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Abstract. Logic programs under answer-set semantics constitute an important
tool for declarative problem solving. In recent years, two research issues received
growing attention. On the one hand, concepts like loops and elementary sets have
been proposed in order to extend Clark’s completion for computing answer sets
of logic programs by means of propositional logic. On the other hand, different
concepts of program equivalence, like strong or uniform equivalence, have been
studied in the context of program optimization and modular programming. In
this paper, we bring these two lines of research together andprovide alternative
characterizations for different conceptions of equivalence in terms of unfounded
sets, along with the related concepts of loops and elementary sets. Our results
yield new insights into the model theory of equivalence checking. We further ex-
ploit these characterizations to develop novel encodings of program equivalence
in terms of propositional logic.

1 Introduction

The increasing success of answer-set programming [1] as a tool for declarative problem
solving has produced the need to optimize logic programs in various ways, while leav-
ing their semantics unaffected. Different scenarios have led to different criteria of when
a program’s semantics is preserved. Formally, this is reflected by different definitions of
program equivalence (see below). For instance, in solving,one is usually interested in
program modifications preserving all answer sets, while program optimization requires
a stronger definition, guaranteeing that replacing one subprogram by another preserves
answer sets, no matter how the encompassing program looks like.

In what follows, we elaborate upon the model theory underlying program equiva-
lence, dealing primarily with the well-known concepts of SE- and UE-models [2, 3].
In particular, we provide a new perspective on these semantic structures by usingun-
founded sets [4] and related constructs likeelementary sets [5] and loops [6, 7]. Recall
that SE- and UE-models are defined as pairs(X, Y ), whereY is a model of a given
logic programP andX is a model of the reductP Y . The major difference between this
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characterization and our approach is that we refer to(Y \X) rather than toX itself. As
it turns out, an explicit reference to the reduct and its models is not required, rather, the
respective unfoundedness property possessed by(Y \X) allows us to characterize and
distinguish SE- and UE-models.

2 Background

A propositionaldisjunctive logic program is a finite set of rules of the form

a1 ∨ · · · ∨ ak ← ak+1, . . . , am,not am+1, . . . ,not an, (1)

where1 ≤ k ≤ m ≤ n and everyai (1 ≤ i ≤ n) is a propositional atom from
some universeU ; not denotes default negation. A rule as in (1) is called afact if
k = n = 1; it is said to bepositive if m = n. For a ruler, H(r) = {a1, . . . , ak} is the
head of r, B(r) = {ak+1, . . . , am,not am+1, . . . ,not an} is thebody of r, B+(r) =
{ak+1, . . . , am} is thepositive body of r, andB−(r) = {am+1, . . . , an} is thenegative
body of r. We sometimes denote a ruler by H(r)← B(r).

The (positive) dependency graph of a programP is (U , {(a, b) | r ∈ P, a ∈ H(r),
b ∈ B+(r)}). A nonempty setU ⊆ U is aloop of P if the subgraph of the dependency
graph ofP induced byU is strongly connected. Similar to Lee [7], we consider every
singleton as a loop. A programP is tight [8, 9] if every loop ofP is a singleton.

As usual, an interpretationY is a set of atoms (i.e., a subset ofU). For a ruler, we
write Y |= r iff H(r) ∩ Y 6= ∅, B+(r) 6⊆ Y , or B−(r) ∩ Y 6= ∅. An interpretationY
is amodel of a programP , denoted byY |= P , iff Y |= r for everyr ∈ P . Thereduct
of P with respect toY is P Y = {H(r) ← B+(r) | r ∈ P, B−(r) ∩ Y = ∅}. An
interpretationY is ananswer set of P iff Y is a minimal model ofP Y .

Two programs,P andQ, areordinarily equivalent iff their answer sets coincide.
Furthermore,P andQ arestrongly equivalent [10] (resp.,uniformly equivalent [3]) iff,
for every program (resp., set of facts)R, P ∪R andQ ∪R are ordinarily equivalent.

For interpretationsX, Y , the pair(X, Y ) is anSE-interpretation iff X ⊆ Y . Given
an SE-interpretation(X, Y ) and a programP , (X, Y ) is anSE-model [2] of P iff Y |=
P andX |= P Y . An SE-model(X, Y ) is aUE-model [3] of P iff there is no SE-model
(Z, Y ) of P such thatX ⊂ Z ⊂ Y . The set of all SE-models (resp., UE-models)
of P is denoted bySE (P ) (resp.,UE (P )). Two programsP andQ are strongly (resp.,
uniformly) equivalent iffSE (P ) = SE (Q) (resp.,UE (P ) = UE (Q)) [2, 3].

