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Abstract. Logic programming under the answer-set semantics nowadaysdeals
with numerous different notions of equivalence between programs. This is due
to the fact that equivalence for substitution (known as strong equivalence), which
holds between programsP andQ iff P can faithfully be replaced byQ within
any contextR, is a different concept than ordinary equivalence betweenP and
Q, which holds ifP andQ have the same answer sets. Notions inbetween strong
and ordinary equivalence have therefore been obtained by either restricting the
syntactic structure ofR or bounding the set of atoms allowed to occur inR (rel-
ativized equivalence). For the former approach, however, it turned out that any
“reasonable” syntactic restriction toR either coincides with strong equivalence
or collapses to uniform equivalence whereR ranges over arbitrary sets of facts.
In this paper, we propose a parameterization for equivalence notions which takes
care of both such kinds of restrictions simultaneously by bounding, on the one
hand, the atoms which are allowed to occur in the rule heads ofR and, on the
other hand, the atoms which are allowed to occur in the rule bodies ofR. We
introduce a semantical characterization including known ones as SE-models or
UE-models as special cases. Moreover, we provide complexity bounds for the
problem in question.

1 Introduction

Starting with the seminal paper on strong equivalence between logic programs by Lif-
schitz, Pearce, and Valverde [7], a new research direction in logic programming under
the answer-set semantics has been established. This is due to fact that strong equiva-
lence between programsP andQ, which holds iffP can faithfully be replaced byQ
in any program, is a different concept than deciding whetherP andQ have the same
answer sets, i.e., (ordinary) equivalence betweenP andQ holds. Formally,P andQ are
strongly equivalent iff, for each further so-called context programR, P ∪R andQ∪R
possess the same answer sets. That difference between strong and ordinary equivalence
motivated investigations of equivalence notions inbetween (see, e.g., [4]). Basically this
was done in two ways, viz. to bound the actually allowed context programsR by (i) re-
stricting their syntax; or (ii) restricting their language. For Case (i), it turned out that any
“reasonable” (i.e., where the restriction is defined rule-wise, for instance only allowing
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for Horn rules) attempt either coincides with strong equivalence itself, or reduces to
uniform equivalence [2], which is to test whether, for each set F of facts,P ∪ F and
Q ∪ F possess the same answer sets. Case (ii), where the atoms allowed to occur in
R are given by an alphabetA yields in general different concepts for differentA and
thus is known as strong equivalence relative toA [12]. Finally a combination of both
approaches leads to the concept of uniform equivalence relative toA [12].1

In this paper, we propose a fine-grained framework to define notions of equivalence
where the aforementioned restrictions are simultaneouslytaken into account. This is
accomplished by restricting, on the one hand, the atoms which are allowed to occur
in the rule heads of the context programs and, on the other hand, the atoms which are
allowed to occur in the rule bodies of the context programs. More formally, for given
programsP , Q, and given setsH, B of atoms, we want to decide whether the answer
sets ofP ∪R andQ∪R coincide for each programR, where each rule inR has its head
atoms fromH and its body atoms fromB. We will show that this new notion includes all
of the previously mentioned; for instance, settingB = ∅, i.e., disallowing any atom to
occur in bodies, will be shown to coincide with (relativized) uniform equivalence; while
the parameterizationH = B amounts to (relativized) strong equivalence by definition.

The main contribution of the paper is to provide a general semantical character-
ization for the new equivalence notion. Moreover, we show that our characterization
includes as special cases known concepts as SE-models [11] or UE-models [2]. Finally,
we address the computational complexity of the introduced equivalence problems and
propose a prototypical implementation.

2 Background

Throughout the paper we assume an arbitrary finite but fixed universeU of atoms.
Subsets ofU are either called interpretations or alphabets: We use the latter term to
restrict the syntax of programs, while the former is used when talking about semantics.
For an interpretationY and an alphabetA, we writeY |A instead ofY ∩ A.

A propositional disjunctive logic program (or simply, a program) is a finite set of
rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n > 0, n≥m≥ l, and where allai are propositional atoms inU andnot denotes
default negation; forn = l = 1, we usually identify the rule (1) with the atoma1, and
call it a fact. A rule of the form (1) is called aconstraintif l = 0, positiveif m = n and
unary if it is either a fact or of the forma ← b. A program is positive (resp., unary) iff
all its rules are positive (resp., unary). If all atoms occurring in a programP are from
a given alphabetA ⊆ U of atoms, we say thatP is a programover (alphabet)A. The
class of all logic programs over universeU is denoted byCU .

For a ruler of form (1), we identify its head byH(r) = {a1, . . . , al} and its body
via B+(r) = {al+1, . . . , am} andB−(r) = {am+1, . . . , an}. We shall write rules of

1 A further approach is to additionally restrict the alphabetover which the answer sets ofP ∪R

andQ ∪ R compared. This kind ofprojectionwas investigated in [5, 8, 10], but we do not
consider it in this work.
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form (1) also asH(r)← B+(r),not B−(r). Moreover, we also useB(r) = B+(r) ∪
B−(r). Finally, for a programP , α(P ) =

⋃

r∈P α(r), for α ∈ {H, B, B+, B−}.
The relationY |= P between an interpretationY and a programP is defined as

usual, i.e.,Y |= P holds if for eachr ∈ P , Y |= r. The latter holds iffH(r) ∩ Y 6= ∅,
whenever jointlyB+(r) ⊆ Y and B−(r) ∩ Y = ∅ hold. If Y |= P holds,Y is
called a model ofP . Following Gelfond and Lifschitz [6], an interpretationY , is an
answer setof a programP iff it is a minimal (wrt set inclusion) model of thereduct
PY = {H(r)← B+(r) | Y ∩B−(r) = ∅}. The set of all answer sets of a programP
is denoted byAS(P ).

