
Facts do not Cease to Exist Because They are Ignored:
Relativised Uniform Equivalence with Answer-Set Projection∗

Johannes Oetsch, Hans Tompits, and Stefan Woltran
Technische Universität Wien, Institut für Informationssysteme 184/3,

Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,tompits,stefan}@kr.tuwien.ac.at

Abstract

Recent research in answer-set programming (ASP) fo-
cuses on different notions of equivalence between pro-
grams which are relevant for program optimisation and
modular programming. Prominent among these notions
is uniform equivalence, which checks whether two pro-
grams have the same semantics when joined with an ar-
bitrary set of facts. In this paper, we study a family
of more fine-grained versions of uniform equivalence,
where the alphabet of the added facts as well as the pro-
jection of answer sets is taken into account. The lat-
ter feature, in particular, allows the removal of auxil-
iary atoms in computation, which is important for prac-
tical programming aspects. We introduce novel seman-
tic characterisations for the equivalence problems un-
der consideration and analyse the computational com-
plexity for checking these problems. We furthermore
provide efficient reductions to quantified propositional
logic, yielding a rapid-prototyping system for equiva-
lence checking.

Introduction
An important issue in software development is to determine
whether two encodings of a given problem are equivalent,
i.e., whether they compute the same result on a given prob-
lem instance. Although the question is well known to be
undecidable for Turing-complete programming languages,
there are important KR programming languages where it is
decidable. Our object of investigation is one such language,
viz. the class ofdisjunctive logic programs(DLPs)under the
answer-set semantics(Gelfond & Lifschitz 1991). This for-
malism constitutes the arguably most important instance of
the answer-set programming(ASP) paradigm, whose pop-
ularity rests not only on the availability of efficient solvers
but also on the ease of modeling problems. The characteris-
tic feature of ASP is that solutions to problems are given by
the models (the “answer sets”) of their encodings and not by
proofs as in traditional logic-based formalisms.

Given the nonmonotonic nature of DLPs under the an-
swer-set semantics, a standard equivalence notion in the
sense that two programs are viewed as being equivalent if

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019.

they have the same answer sets is too weak to yield a re-
placement property like in classical logic. That is to say,
given a programR along with some subprogramP ⊆ R,
when replacingP with an equivalent programQ it is not
guaranteed thatQ ∪ (R \ P) is equivalent toR. This led
to the introduction of stricter notions of equivalence, viz.
strong equivalence(Lifschitz, Pearce, & Valverde 2001) and
uniform equivalence(Eiter & Fink 2003).

While strong equivalence in effect amounts to a replace-
ment property by definition, uniform equivalence checks
whether two programs have the same answer sets for any ar-
bitrary input, i.e., for any set of facts. In more formal terms,
two programsP, Q are strongly equivalent iff for any pro-
gramR (the “context program”),P ∪ R andQ ∪ R have
the same answer sets, andP andQ are uniformly equiva-
lent iff the former condition holds for any setR of facts.
For illustration, consider the programsP = {a ∨ b ←} and
Q = {a← not b; b← not a}, which express the nondeter-
ministic selection of one of the atomsa or b. Both programs
possess the same answer sets, viz.{a} and{b}. Neverthe-
less, considering the context programR = {a← b; b← a},
the unique answer set ofP ∪R is {a, b}while Q∪R has no
answer set at all. Thus,P andQ are not strongly equivalent.
On the other hand,P andQ are uniformly equivalent, since
any addition of facts does not close the cycle betweena and
b, and thus the difference between disjunction and guessing
via default negation does not come into effect in this case.

While strong equivalence is relevant for program opti-
misation and modular programming in general (Eiteret al.
2004; Pearce 2004; Lin & Chen 2005), uniform equivalence
is useful in the context of hierarchically structured program
components, where lower-layered components provide input
for higher-layered ones.1

Strong and uniform equivalence are, however, too restric-
tive in the sense that standard programming techniques like
the use of local (auxiliary) variables, which may occur in
some subprograms but which are ignored in the final com-
putation, are not taken into account. In other words, these
notions do not admit theprojection of answer sets to a
set of designated output letters. To illustrate this, consider

1It is worth noting that uniform equivalence was first studiedin
the context of datalog programs as a decidable approximation of
datalog equivalence (Sagiv 1988).

P ′ = P ∪ {a ← c} andQ′ = Q ∪ {a ← e, c; e}, where
P andQ are the programs from the above. While the rule
a ← c in P ′ expresses thata is selected ifc is known, the
same condition is formulated inQ′ using an additional fact
e. The augmented programsP ′ andQ′ are not uniformly
equivalent as each answer set ofQ′ containse which is not
contained in any answer set ofP ′, but takinga andb as des-
ignated output letters and determining uniform equivalence
on the basis of answer sets projected to{a, b}, equivalence
does hold.