Example 1. ConsiderP = {a ∨ b ←} andQ = {a ← not b; b ← not a}. Clearly,
both programs are ordinarily equivalent as{a} and{b} are their respective answer sets.
However, they are not strongly equivalent. Indeed, sinceP is positive, we have that
SE (P ) = {(a, a), (b, b), (ab, ab), (a, ab), (b, ab)}.1 For Q, we have to take the reduct
into account. In particular, we haveQ{a,b} = ∅, and so any interpretation is a model of
Q{a,b}. Hence, each pair(X, ab) with X ⊆ {a, b} is an SE-model ofQ. We thus have
SE (Q) = {(a, a), (b, b), (ab, ab), (a, ab), (b, ab), (∅, ab)}. That is,SE (P ) 6= SE (Q),

1 Whenever convenient, we use strings likeab as a shorthand for{a, b}. As a convention, we let
universeU be the set of atoms occurring in the programs under consideration.
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soP andQ are not strongly equivalent. A witness for this isR = {a← b; b← a}, as
P ∪R has{a, b} as its (single) answer set, whileQ ∪R has no answer set.

Concerning uniform equivalence, observe first thatUE (P ) = SE (P ). This is not
the case forQ, where the SE-model(∅, ab) drops out since there exist further SE-
models(Z, ab) of Q with ∅ ⊂ Z ⊂ {a, b}, viz. (a, ab) and (b, ab). One can check
that(∅, ab) is in fact the only pair inSE (Q) that is no UE-model ofQ. So,UE (Q) =
SE (Q) \ {(∅, ab)} = SE (P ) = UE (P ). Thus,P andQ are uniformly equivalent. ♦

We conclude this section with the following known properties. First, for any pro-
gramP and any interpretationY , the following statements are equivalent: (i)Y |= P ;
(ii) Y |= PY ; (iii) (Y, Y ) ∈ SE (P ); and (iv) (Y, Y ) ∈ UE (P ). Second, ifY |= P ,
Y is an answer set ofP iff, for each SE-model (resp., UE-model)(X, Y ) of P , X = Y .

3 Model-Theoretic Characterizations by Unfounded Sets

In this section, we exploit the notion of an unfounded set [4]and provide alterna-
tive characterizations of models for logic programs and program equivalence. Roughly
speaking, the aim of unfounded sets is to collect atoms that cannot be derived from a
program with respect to a fixed interpretation. Given the closed-world reasoning flavor
of answer sets, such atoms are considered to be false. However, we shall relate here
unfounded sets also to SE- and UE-models, and thus to concepts that do not fall un-
der the closed-world assumption (since they implicitly deal with program extensions).
For the case of uniform equivalence, we shall also employ therecent concept of ele-
mentarily unfounded sets [5], which via elementary sets decouple the idea of (minimal)
unfounded sets from fixed interpretations. Finally, we linkour results to loops.

Given a programP and an interpretationY , a setU ⊆ U is unfounded [4] for P
with respect toY if, for eachr ∈ P , at least one of the following conditions holds:

1. H(r) ∩ U = ∅,
2. H(r) ∩ (Y \ U) 6= ∅,
3. B+(r) 6⊆ Y or B−(r) ∩ Y 6= ∅, or
4. B+(r) ∩ U 6= ∅.

Note that the empty set is unfounded for any programP with respect to any interpreta-
tion, since the first condition,H(r) ∩ ∅ = ∅, holds for allr ∈ P .

Example 2. Consider the following program:

P =

{

r1 : a ∨ b← r3 : c← a r5 : c← b, d
r2 : b ∨ c← r4 : d← not b r6 : d← c,not a

}

.

Let U = {c, d}. We haveH(r1) ∩ U = {a, b} ∩ {c, d} = ∅, that is,r1 satisfies
Condition 1. Forr5 andr6, B+(r5) ∩ U = {b, d} ∩ {c, d} 6= ∅ andB+(r6) ∩ U =
{c} ∩ {c, d} 6= ∅. Hence, both rules satisfy Condition 4. Furthermore, consider the
interpretationY = {b, c, d}. We haveH(r2) ∩ (Y \ U) = {b, c} ∩ {b} 6= ∅, thus
r2 satisfies Condition 2. Finally, forr3 andr4, B+(r3) = {a} 6⊆ {b, c, d} = Y and
B−(r4)∩Y = {b}∩{b, c, d} 6= ∅, that is, both rules satisfy Condition 3. From the fact
that each rule inP satisfies at least one of the unfoundedness conditions, we conclude
thatU = {c, d} is unfounded forP with respect toY = {b, c, d}. ♦
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The basic relation between unfounded sets and answer sets isas follows.