Finally, we briefly review some prominent notions of equivalence [7, 2, 12, 4], which
have been studied under the answer-set semantics: For a given alphabetA ⊆ U , we call
programsP, Q ∈ CU , strongly equivalent relative toA, iff, for any programR overA,
it holds thatAS(P ∪ R) = AS(Q ∪ R). P, Q areuniformly equivalent relative toA,
iff, for any setF ⊆ A of facts,AS(P ∪ F ) = AS(Q ∪ F ). If, A = U , strong (resp.,
uniform) equivalence relative toA collapses to (unrelativized) strong (resp., uniform)
equivalence [7, 2]; ifA = ∅, we obtainordinary equivalence, i.e.,AS(P ) = AS(Q).

In case of strong equivalence (also in the relativized case), it was shown that the
syntactic class ofcounterexamples, i.e., programsR, such thatAS(P ∪R) 6= AS(Q∪
R), can always be restricted to the class of unary programs. Hence, the next result
comes by mere surprise, but provides insight with respect tothe alphabets in the rules’
heads and bodies.

Lemma 1. Let P , Q, R ∈ CU be programs, andY be an interpretation, such that
Y ∈ AS(P ∪R) andY /∈ AS(Q∪R). Then there exists a programR′, such thatR′ is
positive,H(R′) ⊆ H(R), B(R′) ⊆ B(R), Y ∈ AS(P ∪R′), andY /∈ AS(Q ∪R′).

The result can be checked by usingR′ = RY .
As we will see later, Lemma 1 can even be strengthened to unaryprograms. How-

ever, already the present result shows that whenever a counterexampleR for an equiva-
lence problem exists, then we can find a simpler (positive) one, which is given over the
same alphabets in the heads, and respectively, bodies.

3 The General Framework

Lemma 1 suggests to study equivalence problems along a parameterization via two
alphabets. To this end, we first introduce classes of programs as follows.

Definition 1. For any alphabetsH,B ⊆ U , the classC〈H,B〉 of programs is defined as
{P ∈ CU | H(P ) ⊆ H, B(P ) ⊆ B}.

With this concept of program classes at hand, we now define equivalence notions
which are more fine-grained than the ones previously introduced.

Definition 2. LetH,B ⊆ U be alphabets, andP, Q ∈ CU be programs. The〈H,B〉-
equivalence problembetweenP andQ, in symbolsP ≡〈H,B〉 Q, is to decide whether,
for eachR ∈ C〈H,B〉,AS(P ∪R) = AS(Q ∪R). If P ≡〈H,B〉 Q holds, we say thatP
andQ are 〈H,B〉-equivalent.
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The classC〈H,B〉 is also called thecontextof an〈H,B〉-equivalence problem, and a
programR ∈ C〈H,B〉, whereAS(P ∪ R) 6= AS(Q ∪ R) holds, is called acounterex-
ampleto the〈H,B〉-equivalence problem betweenP andQ.

Example 1.ConsiderP = {a ∨ b←; a← b} andQ = {a← not b; b← not a; a←
b}. It is known that these programs are not strongly equivalent, since adding anyR
which closes the cycle betweena andb yieldsAS(P ∪ R) 6= AS(Q ∪ R). In par-
ticular, for R = {b ← a}, we getAS(P ∪ R) = {{a, b}}, whileAS(Q ∪ R) = ∅.
However,P andQ are uniformly equivalent. In our setting, we are able to “approx-
imate” equivalence notions which hold betweenP andQ. It can be shown that, for
instance,P ≡〈{a,b},{b}〉 Q or P ≡〈{a},{a,b}〉 Q holds (basically sinceb ← a does not
occur in any program inC〈{a,b},{b}〉, orC〈{a},{a,b}〉). ButP ≡〈{b},{a,b}〉 Q and likewise
P ≡〈{a,b},{a}〉 Q do not hold, since{b ← a} is contained in the contextC〈{b},{a,b}〉,
resp.,C〈{a,b},{a}〉. ⋄

Observe that the concept of〈H,B〉-equivalence captures other equivalence notions
as follows:〈A,A〉-equivalence coincides with strong equivalence relative to A; and,
in particular,〈U ,U〉-equivalence amounts to strong equivalence. Later we will see that
〈A, ∅〉-equivalence coincides with uniform equivalence relativetoA; and, in particular,
〈U , ∅〉-equivalence amounts to uniform equivalence. Note that therelation to uniform
equivalence is not immediate since〈A, ∅〉-equivalence deals with sets ofdisjunctive
facts, i.e., rules of the forma1 ∨ · · · ∨ al ←, rather than sets of (simple) factsa←.