In previous work, Eiter, Tompits, & Woltran (2005) intro-
duced a general framework for defining parameterised no-
tions of program correspondence, allowing both answer-set
projection as well as the specification which kind of con-
text class should be used for program comparison. This
framework thus generalises not only strong and uniform
equivalence but alsorelativised versions thereof (Woltran
2004) (where “relativised” means that the alphabet of the
context class is an additional parameter). In their analy-
sis, Eiter, Tompits, & Woltran (2005) focused on correspon-
dence problems for propositional DLPs effectively general-
ising strong equivalence—in other words, they considered
correspondence problems amounting torelativised strong
equivalence with projection. In this paper, we complement
these investigations by considering correspondence prob-
lems amounting torelativised uniform equivalence with pro-
jection. More formally, in such correspondence problems,
there are fixed alphabetsA, B (i.e., sets of atoms) and it is
checked whether, for programsP, Q and any setR ⊆ A of
facts, the answer sets ofP∪R andQ∪R projected toB coin-
cide. (In a relativised strong equivalence problem with pro-
jection,R would be a program overA.) Like Eiter, Tompits,
& Woltran (2005), we also considerinclusion problems, i.e.,
checking set inclusion of the projected answer sets rather
than equality. In such a setting,Q can be viewed as an ap-
proximation ofP which is sound with respect to cautious
reasoning fromP . Note that since relativised strong equiv-
alence (resp., inclusion) with projection implies relativised
uniform equivalence (resp., inclusion) with projection (with
respect to the same alphabets) but not vice versa, character-
isations of the former kinds of problems in general do not
capture the latter kinds of problems and so new methods are
needed. Developing such characterisations is actually oneof
the main goals of this paper.

Taking a database point of view, in which programs are
seen as queries over databases, we refer to the equivalence
problems studied here aspropositional query equivalence
problems(PQEPs) and to the considered inclusion problems
aspropositional query inclusion problems(PQIPs).

The main contributions of our paper can be summarised
as follows:

• We introduce semantic characterisations for PQEPs and
PQIPs in terms of novel semantic structures associated
with each program. We have that a PQEP holds iff the
associated structures coincide, and a PQIP holds iff the
structures meet set inclusion. Interestingly, our charac-
terisation differs from the well-known characterisation of
(relativised) uniform equivalence in terms of (relativised)

UE-models (Eiter & Fink 2003; Woltran 2004) in case
the projection set is unrestricted. Thus, as a by-product,
we obtain a new characterisation of these special forms of
equivalence.

• We analyse the computational complexity of checking
PQEPs and PQIPs. While checking the kinds of cor-
respondence problems analysed by Eiter, Tompits, &
Woltran (2005) isΠP

4 -complete in general, checking
PQEPs or PQIPs is onlyΠP

3 -complete. As checking
relativised strong or uniform equivalence isΠP

2 -com-
plete (Woltran 2004), projection thus adds a source of
complexity, providing the polynomial hierarchy does not
collapse. Hence, under this proviso, the famous quote
“facts do not cease to exist because they are ignored”
(Huxley 1928) is evidenced here.

• We provide efficient reductions of PQEPs and PQIPs into
quantified propositional logic. Given the availability of
off-the-shelf solvers for the latter language, we thus can
employ these as back-end inference engines for checking
PQEPs and PQIPs. In fact, we incorporated our transla-
tions into the systemcc⊤ (Oetschet al. 2006) which was
developed as an implementation for checking the kinds
of correspondence problems studied by Eiter, Tompits, &
Woltran (2005).

Background
We are concerned withpropositional disjunctive logic pro-
grams(DLPs) which are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am, not am+1, . . . , not an, (1)

wheren≥m≥ l≥ 0, all ai are propositional atoms from
some fixed universeU , and “not” denotesdefault negation.
Rules of forma← arefactsand are usually written without
the symbol “←”. We denote byAt(P) the set of all atoms
occurring in a programP , and say that a program isoverA
if At(P) ⊆ A. We usePA to refer to the set of all programs
overA.

By an interpretation we understand a set of atoms. A rule
r of form (1) is true under an interpretationI, symbolically
I |= r, iff {a1, . . . , al}∩I 6= ∅ whenever{al+1, . . . , am} ⊆
I and{am+1, . . . , an} ∩ I = ∅. If I |= r holds, thenI is
also said to be amodelof r. As well, I is a model of a
programP , symbolicallyI |= P , iff I |= r, for all r ∈ P .
Following Gelfond & Lifschitz (1991), an interpretationI
is ananswer setof a programP iff it is a minimal model
of the reductP I , resulting fromP by (i) deleting all rules
containing a default negated atomnot a such thata ∈ I, and
(ii) deleting all default negated atoms in the remaining rules.
The collection of all answer sets of a programP is denoted
byAS(P).

We use the following notation in the sequel: For an in-
terpretationI and a setS of interpretations,S|I is defined
as{Y ∩ I | Y ∈ S}. For a singleton setS = {Y }, we
also writeY |I instead ofS|I . Furthermore, for setsS,S′

of interpretations, an interpretationB, and⊙ ∈ {⊆, =}, we
defineS ⊙B S′ iff S|B ⊙ S′|B.

Following Eiter, Tompits, & Woltran (2005), acorrespon-
dence problem(over U) is a quadrupleΠ = (P, Q, C, ρ),

whereP, Q ∈ PU are programs overU , C ⊆ PU is a class
of programs (thecontext classof Π), andρ ⊆ 22

U

×22
U

is a
binary relation over sets of interpretations.Π is said tohold
iff, for each programR ∈ C, (AS (P ∪R),AS (Q∪R)) ∈ ρ.
By instantiatingC andρ, different equivalence notions from
the literature can be expressed. In particular, the following
relations hold:P andQ are strongly equivalent (Lifschitz,
Pearce, & Valverde 2001) iff(P, Q,PU , =U) holds;P and
Q are uniformly equivalent iff(P, Q, 2U , =U) holds;P and
Q are strongly equivalent relative toA (Woltran 2004), for
A ⊆ U , iff (P, Q,PA, =U) holds; andP andQ are uni-
formly equivalent relative toA (Woltran 2004), forA ⊆ U ,
iff (P, Q, 2A, =U) holds.

