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Abstract. Logic programming under the answer-set semantics nowadizgls
with numerous different notions of equivalence betweerggms. This is due
to the fact that equivalence for substitution (known asrgjrequivalence), which
holds between programB and @ iff P can faithfully be replaced by within
any contextr, is a different concept than ordinary equivalence betwBeand
@, which holds if P and@ have the same answer sets. Notions inbetween strong
and ordinary equivalence have therefore been obtainedtbgreiestricting the
syntactic structure oR or bounding the set of atoms allowed to occuirr{rel-
ativized equivalence). For the former approach, howeveurned out that any
“reasonable” syntactic restriction # either coincides with strong equivalence
or collapses to uniform equivalence wheReranges over arbitrary sets of facts.
In this paper, we propose a parameterization for equival@oetions which takes
care of both such kinds of restrictions simultaneously byriating, on the one
hand, the atoms which are allowed to occur in the rule head? afd, on the
other hand, the atoms which are allowed to occur in the ruthdsoof R. We
introduce a semantical characterization including knowasoas SE-models or
UE-models as special cases. Moreover, we provide compléxitinds for the
problem in question.

1 Introduction

Starting with the seminal paper on strong equivalence beti@gic programs by Lif-
schitz, Pearce, and Valverde [7], a new research direatidogic programming under
the answer-set semantics has been established. This i® daet that strong equiva-
lence between prograni® and @, which holds iff P can faithfully be replaced bg)

in any program, is a different concept than deciding whefhemd @ have the same
answer sets, i.e., (ordinary) equivalence betwamd() holds. FormallyP andQ are
strongly equivalent iff, for each further so-called corntgsogramR, P U R andQ U R
possess the same answer sets. That difference betweeg atrdiordinary equivalence
motivated investigations of equivalence notions inbetwsee, e.g., [4]). Basically this
was done in two ways, viz. to bound the actually allowed cdrgeogramsR by (i) re-
stricting their syntax; or (ii) restricting their languadg®r Case (i), it turned out that any
“reasonable” (i.e., where the restriction is defined ruleeyfor instance only allowing

* Supported by the Austrian Science Fund (FWF) under proj&s068-INF.
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for Horn rules) attempt either coincides with strong eqlémae itself, or reduces to
uniform equivalence [2], which is to test whether, for eaehis of facts,P U F' and
Q@ U F possess the same answer sets. Case (ii), where the atomsdatio occur in
R are given by an alphabet yields in general different concepts for differedtand
thus is known as strong equivalence relative4$12]. Finally a combination of both
approaches leads to the concept of uniform equivalencevesta A [12].1

In this paper, we propose a fine-grained framework to defitiem®of equivalence
where the aforementioned restrictions are simultaneaagiyn into account. This is
accomplished by restricting, on the one hand, the atomshnduie allowed to occur
in the rule heads of the context programs and, on the othet, ttlh@ atoms which are
allowed to occur in the rule bodies of the context programsréMformally, for given
programsP, @, and given set${, 3 of atoms, we want to decide whether the answer
sets ofP U R and@ U R coincide for each prograiR, where each rule if has its head
atoms front{ and its body atoms fror. We will show that this new notion includes all
of the previously mentioned; for instance, settifig= (, i.e., disallowing any atom to
occur in bodies, will be shown to coincide with (relativizehiform equivalence; while
the parameterizatiol = 3 amounts to (relativized) strong equivalence by definition.

The main contribution of the paper is to provide a generalas#ival character-
ization for the new equivalence notion. Moreover, we shoat thur characterization
includes as special cases known concepts as SE-models [WElmodels [2]. Finally,
we address the computational complexity of the introduepdvalence problems and
propose a prototypical implementation.

2 Background

Throughout the paper we assume an arbitrary finite but fixedetsel/ of atoms.
Subsets ot/ are either called interpretations or alphabets: We useattter lterm to
restrict the syntax of programs, while the former is usedmtiaéking about semantics.
For an interpretatio’” and an alphabet,, we writeY'| 4 instead oft” N A.

A propositional disjunctive logic program (or simply, a gram) is a finite set of
rules of form

a1V -V ap < Qi1 -« Gy, MO Aty - - ., NOL Ay, (1)

n > 0, n>m>1[, and where alk; are propositional atoms it¥ and not denotes
default negation; fon = [ = 1, we usually identify the rule (1) with the atom, and
call it afact A rule of the form (1) is called aonstraintif [ = 0, positiveif m = n and
unaryif it is either a fact or of the forna < 0. A program is positive (resp., unary) iff
all its rules are positive (resp., unary). If all atoms ocing in a programP are from
a given alphabetl C U/ of atoms, we say thaP is a progranover (alphabet)4. The
class of all logic programs over univei&ds denoted by;,.

