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Abstract. Logic programs under answer-set semantics constitute partamt
tool for declarative problem solving. In recent years, tesaarch issues received
growing attention. On the one hand, concepts like loops Eerdentary sets have
been proposed in order to extend Clark’s completion for aging answer sets
of logic programs by means of propositional logic. On theesotiiand, different
concepts of program equivalence, like strong or uniformedence, have been
studied in the context of program optimization and modulagpmming. In
this paper, we bring these two lines of research togethepemdde alternative
characterizations for different conceptions of equivateim terms of unfounded
sets, along with the related concepts of loops and elemesgts. Our results
yield new insights into the model theory of equivalence &g We further ex-
ploit these characterizations to develop novel encodifiggagram equivalence
in terms of propositional logic.

1 Introduction

The increasing success of answer-set programming [1] ad fotadeclarative problem
solving has produced the need to optimize logic programsaiious ways, while leav-
ing their semantics unaffected. Different scenarios hesléd different criteria of when
a program’s semantics is preserved. Formally, this is reftbloy different definitions of
program equivalence (see below). For instance, in soldng,is usually interested in
program modifications preserving all answer sets, whilggm optimization requires
a stronger definition, guaranteeing that replacing onemsgspm by another preserves
answer sets, no matter how the encompassing program lda@ks li

In what follows, we elaborate upon the model theory undegyrogram equiva-
lence, dealing primarily with the well-known concepts of-3ad UE-models [2, 3].
In particular, we provide a new perspective on these sematrtictures by usingn-
founded sets [4] and related constructs likeementary sets [5] andloops [6, 7]. Recall
that SE- and UE-models are defined as pa¥sY’), whereY is a model of a given
logic programP andX is a model of the redud®Y . The major difference between this
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characterization and our approach is that we ref¢k'tq X ) rather than toX itself. As

it turns out, an explicit reference to the reduct and its n®idenot required, rather, the
respective unfoundedness property possesséti byX ) allows us to characterize and
distinguish SE- and UE-models.

2 Background
A propositionaldisjunctive logic programis a finite set of rules of the form
a1V N Ak < Qs - - oy Gy MO Ayt 1,y -« -+ 5 NOE G, (1)

wherel < k < m < n and everya; (1 < ¢ < n) is a propositional atom from
some universé(; not denotes default negation. A rule as in (1) is callethet if

k =n = 1;itis said to bepositive if m = n. For aruler, H(r) = {a1,...,a;} is the
head of r, B(r) = {ags1,---,am, n0t my1,-..,notay,} is thebody of r, BT (r) =
{ak+1,.-.,an} isthepostivebody of r, andB~ (r) = {am+1, ..., ay} is thenegative

body of r. We sometimes denote a ruldy H(r) «— B(r).

The (positive) dependency graph of a programP is (4, {(a,b) | 7 € P,a € H(r),
b e BT(r)}). Anonempty set/ C U is aloop of P if the subgraph of the dependency
graph of P induced byU is strongly connected. Similar to Lee [7], we consider every
singleton as a loop. A prograiis tight [8, 9] if every loop of P is a singleton.

As usual, an interpretatio¥i is a set of atoms (i.e., a subset6y. For a ruler, we
write Y = riff H(r)NY # 0, B (r) Y, or B~ (r)NY # (). An interpretatiort”
is amodel of a programP, denoted byt” = P, iff Y |= r for everyr € P. Thereduct
of P with respect toY is PY = {H(r) « B¥(r) | r € P,B~(r)NY = 0}. An
interpretatiorl” is ananswer set of P iff Y is a minimal model of?Y .

Two programs,P andQ, areordinarily equivalent iff their answer sets coincide.
FurthermoreP and(@ arestrongly equivalent [10] (resp.uniformly equivalent [3]) iff,
for every program (resp., set of fac®) P U R andQ U R are ordinarily equivalent.

For interpretations(, Y, the pair(X,Y) is anSE-interpretation iff X C Y. Given
an SE-interpretatiofX, Y') and a progran®, (X,Y") is anSE-model [2] of P iff Y |=
PandX = PY.An SE-model X, Y) is aUE-model [3] of P iff there is no SE-model
(Z,Y) of P such thatX ¢ Z C Y. The set of all SE-models (resp., UE-models)
of P is denoted bySE(P) (resp.,UE(P)). Two programsP and( are strongly (resp.,
uniformly) equivalentiffSE(P) = SE(Q) (resp.,UE(P) = UE(Q)) [2, 3].