We also make use ofquantified propositional logic, an ex-
tension of classical propositional logic in which formulasare
permitted to contain quantifications over propositional vari-
ables. Similar to predicate logic,∃ and∀ are used as symbols
for existential and universal quantification, respectively. It
is customary to refer to formulas of quantified propositional
logic asquantified Boolean formulas(QBFs).

For a QBF of formQp Ψ, whereQ ∈ {∃, ∀}, we callΨ
the scopeof Qp. An occurrence of an atomp is free in a
QBFΦ if it does not occur in the scope of a quantifierQp in
Φ. Given a finite setP of atoms,QP Ψ stands for any QBF
Qp1Qp2 . . . QpnΨ such thatP = {p1, . . . , pn}. Finally,
Φ[p/φ] denotes the result of replacing each free occurrence
of an atomp in Φ by a formulaφ.

For an interpretationI and a QBFΦ, the relationI |= Φ is
defined analogously as in classical propositional logic, with
the additional conditions thatI |= ∃p Ψ iff I |= Ψ[p/⊤]
or I |= Ψ[p/⊥], andI |= ∀p Ψ iff I |= Ψ[p/⊤] andI |=
Ψ[p/⊥], for Φ = Qp Ψ with Q ∈ {∃, ∀}.

Propositional Query Inclusion and
Equivalence Problems

Eiter, Tompits, & Woltran (2005) focus on two important
instantiations of their framework, viz. on problems of form
(P, Q,PA,⊆B) and(P, Q,PA, =B), whereA, B ⊆ U are
sets of atoms fixing the alphabet of the context classPA

and the alphabet relevant in comparing the answer sets, re-
spectively. Our interest here are correspondence problems
likewise parameterised byA andB as above, but where the
context class is given by sets of facts fromA rather thanPA.

Definition 1 Let U be a set of atoms,A, B ⊆ U , and
P, Q ∈ PU . Then,(P, Q, 2A,⊆B) is called apropositional
query inclusion problem (overU), or PQIP for short, and
(P, Q, 2A, =B) is called apropositional query equivalence
problem (overU), or PQEP.

Example 1 ConsiderP = {a ∨ b ←; a ← c} and Q =
{a ← not b; b ← not a; c ← a}. Then, the answer
sets ofP and Q are given byAS(P) = {{a}, {b}} and
AS(Q) = {{a, c}, {b}}. ChoosingB = {a, b}, we then
have thatAS(P)|B = AS(Q)|B = {{a}, {b}}. In fact, for
A = B = {a, b}, the PQIP(P, Q, 2A,⊆B) holds.

Note that (P, Q,PA,⊆B) holds only if (P, Q, 2A,⊆B)
holds, but not vice versa. Indeed,(P, Q, 2A,⊆B) from Ex-

ample 1 holds but(P, Q,PA,⊆B) does not hold, as wit-
nessed by the context program{a← b; b← a} ∈ PA.

It is convenient to assemble the objects witnessing the vi-
olation of a PQIP into a single concept. We introduce two
versions of such a concept.

Definition 2 LetΠ = (P, Q, 2A,⊆B) be a PQIP overU .

1. A pair (X, Y) with X ⊆ A and Y ⊆ U is an explicit
counterexample (overU) for Π iff Y ∈ AS (P ∪X) and
noY ′ with Y ′|B = Y |B is contained inAS(Q ∪X).

2. A pair (X, Y) with X ⊆ A andY ⊆ B is a projective
counterexamplefor Π iff Y ∈ AS (P ∪ X)|B andY /∈
AS(Q ∪X)|B.

Theorem 1 Let Π = (P, Q, 2A,⊆B) be a PQIP. Then, the
following conditions are equivalent:(i) Π does not hold;
(ii) Π has an explicit counterexample; and(iii) Π has a pro-
jective counterexample.

For any explicit counterexample(X, Y) for Π, (X, Y |B)
is a projective counterexample forΠ. Conversely, for any
projective counterexample(X, Y) for Π, there exists an ex-
plicit counterexample(X, Y ′) with Y ′|B = Y .

Example 2 ConsiderP andQ from Example 1. ForA =
{a, b, c} and B = {a, b}, the PQIPΠ = (P, Q, 2A,⊆B)
does not hold. This is witnessed by(bc, abc)2 which is the
unique explicit counterexample(over{a, b, c}) for Π. The
corresponding projective counterexample forΠ is (bc, ab).

As far as PQEPs are concerned, we introduce the follow-
ing notation:

Definition 3 Let Π = (P, Q, 2A, =B) be a PQEP. Then,
Π→ = (P, Q, 2A,⊆B) andΠ← = (Q, P, 2A,⊆B) are the
PQIPsassociatedwith Π.

Obviously, a PQEPΠ holds iff bothΠ→ andΠ← hold.
We extend Definition 2 straightforwardly to PQEPs and call
a pair (X, Y) an explicit (resp., projective) counterexam-
ple for a PQEPΠ if (X, Y) is an explicit (resp., projective)
counterexample forΠ→ or Π←.

Next, we introduce the novel concept of anA-B-wedge
for programs overU , whereA, B ⊆ U . A-B-wedges decide
problems of form(P, Q, 2A,⊙B), for⊙ ∈ {⊆, =}, in such
a way that they can be computedseparatelyfor P andQ.
In particular, anA-B-wedge for a programP collects the
projected answers sets for all possible extensions ofP .