The following result shows some general properties for〈H,B〉-equivalence.

Proposition 1. LetH,B ⊆ U andP, Q ∈ CU , such thatP ≡〈H,B〉 Q holds. Then, also
(P ∪R) ≡〈H′,B′〉 (Q ∪R) holds, for eachR ∈ C〈H,B〉,H′ ⊆ H, andB′ ⊆ B.

A central aspect in equivalence checking is the quest for semantical characteriza-
tions assigned to asingleprogram. The following formal approach captures this aim.

Definition 3. A semantical characterizationfor an 〈H,B〉-equivalence problem is a
functionσ〈H,B〉 : CU → 22

U×2
U

, such that, for anyP, Q ∈ CU , P ≡〈H,B〉 Q holds
iff σ〈H,B〉(P ) = σ〈H,B〉(Q).

We will review known characterizations for special cases (as, for instance, SE-
models [11] and UE-models [2]) later. Finally, we also introduce containment problems.

Definition 4. LetH,B ⊆ U be alphabets, andP, Q ∈ CU be programs. The〈H,B〉-
containment problemfor P in Q, in symbolsP ⊆〈H,B〉Q, is to decide whether, for each
R ∈ C〈H,B〉, AS(P ∪ R) ⊆ AS(Q ∪ R). A counterexample toP ⊆〈H,B〉 Q, is any
programR ∈ C〈H,B〉, such thatAS(P ∪R) 6⊆ AS(Q ∪R).

Proposition 2. P ≡〈H,B〉 Q holds iffP ⊆〈H,B〉Q andQ⊆〈H,B〉P jointly hold.

4 Characterizations for 〈H, B〉-Equivalence

Towards the semantical characterization for〈H,B〉-equivalence problems, we first in-
troduce the notion of a witness, which is assigned to〈H,B〉-containment problems
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taking both compared programs into account. Afterwards, wewill derive the desired
semantical characterization of〈H,B〉-models which are assigned to single programs
and satisfy the conditions in Definition 3.

To start with, we introduce the following partial order on interpretations and state a
technical lemma.

Definition 5. Given alphabetsH,B ⊆ U , we define the relation�B
H⊆ U × U between

interpretations as follows:V �B
H Z iff V |H ⊆ Z|H andZ|B ⊆ V |B.

Observe that ifV �B
H Z holds, then eitherV |H∪B = Z|H∪B, or one ofV |H ⊂

Z|H, Z|B ⊂ V |B holds. We writeV ≺B
H Z, in caseV �B

H Z andV |H∪B 6= Z|H∪B.

Lemma 2. Let H,B ⊆ U be alphabets,P a positive program withH(P ) ⊆ H,
B(P ) ⊆ B, andZ, V ⊆ U interpretations. Then,V |= P andV �B

H Z implyZ |= P .

Proof. Towards a contradiction, supposeV |= P , V |H ⊆ Z|H, Z|B ⊆ V |B, as well
asZ 6|= P hold. If Z 6|= P , then there exists a ruler ∈ P , such thatB+(r) ⊆ Z and
Z ∩ H(r) = ∅. SinceH(r) ⊆ H, we get fromV |H ⊆ Z|H, thatV ∩ H(r) = ∅.
Moreover, sinceB+(r) ⊆ B, we haveB+(r) ⊆ Z|B ⊆ V |B, and thusB+(r) ⊆ V .
HenceV 6|= r which yieldsV 6|= P . Contradiction. ⊓⊔

4.1 Witnesses for Containment Problems

Definition 6. A witnessfor (violating) a containment problemP ⊆〈H,B〉 Q is a pair of
interpretations(X, Y ) with X ⊆ Y ⊆ U , such that

(i) Y |= P and for eachY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H;
(ii) if Y |= Q thenX⊂Y , X |= QY , and for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY .

The aim of a witness(X, Y ) for (violating) P ⊆〈H,B〉 Q is, roughly speaking, as
follows: SetX is used to characterize a counterexampleR, such that setY behaves as a
witnessing answer set, i.e.,Y ∈ AS(P ∪R) andY /∈ AS(Q∪R). Property (i) ensures
that Y can become such an answer set of an extendedP . To this end, it is not only
necessary thatY |= P . It also has to be guaranteed that noY ′ ⊂ Y , with Y ′|H = Y |H
satisfiesY ′ |= PY , otherwiseY can never become an answer ofP ∪R, no matter which
R ∈ C〈H,B〉 is added toP . Property (ii) ensures that the programR is obtained fromX
in such a way, thatY does not become an answer set ofQ ∪ R, butY still can become
an answer set ofP ∪ R. We can focus on a positive programR (cf. Lemma 1), andR
can be constructed in such a way, that it rules out all possible modelsX ′ ⊂ Y of PY ,
as long asX 6�B

H X ′ holds. The latter is due to the fact that each positiveR ∈ C〈H,B〉

suitably applies here to Lemma 2.

