing-complete programming languages,
there are important KR programming languages where it is
decidable. Our object of investigation is one such language
viz. the class oflisjunctive logic program@LPs)under the
answer-set semanti¢&elfond & Lifschitz 1991). This for-
malism constitutes the arguably most important instance of
the answer-set programminfASP) paradigm whose pop-
ularity rests not only on the availability of efficient sofge

they have the same answer sets is too weak to yield a re-
placement property like in classical logic. That is to say,
given a progran® along with some subprograii C R,
when replacingP with an equivalent prograr® it is not
guaranteed thaf) U (R \ P) is equivalent toR. This led

to the introduction of stricter notions of equivalence,.viz
strong equivalenc@Lifschitz, Pearce, & Valverde 2001) and
uniform equivalencéEiter & Fink 2003).

While strong equivalence in effect amounts to a replace-
ment property by definition, uniform equivalence checks
whether two programs have the same answer sets for any ar-
bitraryinput, i.e., for any set of facts. In more formal terms,
two programsP, () are strongly equivalent iff for any pro-
gram R (the “context program”)P U R and@ U R have
the same answer sets, affdand Q are uniformly equiva-
lent iff the former condition holds for any sét of facts.

For illustration, consider the programis= {a V b <} and

Q@ = {a < not b; b — not a}, which express the nondeter-
ministic selection of one of the atomsr b. Both programs
possess the same answer sets, {z.and{b}. Neverthe-
less, considering the context progréim= {a < b; b — a},
the unique answer set 6fU R is {a, b} while @ U R has no
answer set at all. Thu$, and@ are not strongly equivalent.
On the other hand? and@ are uniformly equivalent, since
any addition of facts does not close the cycle betweand

b, and thus the difference between disjunction and guessing
via default negation does not come into effect in this case.

While strong equivalence is relevant for program opti-
misation and modular programming in general (Egeal.
2004; Pearce 2004; Lin & Chen 2005), uniform equivalence
is useful in the context of hierarchically structured pregr
components, where lower-layered components provide input
for higher-layered ones.

Strong and uniform equivalence are, however, too restric-

but also on the ease of modeling problems. The characteris- tive in the sense that standard programming techniques like
tic feature of ASP is that solutions to problems are given by the use of local (auxiliary) variables, which may occur in
the models (the “answer sets”) of their encodings and not by Some subprograms but which are ignored in the final com-
proofs as in traditional logic-based formalisms. putation, are not taken into account. In other words, these
Given the nonmonotonic nature of DLPs under the an- notions do not admit th@rojection of answer sets to a
swer-set semantics, a standard equivalence notion in the Set of designated output letters. To illustrate this, odersi
sense that two programs are viewed as being equivalent if
LIt is worth noting that uniform equivalence was first studied
the context of datalog programs as a decidable approximatio
datalog equivalence (Sagiv 1988).

*This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019.

P'=PU{a <« ¢} andQ’ = QU {a < e,c; e}, where

P and(@ are the programs from the above. While the rule
a < cin P’ expresses that is selected i is known, the
same condition is formulated i@}’ using an additional fact
e. The augmented programd® and @’ are not uniformly
equivalent as each answer set@fcontainse which is not
contained in any answer set Bf, but takinga andb as des-
ignated output letters and determining uniform equivaéenc
on the basis of answer sets projecteddob}, equivalence
does hold.

In previous work, Eiter, Tompits, & Woltran (2005) intro-
duced a general framework for defining parameterised no-
tions of program correspondence, allowing both answer-set
projection as well as the specification which kind of con-
text class should be used for program comparison. This
framework thus generalises not only strong and uniform
equivalence but alseelativised versions thereof (Woltran
2004) (where “relativised” means that the alphabet of the
context class is an additional parameter). In their analy-
sis, Eiter, Tompits, & Woltran (2005) focused on correspon-
dence problems for propositional DLPs effectively general
ising strong equivalence—in other words, they considered
correspondence problems amountingrétativised strong
equivalence with projectionin this paper, we complement
these investigations by considering correspondence prob-
lems amounting teelativised uniform equivalence with pro-
jection More formally, in such correspondence problems,
there are fixed alphabets, B (i.e., sets of atoms) and it is
checked whether, for progranis @ and any selz C A of
facts, the answer sets 8fJR andQUR projected taB coin-
cide. (In a relativised strong equivalence problem with-pro
jection, R would be a program ovet.) Like Eiter, Tompits,

& Woltran (2005), we also considérclusion problemsi.e.,
checking set inclusion of the projected answer sets rather
than equality. In such a setting), can be viewed as an ap-
proximation of P which is sound with respect to cautious
reasoning fromP. Note that since relativised strong equiv-
alence (resp., inclusion) with projection implies relead
uniform equivalence (resp., inclusion) with projectioritfw

UE-models (Eiter & Fink 2003; Woltran 2004) in case
the projection set is unrestricted. Thus, as a by-product,
we obtain a new characterisation of these special forms of
equivalence.