Definition 4 Let U be a set of atoms,A, B ⊆ U , andP ∈
PU . A pair (X, Y) of interpretationsX, Y ⊆ U is anA-B-
wedge (overU) of P iff X ⊆ A andY ∈ AS(P ∪X)|B.

The set of allA-B-wedges ofP is denoted byωA,B(P).

Clearly, (X, Y) is a projective counterexample forΠ =
(P, Q, 2A,⊆B) iff (X, Y) ∈ ωA,B(P) \ ωA,B(Q). From
this, together with Theorem 1, the following central property
is easily shown:

Theorem 2 For anyΠ of form(P, Q, 2A,⊙B), where⊙ ∈
{⊆, =}, Π holds iffωA,B(P)⊙ ωA,B(Q).

2Whenever convenient, we use strings likeabc as a shorthand
for {a, b, c}.

Example 3 Reconsider the programsP andQ from Exam-
ple 1 and takeU = {a, b, c}. First, considerA = B =
{a, b}. One can verify thatωA,B(P) = ωA,B(Q) = S,
whereS = {(∅, a), (∅, b), (a, a), (b, b), (ab, ab)}. Hence,
the PQEP(P, Q, 2A, =B) holds.

Second, consider the PQEP(P, Q, 2A′

, =B) with A′ =
A ∪ {c}. We now obtain

ωA′,B(P) = S∪{(c, a), (ac, a), (bc, ab), (abc, ab)},
ωA′,B(Q) = S∪{(c, a), (c, b), (ac, a), (bc, b), (abc, ab)}.

By Theorem 2,(P, Q, 2A′

, =B) does not hold. In fact, all
projective counterexamples are given by the symmetric dif-
ferenceωA′,B(P)△ωA′,B(Q) = {(c, b), (bc, b), (bc, ab)},
and the corresponding explicit counterexamples are(c, bc),
(bc, bc), and(bc, abc).

Model-Theoretic Characterisations. We now introduce
semantic characterisations for explicit counterexamplesand
A-B-wedges in the style of UE-models (Eiter & Fink 2003)
andA-UE-models (Woltran 2004). Recall that UE- andA-
UE-models have been introduced to capture uniform equiv-
alence and uniform equivalence relative toA, respectively.
More specifically, two programs are uniformly equivalent iff
their UE-models coincide, and they are uniformly equivalent
relative toA iff their A-UE-models coincide. Let us note
that UE-models can be characterised thus: a pair(X, Y) is
a UE-model of a programP iff X ⊆ Y , Y |= P , X |= P Y ,
and, for eachX ′ with X ⊂ X ′ ⊂ Y , X ′ 6|= PY .

We first deal with explicit counterexamples.

Theorem 3 LetΠ = (P, Q, 2A,⊆B) be a PQIP overU and
considerX, Y ⊆ U . Then,(X, Y) is an explicit counterex-
ample overU for Π iff

1. Y |= P andX ⊆ Y |A,

2. for eachY ′ with X ⊆ Y ′ ⊂ Y , Y ′ 6|= PY , and

3. for eachZ with X ⊆ Z, Z|B = Y |B, andZ |= Q, there
is someZ ′ with X ⊆ Z ′ ⊂ Z such thatZ ′ |= QZ .

Proof. We first show thatY ∈ AS (P ∪ X) andX ⊆ A
jointly hold iff the first two items of the theorem hold. We
only show the only-if direction; the if-direction is by essen-
tially the same arguments. So, assume thatY ∈ AS (P ∪X)
and X ⊆ A. Since,Y ∈ AS(P ∪ X), we haveY |=
(P ∪X)Y = (PY ∪X). Hence,Y |= P Y and thusY |= P .
Moreover,X ⊆ Y has to hold. SinceX ⊆ A by hypoth-
esis, we getX ⊆ Y |A. Furthermore,Y ∈ AS (P ∪ X)
implies that there exists noY ′ with Y ′ ⊂ Y such that
Y ′ |= (P ∪ X)Y = (PY ∪ X). In particular, this yields
that for each suchY ′ with X ⊆ Y ′, Y ′ 6|= PY has to hold.

Finally, it can be shown that there exist noZ with Z|B =
Y |B such thatZ ∈ AS(Q ∪ X) iff the third item of the
theorem holds. �

Next, we characteriseA-B-wedges.

Theorem 4 A pair (X, Y) is anA-B-wedge ofP iff (i) X ⊆
A and (ii) there is aY ′ with X ⊆ Y ′ andY = Y ′|B such
thatY ′ |= P and, for eachX ′ with X⊆X ′⊂Y ′, X ′ 6|= PY ′

.

Proof. According to Definition 4,(X, Y) is anA-B-wedge
of P iff X ⊆ A andY ∈ AS(P ∪ X)|B. It thus remains
to show that the latter condition is equivalent to (ii). Now,
Y ∈ AS(P ∪X)|B iff there is someY ′ with Y = Y ′|B and
Y ′ ∈ AS(P ∪ X). By the definition of an answer set, the
latter is equivalent to

(∗) Y ′ is a minimal model of(P ∪X)Y ′

.

Since(P ∪X)Y ′

= (PY ′

∪X) andY ′ |= PY ′

iff Y ′ |= P ,
(∗) is in turn equivalent toY ′ |= P , X ⊆ Y ′, and for each
X ′ with X ⊆ X ′ ⊂ Y ′, X ′ 6|= PY ′

. �

Since uniform equivalence between programs overU is
captured by PQEPs overU of form (P, Q, 2U , =U), let us
now describe the relation between UE-models andA-B-
wedges withA = B = U .