Example 2.We already have mentioned thatP = {a ∨ b ←; a ← b} andQ = {a ←
not b; b← not a; a← b} are not〈H,B〉-equivalent forH = {b} andB = {a, b}. We
show that there exists a witness forP ⊆〈H,B〉 Q. First, let us compute the programs’
models (over{a, b}) as well as the models of their reducts. Observe thatP and Q
have the same modelsY1 = {a, b} andY2 = {a}. For the positive programP we
are done, since all reducts coincide withP , and thus possess the same models. ForQ,
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however, observe thatQY1 = {a ← b} has models∅, {a}, and{a, b}, while QY2 =
{a; a ← b} has models{a} and{a, b}. We show that forX = ∅, (X, Y1) is a witness
for P ⊆〈H,B〉 Q. Clearly, Condition (i) from Definition 6 holds, sinceY1 |= P and
Y2|H ⊂ Y1|H. Concerning Condition (ii), we haveY1 |= Q, X ⊂ Y1, andX |= QY1 .
The onlyX ′ (over {a, b}) such thatX �B

H X ′ holds isX itself, sinceB = {a, b}
and thusX ′ ⊆ X has to be satisfied. It thus remains to checkX 6|= P Y1 , which is
the case. Hence,(∅, {a, b}) is a witness forP ⊆〈{b},{a,b}〉 Q. By similar arguments (in
particular, since also{b} 6|= P Y1), (∅, {a, b}) is a witness also forP ⊆〈{a,b},{a}〉 Q. ⋄

We now formally proof that the existence of witnesses for a containment problem
P ⊆〈H,B〉 Q in fact shows thatP ⊆〈H,B〉 Q does not hold. As a by-product we obtain
that there are always counterexamples toP ⊆〈H,B〉Q of a simple syntactic form.

Lemma 3. The following propositions are equivalent for anyP, Q ∈ CU ,H,B ⊆ U :

(1) P ⊆〈H,B〉Q does not hold;
(2) there exists a unary programR ∈ C〈H,B〉, such thatAS(P ∪R) 6⊆ AS(Q ∪R);
(3) there exists a witness forP ⊆〈H,B〉Q.

Proof. We show that (1) implies (3) and (3) implies (2). (2) implies (1) obviously holds
by definition of〈H,B〉-containment problems.

(1) implies (3): If P ⊆〈H,B〉 Q does not hold, there exists a programR, and an
interpretationY , such thatY ∈ AS(P ∪ R) andY /∈ AS(Q ∪ R). By Lemma 1, we
can wlog assume thatR is positive. Moreover, we knowH(R) ⊆ H andB(R) ⊆ B.
Starting fromY ∈ AS(P ∪R), we first show that Property (i) from Definition 6 holds.
We haveY |= P ∪ R, and thus,Y |= P as well asY |= R holds. It remains to
show that for eachY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H. Towards a contradiction,
now suppose there exists anY ′ ⊂ Y such thatY ′ |= PY andY ′|H 6⊂ Y |H. Since
Y ′ ⊂ Y , we haveY ′|H = Y |H, and thus,Y |H ⊆ Y ′|H. Moreover,Y ′|B ⊆ Y |B
holds, and we getY �B

H Y ′. By Y |= R and Lemma 2 this yieldsY ′ |= R. But then
Y ′ |= (PY ∪R) = (P ∪R)Y , a contradiction toY ∈ AS(P ∪R).

It remains to establish Property (ii) in Definition 6. FromY /∈ AS(Q ∪ R), we
either getY 6|= Q∪R or existence of anX such thatX |= (Q∪R)Y = (QY ∪R). We
already know thatY |= R. Hence, in the former case, i.e.,Y 6|= Q∪R, we getY 6|= Q.
Then, for anyX ⊆ Y , (X, Y ) is a witness forP ⊆〈H,B〉 Q, and we are done. For the
remaining case, whereX |= QY andX |= R, we suppose towards a contradiction,
that there exists anX ′ ⊂ Y , such thatX ′ |= PY andX �B

H X ′ hold. The latter
together withX |= R yieldsX ′ |= R, following Lemma 2. Together withX ′ |= PY ,
we thus getX ′ |= (PY ∪ R) = (P ∪ R)Y . SinceX ′ ⊂ Y this is in contradiction to
Y ∈ AS(P ∪R). Thus(X, Y ) is a witness for forP ⊆〈H,B〉Q.

(3) implies (2): Let(X, Y ) be a witness forP ⊆〈H,B〉Q. We use the unary program

R = X |H ∪ {a← b | a ∈ (Y \X)|H, b ∈ (Y \X)|B}

and showY ∈ AS(P ∪R)\AS(Q∪R). We first showY ∈ AS(P ∪R). Since(X, Y )
is a witness forP ⊆〈H,B〉Q, we knowY |= P . Y |= R is easily checked and thusY |=
P ∪R. It remains to show that noZ ⊂ Y satisfiesZ |= (P ∪R)Y = PY ∪R. Towards
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a contradiction suppose such aZ exists. Hence,Z |= P Y andZ |= R. By Z |= R,
X |H ⊆ Z|H has to hold. Since(X, Y ) is a witness forP ⊆〈H,B〉Q, Z|H ⊂ Y |H holds,
otherwise Property (i) in Definition 6 is violated. Hence,X |H ⊆ Z|H ⊂ Y |H holds. We
haveX ⊂ Y and, moreover, getZ|B 6⊆ X |B from Property (ii) in Definition 6, since
Z |= PY andX |H ⊆ Z|H already hold. Now,Z|B ⊆ Y |B by assumption, hence there
exists an atomb ∈ (Y \X)|B contained inZ. We already know thatX |H ⊆ Z|H ⊂ Y |H
has to hold. Hence, there exists at least onea ∈ (Y \ X)|H, not contained inZ. But
then, we derive thatZ 6|= {a← b}. Sincea← b ∈ R, this is a contradiction toZ |= R.