For a ruler of form (1), we identify its head by/ (r) = {a1,...,a;} and its body
via BT (r) = {ai+1,---,am} and B~ (r) = {am+1,- .-, a,}. We shall write rules of

L A further approach is to additionally restrict the alphategr which the answer sets 5fU R
and @ U R compared. This kind oprojectionwas investigated in [5, 8, 10], but we do not
consider it in this work.
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form (1) also asi (r) < BT (r), not B~ (r). Moreover, we also usB(r) = BT (r) U
B~ (r). Finally, for a progran®, a(P) = {J,cp o(r), fora € {H, B, B*, B~ }.

The relationY |= P between an interpretatiori and a progran® is defined as
usual, i.e.Y = P holdsif for eachr € P, Y |= r. The latter holds iffH (r) N Y # 0,
whenever jointlyB*(r) C Y andB~(r) NY = 0 hold. If Y = P holds,Y is
called a model ofP. Following Gelfond and Lifschitz [6], an interpretatidn, is an
answer sebf a programp iff it is a minimal (wrt set inclusion) model of theeduct
PY = {H(r) «— B*(r) | Y N B~ (r) = 0}. The set of all answer sets of a progr&m
is denoted byAS(P).

Finally, we briefly review some prominent notions of equarade [7, 2, 12, 4], which
have been studied under the answer-set semantics: Foreaipleabetd C U/, we call
programsP, @ € Cy, strongly equivalent relative tal, iff, for any programR over A,
it holds thatAS(P U R) = AS(Q U R). P, Q areuniformly equivalent relative tol,
iff, for any setF C A of facts, AS(P U F) = AS(Q U F). If, A = U, strong (resp.,
uniform) equivalence relative td collapses to (unrelativized) strong (resp., uniform)
equivalence [7, 2]; ifA = @, we obtainordinary equivalencg.e., AS(P) = AS(Q).

In case of strong equivalence (also in the relativized ¢asejas shown that the
syntactic class afounterexamples.e., programd?, such thatdAS(P U R) # AS(Q U
R), can always be restricted to the class of unary programscéjehe next result
comes by mere surprise, but provides insight with respettta@lphabets in the rules’
heads and bodies.

Lemma l. Let P, Q, R € Cy be programs, and” be an interpretation, such that
Y € AS(PUR) andY ¢ AS(QU R). Then there exists a prograf/, such thatR’ is
positive,H(R') C H(R), B(R') C B(R),Y € AS(PUR/),andY ¢ AS(QU R’).

The result can be checked by usiRg= RY .

As we will see later, Lemma 1 can even be strengthened to ymmagrams. How-
ever, already the present result shows that whenever ae@xampleR for an equiva-
lence problem exists, then we can find a simpler (positive) @amich is given over the
same alphabets in the heads, and respectively, bodies.

3 The General Framework

Lemma 1 suggests to study equivalence problems along a psramnation via two
alphabets. To this end, we first introduce classes of progemfollows.

Definition 1. For any alphabet$?, B C U, the clas< 3, ) of programs is defined as
{PeCy| H(P)CH,B(P) C B}.

With this concept of program classes at hand, we now definvagace notions
which are more fine-grained than the ones previously inttedu

Definition 2. Let’H, B C U be alphabets, an® Q € C;; be programs. ThéH, B)-
equivalence problerhetween” and @, in symbolsP = 5y Q, is to decide whether,
foreachR € C(3 ), AS(PUR) = AS(QU R). If P =3 5y Q holds, we say thaP
andQ are (H, B)-equivalent
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The clas< (3, 5y is also called theontextof an(, B)-equivalence problem, and a
programR € C3 ), whereAS(P U R) # AS(Q U R) holds, is called &ounterex-
ampleto the (H, B)-equivalence problem betweéhand().