We analyse the computational complexity of checking
PQEPs and PQIPs. While checking the kinds of cor-
respondence problems analysed by Eiter, Tompits, &
Woltran (2005) isIIZ'-complete in general, checking
PQEPs or PQIPs is onlylf-complete. As checking
relativised strong or uniform equivalence I§; -com-
plete (Woltran 2004), projection thus adds a source of
complexity, providing the polynomial hierarchy does not
collapse. Hence, under this proviso, the famous quote
“facts do not cease to exist because they are ignored”
(Huxley 1928) is evidenced here.

¢ We provide efficient reductions of PQEPs and PQIPs into
guantified propositional logic. Given the availability of
off-the-shelf solvers for the latter language, we thus can
employ these as back-end inference engines for checking
PQEPs and PQIPs. In fact, we incorporated our transla-
tions into the systerac T (Oetschet al. 2006) which was
developed as an implementation for checking the kinds
of correspondence problems studied by Eiter, Tompits, &
Woltran (2005).

Background

We are concerned witpropositional disjunctive logic pro-
grams(DLPs) which are finite sets of rules of form

a1V -V ag < a1, m, N0t i1, - - ., N0 Ay, (1)

wheren >m >12>0, all a; are propositional atoms from
some fixed univers#, and ‘not” denotesdefault negation
Rules of forma < arefactsand are usually written without
the symbol “-". We denote byAt(P) the set of all atoms
occurring in a progran®, and say that a programaver A

if At(P)C A. We useP4 to refer to the set of all programs
overA.

By an interpretation we understand a set of atoms. A rule

respect to the same alphabets) but not vice versa, character of form (1) istrue under an interpretatioh, symbolically

isations of the former kinds of problems in general do not
capture the latter kinds of problems and so new methods are
needed. Developing such characterisations is actuallpbne
the main goals of this paper.

Taking a database point of view, in which programs are

IEriff {a1,...,a;}NI # O wheneve{a;i1,...,am} C
Iand{am+1,...,a,} NI = 0. If I = r holds, thenl is
also said to be anodelof . As well, I is a model of a
programP, symbolicallyl = P, iff I = r, forallr € P.
Following Gelfond & Lifschitz (1991), an interpretatiah

seen as queries over databases, we refer to the equivalencdés ananswer sebf a programp iff it is a minimal model

problems studied here gsopositional query equivalence
problemgPQEPSs) and to the considered inclusion problems
aspropositional query inclusion problentBQIPS).

The main contributions of our paper can be summarised
as follows:

e We introduce semantic characterisations for PQEPs and
PQIPs in terms of novel semantic structures associated
with each program. We have that a PQEP holds iff the
associated structures coincide, and a PQIP holds iff the
structures meet set inclusion. Interestingly, our charac-
terisation differs from the well-known characterisatidn o
(relativised) uniform equivalence in terms of (relatidye

of the reduct P/, resulting fromP by (i) deleting all rules
containing a default negated atamt « such that: € I, and

(ii) deleting all default negated atoms in the remainingsul
The collection of all answer sets of a prograhis denoted
by AS(P).

We use the following notation in the sequel: For an in-
terpretation/ and a setS of interpretationsS|; is defined
as{Y NI |Y e S} Fora singleton sef = {Y}, we
also writeY'|; instead ofS|;. Furthermore, for set§, S’
of interpretations, an interpretatid), and® € {C, =}, we
defineS ©p §'iff S|p © §'|5.

Following Eiter, Tompits, & Woltran (2005),@orrespon-
dence problermfover /) is a quadrupldl = (P,Q,C, p),

whereP,) € Py are programs oved, C C Py is a class

of programs (theontext clasef 1), andp C 22" x 22" isa
binary relation over sets of interpretatio$is said tohold
iff, for each progranR € C, (AS(PUR), AS(QUR)) € p.
By instantiatingC andp, different equivalence notions from
the literature can be expressed. In particular, the folgwi
relations hold: P and @ are strongly equivalent (Lifschitz,
Pearce, & Valverde 2001) iffP, Q, P.;, =) holds; P and
Q are uniformly equivalent iff P, Q, 2", =;,) holds; P and
Q are strongly equivalent relative té (Woltran 2004), for
A C U, iff (P,Q,Pa,=y) holds; andP and @ are uni-
formly equivalent relative tod (Woltran 2004), forA C U,
iff (P,Q,24, =) holds.

We also make use gfuantified propositional logican ex-
tension of classical propositional logic in which formuéaie
permitted to contain quantifications over propositional-va
ables. Similar to predicate logig,andv are used as symbols
for existential and universal quantification, respectivet

is customary to refer to formulas of quantified propositiona

logic asquantified Boolean formula®QBFs).