It remains to showY /∈ AS(Q ∪R). If Y 6|= Q, we are done. So letY |= Q. Since
(X, Y ) is a witness forP ⊆〈H,B〉 Q, we getX |= QY andX ⊂ Y . It is easy to see that
X |= R holds. ThusX |= (QY ∪R) = (Q ∪R)Y ; Y /∈ AS(Q ∪R) follows. ⊓⊔

As an immediate consequence of Lemma 3 and Proposition 2, we get that〈H,B〉-
equivalence problems which do not hold always possess simple counterexamples. As a
special case we obtain the already mentioned fact that〈H, ∅〉-equivalence amounts to
uniform equivalence relative toH.

Corollary 1. For anyH,B ∈ U and programsP, Q ∈ CU , P ≡〈H,B〉 Q does not hold
iff there exists a unary programR ∈ C〈H,B〉, such thatAS(P ∪ R) 6= AS(Q ∪ R); if
B = ∅, thenP ≡〈H,B〉 Q does not hold iff there exists a setF ⊆ H of facts, such that
AS(P ∪ F ) 6= AS(Q ∪ F ).

4.2 Introducing 〈H, B〉-models

Next, we present the desired semantical characterization for 〈H,B〉-equivalence, which
we call〈H,B〉-models. First, we introduce two further properties.

Definition 7. GivenH ⊆ U , an interpretationY is anH-total modelfor P iff Y |= P
and for allY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H.

Definition 8. GivenH,B ⊆ U , a pair (X, Y ) of interpretations is called�B
H-maximal

for P iff X |= P Y and, for eachX ′ with X ≺B
H X ′ ⊂ Y , X ′ 6|= PY .

Observe thatY being anH-total model forP matches Property (i) from Definition 6
and follows the same intuition. Being�B

H-maximal refers to being maximal (wrt subset
inclusion) in the atoms fromH and simultaneously minimal in the atoms fromB.

Definition 9. GivenH,B ⊆ U , and interpretationsX ⊆ Y ⊆ U , a pair (X, Y ) is an
〈H,B〉-modelof a programP ∈ CU iff Y is anH-total model forP and, if X ⊂ Y ,
there exists anX ′ ⊂ Y with X ′|H∪B = X , such that(X ′, Y ) is �B

H maximal forP .
The set of all〈H,B〉-models of a programP is denoted byσ〈H,B〉(P ).

Moreover, we call a pair(X, Y ) total if X = Y , otherwise it is callednon-total. Ob-
serve that each non-total〈H,B〉-model(X, Y ) satisfiesX ⊆ Y |H∪B andX |H ⊂ Y |H.

Example 3.In Example 1, we already mentioned thatP = {a∨b←; a← b} andQ =
{a ← not b; b ← not a; a ← b} are〈{a, b}, {b}〉-equivalent. Hence, fixH = {a, b},
B = {b}, and let us compute the〈H,B〉-models ofP , and resp.,Q. In Example 2 we
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already have obtained the models of these programs as well astheir reducts. There,
we have seen thatY1 = {a, b} andY2 = {a} are the models of bothP andQ. Since
H = {a, b}, both areH-total models forP andQ. So,(Y1, Y1) and(Y2, Y2) are the total
〈H,B〉-models of both programs. It remains to check whether the non-total 〈H,B〉-
models ofP andQ coincide. First observe that(Y2, Y1) is 〈H,B〉-model of bothP and
Q, as well. The interesting candidate is(∅, Y1) since∅ is model ofQY1 but not ofPY1 .
Hence,(∅, Y1) cannot be〈H,B〉-model ofP . But (∅, Y1) is also not〈H,B〉-model of
Q, since there exists an interpretationX ′ satisfying∅ ≺B

H X ′ ⊂ Y , which is model of
QY1 , viz. X ′ = {a}. In fact,∅|H ⊂ X ′|H and∅|B = X ′|B hold.

ForH = {a} andB = {a, b}, one can show that(Y2, Y2) is the only〈H,B〉-model
(over{a, b}) of P as well as ofQ, sinceY1 is noH-total model in this setting. ⋄

Before stating our main theorem, we require one further lemma.

Lemma 4. Let P, Q ∈ CU , H,B ⊆ U , andY be an interpretation. Then,(Y, Y ) ∈
σ〈H,B〉(P ) \ σ〈H,B〉(Q) iff there is a witness(X, Y ) to P ⊆〈H,B〉Q with X |H = Y |H.