Example 1.ConsiderP = {a Vb «; a « b} and@Q = {a < notb; b — nota; a —
b}. It is known that these programs are not strongly equivakinte adding any?
which closes the cycle betweenandb yields AS(P U R) # AS(Q U R). In par-
ticular, forR = {b — a}, we getAS(P U R) = {{a,b}}, while AS(Q U R) = 0.
However, P and @ are uniformly equivalent. In our setting, we are able to ‘fapp
imate” equivalence notions which hold betweBnand Q. It can be shown that, for
instance,P =((q,5},(5}) @ OF P =({4} 1a,p}) @ holds (basically sincé < a does not
occurinany programit;, uy,{3)» O'C({a},{a,b}))- BULP =11} 14,5}y @ and likewise
P =({a,b},7a)) @ do not hold, sincgb « a} is contained in the context (1} (a,b})
resp.,C<{a,b}7{a}>. o

Observe that the concept ((, 5)-equivalence captures other equivalence notions
as follows: (A, A)-equivalence coincides with strong equivalence relativelt and,
in particular,(U, U)-equivalence amounts to strong equivalence. Later we eadlltbat
(A, B)-equivalence coincides with uniform equivalence relative; and, in particular,
(U, B)-equivalence amounts to uniform equivalence. Note thatetegion to uniform
equivalence is not immediate sinéd, )-equivalence deals with sets dfsjunctive
facts, i.e., rules of the forma, V - - - V a; <, rather than sets of (simple) facts—.

The following result shows some general properties féy3)-equivalence.

Proposition 1. LetH, B C U and P, Q € Cy, such thatP =3, 5y Q holds. Then, also
(PUR) =y (QU R) holds, for eachk € C(y 5y, H' € H, andB’ C B.

A central aspect in equivalence checking is the quest foastioal characteriza-
tions assigned to singleprogram. The following formal approach captures this aim.

Definition 3. A semantical characterizatidor an (H, B)-equivalence problem is a
functiono sy : Cu — 22x2" "guch that, for any’, Q € Cy, P =45 Q holds
iff o(30,8) (P) = 03,8 (Q)-

We will review known characterizations for special cases far instance, SE-
models [11] and UE-models [2]) later. Finally, we also imtuge containment problems.

Definition 4. Let’H, B C U be alphabets, an®, Q € C;; be programs. ThéH, B)-
containment problerfor P in @, in symbolsP C 5, ) @, is to decide whether, for each
R € Cip .5, AS(PUR) C AS(Q U R). A counterexample t& C » 5y Q, is any
programR € C3 gy, such thatdS(P U R) £ AS(Q U R).

Proposition 2. P = gy Q holds iff P C 4 ) Q andQ C (3¢ ) P jointly hold.

4 Characterizations for (H, B)-Equivalence

Towards the semantical characterization {&f, B)-equivalence problems, we first in-
troduce the notion of a witness, which is assigned?f B)-containment problems
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taking both compared programs into account. Afterwardswillederive the desired
semantical characterization ¢f, 3)-models which are assigned to single programs
and satisfy the conditions in Definition 3.

To start with, we introduce the following partial order omerpretations and state a
technical lemma.

Definition 5. Given alphabetd{, B C U, we define the relatior’,C ¢ x U between
interpretations as followst’ <5 Z iff V| C Z|» andZ|g C V3.

Observe that ifi 57‘?[ Z holds, then eitheV |yup = Z|nus, or one ofV|y C
Z|n, Z|s C V| holds. We writeV” <5 7, in caseV <%, Z andV |yup # Z|nus.

Lemma 2. Let H,B C U be alphabetsP a positive program withH (P) C H,
B(P) C B,andZ,V C U interpretations. Theny = P andV <% Zimply Z = P.

Proof. Towards a contradiction, suppose= P, V| C Z|n, Z|s C Vs, as well
asZ [~ P hold. If Z [£ P, then there exists a rulee P, such thatB*(r) C Z and
Z N H(r) = 0. SinceH(r) C H, we get fromV|y C Z|y, thatV n H(r) = 0.
Moreover, sinceB™ (r) C B, we haveB™(r) C Z|g C V|, and thusB*(r) C V.
HenceV £ r which yieldsV (£ P. Contradiction. O

4.1 Witnesses for Containment Problems

Definition 6. A witnessfor (violating) a containment problett C 4, 5) @ is a pair of
interpretations(X,Y") with X C Y C ¥/, such that

() Y = Pandforeachy” CY,Y’ = PY impliesY’|3 C Yy
(i) if Y = QthenXCY, X E QY, and for eachX’ with X <5, X' c Y, X' |£ PY.

The aim of a witnes$.X, Y") for (violating) P C 4, 5y @ is, roughly speaking, as
follows: SetX is used to characterize a counterexaniplsuch that set” behaves as a
witnessing answer set, i.&7, ¢ AS(PUR) andY ¢ AS(QU R). Property (i) ensures
thatY can become such an answer set of an exterfdetio this end, it is not only
necessary that |= P. It also has to be guaranteed that¥iocC Y, with Y'|, = Y|
satisfies”” = PY, otherwiseY” can never become an answerdf R, no matter which
R € Ciy ) is added taP. Property (ii) ensures that the progrdnis obtained fromX
in such a way, that” does not become an answer setf) R, butY still can become
an answer set oP U R. We can focus on a positive prograin(cf. Lemma 1), and?
can be constructed in such a way, that it rules out all passitidelsX’ c Y of PY,
as long as¥ £5 X’ holds. The latter is due to the fact that each positive Cin,B)
suitably applies here to Lemma 2.