For a QBF of formQp ¥, whereQ € {3,V}, we call¥
the scopeof Qp. An occurrence of an atom is freein a
QBF @ if it does not occur in the scope of a quantifigp in
®. Given a finite sef’ of atoms,QP ¥ stands for any QBF
Qp1Qp2 ...Qp, ¥ such thatP = {p1,...,p,}. Finally,

®[p/¢] denotes the result of replacing each free occurrence

of an atonp in ® by a formulag.

For an interpretatiof and a QBF®, the relation/ = @ is
defined analogously as in classical propositional logithwi
the additional conditions that = Jp U iff T &= U[p/T]
orl = VUlp/Ll],andl = VpViff I = U[p/T]and! =
Ulp/ L], for® = Qp ¥ with Q € {3,V}.

Propositional Query Inclusion and
Equivalence Problems

Eiter, Tompits, & Woltran (2005) focus on two important
instantiations of their framework, viz. on problems of form

(P,Q,Pa,Cp) and (P, Q,Pa,=p), whereA, B C U are
sets of atoms fixing the alphabet of the context clRss

ample 1 holds butP, @, P4, Cg) does not hold, as wit-
nessed by the context progrdma < b;b — a} € Pa4.

It is convenient to assemble the objects witnessing the vi-
olation of a PQIP into a single concept. We introduce two
versions of such a concept.

Definition 2 LetIl = (P,Q, 2%, Cg) be a PQIP ovet/.

1. Apair(X,Y) with X C AandY C U is anexplicit
counterexample (oveér) for ITiff Y € AS(P U X) and
noY’ withY’|z = Y|p is contained inAS(Q U X).

2. Apair(X,Y) with X C AandY C B is aprojective
counterexampléor IT iff Y € AS(PU X)|p andY ¢
AS(QUX))|5.

Theorem 1 LetIl = (P, Q,24,Cp) be a PQIP. Then, the
following conditions are equivalent(i) IT does not hold;

(i) IT has an explicit counterexample; afid) II has a pro-

jective counterexample.

For any explicit counterexampleX,Y') for II, (X,Y|g)
is a projective counterexample féf. Conversely, for any
projective counterexampleX, Y') for II, there exists an ex-
plicit counterexampléX, Y') withY'|z =Y.

Example 2 ConsiderP and @) from Example 1. Ford =

{a,b,c} and B = {a,b}, the PQIPII = (P,Q,24,Cp)

does not hold. This is witnessed fby., abc)? which is the
unique explicit counterexamplever {a, b, c}) for II. The
corresponding projective counterexample ¥bis (bc, ab).

As far as PQEPs are concerned, we introduce the follow-
ing notation:

Definition 3 LetII = (P,Q,24,=p5) be a PQEP. Then,
I~ = (P,Q,24,Cp) andIl~ = (Q, P,24,Cp) are the
PQIPsassociatealvith I1.

Obviously, a PQERT holds iff bothIT— and Il hold.
We extend Definition 2 straightforwardly to PQEPs and call
a pair (X,Y) an explicit (resp., projective) counterexam-
ple for a PQEHT if (X,Y) is an explicit (resp., projective)
counterexample fofll— or IT.

Next, we introduce the novel concept of dnB-wedge
for programs ovet{/, whereA, B C U{. A-B-wedges decide

and the alphabet relevant in comparing the answer sets, re-problems of form P, Q, 24, ®p), for ® € {C, =}, in such
spectively. Our interest here are correspondence problemsa way that they can be computsdparatelyfor P and Q.

likewise parameterised by and B as above, but where the
context class is given by sets of facts frehmather tharP 4.

Definition 1 Let &/ be a set of atomsA,B C U, and
P,Q € Py. Then,(P,Q,24,Cp) is called apropositional
query inclusion problem (ovéx), or PQIPfor short, and
(P,@Q,2%,=p) is called apropositional query equivalence
problem (ovet/{), or PQER

Example 1 ConsiderP = {a Vb «—;a « ¢} and@ =
{a < not b;b «— not a;¢c — a}. Then, the answer
sets of P and Q are given byAS(P) = {{a},{b}} and
AS(Q) = {{a,c},{b}}. ChoosingB = {a,b}, we then
have thatAS(P)|p = AS(Q)|s = {{a},{b}}. In fact, for
A = B = {a, b}, the PQIP(P,Q,24, Cp) holds.

Note that (P,Q,Pa,Cp) holds only if (P,Q,24,C5g)
holds, but not vice versa. Indeed?, Q,24, Cy) from Ex-

In particular, anA-B-wedge for a progran® collects the
projected answers sets for all possible extensiorn?.of

Definition 4 Let! be a set of atoms4, B C U, and P ¢

Pu. A pair (X,Y) of interpretationsX, Y C U/ is an A-B-

wedge (ovet/) of Piff X C AandY € AS(PUX)|z.
The set of alld-B-wedges o is denoted by 4 p(P).