Proof. For the only-if direction, we directly obtain from(Y, Y ) ∈ σ〈H,B〉(P ), that
Property (i) in Definition 6 holds. To show the remaining Property (ii), observe that
from (Y, Y ) /∈ σ〈H,B〉(Q), we either haveY 6|= Q or existence of someY ′ ⊂ Y , such
thatY ′ |= QY andY ′|H = Y |H. In the former case, we are already done, and get that
any(X, Y ) with X ⊆ Y is a witness forP ⊆〈H,B〉 Q, in particular forX |H = Y |H.
It remains to show that, in caseY |= Q, and for someY ′ ⊂ Y with Y ′|H = Y |H,
Y ′ |= QY , eachX ′ with Y ′ �B

H X ′ ⊂ Y satisfiesX ′ 6|= PY . By definition, this would
make(Y ′, Y ) a witness forP ⊆〈H,B〉 Q. Towards a contradiction, suppose such anX ′

exists. But then, fromY ′ �B
H X ′ ⊂ Y andY ′|H = Y |H, we getY ′|H = X ′|H = Y |H.

Thus,Y cannot be anH-total model ofP ; a contradiction to(Y, Y ) ∈ σ〈H,B〉(P ).
For the if-direction, let(X, Y ) be a witness forP ⊆〈H,B〉 Q. Property (i) in Def-

inition 6 yields(Y, Y ) ∈ σ〈H,B〉(P ). It remains to show(Y, Y ) /∈ σ〈H,B〉(Q). Now,
(X, Y ) being a witness implies that eitherY 6|= Q or X |= QY , whereX |H = Y |H
andX ⊂ Y hold. Both cases prevent(Y, Y ) from being〈H,B〉-model ofQ. ⊓⊔

Theorem 1. For any programsP, Q ∈ CU and alphabetsH,B ⊆ U , P ≡〈H,B〉 Q
holds iffσ〈H,B〉(P ) = σ〈H,B〉(Q).

Proof. If-direction: Suppose that eitherP ⊆〈H,B〉 Q or Q ⊆〈H,B〉 P does not hold. Let
us wlog assumeP ⊆〈H,B〉 Q does not hold (the other case is symmetric). By Lemma 3,
then a witness(X, Y ) to P ⊆〈H,B〉 Q exists. By Property (i) in Definition 6, we im-
mediately get(Y, Y ) ∈ σ〈H,B〉(P ). In case(Y, Y ) /∈ σ〈H,B〉(Q) we are already done.
So suppose(Y, Y ) ∈ σ〈H,B〉(Q). Hence, we can assumeY |= Q, and by Lemma 4,
X |H 6= Y |H. Since(X, Y ) is a witness forP ⊆〈H,B〉 Q, we get thatX |= QY holds,
and for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY . Consider now an arbitrary pair
(Z, Y ) of interpretations withZ ⊂ Y which is�B

H-maximal forQ. ThenX �B
H Z

has to hold and since(Y, Y ) ∈ σ〈H,B〉(Q), Y is anH-total model ofQ, and we obtain
(Z|H∪B, Y ) ∈ σ〈H,B〉(Q). On that other hand,(Z|H∪B, Y ) /∈ σ〈H,B〉(P ) holds. This
is a consequence of the observation that for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY ,
(since(X, Y ) is a witness forP ⊆〈H,B〉 Q), and by the fact thatX �B

H Z.
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Only-if direction: Wlog assume(X, Y ) ∈ σ〈H,B〉(P ) \ σ〈H,B〉(Q); again, the other
case is symmetric. From(X, Y ) ∈ σ〈H,B〉(P ), (Y, Y ) ∈ σ〈H,B〉(P ) follows by Defini-
tion 9. Hence, if(Y, Y ) /∈ σ〈H,B〉(Q), we are done, since we know from Lemma 4 that
then, there exists a witness forP ⊆〈H,B〉 Q and we get by Lemma 3, thatP ⊆〈H,B〉 Q
does not hold. Consequently,P ≡〈H,B〉 Q cannot hold as well. Thus, letX ⊂ Y , and
(Y, Y ) ∈ σ〈H,B〉(Q). We distinguish between two cases: First suppose there exists an
X ′ with X �B

H X ′ ⊂ Y , such that(X ′, Y ) ∈ σ〈H,B〉(Q). Since(X, Y ) /∈ σ〈H,B〉(Q),
by definition of〈H,B〉-models,X ≺B

H X ′ has to hold, and there exists aZ ⊂ Y with
Z|H∪B = X ′, such thatZ |= QY . We show that(Z, Y ) is a witness forP ⊆〈H,B〉 Q.
Since(Y, Y ) ∈ σ〈H,B〉(P ), Property (i) in Definition 6 holds. We knowZ |= QY , and
since(X, Y ) ∈ σ〈H,B〉(P ), we get by definition of〈H,B〉-models, that, for eachX ′′

with X ≺B
H X ′′ ⊂ Y , X ′′ 6|= PY . Now sinceX ≺B

H Z, Property (ii) in Definition 6
holds forZ (instead ofX) as well. This shows that(Z, Y ) is a witness forP ⊆〈H,B〉 Q.
So suppose, for eachX ′ with X �B

H X ′ ⊂ Y , (X ′, Y ) /∈ σ〈H,B〉(Q) holds. We
have(X, Y ) ∈ σ〈H,B〉(P ), thus there exists aZ ⊂ Y , with Z|H∪B = X , such that
Z |= PY . We show that(Z, Y ) is a witness for the reverse problem,Q ⊆〈H,B〉 P .
From (Y, Y ) ∈ σ〈H,B〉(Q), we get that Property (i) in Definition 6 is satisfied for
Q andY . Moreover, we haveZ |= P Y . It remains to show that, for eachX ′′ with
X �B