Example 1. ConsiderP = {a Vb <} and@ = {a <« notb; b «— nota}. Clearly,
both programs are ordinarily equivalent{ag and{b} are their respective answer sets.
However, they are not strongly equivalent. Indeed, sificis positive, we have that
SE(P) = {(a,a), (b,b), (ab, ab), (a, ab), (b, ab)}.> For Q, we have to take the reduct
into account. In particular, we haggt{®*} = (), and so any interpretation is a model of
Q1+?} Hence, each paitX, ab) with X C {a,b} is an SE-model of). We thus have
SE(Q) = {(a,a), (b,b), (ab,ab), (a,ab), (b,ab), (0,ab)}. That is,SE(P) # SE(Q),

! Whenever convenient, we use strings likeas a shorthand fofa, b}. As a convention, we let
universel{ be the set of atoms occurring in the programs under congidera
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so P and(@ are not strongly equivalent. A witness for thisis= {a < b; b < a}, as

P U R has{a, b} as its (single) answer set, whilf¢ U R has no answer set.
Concerning uniform equivalence, observe first thdt(P) = SE(P). This is not

the case forQ, where the SE-mod€l), ab) drops out since there exist further SE-

models(Z, ab) of Q with § ¢ Z C {a,b}, viz. (a,ab) and (b,adb). One can check

that (0, ab) is in fact the only pair inSE(Q) that is no UE-model of). So, UE(Q) =

SE(Q)\ {(B,ab)} = SE(P) = UE(P). Thus,P and@ are uniformly equivalent. ¢

We conclude this section with the following known propesti€irst, for any pro-
gram P and any interpretatiol’, the following statements are equivalent:Xi)E= P;
(i) Y &= PY; (i) (Y,Y) € SE(P); and (iv)(Y,Y) € UE(P). Second, ifY = P,
Y is an answer set a? iff, for each SE-model (resp., UE-mod¢lY,Y) of P, X =Y.

3 Modd-Theoretic Characterizations by Unfounded Sets

In this section, we exploit the notion of an unfounded setdnAfl provide alterna-
tive characterizations of models for logic programs andypam equivalence. Roughly
speaking, the aim of unfounded sets is to collect atoms #ratat be derived from a
program with respect to a fixed interpretation. Given theetbworld reasoning flavor
of answer sets, such atoms are considered to be false. Howmeyehall relate here
unfounded sets also to SE- and UE-models, and thus to canttegitdo not fall un-
der the closed-world assumption (since they implicitlyldeiéh program extensions).
For the case of uniform equivalence, we shall also employéhent concept of ele-
mentarily unfounded sets [5], which via elementary set®dple the idea of (minimal)
unfounded sets from fixed interpretations. Finally, we link results to loops.

Given a progranP and an interpretatiol’, a setU C U is unfounded [4] for P
with respect tdv” if, for eachr € P, at least one of the following conditions holds:

1. Hir)nU =,

2. Hr)yn(Y\U) #0,
3.BY(r)ZYorB (r)nY #0,or
4. Bt (r)nU # 0.

Note that the empty set is unfounded for any progfamvith respect to any interpreta-
tion, since the first conditior#{ (r) N § = 0, holds for allr € P.

Example 2. Consider the following program:

p_lmn: aVb+— rg: c—a rs: c<b,d
T lre: bV r4: d<« notb re: d<«c,not al’

LetU = {c,d}. We haveH(r1) N U = {a,b} N {c,d} = 0, that is,r; satisfies
Condition 1. Forr; andrg, BT (r5) NU = {b,d} N {c,d} # 0 andB*(rg) NU =
{c} N {e,d} # 0. Hence, both rules satisfy Condition 4. Furthermore, abersthe
interpretationy” = {b,c,d}. We haveH (r2) N (Y \ U) = {b,c} N {b} # 0, thus
ro satisfies Condition 2. Finally, for; andry, BT (r3) = {a} € {b,c¢,d} = Y and
B~ (ry)NY = {b} N {b, c,d} # 0, that is, both rules satisfy Condition 3. From the fact
that each rule inP satisfies at least one of the unfoundedness conditions, neumte
thatU = {c, d} is unfounded forP with respect tdv” = {b, ¢, d}. O
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The basic relation between unfounded sets and answer set$alows.

Proposition 1 ([11]). Let P be a program and Y an interpretation. Then, Y is an
answer set of P iff Y = P and no nonempty subset of Y is unfounded for P with
respectto Y.