First of all, a pair(X, Y) is aU-U-wedge of some pro-
gram only ifX ⊆ Y |U , i.e., only ifX ⊆ Y . Now, for a pro-
gramP , (Y, Y) is aU-U-wedge ofP iff Y |= P . Further-
more, forX ⊂ Y , (X, Y) is aU-U-wedge ofP iff Y |= P
and for allX ′ with X ⊆ X ′ ⊂ Y , X ′ 6|= PY holds. So,
there is only a subtle difference betweenU-U-wedges and
UE-models, laid down in detail by the next result.

Theorem 5 LetX ⊆ Y ⊆ U andP ∈ PU . Then:

1. (Y, Y) is a UE-model ofP iff (Y, Y) is aU-U-wedge ofP .
Moreover, if(Y, Y) is a UE-model ofP but no (X, Y)
with X ⊂ Y is a UE-model ofP (i.e.,Y is an answer set
of P), then, for allX ⊆ Y , (X, Y) is aU-U-wedge ofP .

2. If (X, Y) is a UE-model ofP andX ⊂ Y , then(X ′, Y)
is aU-U-wedge for anyX ⊂ X ′ ⊆ Y .

3. If (X, Y) is aU-U-wedge ofP and(∅, Y) is not aU-U-
wedge ofP , then there exists an UE-model(X ′, Y) of P
with X ′ ⊂ X .

Example 4 Consider the programsP = {a ∨ b} andQ =
{a ← not b; b ← not a}, which are uniformly equivalent.
The UE-models ofP andQ are(a, a), (b, b), (a, ab), (b, ab),
and (ab, ab), but theU-U-wedges of the two programs are
(∅, a), (a, a), (∅, b), (b, b), and(ab, ab).

While UE-models have been defined with the aim to se-
lect a subset of SE-models (Turner 2003) (which charac-
terise strong equivalence), wedges are not designed in this
respect. Rather, they have a much closer relation to pro-
jective counterexamples. Furthermore, a relation between
A-UE-models (Woltran 2004) andA-U-wedges can be es-
tablished similar to Theorem 5 in the context of relativised
uniform equivalence.

Computational Complexity
We now analyse the complexity of deciding PQIPs and
PQEPs. Let us first summarise some results from Eiter,
Tompits, & Woltran (2005).

Proposition 1 Given programsP, Q ∈ PU , setsA, B ⊆
U of atoms, and⊙ ∈ {⊆, =}, deciding whether(P, Q,
PA,⊙B) holds isΠP

4 -complete. Moreover, the problem is
coNP-complete ifA = U .

Proposition 2 Given programsP, Q ∈ PU , B ⊆ U , ⊙ ∈
{⊆, =}, andC ⊆ PU , where eachR ∈ C is polynomial in
the size ofP ∪ Q, deciding whether(P, Q, C,⊙B) holds is
ΠP

3 -complete.

Another relevant previous result concerns the complexity
of checking relativised uniform equivalence (Woltran 2004;
Eiter, Fink, & Woltran 2007), which thus provides us com-
plexity bounds for PQIPs and PQEPs without projection.

Proposition 3 Given programsP, Q ∈ PU , A ⊆ U , and
⊙ ∈ {⊆, =}, deciding whether(P, Q, 2A,⊙U) holds isΠP

2 -
complete. Moreover, hardness holds even for arbitrary but
fixedA.

For general PQIPs and PQEPs, we expect an increase in
complexity but, in view of Proposition 2, it cannot be beyond
ΠP

3 . However, Proposition 2 does not provide details about
the hardness of such problems. In fact, Eiter, Tompits, &
Woltran (2005) reportΠP

3 -hardness for ordinary equivalence
with projection, i.e., PQEPs of the form(P, Q, 2A, =B) with
A = ∅. Our main result below shows that nearly all parame-
terisations for PQIPs and PQEPs result in a matching lower
bound. In particular, we show thatΠP

3 -hardness holds even
if the context alphabetA is fixed arbitrarily. Thus, also uni-
form equivalence without restriction of the context class is
hard forΠP

3 as long asB ⊂ U , whereB is the projection set.
This is in stark contrast to Proposition 1, which shows that
considering programs overA (instead ofsets of factsover
A) remains in coNP for arbitraryB, providingA = U .

Theorem 6 Given programsP, Q ∈ PU and setsA, B ⊆
U of atoms, deciding whether(P, Q, 2A,⊆B) holds isΠP

3 -
complete. Hardness holds even for arbitrary but fixedA.

Proof. Membership inΠP
3 follows from Proposition 2. We

show ΠP
3 -hardness by reducing theΠP

3 -hard problem of
checking validity of a QBF of form∀Z∃X∀Y φ, whereφ
is a propositional formula in disjunctive normal form (DNF)
andZ ∪X ∪ Y are the variables occurring inφ, into PQIPs.

The reduction is as follows: LetΦ = ∀Z∃X∀Y φ be a
QBF of the described form, withφ =

∨n
i=1

Ci being a for-
mula in DNF. DefineΠΦ = (PΦ, QΦ, 2A,⊆Z), whereA is
an arbitrary set of atoms andPΦ, QΦ are given as follows:

PΦ = {z ∨ z̄ ← ; ← z, z̄ | z ∈ Z}∪

{← v ; ← v̄ | v ∈ X ∪ Y };

QΦ = {v ∨ v̄ ← ; ← v, v̄ | v ∈ Z ∪X}∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y }∪

{a← C∗i | 1 ≤ i ≤ n} ∪ {a← not a}.