H X ′′ ⊂ Y , X ′′ 6|= QY . This holds by assumption, i.e.,(X ′, Y ) /∈ σ〈H,B〉(Q), for
eachX ′ with X �B

H X ′ ⊂ Y . Hence, both cases yield a witness, either forP ⊆〈H,B〉 Q
or Q ⊆〈H,B〉 P . By Lemma 3 and Proposition 2,P ≡〈H,B〉 Q does not hold. ⊓⊔

5 Special Cases

In this section, we analyze how〈H, B〉-models behave for special instantiations ofH
andB. We first consider the case where eitherH = U or B = U . We call the former
scenariobody-relativizedand the latterhead-relativized. Then, we sketch more general
settings where the only restriction is that eitherH ⊆ B orB ⊆ H holds.

5.1 Body-Relativized and Head-Relativized Equivalence

First, we consider〈U ,B〉-equivalence problems, whereU is fixed by the universe, but
B can be arbitrarily chosen. Note that〈U ,B〉-equivalence ranges from strong (setting
B = U) to uniform equivalence (settingB = ∅ and cf. Corollary 1) and thus provides
a common view on these two important problems, as well as on problems “inbetween”
them. Second, head-relativized equivalence problems,P ≡〈H,U〉 Q, have as special
cases once more strong equivalence (now by settingH = U) but also the case where
H = ∅ is of interest, since it amounts to check whetherP andQ possess the same
answer sets under any addition of constraints. It is quite obvious that this holds iffP
andQ are ordinarily equivalent, since constraints can only “rule out” answer sets. That
observation is also reflected in Corollary 1, since the only unary program inC〈∅,U〉 is
the empty program.

The following result simplifies the definition of�B
H within these settings.

Proposition 3. For interpretationsV, Z ⊆ U and an alphabetA ⊆ U , it holds that
(i) V �A

U Z iff V ⊆ Z andV |A = Z|A; and (ii) V �U
A Z iff Z ⊆ V andV |A = Z|A.
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Thus, maximizing wrt�B
H becomes in case ofH = U a form of⊆-maximization;

and in case ofB = U a form of⊆-minimization. Obviously, both neutralize themselves
for B = H = U , i.e., in the strong equivalence setting, whereV �U

U Z iff V = Z.
For body-relativized equivalence, our characterization now simplifies as follows.

Corollary 2. A pair (X, Y ) of interpretations is an〈U ,B〉-model ofP ∈ CU iff X ⊆ Y ,
Y |= P , X |= P Y , and for allX ′ with X ⊂ X ′ ⊂ Y andX ′|B = X |B, X ′ 6|= PY .

Observe that for the notions inbetween strong and uniform equivalence the max-
imality test, which tests if eachX ′ with X ⊂ X ′ ⊂ Y and X ′|B = X |B yields
X ′ 6|= PY , gets more localized the more atoms are contained inB. In particular, for
B = U it disappears and we end up with a very simple condition for〈U ,U〉-models
which exactly matches the definition of SE-models by Turner [11]: a pair(X, Y ) of
interpretations is an SE-model of a programP iff X ⊆ Y , Y |= P , andX |= P Y .

ForB = ∅, on the other hand, we observe thatX ′|B = X |B always holds forB = ∅.
Thus, a pair(X, Y ) is a〈U , ∅〉-model of a programP , if X ⊆ Y , Y |= P , X |= P Y ,
and for allX ′ with X ⊂ X ′ ⊂ Y , X ′ 6|= PY . These conditions are now exactly the
ones given for UE-models following [2]. Hence, Corollary 2 provides a common view
on the characterizations of uniform and strong equivalence.

For head-relativized equivalence notions, simplifications are as follows.

Corollary 3. A pair (X, Y ) of interpretations is an〈H,U〉-model ofP ∈ CU iff X ⊆
Y , Y is anH-total model forP , X |= P Y , and for eachX ′ ⊂ X with X ′|H = X |H ,
X ′ 6|= PY .

In the case ofH = U , 〈H,U〉-models again reduce to SE-models. The other special
case isH = ∅. Recall that〈∅,U〉-equivalence amounts to ordinary equivalence.〈∅,U〉-
models thus characterize answer sets as follows: First,Y is an∅-total model forP , iff
no X ⊂ Y satisfiesX |= P Y . Moreover, this requires that all〈∅,U〉-models are total.
So, the condition in Corollary 3 forX ⊂ Y is immaterial and we have a one-to-one
correspondence between〈∅,U〉-models and answer sets of a program.

5.2 B ⊆ H - and H ⊆ B - Equivalence

Due to lack of space, we just highlight a few results here, in order to establish a con-
nection between〈H,B〉-models and relativized SE- and UE-models, as defined in [12].

Proposition 4. For interpretationsV, Z ⊆ U and alphabetsH,B ⊆ U with B ⊆ H
(resp.,H ⊆ B), V �B

H Z iff V |H ⊆ Z|H andV |B = Z|B (resp., iffZ|B ⊆ V |B and
V |H = Z|H). Moreover, ifA = H = B, V �B

H Z iff V |A = Z|A.