Example 2.We already have mentioned th8t= {a Vb «—; a < b} andQ = {a «
notb; b — nota; a — b} are not(H, B)-equivalent forH = {v} andB = {a,b}. We
show that there exists a witness BrC 4, 5y Q. First, let us compute the programs’
models (over{a,b}) as well as the models of their reducts. Observe fhand Q
have the same model§ = {a,b} andY> = {a}. For the positive progran® we
are done, since all reducts coincide with and thus possess the same models.(For
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however, observe th&@* = {a < b} has model$), {a}, and{a, b}, while Q¥> =
{a; a < b} has modelda} and{a, b}. We show that forX = 0, (X, Y1) is a witness
for P Ciy,5 Q. Clearly, Condition (i) from Definition 6 holds, sindg = P and
Ya|2 C Yi|x. Concerning Condition (i), we hav, = Q, X C Y7, andX = QY.
The only X’ (over {a,b}) such thatX <%, X’ holds isX itself, sinceB = {a,b}
and thusX’ C X has to be satisfied. It thus remains to chécki~ PY!, which is
the case. Hencé(), {a, b}) is a witness for? C (3} 14,5}y @- By similar arguments (in
particular, since alsgb} [~ P¥), (0, {a,b}) is a witness also foP C 1,4} (a}) Q- ©

We now formally proof that the existence of withesses for at@mment problem
P C iy ) Q in fact shows tha’ C 4, 5y Q does not hold. As a by-product we obtain
that there are always counterexample®tQ 4 5y @ of a simple syntactic form.

Lemma 3. The following propositions are equivalent for akyQ € Cy;, H, B C U:

(1) P <,y Q does not hold;
(2) there exists a unary prograi € C 5y, such thatdS(P U R) £ AS(Q U R);
(3) there exists a witness fdt C 3, ) Q.

Proof. We show that (1) implies (3) and (3) implies (2). (2) implié$ ¢bviously holds
by definition of(H, B)-containment problems.

(1) implies (3): If P C 3 5 @ does not hold, there exists a progrdiand an
interpretationt’, such that” € AS(P U R) andY ¢ AS(Q U R). By Lemma 1, we
can wlog assume that is positive. Moreover, we knod (R) C H andB(R) C B.
Starting fromY” € AS(P U R), we first show that Property (i) from Definition 6 holds.
We haveY = P U R, and thusY = P as well asY’ = R holds. It remains to
show that for each” C Y, Y’ = PY impliesY’| C Y|x. Towards a contradiction,
now suppose there exists & C Y such thaty” = PY andY’|y, ¢ Y. Since
Y’ C Y, we haveY’|y; = Y|y, and thusY |y C Y'|x. Moreover,Y'|z C Yg
holds, and we get’ <% Y’. By Y = R and Lemma 2 this yields” = R. But then
Y’ = (PY UR) = (PUR)Y, acontradictiontd” € AS(P U R).

It remains to establish Property (ii) in Definition 6. Fram ¢ AS(Q U R), we
either gett” [~ Q U R or existence of aiX such thatX = (QUR)Y = (QY UR). We
already know thal” |= R. Hence, in the former case, i.&7,}- Q U R, we getY” |~ Q.
Then, foranyX C Y, (X,Y) is a witness forP C 4 5, @, and we are done. For the
remaining case, wher® = QY and X = R, we suppose towards a contradiction,
that there exists aiX’ C Y, such thatX’ = PY and X j% X’ hold. The latter
together withX = R yields X’ = R, following Lemma 2. Together witlX’ = PY,
we thus getX’ |= (PY UR) = (P UR)Y. SinceX’ C Y this is in contradiction to
Y € AS(PUR). Thus(X,Y) is a witness for fotP? C 13, 5y Q.