Example 3. ProgramP in Example 2 has two answer sefs, ¢, d} and{b}. For the
latter, we just have to check th&b} is not unfounded fo® with respect to{b} it-
self, which holds in view of either rule; or r». To verify via unfounded sets that
Y = {a,¢,d} is an answer set dP, we have to check all nonempty subset&ofFor
instance, také&’ = {c, d}. We have already seen that r5, andrg satisfy Condition 1
or 4, respectively; but the remaining rules r3, andr, violate all four unfoundedness
conditions forU with respect tdr". O

We next detail the relation between unfounded sets and madébgic programs
as well as of their reducts. First, we have the following tietasships between models
and unfounded sets.

Lemmal. Let P be a program and Y an interpretation. Then, the following state-
ments are equivalent: (a) Y = P; (b) every set U C U \ Y is unfounded for P with
respect to Y'; and (c) every singleton U C U/ \ Y isunfounded for P with respectto Y.

Proof. (a) = (b): Assume that some s&t C I/ \ Y is not unfounded foP with respect
toY. Then, for some rule € P, we have

() H(r)NU # 0,

(B) H(r)n (Y \U) =9,

(v) Bf(r) CY andB~(r)NnY = (), and
(6) BT (r)nU = 0.

SinceU N'Y = () by the assumption, we conclude frof) that H (r) N Y = (. Since
(7) holds in addition, we hav¥ £ r and thusY” |~ P.

(b) = (c) is trivial.

() = (a): AssumeY = P. Then, there is a rule € P such thaty” }~ r, that
is, H(r) N'Y = 0 and(y) hold. By the definition of rulesH (r) # (. So, consider
anya € H(r) and the singletod/ = {a}. Clearly, @) holds forr, and (3) holds by
H(r)NY = 0. Finally, sinceB*(r) C Y anda ¢ Y, (§) holds as well. That is, there
is a singletorl/ C i/ \ Y that is not unfounded faP with respect td". a0

We further describe the models of a program’s reduct by unded sets.

Lemma2. Let P bea program, Y an interpretation suchthat Y = P,and U C U.
Then, (Y \ U) = PY iff U isunfounded for P with respectto Y.

Proof. (=) Assume that/ is not unfounded foP with respect toY". Then, for some
ruler € P, (a)—(d) from the proof of Lemma 1 hold. Clearlg— (r) N Y = §) implies
(H(r) < B*(r)) € PY.FromB™(r) CY and ¢), we concludeB™(r) C (Y \ U).
Together with (8), we obtain(Y \ U) £ (H(r) «+ B*(r)) and thugY \ U) £ PY.
(<) AssumegY' \U) £ PY.Then, thereisarule € P suchtha(Y \U) |~ {r}Y¥.
We conclude that satisfies ), B*(r) C (Y\U),andB~ (r)NY = (). SinceB™ (r) C
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(Y'\ U) immediately impliesB* () C Y, (v) holds. MoreoverB™*(r) C (Y \U) also
implies (). It remains to show). From ¢y) andY” |= r (which holds by the assumption
Y & P), we concludef (r) N'Y # (). Together with @), this implies ¢). Since ),
(6), (), and ¢) jointly hold for some ruler € P, we have thal is not unfounded
for P with respect tar". a

Example 4. For illustration, reconsideP from Example 2 and” = {b, ¢, d}. For sin-
gleton{a} andry, we haveH (r;) N (Y \ {a}) = {a,b} N {b,c,d} # 0. Furthermore,
a ¢ H(r)forallr € {ra,...,76}. Thatis,{a} is unfounded forP with respect tay".
From this, we can conclude by Lemma 1 thais a model ofP, i.e.,Y = P.

As we have already seen in Examplel2, = {c,d} is unfounded forP with
respect toY. Lemma 2 now tells us thaty” \ U) = {b} is a model of PY =
{r1,r2,r3,75, (H(r¢) — BT (rs)) }. Moreover, one can check thft, c, d} is as well
unfounded forP with respect tay". O

The last observation in Example 4 stems from a more genelaledfect of Lemma 2:
For any progran®, any interpretatioly” such that” = P, andU C U/, U is unfounded
for P with respect td” iff (UNY") is unfounded for with respecttd”. For models”,
this allows us to restrict our attention to unfounded g&{S Y.

We are now in a position to state the following alternativarecterizations of SE-
and UE-models.