Observe that�A
A-maximality (in the sense of Definition 8) of a pair(X, Y ) for P

reduces to testX |= P Y . Thus, to make(X |A, Y ) an 〈A,A〉-model ofP , we just
additionally needA-totality of Y . In other words, we obtain the following criteria.

Corollary 4. GivenA ⊆ U , a pair (X, Y ) of interpretations is an〈A,A〉-model of a
programP ∈ CU , iff (1) X = Y or X ⊂ Y |A, (2) Y |= P and for eachY ′ ⊂ Y ,
Y ′ |= PY impliesY ′|A ⊂ Y |A; and (3) if X ⊂ Y then there exists anX ′ ⊆ Y with
X ′|A = X , such thatX ′ |= PY .
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This exactly matches the definition ofA-SE-models according to [12]. Finally, if
we switch from〈A,A〉-equivalence to〈A, ∅〉-equivalence (i.e., from relativized strong
to relativized uniform equivalence) we obtain the following result for〈A, ∅〉-models
which coincides with an explicit definition ofA-UE-models according to [12].

Corollary 5. GivenA ⊆ U , a pair (X, Y ) of interpretations is an〈A, ∅〉-model ofP ∈
CU , iff (1) and (2) from Corollary 4 hold, and ifX ⊂ Y then there existsX ′ ⊆ Y such
thatX ′|A = X , X ′ |= PY , and for eachX ′′ ⊂ Y with X ′|A ⊂ X ′′|A, X ′′ 6|= PY .

6 Computational Issues

Former results on uniform [2] or relativized [12] equivalence show that these problems
are, in general,ΠP

2 -hard for disjunctive logic programs. Hence,〈H,B〉-equivalence is
ΠP

2 -hard as well. However,ΠP
2 -membership still holds in the view of Corollary 1. In

particular, it is sufficient to guess an interpretationY and a unary programR ∈ C〈H,B〉,
and then to check whetherY is contained in eitherAS(P ∪ R) or AS(Q ∪ R), but
not in both. Answer-set checking is in coNP, and since one cansafely restrictY and
R to contain only atoms which also occur inP or Q, this algorithm for disproving
〈H,B〉-equivalence runs in nondeterministic polynomial time with access to an NP-
oracle. Thus, that problem is inΣP

2 , and consequently〈H,B〉-equivalence is inΠP
2 .

Concerning implementation, we briefly discuss an approach which makes use of
Corollary 1 in a similar manner and compiles〈H,B〉-equivalence into ordinary equiv-
alence for which a dedicated system exists [9]; a similar method was also discussed
in [12, 10]. The idea hereby is to incorporate the guess of theunary context programs
over the specified alphabets in both programs accordingly. To this end, let, for an
〈H,B〉-equivalence problem between programsP andQ, f as well asca,b and c̄a,b

for eacha ∈ H, b ∈ B ∪ {f}, be new distinct atoms, not occurring inP ∪ Q.
Then,P ≡〈H,B〉 Q holds iff P+

〈H,B〉 andQ+

〈H,B〉 are ordinarily equivalent, where, for
R ∈ {P, Q},

R+

〈H,B〉 = R ∪
{

ca,b ∨ c̄a,b ←; a← b, ca,b | a ∈ H, b ∈ B ∪ {f}
}

∪ {f ←}.

In fact, the role of atomsca,f is to guess a set of factsF ⊆ H, while atomsca,b with
b 6= f guess a subset of unary rulesa← b with a ∈ H andb ∈ B.

7 Conclusion

The aim of this work is to provide a general and uniform characterization for different
equivalence problems, which have been handled by inherently different concepts, so far.
We have introduced an equivalence notion parameterized by two alphabets to restrict the
atoms allowed to occur in the heads, and respectively, bodies of the context programs.
We showed that our approach captures the most important equivalence notions studied,
including strong and uniform equivalence as well as relativized notions thereof.

Figure 1 gives an overview of〈H,B〉-equivalence and its special cases, i.e., rela-
tivized uniform equivalence (RUE), relativized strong equivalence (RSE), body-relativ-
ized equivalence (BRE), and head-relativized equivalence(HRE). On the bottom line
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〈∅, ∅〉 ordinary equivalence

BRE
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R

E

RSE

B ⊆ H

H ⊆ B

〈U , ∅〉=UE

〈∅,U〉

SE=〈U ,U〉

Fig. 1. The landscape of〈H,B〉-equivalence with eitherH ⊆ B or B ⊆ H.

we have ordinary equivalence, while the top-left corner amounts to uniform equivalence
(UE) and the top-right corner to strong equivalence (SE).

Future work includes the study of further properties of〈H,B〉-equivalence, as well
as potential applications, which include relations to openlogic programs [1] and new
concepts for program simplification [3]. Also an extension in the sense of [5], where a
further alphabet is used to specify the atoms which have to coincide in comparing the
answer sets is considered. While [5] provides a characterization for relativizedstrong
equivalence with projection, recent work [8] addresses theproblem of relativizeduni-
formequivalence with projection. Our results may be a basis to provide a common view
on these two recent characterizations, as well.
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