Here,C∗ is a sequence of atoms containing each atomw
occurring positively inC, andw̄ for eachw occurring nega-
tively in C. Moreover,a and allv̄’s are new distinct atoms.

We show thatΦ is valid iff ΠΦ holds. For the if-direction,
suppose thatΦ is not valid. We show that(PΦ, QΦ, 2A,⊆Z)
does not hold, forA = ∅. SinceΦ is not valid, there exists
an interpretationIZ ⊆ Z such that∃X∀Y φ[IZ] is not valid,
whereφ[IZ] simplifiesφ with respect to interpretationIZ .
We show thatIZ ∈ AS(PΦ)|Z but IZ 6∈ AS(QΦ)|Z . The
former is clear. For the latter, suppose thatQΦ possesses an

answer setK ∈ AS(QΦ) with (K∩Z) = IZ . By definition
of QΦ, we further have that, for eachz ∈ Z, z̄ ∈ K iff
z /∈ IZ . From this, one can show that the program

Q[IZ] = {x ∨ x̄← ; ← x, x̄ | x ∈ X}∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y }∪

{a← CIZ

i | 1 ≤ i ≤ n} ∪ {a← not a},

whereCIZ

i is asC∗i but using the conjuncts fromφ[IZ] in-
stead ofφ, has an answer set. However, the latter holds iff
∃X∀Y φ[IZ] is valid. This can be seen by inspecting the
original proof forΣP

2 -hardness of deciding whether a pro-
gram has at least one answer set (Eiter & Gottlob 1995),
which uses essentially the same program asQ[IZ]. Since
∃X∀Y φ[IZ] is not valid, however, we get a contradiction.

For the only-if direction, supposeΠΦ does not hold. We
show thatΦ is not valid. SinceΠΦ does not hold, by
Theorem 1 there is a projective counterexample(J, I) for
ΠΦ, i.e., we haveJ ⊆ A, I ∈ AS(PΦ ∪ J)|Z , and
I /∈ AS(QΦ ∪ J)|Z . From I ∈ AS(PΦ ∪ J)|Z , we de-
rive the following properties: for anyv ∈ X ∪ Y , neitherv
nor v̄ is contained inJ , and(J ∩ Z) ⊆ I ⊆ Z. By similar
arguments as before, we can derive the following chain of
equivalences:I /∈ AS (QΦ ∪ J)|Z iff Q[I] has no answer
set iff ∃X∀Y φ[I] is not valid. But thenΦ = ∀Z∃X∀Y φ
cannot be valid. �

Since a PQEPΠ holds iff its associated PQIPsΠ→ and
Π← both hold, it follows that the complexity of checking
PQEPs is inΠP

3 as well. The matching lower bounds for
PQEPs(P, Q, 2A, =B) for arbitrary A follow in view of
the following lemma, which slightly generalises a result by
Eiter, Tompits, & Woltran (2005).

Lemma 1 The PQIP(P, Q, 2A,⊆B) holds iff the PQEP
(LP,Q ∪ {gQ ← not gP }, LP,Q ∪ {gQ ∨ gP ←}, 2C , =B)
holds, whereLP,Q = {← gP , gQ} ∪ {H ← gR, B | R ∈
{P, Q}, H ← B ∈ R}, A ⊆ C ⊆ A∪{gP , gQ}, andgP , gQ

are new atoms.

Roughly speaking, the above lemma yields two proper-
ties: First, it maps PQIPs into PQEPs via two new atoms.
Second, it shows that these new atoms can be arbitrarily
fixed in the context of the resulting PQEP. Thus, hardness
carries over also for arbitrary but fixed alphabets and we
have the following result:

Theorem 7 Given programsP, Q ∈ PU and setsA, B ⊆
U of atoms, deciding whether(P, Q, 2A, =B) holds isΠP

3 -
complete. Hardness holds even for arbitrary but fixedA.

We observe that thus also the special case whenA = B,
which amounts to notions similar to modular equivalence
(Oikarinen & Janhunen 2006), and database-like settings,
whereA is a subset of the common EDBs andB is a subset
of common IDBs, remain hard forΠP

3 .

Translating Query Problems
In this section, we discuss issues for computing PQIPs and
PQEPs. We adopt a reduction approach here, translating
the problems under consideration into problems for which

solvers already exist. Naturally, the translations we seek
should be constructible in polynomial time.

First of all, we remark that since checking PQIPs and
PQEPs isΠP

3 -complete, these tasks cannot be efficiently re-
duced to DLPs under the answer-set semantics, unless the
polynomial hierarchy collapses. Hence, a more expressive
language is required. This leads us to quantified proposi-
tional logic as a suitable target language, as any decision
problem inPSPACE can be efficiently reduced to QBFs.
Moreover, there are several practicably efficient solvers for
QBFs available, which can be used as back-end inference
engines for solving the encoded problems.

In fact, such a reduction approach to QBFs was already
adopted for realising the systemcc⊤ (Oetschet al. 2006),
which allows to verify the kinds of correspondence prob-
lems studied by Eiter, Tompits, & Woltran (2005). In prin-
ciple, we can usecc⊤ as such to verify PQIPs and PQEPs,
because the latter problems can be reduced to the former, in
view of the following observation:

Theorem 8 GivenΠ = (P, Q, 2A,⊙B), for ⊙ ∈ {⊆, =},
we have thatΠ holds iff(P ∪GA, Q∪GA, {∅},⊙B) holds,
whereGA = {a′ ∨ a′′ ←; a ← a′ | a ∈ A} and all a′, a′′

are new, mutually disjoint atoms.