Proposition 1 ([11]). Let P be a program and Y an interpretation. Then, Y is an
answer set of P iff Y |= P and no nonempty subset of Y is unfounded for P with
respect to Y .

Example 3. ProgramP in Example 2 has two answer sets:{a, c, d} and{b}. For the
latter, we just have to check that{b} is not unfounded forP with respect to{b} it-
self, which holds in view of either ruler1 or r2. To verify via unfounded sets that
Y = {a, c, d} is an answer set ofP , we have to check all nonempty subsets ofY . For
instance, takeU = {c, d}. We have already seen thatr1, r5, andr6 satisfy Condition 1
or 4, respectively; but the remaining rulesr2, r3, andr4 violate all four unfoundedness
conditions forU with respect toY . ♦

We next detail the relation between unfounded sets and models of logic programs
as well as of their reducts. First, we have the following relationships between models
and unfounded sets.

Lemma 1. Let P be a program and Y an interpretation. Then, the following state-
ments are equivalent: (a) Y |= P ; (b) every set U ⊆ U \ Y is unfounded for P with
respect to Y ; and (c) every singleton U ⊆ U \ Y is unfounded for P with respect to Y .

Proof. (a)⇒ (b): Assume that some setU ⊆ U \Y is not unfounded forP with respect
to Y . Then, for some ruler ∈ P , we have

(α) H(r) ∩ U 6= ∅,
(β) H(r) ∩ (Y \ U) = ∅,
(γ) B+(r) ⊆ Y andB−(r) ∩ Y = ∅, and
(δ) B+(r) ∩ U = ∅.

SinceU ∩ Y = ∅ by the assumption, we conclude from (β) thatH(r) ∩ Y = ∅. Since
(γ) holds in addition, we haveY 6|= r and thusY 6|= P .

(b)⇒ (c) is trivial.
(c) ⇒ (a): AssumeY 6|= P . Then, there is a ruler ∈ P such thatY 6|= r, that

is, H(r) ∩ Y = ∅ and(γ) hold. By the definition of rules,H(r) 6= ∅. So, consider
anya ∈ H(r) and the singletonU = {a}. Clearly, (α) holds forr, and (β) holds by
H(r) ∩ Y = ∅. Finally, sinceB+(r) ⊆ Y anda /∈ Y , (δ) holds as well. That is, there
is a singletonU ⊆ U \ Y that is not unfounded forP with respect toY . ⊓⊔

We further describe the models of a program’s reduct by unfounded sets.

Lemma 2. Let P be a program, Y an interpretation such that Y |= P , and U ⊆ U .
Then, (Y \ U) |= P Y iff U is unfounded for P with respect to Y .

Proof. (⇒) Assume thatU is not unfounded forP with respect toY . Then, for some
ruler ∈ P , (α)–(δ) from the proof of Lemma 1 hold. Clearly,B−(r) ∩ Y = ∅ implies
(H(r) ← B+(r)) ∈ PY . FromB+(r) ⊆ Y and (δ), we concludeB+(r) ⊆ (Y \ U).
Together with (β), we obtain(Y \ U) 6|= (H(r)← B+(r)) and thus(Y \ U) 6|= P Y .

(⇐) Assume(Y \U) 6|= P Y . Then, there is a ruler ∈ P such that(Y \U) 6|= {r}Y .
We conclude thatr satisfies (β), B+(r) ⊆ (Y \U), andB−(r)∩Y = ∅. SinceB+(r) ⊆
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(Y \U) immediately impliesB+(r) ⊆ Y , (γ) holds. Moreover,B+(r) ⊆ (Y \U) also
implies (δ). It remains to show (α). From (γ) andY |= r (which holds by the assumption
Y |= P ), we concludeH(r) ∩ Y 6= ∅. Together with (β), this implies (α). Since (α),
(β), (γ), and (δ) jointly hold for some ruler ∈ P , we have thatU is not unfounded
for P with respect toY . ⊓⊔

Example 4. For illustration, reconsiderP from Example 2 andY = {b, c, d}. For sin-
gleton{a} andr1, we haveH(r1) ∩ (Y \ {a}) = {a, b} ∩ {b, c, d} 6= ∅. Furthermore,
a /∈ H(r) for all r ∈ {r2, . . . , r6}. That is,{a} is unfounded forP with respect toY .
From this, we can conclude by Lemma 1 thatY is a model ofP , i.e.,Y |= P .