(3) implies (2): Let(X,Y') be a witness fol’ C (5 ) Q. We use the unary program
R=X[qU{a—blae ¥ \X)hbe (¥ \X)s)

and showt” € AS(PUR)\ AS(QUR). We first showt” € AS(PUR). Since(X,Y)
is a witness for? C 3, z) @, we knowY |= P.Y |= Ris easily checked and thas =
PUR. ltremains to show that ng C Y satisfiesZ = (PUR)Y = PY U R. Towards
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a contradiction suppose suchZaexists. HenceZ = PY andZ = R.By Z = R,
X|n € Z|y has to hold. SincéX, Y') is a witness fot? C 4 5y Q, Z |, C Y|3 holds,
otherwise Property (i) in Definition 6 is violated. Hendgl,, C Z|, C Y|« holds. We
haveX C Y and, moreover, gef|z € X|g from Property (i) in Definition 6, since
Z = PY andX|y C Z|y already hold. NowZ|s C Y|z by assumption, hence there
exists an ator € (Y'\ X)|3 contained inZ. We already know thaX |, C Z|x C Y|x
has to hold. Hence, there exists at least ene (Y \ X)|, not contained inz. But
then, we derive thaf' (£~ {a < b}. Sincea « b € R, this is a contradiction t& = R.

It remains to show” ¢ AS(Q U R). If Y [~ @, we are done. So l&f |= Q. Since
(X,Y)is awitness fol? C 3 5) Q, we getX = QY andX C Y. Itis easy to see that
X = Rholds. ThusX | (Q¥Y UR) = (QUR)Y; Y ¢ AS(Q U R) follows. O

As an immediate consequence of Lemma 3 and Proposition 2etwbhaf(H, )-
equivalence problems which do not hold always possess siogpinterexamples. As a
special case we obtain the already mentioned fact(ftHaf)-equivalence amounts to
uniform equivalence relative tH.

Corollary 1. ForanyH, B € U and programsP, Q € Cy, P =3 5y @ does not hold
iff there exists a unary programR® € C gy, such thatAS(P U R) # AS(Q U R); if
B =0, thenP = 5, Q does not hold iff there exists a sEtC H of facts, such that
AS(PUF) # AS(QUF).

4.2 Introducing (H, B)-models

Next, we present the desired semantical characterizaiigftf, 5)-equivalence, which
we call(H, B)-models. First, we introduce two further properties.

Definition 7. Given’H C U/, an interpretationt” is an+-total modeffor P iff Y |= P
andforallY’ Cc Y,Y' = PY impliesY'|3; C Y.

Definition 8. GivenH,B C U, a pair (X,Y) of interpretations is calledj%-maximal
for Piff X = PY and, for eachX’ with X <5 X’ C Y, X' }£ PY.

Observe thal” being artH-total model forP matches Property (i) from Definition 6
and follows the same intuition. Being? -maximal refers to being maximal (wrt subset
inclusion) in the atoms fror and simultaneously minimal in the atoms frdm

Definition 9. Given'®, B C U, and interpretationsX C Y C U/, a pair (X,Y) is an
(H, B)-modelof a programP € C, iff Y is anH-total model forP and, if X C Y,
there exists anfX’ C Y with X'|»us = X, such that( X', Y) is <%, maximal forP.
The set of al#, B)-models of a progran® is denoted by 3 5y (P).

Moreover, we call a paifX,Y) total if X = Y, otherwise it is callechon-total Ob-
serve that each non-totéi, 5)-model(X,Y) satisfiesX C Y|nup andX |y C Y|x.

Example 3.In Example 1, we already mentioned tiat= {a Vb —; a « b} andQ =
{a «— notb; b — nota; a — b} are({a,b}, {b})-equivalent. Hence, fi%{ = {a, b},
B = {b}, and let us compute thg<, B)-models ofP, and resp.(). In Example 2 we
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already have obtained the models of these programs as w#ikeasreducts. There,
we have seen thaf; = {a, b} andY> = {a} are the models of botlr and@. Since
H = {a, b}, both areH-total models for? and@. So,(Y1, Y1) and(Y2, Y2) are the total
(H, B)-models of both programs. It remains to check whether thetotad (X, B)-
models ofP and@ coincide. First observe théYs, Y1) is (H, B)-model of bothP and
Q, as well. The interesting candidate(# Y7) sincef) is model of@** but not of PY1.
Hence, (0, Y1) cannot be(H, B)-model of P. But (), Y7) is also not(*, B)-model of
@, since there exists an interpretatiai satisfyingd <% X’ C Y, which is model of
Q™ viz. X’ = {a}. Infact,0| C X'|7, and®|z = X’|5 hold.

ForH = {a} andB = {a, b}, one can show thdl, Y2) is the only(H, B)-model
(over{a,b}) of P as well as of), sinceY; is noH-total model in this setting. o

Before stating our main theorem, we require one further lamm

Lemma4. Let P,Q € Cy, H,B C U, andY be an interpretation. Ther(Y,Y) €
0,8y (P) \ 01,8y (Q) iff there is a witnes$ X, Y') to P C 5 5y Q With X |3 = Y[3.