Clearly, (X,Y) is a projective counterexample foF =
(Pa Q72A7 QB) iff (Xa Y) € WA,B(P) \ WA,B(Q)' From
this, together with Theorem 1, the following central praper
is easily shown:

Theorem 2 For anyTI of form (P, Q, 24, ®p), where® €
{g, :}, II holds iﬁ:wA_’B(P) © WA_’B(Q).

2Whenever convenient, we use strings like: as a shorthand
for {a, b, c}.

Example 3 Reconsider the programB and @ from Exam-
ple 1 and takd/ = {a,b,c}. First, considerA = B =
{a,b}. One can verify thatvs g(P) = wa,p(Q) = S,
whereS = {(0,a), (0,b), (a,a), (b,b), (ab,ab)}. Hence,
the PQEP(P,), 24, =5) holds.

Second, consider the PQER, Q,24", =) with A’ =
A U {c}. We now obtain

war B(P) = SU{(c,a), (ac, a), (be, ab), (abe, ab) },
wa,B(Q) = SU{(c,a), (¢, b), (ac,a), (be, b), (abe, ab)}.

By Theorem 2(P, Q,2A/,:B) does not hold. In fact, all

projective counterexamples are given by the symmetric dif-

ferencewy: p(P) Awa g(Q) = {(¢,b), (be,b), (be, ab)},
and the corresponding explicit counterexamples @téc),
(be, be), and(be, abe).

Model-Theoretic Characterisations. We now introduce
semantic characterisations for explicit counterexamaiheks
A-B-wedges in the style of UE-models (Eiter & Fink 2003)
and A-UE-models (Woltran 2004). Recall that UE- ardd

UE-models have been introduced to capture uniform equiv-

alence and uniform equivalence relativeAprespectively.
More specifically, two programs are uniformly equivaleft if
their UE-models coincide, and they are uniformly equivalen
relative to A iff their A-UE-models coincide. Let us note
that UE-models can be characterised thus: a @&irY") is
a UE-model of a progran? iff X CY,Y | P, X = PY,
and, for each{’ with X ¢ X' C Y, X' }£ PY.

We first deal with explicit counterexamples.

Theorem 3 LetIl = (P, Q,24, Cp) be a PQIP ovet/ and

considerX,Y C 4. Then,(X,Y) is an explicit counterex-

ample oveiA for II iff

1. Y EPandX CY|g,

2. foreachy’ with X C Y’ CY,Y’ £ PY, and

3. foreachZ with X C Z, Z|p =Yg, andZ = Q, there
is someZ’ with X C Z' C Z such thatZ’ | QZ.

Proof. We first show tha” ¢ AS(PU X)andX C A

Proof. According to Definition 4(X,Y) is an A- B-wedge
of Piff X C AandY € AS(P U X)|p. It thus remains
to show that the latter condition is equivalent to (ii). Now,
Y € AS(PUX)|p iffthereis som&” withY = Y”|z and
Y’ € AS(P U X). By the definition of an answer set, the
latter is equivalent to

(x) Y’ is a minimal model of P U X)Y".

Since(PUX)Y = (PY'UX)andY’ = PY iff Y’ = P,
(x) is in turn equivalent td” = P, X C Y”, and for each
X'with X C X' cY', X' = PY. O

Since uniform equivalence between programs @vds
captured by PQEPs ovéf of form (P, Q, 24, =), let us
now describe the relation between UE-models ahd-
wedges withA = B = U.

First of all, a pair(X,Y’) is al/-U/-wedge of some pro-
gramonly if X C Yy, i.e.,only if X C Y. Now, for a pro-
gramP, (Y,Y) is al{-U-wedge ofP iff Y = P. Further-
more, forX C Y, (X,Y) is al{-U-wedge of P iff Y = P
and for all X’ with X € X’ c Y, X' ~# PY holds. So,
there is only a subtle difference betwelr/-wedges and
UE-models, laid down in detail by the next result.

Theorem5 LetX CY CU andP € Py. Then:

1. (Y,Y)isaUE-model oP iff (Y,Y) is al{-UU-wedge ofP.
Moreover, if(Y,Y) is a UE-model ofP but no(X,Y)
with X C Y is a UE-model of? (i.e., Y is an answer set
of P), then, forallX C Y, (X,Y) is al{-U{-wedge ofP.

2. If (X,Y) is a UE-model ofP and X C Y, then(X",Y)
is ald-U-wedge foranyX ¢ X' C Y.

3. If (X,Y) is ald-U-wedge ofP and (), Y) is not al{-U-
wedge ofP, then there exists an UE-modet’,Y") of P
with X’ C X.

Example 4 Consider the program® = {a V b} and@ =
{a < not b; b — not a}, which are uniformly equivalent.
The UE-models aP and@ are (a, a), (b,b), (a, ab), (b, ab),
and (ab, ab), but thel/-U{-wedges of the two programs are
(0,), (a.a), (8,b), (b,b), and(ab, ab).