As we have already seen in Example 2,U = {c, d} is unfounded forP with
respect toY . Lemma 2 now tells us that(Y \ U) = {b} is a model ofP Y =
{

r1, r2, r3, r5,
(

H(r6)← B+(r6)
)}

. Moreover, one can check that{a, c, d} is as well
unfounded forP with respect toY . ♦

The last observation in Example 4 stems from a more general side effect of Lemma 2:
For any programP , any interpretationY such thatY |= P , andU ⊆ U , U is unfounded
for P with respect toY iff (U∩Y ) is unfounded forP with respect toY . For modelsY ,
this allows us to restrict our attention to unfounded setsU ⊆ Y .

We are now in a position to state the following alternative characterizations of SE-
and UE-models.

Theorem 1. Let P be a program, Y an interpretation such that Y |= P , and U ⊆ U .
Then, (Y \U, Y ) is an SE-model of P iff (U ∩Y ) is unfounded for P with respect to Y .

Theorem 2. Let P be a program, Y an interpretation such that Y |= P , and U ⊆ U .
Then, (Y \ U, Y ) is a UE-model of P iff (U ∩ Y ) is unfounded for P with respect to Y
and no nonempty proper subset of (U ∩ Y ) is unfounded for P with respect to Y .

Note that the inherent maximality criterion of UE-models isnow reflected by a
minimality condition on (nonempty) unfounded sets. Theorem 1 and 2 allow us to char-
acterize strong and uniform equivalence in terms of unfounded sets, avoiding an explicit
use of programs’ reducts. Details will be discussed in Section 4.

Example 5. Recall programsP = {a ∨ b ←} andQ = {a ← not b; b ← not a}
from Example 1. We have seen that the only difference in theirSE-models is the pair
(∅, ab), which is an SE-model ofQ, but not ofP . Clearly,Y = {a, b} is a classical
model ofP and ofQ, and, in view of Theorem 1, we expect thatY is unfounded forQ
with respect toY , but not forP with respect toY . The latter is easily checked since the
ruler = (a∨ b←) yields (1)H(r)∩ Y 6= ∅; (2) H(r)∩ (Y \ Y ) = ∅; (3) B+(r) ⊆ Y
andB−(r) ∩ Y = ∅; and (4)B+(r) ∩ Y = ∅. Thus, none of the four unfoundedness
conditions is met. However, forr1 = a ← not b and r2 = b ← not a, we have
B−(ri) ∩ Y 6= ∅, for i ∈ {1, 2}, and thusY is unfounded forQ with respect toY .

Recall that(∅, ab) is not a UE-model ofQ. In view of Theorem 2, we thus expect
that Y = {a, b} is not a minimal nonempty unfounded set. As one can check, both
nonempty proper subsets{a} and{b} are in fact unfounded forQ with respect toY . ♦
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In the remainder of this section, we provide a further characterization of UE-models
that makes use of elementary sets [5]. This not only gives us amore intrinsic charac-
terization of the differenceU = (Y \ X) for a UE-model(X, Y ) than that stated in
Theorem 2, but also yields a further direct relation to loops. We make use of this fact
and provide a new result for the UE-models of tight programs.

We define a nonempty setU ⊆ U aselementary for a programP if, for eachV such
that∅ ⊂ V ⊂ U , there is somer ∈ P jointly satisfying

1. H(r) ∩ V 6= ∅,
2. H(r) ∩ (U \ V ) = ∅,
3. B+(r) ∩ V = ∅, and
4. B+(r) ∩ (U \ V ) 6= ∅.

Due to Conditions 1 and 4, every elementary set is also a loop of P , but the converse
does not hold in general [5].

To link elementary sets and unfounded sets together, for a programP , an interpre-
tationY , andU ⊆ U , we define:

PY,U = {r ∈ P | H(r) ∩ (Y \ U) = ∅, B+(r) ⊆ Y, B−(r) ∩ Y = ∅}.

Provided thatH(r) ∩ U 6= ∅, a ruler ∈ PY,U supportsU with respect toY , while
no rule in (P \ PY,U ) supportsU . Analogously to Gebser, Lee, and Lierler [5], we
say thatU is elementarily unfounded for P with respect toY iff (i) U is unfounded
for P with respect toY and (ii)U is elementary forPY,U . Any elementarily unfounded
set ofP with respect toY is also elementary forP , but an elementary setU that is
unfounded forP with respect toY is not necessarily elementarily unfounded because
U might not be elementary forPY,U [5].

Elementarily unfounded sets coincide with minimal nonempty unfounded sets.

Proposition 2 ([5]). Let P be a program, Y an interpretation, and U ⊆ U . Then,
U is a minimal nonempty unfounded set of P with respect to Y iff U is elementarily
unfounded for P with respect to Y .