Proof. For the only-if direction, we directly obtain fror,Y) € o 5 (P), that
Property (i) in Definition 6 holds. To show the remaining Redy (ii), observe that
from (Y,Y) ¢ o.5)(Q), we either have” [~ Q or existence of somg’ C Y, such
thatY” = QY andY’|s = Y|x. In the former case, we are already done, and get that
any (X,Y) with X C Y is a witness forP C 3 5 Q, in particular forX |y = Y.
It remains to show that, in casé = @, and for som&™ C Y with Y'|5; = Yy,
Y’ | QY, eachX’ with Y’ <%, X’ C Y satisfiesX’ [~ PY. By definition, this would
make(Y’,Y") a witness forP C 4 5, Q. Towards a contradiction, suppose such&n
exists. But then, frony” <5 X' c Y andY”|y = Y|x, we getY”’| = X'|3 = Y |n.
Thus,Y” cannot be art{-total model ofP; a contradiction tqY,Y’) € oy gy (P).

For the if-direction, let X, Y") be a witness fo® C 4 5, Q. Property (i) in Def-
inition 6 yields (Y,Y") € o 5y (P). It remains to showY,Y') ¢ o 5 (Q). Now,
(X,Y) being a witness implies that eith&r |~ Q or X = QY, whereX |y = Y|y
andX C Y hold. Both cases preveflt,Y') from being(, 3)-model of Q. 0

Theorem 1. For any programsP, @ € Cy and alphabets{,B C U, P =3 5, Q
holds iff (3 5) (P) = o35 (Q).

Proof. If-direction: Suppose that eithét C 4 5y Q or Q C 3 5y P does nothold. Let
us wlog assume’ C 3 5y @ does not hold (the other case is symmetric). By Lemma 3,
then a witnes$.X,Y) to P C 3 5y Q exists. By Property (i) in Definition 6, we im-
mediately getY,Y) € o3 5 (P). Incase(Y,Y) ¢ o 5y (Q) we are already done.
So supposgY,Y) € o35 (Q). Hence, we can assunié = Q, and by Lemma 4,
Xy # Y|y Since(X,Y) is a witness fol? C 3, 5 Q, we get thatX = Q¥ holds,
and for eachX’ with X <5 X’ c Y, X’ £ PY. Consider now an arbitrary pair
(Z,Y) of interpretations withZ C Y which is jﬁ-maximal forQ. ThenX j% Z
has to hold and sinc@’,Y") € oy 5 (Q), Y is an’H-total model ofQ, and we obtain
(Z|nus,Y) € o py(Q). On that other hand,Z |1us,Y) ¢ o g) (P) holds. This
is a consequence of the observation that for edtiwith X <5 X’ c v, X’ |~ PY,
(since(X,Y) is awitness forP C 3, 5y Q), and by the fact thak’ =<5 Z.
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Only-if direction: Wlog assuméX,Y') € o3 5)(P) \ 03,5 (Q); again, the other
case is symmetric. FrofX,Y') € oy 5y (P), (Y,Y) € o35 (P) follows by Defini-
tion 9. Hence, if(Y,Y) ¢ o» 5 (Q), we are done, since we know from Lemma 4 that
then, there exists a witness fBrC 5, 5, @ and we get by Lemma 3, th#&t C 3, 5, Q
does not hold. Consequently, =3 5y @ cannot hold as well. Thus, Ief C Y, and
(Y,Y) € o (Q). We distinguish between two cases: First suppose thereseads
X' with X =B X’ C Y, suchtha{X',Y) € 0(3,5,(Q). Since(X,Y) ¢ 03,5 (Q),
by definition of (1, B)-models, X <& X' has to hold, and there existsZaC Y with
Z|nus = X', such thatZ |= QY. We show thatZ,Y') is a witness fotP C (3, 5, Q.
Since(Y,Y) € o35 (P), Property (i) in Definition 6 holds. We know = Q¥ and
since(X,Y’) € o 5 (P), we get by definition of , B)-models, that, for eack”
with X <5 X" C Y, X" }£ PY. Now sinceX <5 Z, Property (ii) in Definition 6
holds forZ (instead ofX) as well. This shows thatZ, Y') is a witness fo> C 3, ) Q.
So suppose, for each’ with X <% X' C Y, (X',Y) ¢ o5 (Q) holds. We
have(X,Y) € o, (P), thus there exists & C Y, with Z|»us = X, such that
Z | PY. We show tha{(Z,Y) is a witness for the reverse problef, C 3, 5, P.
From (YY) € o435 (Q), we get that Property (i) in Definition 6 is satisfied for
Q andY. Moreover, we haveZ = PY. It remains to show that, for eack” with
X <5, X" CY, X" = QY. This holds by assumption, i.éX",Y) ¢ 03,5 (Q), for
eachX’ with X <% X’ C Y. Hence, both cases yield a witness, eithetffof (3, 5, Q
or@Q C i, P.By Lemma 3 and Proposition Z, =4 5y 2 does not hold. a