While UE-models have been defined with the aim to se-
lect a subset of SE-models (Turner 2003) (which charac-
terise strong equivalence), wedges are not designed in this
respect. Rather, they have a much closer relation to pro-
jective counterexamples. Furthermore, a relation between
A-UE-models (Woltran 2004) and-1/-wedges can be es-
tablished similar to Theorem 5 in the context of relativised
uniform equivalence.

jointly hold iff the first two items of the theorem hold. We
only show the only-if direction; the if-direction is by esse
tially the same arguments. So, assume that AS(PUX)
andX C A. Since,Y € AS(P U X), we haveY E
(PUX)Y = (PYUX). HenceY = PY andthug” |= P.
Moreover,X C Y has to hold. Sinc&X C A by hypoth-
esis, we getX C Y|4. FurthermoreY € AS(P U X)
implies that there exists n&’ with Y’ C Y such that
Y | (PUX)Y = (PY UX). In particular, this yields
that for each such” with X C Y’, Y’ [~ PY has to hold.
Finally, it can be shown that there exist Aowith Z|g =
Y|p such thatZ € AS(Q U X) iff the third item of the
theorem holds. O

Next, we characterisd- B-wedges.
Theorem 4 Apair (X,Y) is an A- B-wedge ofP iff (i) X C
A and(ii) there is a¥Y’ with X C Y" andY = Y’|5 such
thatY’ |= P and, for eachX’ with XCX'cY’, X' l£ PY'.

Computational Complexity

We now analyse the complexity of deciding PQIPs and
PQEPs. Let us first summarise some results from Eiter,
Tompits, & Woltran (2005).

Proposition 1 Given programsP,) € Py, setsA, B C

U of atoms, and®> € {C,=}, deciding whethe(P, Q,
Pa,®p) holds isIIf-complete. Moreover, the problem is
coNRcomplete ifA = U.

Proposition 2 Given programsP,Q € Py, B C U, ® €
{C,=}, andC C P, where eachR € C is polynomial in
the size ofP U @, deciding whethe(P, Q,C, ®g) holds is
1L -complete.

Another relevant previous result concerns the complexity
of checking relativised uniform equivalence (Woltran 2004
Eiter, Fink, & Woltran 2007), which thus provides us com-
plexity bounds for PQIPs and PQEPs without projection.

Proposition 3 Given programsP, @ € Py, A C U, and

® € {C,=}, deciding whethe(P, Q, 24, ©y,) holds isIT} -
complete. Moreover, hardness holds even for arbitrary but
fixed A.

answer sell € AS(Qq) with (KNZ) = I. By definition
of Q4, we further have that, for eache 7, z € K iff
z ¢ 1. From this, one can show that the program

QUzl={zVvz—;—u21|zeX}U
yvi—y—ay—aa—yylyeYiu
{a —C!7 |1 <i<n}U{a+ nota},
whereC/7 is asC; but using the conjuncts from[Iz] in-
stead ofgp, has an answer set. However, the latter holds iff
IXVY ¢[Iz] is valid. This can be seen by inspecting the

original proof forx£'-hardness of deciding whether a pro-
gram has at least one answer set (Eiter & Gottlob 1995),

For general PQIPs and PQEPs, we expect an increase inwhich uses essentially the same progran@)as;]. Since

complexity but, in view of Proposition 2, it cannot be beyond
1L, However, Proposition 2 does not provide details about
the hardness of such problems. In fact, Eiter, Tompits, &
Woltran (2005) repoiilZ -hardness for ordinary equivalence
with projection, i.e., PQEPs of the for(®, Q, 24, =) with

A = (. Our main result below shows that nearly all parame-
terisations for PQIPs and PQEPSs result in a matching lower
bound. In particular, we show that; -hardness holds even

if the context alphabet is fixed arbitrarily. Thus, also uni-
form equivalence without restriction of the context class i
hard forll{ as long asB C U, whereB is the projection set.
This is in stark contrast to Proposition 1, which shows that
considering programs ovet (instead ofsets of factover

A) remains in coNP for arbitrarg, providingA = U.

Theorem 6 Given programsP, Q € P and setsd, B C
U of atoms, deciding whethéP, Q, 24, C) holds isTI% -
complete. Hardness holds even for arbitrary but fixed

Proof. Membership inll#" follows from Proposition 2. We
show I1{’-hardness by reducing thigf-hard problem of
checking validity of a QBF of formVZ3XVY ¢, where¢
is a propositional formula in disjunctive normal form (DNF)
andZ U X UY are the variables occurring iy into PQIPs.
The reduction is as follows: Leb = VZIXVY ¢ be a
QBF of the described form, with = \/?"_, C; being a for-
mula in DNF. Defindls = (Ps, Q4,24 C), whereA is
an arbitrary set of atoms art}, Q¢ are given as follows:

Pp={z2VZ—;—2zZ|2z€Z}U
{—v;—v|veXUY}

Qs ={vVU—;—0v0|veZUX}U
WV iy ageaacygyeV
{a = Cr|1<i<n}U{a« nota}.