The fact that every nonempty unfounded set contains some elementarily unfounded
set, which by definition is an elementary set, allows us to derive some properties of the
differenceU = (Y \X) for SE-interpretations(X, Y ). For instance, we can exploit the
fact that every elementary set is also a loop in the characterization of minimal nonempty
unfounded sets, where the latter are only defined with respect to interpretations.

Formally, we derive the following properties for UE-models(resp., SE-models):

Corollary 1. Let P be a program and (X, Y ) a UE-model (resp., SE-model) of P . If
X 6= Y , then (Y \X) is (resp., contains) (a) an elementarily unfounded set of P with
respect to Y ; (b) an elementary set of P ; and (c) a loop of P .

For tight programs, i.e., programs such that every loop is a singleton, we obtain the
following property:

Corollary 2. Let P be a tight program and (X, Y ) an SE-model of P . Then, (X, Y )
is a UE-model of P iff X = Y or (Y \X) is a singleton that is unfounded for P with
respect to Y .
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Example 6. Recall the SE-model(∅, ab) of Q = {a ← not b; b ← not a}. The loops
of Q are{a} and{b}; thus,Q is tight. This allows us to immediately conclude that
(∅, ab) is not a UE-model ofQ, without looking for any further SE-model to rebut it.♦

The above result shows that, for tight programs, the structure of UE-models is par-
ticularly simple, viz. they are always of the form(Y, Y ) or (Y \ {a}, Y ), for some
a ∈ Y . As we will see in the next section, this also allows for simplified encodings.

4 Characterizations for Program Equivalence

In this section, we further exploit unfounded sets to characterize different notions of
program equivalence. We start by comparing two programs,P andQ, regarding their
unfounded sets for deriving conditions under whichP andQ are ordinarily, strongly,
and uniformly equivalent, respectively. Based on these conditions, we then provide
novel encodings in propositional logic.

4.1 Characterizations based on Unfounded Sets

Two programs are ordinarily equivalent if they possess the same answer sets. As Propo-
sition 1 shows, answer sets are precisely the models of a program that do not contain
any nonempty unfounded set. Hence, ordinary equivalence can be described as follows:

Theorem 3. Let P and Q be programs. Then, P and Q are ordinarily equivalent iff,
for every interpretation Y , the following two conditions are equivalent:

1. Y |= P and no nonempty subset of Y is unfounded for P with respect to Y ;
2. Y |= Q and no nonempty subset of Y is unfounded for Q with respect to Y .

Note that ordinarily equivalent programs are not necessarily classically equivalent,
as is for instance witnessed by programsP = {a ∨ b←} andQ = {a ∨ b←; a← c}
possessing the same answer sets:{a} and{b}. However,{b, c} is a model ofP but not
of Q. In turn, for strong and uniform equivalence, classical equivalence is a necessary
(but, in general, not a sufficient) condition. This follows from the fact that every model
of a program participates in at least one SE-model (resp., UE-model) and is thus relevant
for testing strong (resp., uniform) equivalence. Indeed, the following characterization
of strong equivalence considers all classical models.

Theorem 4. Let P and Q be programs. Then, P and Q are strongly equivalent iff,
for every interpretation Y such that Y |= P or Y |= Q, P and Q possess the same
unfounded sets with respect to Y .

Proof. (⇒) Assume thatP andQ are strongly equivalent. Fix any interpretationY
such thatY |= P (or Y |= Q). Then,(Y, Y ) is an SE-model ofP (or Q), and sinceP
andQ are strongly equivalent,(Y, Y ) is also an SE-model ofQ (or P ). That is, both
Y |= P andY |= Q hold. Fix any setU ⊆ U . By Lemma 2 and the fact thatP andQ
are strongly equivalent,U is unfounded forP with respect toY iff (Y \ U, Y ) is an
SE-model ofP . But the latter holds iff(Y \ U, Y ) is an SE-model ofQ, which in turn
holds iff U is unfounded forQ with respect toY .
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(⇐) Assume thatP andQ are not strongly equivalent. Then, without loss of gen-
erality, there is an SE-model(X, Y ) of P that is not an SE-model ofQ (the other case
is symmetric). By the definition of SE-models, we haveY |= P , and by Lemma 2,
(Y \ X) is unfounded forP with respect toY , but eitherY 6|= Q or (Y \ X) is not
unfounded forQ with respect toY . If (Y \X) is not unfounded forQ with respect to
Y , thenP andQ do not possess the same unfounded sets with respect toY . Otherwise,
if Y 6|= Q, by Lemma 1, there is a setU ⊆ U \ Y that is not unfounded forQ with
respect toY , butU is unfounded forP with respect toY . ⊓⊔

Theorem 4 shows that strong equivalence focuses primarily on the unfounded sets
admitted by the compared programs. In the setting of uniformequivalence, the consid-
eration of unfounded sets is further restricted to minimal ones (cf. Theorem 2), and by
Proposition 2, these are exactly the elementarily unfounded sets.