5 Special Cases

In this section, we analyze hoi#, B)-models behave for special instantiationsHof
andB. We first consider the case where eitftér= U/ or B = Y. We call the former
scenaridody-relativizedand the lattehead-relativizedThen, we sketch more general
settings where the only restriction is that eitAieiIC 5 or B C H holds.

5.1 Body-Relativized and Head-Relativized Equivalence

First, we conside(/, B)-equivalence problems, whetéis fixed by the universe, but
B can be arbitrarily chosen. Note th@f, B)-equivalence ranges from strong (setting
B = U) to uniform equivalence (settin = () and cf. Corollary 1) and thus provides
a common view on these two important problems, as well as obl@ms “inbetween”
them. Second, head-relativized equivalence problegmss 3,y @, have as special
cases once more strong equivalence (now by seting /) but also the case where
H = 0 is of interest, since it amounts to check whetlieand @ possess the same
answer sets under any addition of constraints. It is quitéauls that this holds iffP
and( are ordinarily equivalent, since constraints can onlyérolit” answer sets. That
observation is also reflected in Corollary 1, since the omigry program irC g ) is
the empty program.

The following result simplifies the definition oj% within these settings.

Proposition 3. For interpretationsV, Z C U and an alphabed C U, it holds that
(V=4 ZiffVCZandV]a=Z|aand (i) V <4 Ziff Z CVandV|a4 = Z|a.
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Thus, maximizing Wrtr_<§3{ becomes in case G = U/ a form of C-maximization;
and in case oB = U a form of C-minimization. Obviously, both neutralize themselves
for B="H = U, i.e., in the strong equivalence setting, wheres¥/ Z iff V = Z.

For body-relativized equivalence, our characterizatiow simplifies as follows.

Corollary 2. Apair (X,Y) of interpretationsis afi/, B)-model ofP € C, iff X C Y,
Y|P, X EPY, andforall X’ with X ¢ X' C Y andX'|s = X|g, X' }£ PY.

Observe that for the notions inbetween strong and uniforaivatence the max-
imality test, which tests if eaclX’ with X € X’ C Y and X'|zp = X|z yields
X' = PY, gets more localized the more atoms are containe8. il particular, for
B = U it disappears and we end up with a very simple condition(§ar/)-models
which exactly matches the definition of SE-models by Turddf;[a pair(X,Y) of
interpretations is an SE-model of a prograhiff X CY,Y | P, andX | PY.

ForB = (), on the other hand, we observe thdt s = X |5 always holds fol3 = ().
Thus, a pair( X, Y) is a (U, 0)-model of a progran®, if X CY,Y P, X | PY,
and for all X’ with X ¢ X’ C Y, X’ |~ PY. These conditions are now exactly the
ones given for UE-models following [2]. Hence, Corollary ibpides a common view
on the characterizations of uniform and strong equivalence

For head-relativized equivalence notions, simplificatiare as follows.

Corollary 3. A pair (X,Y") of interpretations is ai’H, U/)-model of P € Cy iff X C
Y, Y is an’H-total model forP, X |= PY, and for eachX’ ¢ X with X'|; = X|g,
X' £ PY.

In the case o = U, (H,U)-models again reduce to SE-models. The other special
case isH = (). Recall that), i/)-equivalence amounts to ordinary equivaler{@el/)-
models thus characterize answer sets as follows: Rirss, an()-total model forP, iff
no X C Y satisfiesX = PY. Moreover, this requires that alp, /)-models are total.
So, the condition in Corollary 3 foX C Y is immaterial and we have a one-to-one
correspondence betweéh I/)-models and answer sets of a program.

52 B C H-andH C B - Equivalence

Due to lack of space, we just highlight a few results here riteoto establish a con-
nection betweeiiH, B)-models and relativized SE- and UE-models, as defined in [12]

Proposition 4. For interpretationsV, Z C U and alphabets{,B C U with B C H
(resp.,H C B),V <5 Ziff V|3 C Z|» andV|g = Z|5 (resp., iff Z|z C V|z and
V|# = Z|3). Moreover, ifA =H = B,V <5 Ziff V|4 = Z| .