Here, C* is a sequence of atoms containing each atom
occurring positively inC', andw for eachw occurring nega-
tively in C'. Moreovera and allz’s are new distinct atoms.
We show thatb is valid iff IIs holds. For the if-direction,
suppose thab is not valid. We show thatPs, Qs, 24, C2)
does not hold, ford = (. Since® is not valid, there exists
an interpretatiod; C Z such thaBXVY ¢[I] is not valid,
whereg[Iz] simplifies ¢ with respect to interpretatiofy .
We show thatly; € AS(Ps)|z butlz ¢ AS(Qs)|z. The
former is clear. For the latter, suppose ttat possesses an

IXVY ¢[Iz] is not valid, however, we get a contradiction.
For the only-if direction, suppodés does not hold. We
show that® is not valid. Sincells does not hold, by
Theorem 1 there is a projective counterexamplel) for
Iy, i.e., we haveJ C A, I € AS(Ps U J)|z, and
I ¢ AS(Qo U J)|z. FromI € AS(Pp U J)|z, we de-
rive the following properties: for any € X U Y, neitherv
nor is contained inJ, and(J N Z) C I C Z. By similar
arguments as before, we can derive the following chain of
equivalencesl ¢ AS(Qs U J)|z iff Q[I] has no answer
set iff 3IXVY ¢[I] is not valid. But thend = VZIXVY ¢
cannot be valid. O

Since a PQERI holds iff its associated PQIR$— and
IT— both hold, it follows that the complexity of checking
PQEPs is inll{ as well. The matching lower bounds for
PQEPs(P,Q,24,=p) for arbitrary A follow in view of
the following lemma, which slightly generalises a result by
Eiter, Tompits, & Woltran (2005).

Lemma 1 The PQIP(P,Q,24,Cp) holds iff the PQEP
(LpoU{gg < notgp}, LpoU{go Vgp <}, 2% =5)
holds, whereLp o = {— gp,90} U{H <« gr,B | R €
{P, Q},H — B e R},A c(CcC AU{gP,gQ}, andgp,gQ
are new atoms.

Roughly speaking, the above lemma yields two proper-
ties: First, it maps PQIPs into PQEPs via two new atoms.
Second, it shows that these new atoms can be arbitrarily
fixed in the context of the resulting PQEP. Thus, hardness
carries over also for arbitrary but fixed alphabets and we
have the following result:

Theorem 7 Given programsP, Q € Py, and setsA, B C
U of atoms, deciding whethéP, Q, 24, =p) holds isII}-
complete. Hardness holds even for arbitrary but fixed

We observe that thus also the special case when B,
which amounts to notions similar to modular equivalence
(Oikarinen & Janhunen 2006), and database-like settings,
whereA is a subset of the common EDBs aBds a subset
of common IDBs, remain hard fdi?’.

Translating Query Problems

In this section, we discuss issues for computing PQIPs and
PQEPs. We adopt a reduction approach here, translating
the problems under consideration into problems for which

solvers already exist. Naturally, the translations we seek
should be constructible in polynomial time.

First of all, we remark that since checking PQIPs and
PQEPs idIf’ -complete, these tasks cannot be efficiently re-

Proposition 4 (Tompits & Woltran 2005) Let P be a pro-
gram with A¢(P) = V, I an interpretation, and{,Y C V
such that, for some, j, I|y, = X; andI|y, = Y;. Then,
XEPYiffI =P ;.

duced to DLPs under the answer-set semantics, unless the With these building blocks at hand, we proceed with our

polynomial hierarchy collapses. Hence, a more expressive
language is required. This leads us to quantified proposi-
tional logic as a suitable target language, as any decision
problem inPSPACE can be efficiently reduced to QBFs.
Moreover, there are several practicably efficient solvers f
QBFs available, which can be used as back-end inference
engines for solving the encoded problems.

In fact, such a reduction approach to QBFs was already
adopted for realising the systent T (Oetschet al. 2006),
which allows to verify the kinds of correspondence prob-
lems studied by Eiter, Tompits, & Woltran (2005). In prin-
ciple, we can usec T as such to verify PQIPs and PQEPS,
because the latter problems can be reduced to the former, in
view of the following observation:

Theorem 8 Givenll = (P,Q,24,©3), for® € {C,=},
we have thatI holds iff(P UG 4, QU G4, {0}, ©5) holds,
whereG4 = {a’'Va’ «;a «— d | a € A} and alld’,a”
are new, mutually disjoint atoms.

However, verifying PQIPs and PQEPs that way would in-
volve two reduction steps, &£ T relies itself on a reduction
to QBFs. The direct encodings described next avoid this.