Theorem 5. Let P and Q be programs. Then, P and Q are uniformly equivalent iff,
for every interpretation Y such that Y |= P or Y |= Q, P and Q possess the same
elementarily unfounded sets with respect to Y .

Proof. (⇒) Assume thatP andQ are uniformly equivalent. Fix any interpretationY
such thatY |= P (or Y |= Q). Then,(Y, Y ) a UE-model ofP (or Q), and sinceP
andQ are uniformly equivalent,(Y, Y ) is also a UE-model ofQ (or P ). That is, both
Y |= P andY |= Q hold. Fix any elementarily unfounded setU for P (or Q) with
respect toY . If U ⊆ U \ Y , by Lemma 1 and Proposition 2,U is a singleton that is
unfounded for bothP andQ with respect toY , which implies thatU is elementarily
unfounded forQ (or P ) with respect toY . Otherwise, ifU ∩ Y 6= ∅, then Lemma 1
and Proposition 2 implyU ⊆ Y . By Proposition 2 and Theorem 2,(Y \ U, Y ) is a
UE-model ofP (or Q), and sinceP andQ are uniformly equivalent,(Y \U, Y ) is also
a UE-model ofQ (or P ). Since∅ 6= U ⊆ Y , by Theorem 2 and Proposition 2, we
conclude thatU is elementarily unfounded forQ (or P ) with respect toY .

(⇐) Assume thatP and Q are not uniformly equivalent. Then, without loss of
generality, there is a UE-model(X, Y ) of P that is not a UE-model ofQ (the other case
is symmetric). Since(X, Y ) is also an SE-model ofP , we haveY |= P . If Y 6|= Q, by
Lemma 1, there is a singletonU ⊆ U \ Y that is not unfounded forQ with respect to
Y , but U is unfounded forP with respect toY . That is,U is elementarily unfounded
for P with respect toY , but not forQ with respect toY . Otherwise, ifY |= Q, (Y, Y )
is a UE-model both ofP and ofQ. We conclude thatX ⊂ Y , and by Theorem 2 and
Proposition 2,(Y \X) is elementarily unfounded forP with respect toY . Furthermore,
the fact that(X, Y ) is not a UE-model ofQ, by Theorem 2 and Proposition 2, implies
that(Y \X) is not elementarily unfounded forQ with respect toY . ⊓⊔

In contrast to arbitrary unfounded sets, elementarily unfounded sets exhibit a certain
structure as they are in fact loops or, even more accurately,elementary sets (cf. Corol-
lary 1). By Theorem 5, such structures alone are material to uniform equivalence.

4.2 Characterizations in Propositional Logic

We now exploit the above results about unfounded sets to encode program equivalence
in propositional logic. For ordinary equivalence, we use the well-known concept of loop
formulas, while for strong and uniform equivalence we directly refer to unfounded sets.
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In what follows, we write for a set of default literals, likeB(r), and a set of atoms,
like H(r), B(r)→ H(r) as a shorthand for

(
∧

a∈B+(r)a ∧
∧

a∈B−(r)¬a
)

→
∨

a∈H(r)a,

where, as usual, empty conjunctions (resp., disjunctions)are understood as⊤ (resp.,
⊥). For instance, for a ruler of the form (1),B(r)→ H(r) yields the implication

ak+1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → a1 ∨ · · · ∨ ak.

Furthermore, within the subsequent encodings, an occurrence of a programP is under-
stood as

∧

r∈P (B(r)→ H(r)).
As a basis for the encodings, we use the following concept. Following Lee [7], for

a programP andU ⊆ U , theexternal support formula of U for P is

ESP (U) =
∨

r∈P,H(r)∩U 6=∅,B+(r)∩U=∅¬
(

B(r)→ (H(r) \ U)
)

. (2)

The relation between unfounded sets and external support formulas is as follows:

Lemma 3. Let P be a program, Y an interpretation, and U ⊆ U . Then, U is un-
founded for P with respect to Y iff Y 6|= ESP (U).

Proof. (⇒) Assume thatY |= ESP (U). Then, there is a ruler ∈ P such that

(α) H(r) ∩ U 6= ∅,
(β) B+(r) ∩ U = ∅,
(γ) B+(r) ⊆ Y andB−(r) ∩ Y = ∅, and
(δ) (H(r) \ U) ∩ Y = H(r) ∩ (Y \ U) = ∅.