However, verifying PQIPs and PQEPs that way would in-
volve two reduction steps, ascc⊤ relies itself on a reduction
to QBFs. The direct encodings described next avoid this.

In what follows, we make use of sets of globally new
atoms in order to refer to different assignments of the same
atoms within a single formula. More formally, given a setV
of atoms, we assume (pairwise) disjoint copiesVi = {vi |
v ∈ V }, for everyi ≥ 1. Furthermore, we introduce the
following abbreviations:

1. (Vi ≤ Vj) =
∧

v∈V (vi → vj);

2. (Vi < Vj) = (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi); and

3. (Vi = Vj) = (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
These operators allow to compare different subsets of

atoms from a common setV under subset inclusion, proper-
subset inclusion, and equality, respectively, in the following
way: GivenX, Y ⊆ V , an interpretationI with I|Vi

= Xi

andI|Vj
= Yj is (i) a model ofVi ≤ Vj iff X ⊆ Y , (ii) a

model ofVi < Vj iff X ⊂ Y , and (iii) a model ofVi = Vj

iff X = Y .
We use subscripts as a general renaming schema for for-

mulas and rules. That is, for eachi ≥ 1, αi expresses the
result of replacing each occurrence of an atomp in α by pi,
whereα is any formula or rule. For a ruler of form (1), we
defineH(r) = a1 ∨ · · · ∨ al, B+(r) = al+1 ∧ · · · ∧ am, and
B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunc-
tions with⊥ and empty conjunctions with⊤.

The following abbreviation is central: For any programP ,

Pi,j =
∧

r∈P

(

(B+(ri) ∧B−(rj))→ H(ri)
)

.

Then, the following relation holds:

Proposition 4 (Tompits & Woltran 2005) Let P be a pro-
gram withAt(P) = V , I an interpretation, andX, Y ⊆ V
such that, for somei, j, I|Vi

= Xi and I|Vj
= Yj . Then,

X |= PY iff I |= Pi,j .
With these building blocks at hand, we proceed with our

central encoding.
Definition 5 Let Π = (P, Q, 2A,⊆B) be a PQIP,At(P ∪
Q) = V , andA, B ⊆ V . Then,

T [Π] = ΦΠ ∧ ∀V4

(

(B4 = B1)→ ΨΠ

)

, where

ΦΠ = P1,1 ∧ (A2 ≤ A1)∧

∀V3

(

(

(A2 ≤ A3) ∧ (V3 < V1)
)

→ ¬P3,1

)

and

ΨΠ =
(

(

Q4,4 ∧ (A2 ≤ A4)
)

→

∃V5

((

(A2 ≤ A5) ∧ (V5 < V4)
)

∧Q5,4

)

)

.

Observe that the free variables ofT [Π] are given by
V1 ∪ A2. Assignments toV1 ∪ A2 yield the explicit coun-
terexamples forΠ, in caseT [Π] is satisfied by those assign-
ments. More specifically,T [Π] expresses the conditions of
Theorem 3, where assignments forV1, A2, V3, V4, andV5

correspond toY , X , Y ′, Z, andZ ′, respectively. Taking
the semantics of the introduced building blocks into account,
Y1 ∪X2 |= ΦΠ iff X andY satisfy the first and the second
item of Theorem 3, andY1∪X2 |= ∀V4((B4 = B1)→ ΨΠ)
iff X andY satisfy the third item of Theorem 3. Formally,
we have the following key property:

Lemma 2 Let Π = (P, Q, 2A,⊆B) be a PQIP,At(P ∪
Q) = V , A, B ⊆ V , X ⊆ A, andY ⊆ V . Then,(X, Y) is
an explicit counterexample forΠ iff Y1 ∪X2 |= T [Π].

Expressing the task whether a PQIP holds is now a simple
matter to realise:

Theorem 9 For any PQIPΠ = (P, Q, 2A,⊆B), Π holds iff
¬∃V1∃A2T [Π] is valid.

The extension of the encodings to PQEPs is done by
means of the associated PQIPs.

Lemma 3 Let Π = (P, Q, 2A, =B) be a PQEP,At(P ∪
Q) = V , A, B ⊆ V , X ⊆ A, andY ⊆ V . Then,(X, Y)
is an explicit counterexample forΠ iff Y1 ∪X2 |= T [Π→]∨
T [Π←].

Theorem 10 For any PQEPΠ = (P, Q, 2A, =B), Π holds
iff ¬∃V1∃A2(T [Π→] ∨ T [Π←]) is valid.

It is easily observed that our encodings in Theorems 9
and 10 are (i) always polynomial in the size ofP , Q, A, and
B, and (ii) possess at most two quantifier alternations in any
branch of the formula tree. Thus, the complexity of eval-
uating these QBFs is not harder than the complexity of the
encoded decision problems, which shows that our encodings
areadequatein the sense of Besnardet al. (2005).

The reductions described above have been incorporated
into the systemcc⊤, which is available on the Web at
http://www.kr.tuwien.ac.at/research/ccT.
In fact, the implemented translations include optimised ver-
sions such that adequacy is retained also for (relativised)
uniform equivalence. Details about these optimisations are
omitted for space reasons.