In what follows, we make use of sets of globally new
atoms in order to refer to different assignments of the same
atoms within a single formula. More formally, given a $&t
of atoms, we assume (pairwise) disjoint copieés= {v; |
v € V}, for everyi > 1. Furthermore, we introduce the
following abbreviations:

L (Vi <Vj) = Npev (vi = v5);
2. (Vi<Vj) = (Vi <V;) A=(V; < Vi) and
3. (Vi=Vy) = (Vi <Vj) A(V; <VA).

Observe that the latter is equivalentig _,, (v; < v;).

These operators allow to compare different subsets of
atoms from a common sé&t under subset inclusion, proper-
subset inclusion, and equality, respectively, in the feifa
way: GivenX,Y C V, an interpretatiod with I|y, = X;
andI|y, = Yjis (i) a model ofV; < Vj iff X C Y/, (ii) a
model ofV; < V; iff X C Y, and (iii) a model oft; = V;
iff X=Y.

We use subscripts as a general renaming schema for for-
mulas and rules. That is, for ea¢h> 1, a; expresses the
result of replacing each occurrence of an atpm « by p;,
wherea is any formula or rule. For a ruleof form (1), we
defineH (r) = a1 V---Va, BY(r) = i1 A+ - Aap, and
B~ (r) = —=am+41 A -+ - A —a,. We identify empty disjunc-
tions with L. and empty conjunctions witfi.

The following abbreviation is central: For any program

P ;= /\ ((B*(ri) AB™(rj)) — H(ry)).
reP

Then, the following relation holds:

central encoding.

Definition 5 LetIl = (P,Q,24,Cp) be a PQIP,At(P U
Q)=V,andA,B C V. Then,

T[] = g AVV4((Bs = By) — V1), where
O = P11 A (Ax < Ap)A

V‘/;;(((AQ < Ag) N (‘/3 < Vl)) — _‘P3,1) and
U = ((Q4,4 A(Ag < Ay)) —
5 (((A2 < A5) A (Vs < V) A Q5,4))-

Observe that the free variables @f[II] are given by
V1 U A,. Assignments td/; U As yield the explicit coun-
terexamples fofl, in case7 [11] is satisfied by those assign-
ments. More specifically7 [II] expresses the conditions of
Theorem 3, where assignments 1dr, As, V3, Vi, and Vs
correspond tdv’, X, Y’, Z, and Z’, respectively. Taking
the semantics of the introduced building blocks into actoun
Y1 U X, = @q iff X andY satisfy the first and the second
item of Theorem 3, antl; UX, E VV,((Bs = B1) — Y1)
iff X andY satisfy the third item of Theorem 3. Formally,
we have the following key property:

Lemma?2 LetIl = (P,Q,24,Cp) be a PQIP,At(P U

Q)=V,ABCV,XCA andY C V. Then,(X,Y)is

an explicit counterexample faf iff Y1 U X5 = T[I1].
Expressing the task whether a PQIP holds is now a simple

matter to realise:

Theorem 9 For any PQIPII = (P, Q, 24, Cp), I holds iff
-3V13A,T[IT] is valid.

The extension of the encodings to PQEPs is done by
means of the associated PQIPs.

Lemma3 LetIl = (P,Q,24,=p) be a PQEP,At(P U
Q)=V,ABCV,X CA, andY C V. Then,(X,Y)
is an explicit counterexample féf iff Y, U Xo = T[II7°] V
T[]

Theorem 10 For any PQEPII = (P, Q,24,=p), II holds
iff ~3V13AL (T[] Vv T[II]) is valid.

It is easily observed that our encodings in Theorems 9
and 10 are (i) always polynomial in the sizefQ, A, and
B, and (ii) possess at most two quantifier alternations in any
branch of the formula tree. Thus, the complexity of eval-
uating these QBFs is not harder than the complexity of the
encoded decision problems, which shows that our encodings
areadequaten the sense of Besnagd al. (2005).

The reductions described above have been incorporated
into the systentc T, which is available on the Web at
http://ww. kr.tuw en. ac. at/research/ccT.

In fact, the implemented translations include optimised ve
sions such that adequacy is retained also for (relativised)
uniform equivalence. Details about these optimisatiols ar
omitted for space reasons.

Discussion

In this paper, we studied refined versions of uniform equiv-
alence for disjunctive logic programs under the answer-set
semantics, where the alphabet of the context class as well
as removal of auxiliary atoms is taken into account. We
also considered correspondence problems in which projec-
tive set inclusion is taken as basic comparison relation in-
stead of projective set equality. We furthermore provided a
novel model-theoretic characterisation in terms of wedges
which at the same time yields new characterisations for (rel
ativised) uniform equivalence (vis-a-vis UE-models), and
analysed the computational complexity of correspondence
checking. Finally, we described efficient reductions of
PQIPs and PQEPs to QBFs, yielding an implementation of
these problems by means of off-the-shelf QBF solvers.