That is,U is not unfounded forP with respect toY .
(⇐) Assume thatU is not unfounded forP with respect toY . Then, there is a

ruler ∈ P for which (α), (β), (γ), and (δ) hold. From (γ) and (δ), we conclude

Y |= ¬
(

B(r)→ (H(r) \ U)),

which together with (α) and (β) impliesY |= ESP (U). ⊓⊔

For a programP andU ⊆ U , the (conjunctive)loop formula [7] of U for P is

LFP (U) =
(
∧

p∈Up
)

→ ESP (U).

With respect to an interpretationY , the loop formula ofU is violated ifY containsU
as an unfounded set, otherwise, the loop formula ofU is satisfied.

Proposition 3 ([7, 5]). Let P be a program and Y an interpretation such that Y |= P .
Then, the following statements are equivalent:

(a) Y is an answer set of P ;
(b) Y |= LFP (U) for every nonempty subset U of U;
(c) Y |= LFP (U) for every loop U of P ;
(d) Y |= LFP (U) for every elementary set U of P .
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For ordinary equivalence, the following encodings (as wellas different combina-
tions thereof) can thus be obtained.

Theorem 6. Let P and Q be programs. Let L and E denote the set of all loops and ele-
mentary sets, respectively, of P and Q. Then, the following statements are equivalent:

(a) P and Q are ordinarily equivalent;
(b)

(

P ∧
∧

∅6=U⊆U LFP (U)
)

↔
(

Q ∧
∧

∅6=U⊆U LFQ(U)
)

is a tautology;
(c)

(

P ∧
∧

U∈L LFP (U)
)

↔
(

Q ∧
∧

U∈L LFQ(U)
)

is a tautology;
(d)

(

P ∧
∧

U∈E LFP (U)
)

↔
(

Q ∧
∧

U∈E LFQ(U)
)

is a tautology.

Recall that, for tight programs, each loop (and thus, each elementary set) is a sin-
gleton. In this case, the encodings in (c) and (d) are thus polynomial in the size of the
compared programs. Moreover, one can verify that they amount to checking whether
the completions [12] of the compared programs are equivalent in classical logic.

For strong and uniform equivalence betweenP and Q, the models ofP and Q
along with the corresponding unfounded sets are compared, as Theorem 4 and 5 show.
We thus directly consider external support formulas, rather than loop formulas.

Theorem 4 and Lemma 3 yield the following encoding for strongequivalence:

Theorem 7. Let P and Q be programs. Then, P and Q are strongly equivalent iff
(

P ∨Q
)

→
(
∧

U⊆U

(

ESP (U)↔ ESQ(U)
))

is a tautology.

In order to also encode uniform equivalence, we have to single out elementarily
unfounded sets. To this end, we modify the definition of the external support formula,
ESP (U), and further encode the case thatU is (not) a minimal nonempty unfounded
set. For a programP andU ⊆ U , we define theminimality external support formula as

ES
⋆
P (U) = ESP (U) ∨ ¬

(
∧

∅⊂V ⊂UESP (V )
)

.

Similar to external support formulas and unfounded sets, minimality external support
formulas correspond to elementarily unfounded sets as follows.

Lemma 4. Let P be a program, Y an interpretation, and ∅ ⊂ U ⊆ U . Then, U is
elementarily unfounded for P with respect to Y iff Y 6|= ES

⋆
P (U).

Proof. (⇒) Assume thatY |= ES
⋆
P (U). Then, one of the following two cases holds:

1. Y |= ESP (U): By Lemma 3,U is not unfounded forP with respect toY , which
implies thatU is not elementarily unfounded forP with respect toY .

2. Y 6|=
(
∧

∅⊂V ⊂UESP (V )
)

: For someV such that∅ ⊂ V ⊂ U , we haveY 6|=
ESP (V ). By Lemma 3,V is unfounded forP with respect toY . We conclude
thatU is not a minimal nonempty unfounded set ofP with respect toY , and by
Proposition 2,U is not elementarily unfounded forP with respect toY .

(⇐) Assume thatY 6|= ES
⋆
P (U). Then,Y 6|= ESP (U), and by Lemma 3,U is un-

founded forP with respect toY . Furthermore,Y |=
(
∧

∅⊂V ⊂UESP (V )
)

, and thus no
setV such that∅ ⊂ V ⊂ U is unfounded forP with respect toY (again by Lemma 3).
We conclude thatU is a minimal nonempty unfounded set ofP with respect toY , and
by Proposition 2,U is elementarily unfounded forP with respect toY . ⊓⊔
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Theorem 5 and Lemma 4 allow us to encode uniform equivalence as follows.