Discussion
In this paper, we studied refined versions of uniform equiv-
alence for disjunctive logic programs under the answer-set
semantics, where the alphabet of the context class as well
as removal of auxiliary atoms is taken into account. We
also considered correspondence problems in which projec-
tive set inclusion is taken as basic comparison relation in-
stead of projective set equality. We furthermore provided a
novel model-theoretic characterisation in terms of wedges
which at the same time yields new characterisations for (rel-
ativised) uniform equivalence (vis-a-vis UE-models), and
analysed the computational complexity of correspondence
checking. Finally, we described efficient reductions of
PQIPs and PQEPs to QBFs, yielding an implementation of
these problems by means of off-the-shelf QBF solvers.

Other refined equivalence notions in the context of an-
swer-set programming are, e.g.,visible equivalence(Jan-
hunen & Oikarinen 2007), a form of ordinary equivalence
with projection, andupdate equivalence(Inoue & Sakama
2004). We also mention the system SELP (Chen, Lin, & Li
2005) for checking strong equivalence, which is based on a
reduction to classical logic, very much in the spirit of our
implementation approach.

An open topic for future work is the extension of our re-
sults to more general classes of programs like, e.g., nested
logic programs. A further interesting issue concerns the case
of nonground programs—however, thereby we have to face
undecidability which holds already for uniform equivalence
(Eiteret al. 2005) between nonground programs.

References
Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S.
2005. Representing Paraconsistent Reasoning via Quan-
tified Propositional Logic. InInconsistency Tolerance, vol-
ume 3300 ofLNCS, 84–118. Springer.

Chen, Y.; Lin, F.; and Li, L. 2005. SELP - A System
for Studying Strong Equivalence Between Logic Programs.
In Proc. 8th International Conference on Logic Program-
ming and Nonmonotonic Reasoning(LPNMR 2005), vol-
ume 3552 ofLNAI, 442–446. Springer.

Eiter, T., and Fink, M. 2003. Uniform Equivalence of Logic
Programs under the Stable Model Semantics. InProc. 19th
International Conference on Logic Programming(ICLP
2003), volume 2916 ofLNCS, 224–238. Springer.

Eiter, T., and Gottlob, G. 1995. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Mathematics and Artificial Intelligence
15(3/4):289–323.

Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying Logic Programs Under Uniform and Strong
Equivalence. InProc. 7th International Conference on
Logic Programming and Nonmonotonic Reasoning(LP-
NMR-7), volume 2923 ofLNCS, 87–99. Springer.

Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2005.
Strong and Uniform Equivalence in Answer-Set Program-
ming: Characterizations and Complexity Results for the

Non-Ground Case. InProc. 20th National Conference on
Artificial Intelligence(AAAI 2005), 695–700. AAAI Press.
Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical
Characterizations and Complexity of Equivalences in Sta-
ble Logic Programming.ACM Transactions on Computa-
tional Logic. To appear.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On So-
lution Correspondences in Answer Set Programming. In
Proc. 19th International Joint Conference on Artificial In-
telligence(IJCAI 2005), 97–102.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases.New Genera-
tion Computing9:365–385.
Huxley, A. 1928.Proper Studies. Doubleday Doran.
Inoue, K., and Sakama, C. 2004. Equivalence of Logic Pro-
grams Under Updates. InProc. 9th European Conference
on Logics in Artificial Intelligence(JELIA 2004), volume
3229 ofLNCS, 174–186. Springer.
Janhunen, T., and Oikarinen, E. 2007. Automated Verifica-
tion of Weak Equivalence within the SMODELS System.
Theory and Practice of Logic Programming7(4):1–48.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic Programs.ACM Transactions on Com-
putational Logic2(4):526–541.
Lin, F., and Chen, Y. 2005. Discovering Classes of
Strongly Equivalent Logic Programs. InProc. 19th Inter-
national Joint Conference on Artificial Intelligence(IJCAI
2005), 516–521.
Oetsch, J.; Seidl, M.; Tompits, H.; and Woltran, S. 2006.
ccT: A Tool for Checking Advanced Correspondence Prob-
lems in Answer-Set Programming. InProc. 15th Interna-
tional Conference on Computing(CIC 2006), 3–10. IEEE
Computer Society Press.
Oikarinen, E., and Janhunen, T. 2006. Modular Equiva-
lence for Normal Logic Programs. InProc. 17th European
Conference on Artificial Intelligence(ECAI 2006), 412–
416. IOS Press.
Pearce, D. 2004. Simplifying Logic Programs under An-
swer Set Semantics. InProc. 20th International Confer-
ence on Logic Programming(ICLP 2004), volume 3132 of
LNCS, 210–224. Springer.
Sagiv, Y. 1988. Optimizing Datalog Programs. In Minker,
J., ed.,Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann. 659–698.
Tompits, H., and Woltran, S. 2005. Towards Implemen-
tations for Advanced Equivalence Checking in Answer-Set
Programming. InProc. 21st International Conference on
Logic Programming(ICLP 2005), volume 3668 ofLNCS,
189–203. Springer.
Turner, H. 2003. Strong Equivalence Made Easy: Nested
Expressions and Weight Constraints.Theory and Practice
of Logic Programming3(4-5):602–622.
Woltran, S. 2004. Characterizations for Relativized No-
tions of Equivalence in Answer Set Programming. InProc.
9th European Conference on Logics in Artificial Intelli-
gence(JELIA 2004), volume 3229 ofLNCS, 161–173.