Other refined equivalence notions in the context of an-
swer-set programming are, e.gisible equivalencdJan-
hunen & Oikarinen 2007), a form of ordinary equivalence
with projection, andupdate equivalencéinoue & Sakama
2004). We also mention the system SELP (Chen, Lin, & Li
2005) for checking strong equivalence, which is based on a
reduction to classical logic, very much in the spirit of our
implementation approach.

An open topic for future work is the extension of our re-

sults to more general classes of programs like, e.g., nested

logic programs. A further interesting issue concerns tise ca
of nonground programs—however, thereby we have to face
undecidability which holds already for uniform equivalenc
(Eiteret al. 2005) between nonground programs.

References
Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S.

2005. Representing Paraconsistent Reasoning via Quan-

tified Propositional Logic. Ihnconsistency Tolerancgol-
ume 3300 oLNCS 84-118. Springer.

Chen, Y.; Lin, F.; and Li, L. 2005. SELP - A System
for Studying Strong Equivalence Between Logic Programs.
In Proc. 8th International Conference on Logic Program-
ming and Nonmonotonic ReasonifiPNMR 2005, vol-
ume 3552 oL NAI, 442—-446. Springer.

Eiter, T., and Fink, M. 2003. Uniform Equivalence of Logic
Programs under the Stable Model Semantic®roc. 19th
International Conference on Logic ProgrammiffCLP
2003, volume 2916 o NCS 224-238. Springer.

Eiter, T., and Gottlob, G. 1995. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Mathematics and Atrtificial Intelligence
15(3/4):289-323.

Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying Logic Programs Under Uniform and Strong
Equivalence. InProc. 7th International Conference on
Logic Programming and Nonmonotonic Reason{hf-
NMR-7), volume 2923 o£ NCS 87-99. Springer.

Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2005.
Strong and Uniform Equivalence in Answer-Set Program-
ming: Characterizations and Complexity Results for the

Non-Ground Case. IRroc. 20th National Conference on
Artificial Intelligence(AAAI 2005, 695—-700. AAAI Press.

Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical
Characterizations and Complexity of Equivalences in Sta-
ble Logic ProgrammingACM Transactions on Computa-
tional Logic. To appear.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On So-
lution Correspondences in Answer Set Programming. In
Proc. 19th International Joint Conference on Atrtificial In-
telligence(lJCAI 2005, 97-102.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databasé&w Genera-
tion Computing?:365-385.

Huxley, A. 1928.Proper StudiesDoubleday Doran.

Inoue, K., and Sakama, C. 2004. Equivalence of Logic Pro-
grams Under Updates. Froc. 9th European Conference
on Logics in Artificial IntelligencdJELIA 2004, volume
3229 ofLNCS 174-186. Springer.

Janhunen, T., and Oikarinen, E. 2007. Automated Verifica-
tion of Weak Equivalence within the SMODELS System.
Theory and Practice of Logic Programmif@4):1-48.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic ProgramsACM Transactions on Com-
putational Logic2(4):526-541.

Lin, F., and Chen, Y. 2005. Discovering Classes of
Strongly Equivalent Logic Programs. Rroc. 19th Inter-
national Joint Conference on Atrtificial Intelligen¢eCAI
2005, 516-521.

Oetsch, J.; Seidl, M.; Tompits, H.; and Woltran, S. 2006.
ccT: A Tool for Checking Advanced Correspondence Prob-
lems in Answer-Set Programming. Rroc. 15th Interna-
tional Conference on Computi@IC 2006, 3-10. IEEE
Computer Society Press.

Oikarinen, E., and Janhunen, T. 2006. Modular Equiva-
lence for Normal Logic Programs. Proc. 17th European
Conference on Atrtificial IntelligencéECAI 2009, 412—
416. 10S Press.

Pearce, D. 2004. Simplifying Logic Programs under An-
swer Set Semantics. IRroc. 20th International Confer-
ence on Logic Programmin@CLP 2004, volume 3132 of
LNCS 210-224. Springer.

Sagiv, Y. 1988. Optimizing Datalog Programs. In Minker,
J., ed.Foundations of Deductive Databases and Logic Pro-
gramming Morgan Kaufmann. 659-698.

Tompits, H., and Woltran, S. 2005. Towards Implemen-
tations for Advanced Equivalence Checking in Answer-Set
Programming. IrProc. 21st International Conference on
Logic ProgrammingICLP 2003, volume 3668 oLLNCS
189-203. Springetr.

Turner, H. 2003. Strong Equivalence Made Easy: Nested
Expressions and Weight Constrainf&eory and Practice

of Logic Programming@(4-5):602—622.

Woltran, S. 2004. Characterizations for Relativized No-
tions of Equivalence in Answer Set ProgrammingPhoc.

9th European Conference on Logics in Atrtificial Intelli-
gence(JELIA 2004, volume 3229 of NCS 161-173.