Theorem 8. Let P and Q be programs. Let L and E denote the set of all loops and ele-
mentary sets, respectively, of P and Q. Then, the following statements are equivalent:

(a) P and Q are uniformly equivalent;
(b)

(

P ∨Q
)

→
(
∧

U⊆U

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology;
(c)

(

P ∨Q
)

→
(
∧

U∈L

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology;
(d)

(

P ∨Q
)

→
(
∧

U∈E

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology.

Proof. By Theorem 5,P andQ are uniformly equivalent iff, for every interpretationY
such thatY |= P or Y |= Q, P andQ possess the same elementarily unfounded sets
with respect toY . Clearly, any elementarily unfounded set ofP or Q belongs to the
setE of all elementary sets ofP andQ, which is a subset of the setL of all loops
of P andQ, and every element ofL is a subset ofU . Furthermore, by Lemma 4, a
set ∅ ⊂ U ⊆ U is elementarily unfounded forP (resp.,Q) with respect toY iff
Y 6|= ES

⋆
P (U) (resp.,Y 6|= ES

⋆
Q(U)). Finally, we haveES

⋆
P (∅) ≡ ES

⋆
Q(∅) ≡ ⊥, so

thatY |=
(

ES
⋆
P (∅) ↔ ES

⋆
Q(∅)

)

for any interpretationY . From this, the statement of
Theorem 8 follows. ⊓⊔

Again, we exploit the fact that, for tight programs, all loops and elementary sets
are singletons. It is thus sufficient to consider only the external support formulas of
singletons. To the best of our knowledge, this provides a novel technique to decide uni-
form equivalence between tight programs. Indeed, the following result is an immediate
consequence of (c), or likewise (d), in Theorem 8.

Corollary 3. Let P and Q be tight programs. Then, P and Q are uniformly equivalent
iff

(

P ∨Q
)

→
(
∧

a∈U

(

ESP ({a})↔ ESQ({a})
))

is a tautology.

Indeed, for singletons{a}, ¬
(
∧

∅⊂V ⊂{a} ESP (V )
)

(resp.,¬
(
∧

∅⊂V ⊂{a} ESQ(V )
)

)
can be dropped fromES

⋆
P ({a}) (resp.,ES

⋆
Q({a})) because it is equivalent to⊥.

Except for ordinary and uniform equivalence between tight programs, all of the
above encodings are of exponential size. As with the known encodings for answer sets,
reproduced in Proposition 3, we do not suggest toa priori reduce the problem of de-
ciding program equivalence to propositional logic. Rather, our encodings provide an
alternative view on the conditions underlying program equivalence; similar characteri-
zations have already been successfully exploited in answer-set solving [6, 13].

For strong equivalence, however, we can resolve the exponential number of con-
juncts in Theorem 7 as follows. We use a copyU ′ = {p′ | p ∈ U} of the universeU ,
where allp′ are mutually distinct new atoms, and introduce a module representing
ESP (U), as given in (2), but without explicitly referring to certain setsU ; rather, a
particularU is determined by the true atoms from the copyU ′ of U . We define:

ESP =
∨

r∈P

(
∨

p∈H(r)p
′ ∧

∧

p∈H(r)(p
′ ∨¬p)∧

∧

p∈B+(r)(p∧¬p
′)∧

∧

p∈B−(r)¬p
)

.

Given a programP , for an interpretationY (overU) andU ⊆ U , U is unfounded forP
with respect toY iff (Y ∪ {p′ | p ∈ U}) 6|= ESP . This yields the following result:

Theorem 9. Let P and Q be programs. Then, P and Q are strongly equivalent iff
(P ∨Q)→ (ESP ↔ ESQ) is a tautology.
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5 Discussion

We provided novel characterizations for program equivalence in terms of unfounded
sets, along with the related notions of loops and elementarysets. This allowed us to
identify close relationships between these important concepts. While answer sets, and
thus ordinary equivalence, rely on the absence of (nonempty) unfounded sets, we have
shown that potential extensions of programs, captured by SE- and UE-models, can also
be characterized directly by appeal to unfounded sets, thereby avoiding any reference
to reducts of programs. We have seen that uniform equivalence is located in between
ordinary and strong equivalence, in the sense that it considers all models, similar to
strong equivalence, but only minimal (nonempty) unfoundedsets, which are sufficient
to decide whether a model is an answer set. This allowed us to develop particularly
simple characterizations for uniform equivalence betweentight programs.
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