Observe thatjj{—maximality (in the sense of Definition 8) of a pdiK,Y") for P
reduces to teskK = PY. Thus, to makg X|4,Y) an (A, A)-model of P, we just
additionally need4-totality of Y. In other words, we obtain the following criteria.

Corollary 4. GivenA C U, a pair (X,Y) of interpretations is af{.A, .A)-model of a
programP € Cy, iff (1) X =Y or X C Y|4, (2)Y P and for eachY’ C Y,
Y’ | PY impliesY’|4 C Y|4; and (3) if X C Y then there exists aX’ C Y with
X'|4 = X, such thatX’ = PY.
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This exactly matches the definition gf-SE-models according to [12]. Finally, if
we switch from(A, A)-equivalence td.A, §)-equivalence (i.e., from relativized strong
to relativized uniform equivalence) we obtain the follogiresult for (A, #)-models
which coincides with an explicit definition od-UE-models according to [12].

Corollary 5. GivenA C U, a pair (X, Y) of interpretations is aj.A, #)-model ofP €
Cy, iff (1) and (2) from Corollary 4 hold, and ik C Y then there existX’ C Y such
that X'| 4 = X, X’ = PY, and for eachX” C Y with X'| 4 C X"|4, X" [ PY.

6 Computational Issues

Former results on uniform [2] or relativized [12] equivatershow that these problems
are, in generall[l¥’-hard for disjunctive logic programs. Hend@{, B)-equivalence is
ITF-hard as well. HoweverlZ -membership still holds in the view of Corollary 1. In
particular, it is sufficient to guess an interpretatiorand a unary program® € C ),
and then to check whethéf is contained in eitheldS(P U R) or AS(Q U R), but
not in both. Answer-set checking is in coNP, and since onesed@ly restricty” and
R to contain only atoms which also occur i or @, this algorithm for disproving
(H, B)-equivalence runs in nondeterministic polynomial timehwdiccess to an NP-
oracle. Thus, that problem is i6f’, and consequentl#, B)-equivalence is id1:.
Concerning implementation, we briefly discuss an approagiclwmakes use of
Corollary 1 in a similar manner and compilé4, 3)-equivalence into ordinary equiv-
alence for which a dedicated system exists [9]; a similathogtwvas also discussed
in [12, 10]. The idea hereby is to incorporate the guess ofittary context programs
over the specified alphabets in both programs accordingiythis end, let, for an
(H, By-equivalence problem between prografsand @, f as well asc,;, andé,
for eacha € H, b € B U {f}, be new distinct atoms, not occurring A U Q.
Then,P =3 py Q holds iff P@B> anszrH,B> are ordinarily equivalent, where, for
R e {P Q},

RY, by :Ru{ca,b\/éa,b<—; a<—b7ca7b|aeH,beBu{f}}u{f —}.

In fact, the role of atoms,  is to guess a set of facts C H, while atomsc, ;, with
b # f guess a subset of unary rules— b with a € H andb € B.

7 Conclusion

The aim of this work is to provide a general and uniform chemazation for different
equivalence problems, which have been handled by inhgmdifférent concepts, so far.
We have introduced an equivalence notion parameterizegidoglphabets to restrict the
atoms allowed to occur in the heads, and respectively, baifithe context programs.
We showed that our approach captures the most importantagoce notions studied,
including strong and uniform equivalence as well as reizgig notions thereof.
Figure 1 gives an overview dfH, 3)-equivalence and its special cases, i.e., rela-

tivized uniform equivalence (RUE), relativized strong ealence (RSE), body-relativ-
ized equivalence (BRE), and head-relativized equival¢rétE). On the bottom line
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U, m)=UE BRE SE=U,U)
A ‘ﬂ
BCH
=) i
x ?\56 I
HCB
(0,0) ordinary equivalence ~(0,U)

Fig. 1. The landscape aofH, B)-equivalence with eithetf C B or B C H.

we have ordinary equivalence, while the top-left corneramgto uniform equivalence
(UE) and the top-right corner to strong equivalence (SE).

Future work includes the study of further properties &£ 3)-equivalence, as well
as potential applications, which include relations to ofmgyic programs [1] and new
concepts for program simplification [3]. Also an extensiorhie sense of [5], where a
further alphabet is used to specify the atoms which have ittccimte in comparing the
answer sets is considered. While [5] provides a charaetioiz for relativizedstrong
equivalence with projection, recent work [8] addressetioblem of relativizedini-
formequivalence with projection. Our results may be a basisdeige a common view
on these two recent characterizations, as well.
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