Theorem 1. Let P beaprogram, Y an interpretation suchthat Y = P,and U C U.
Then, (Y \U,Y) isan SE-model of P iff (U NY") isunfounded for P with respecttoY".

Theorem 2. Let P beaprogram, Y an interpretation suchthat Y = P,and U C U.
Then, (Y \ U,Y) isa UE-model of P iff (U NY") isunfounded for P with respect to Y’
and no nonempty proper subset of (U N'Y") isunfounded for P with respectto Y.

Note that the inherent maximality criterion of UE-modelsnisw reflected by a
minimality condition on (nonempty) unfounded sets. Theorem 1 and 2 allow us te char
acterize strong and uniform equivalence in terms of unfedrsts, avoiding an explicit
use of programs’ reducts. Details will be discussed in $acti

Example5. Recall programs® = {a Vb <} and@Q = {a < notb; b — nota}
from Example 1. We have seen that the only difference in tBEBimodels is the pair
(@, ab), which is an SE-model of), but not of P. Clearly,Y = {a,b} is a classical
model of P and of@, and, in view of Theorem 1, we expect thatis unfounded foQ
with respect td, but not for P with respect td’. The latter is easily checked since the
ruler = (aVb«—)yields A)H(r)NY #0; Q H(r)n(Y\Y)=0;3)BT(r) CY
andB~(r) NY = 0; and (4)B*(r) N Y = (. Thus, none of the four unfoundedness
conditions is met. However, for;, = a <« notb andry = b «— nota, we have
B~ (r;)NY # 0, fori € {1,2}, and thus” is unfounded for) with respect td".

Recall that((), ab) is not a UE-model of). In view of Theorem 2, we thus expect
thatY = {a,b} is not a minimal nonempty unfounded set. As one can check, bot
nonempty proper subsefa} and{b} are in fact unfounded fa@ with respect tdr’. ¢
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In the remainder of this section, we provide a further chiarézation of UE-models
that makes use of elementary sets [5]. This not only givesms intrinsic charac-
terization of the differenc& = (Y \ X) for a UE-model(X,Y") than that stated in
Theorem 2, but also yields a further direct relation to lodfe make use of this fact
and provide a new result for the UE-models of tight programs.

We define a nonempty s&t C U/ aselementary for a program® if, for eachV such
that() ¢ V c U, there is some € P jointly satisfying

1. Hir)nV #40,

2. Hr)n({U\V) =0,
3. Bt (r)nV =10, and
4. BY(r)yn(U\ V) #0.

Due to Conditions 1 and 4, every elementary set is also a l6dp, dut the converse
does not hold in general [5].

To link elementary sets and unfounded sets together, foogramP, an interpre-
tationY, andU C U, we define:

Pyy={reP|H(r)n(Y\U)=0,B"(r)CY, B (r)nY = 0}.

Provided thatH (r) N U # 0, a ruler € Py,y supportsU with respect toY’, while
no rule in (P \ Py ) supportsU. Analogously to Gebser, Lee, and Lierler [5], we
say thatU is elementarily unfounded for P with respect taY iff (i) U is unfounded
for P with respect td” and (i) U is elementary foPy. ;. Any elementarily unfounded
set of P with respect toY is also elementary foP, but an elementary séf that is
unfounded forP with respect tat” is not necessarily elementarily unfounded because
U might not be elementary fdpy ;7 [5].

Elementarily unfounded sets coincide with minimal nongmytfounded sets.

Proposition 2 ([5]). Let P be a program, Y an interpretation, and U C U. Then,
U is a minimal nonempty unfounded set of P with respect to Y iff U is elementarily
unfounded for P with respectto Y.

The fact that every nonempty unfounded set contains someeelgrily unfounded
set, which by definition is an elementary set, allows us tivdesome properties of the
differencelU = (Y'\ X) for SE-interpretation&X, Y"). For instance, we can exploit the
fact that every elementary set is also a loop in the chatiaateyn of minimal nonempty
unfounded sets, where the latter are only defined with réspéuaterpretations.

Formally, we derive the following properties for UE-mod@issp., SE-models):

Corollary 1. Let P bea programand (X,Y") a UE-model (resp., SE-model) of P. If
X #£Y,then (Y \ X) is(resp., contains) (a) an elementarily unfounded set of P with
respect to Y'; (b) an elementary set of P; and (c) a loop of P.

For tight programs, i.e., programs such that every loop iagleton, we obtain the
following property:

Corallary 2. Let P beatight programand (X,Y’) an SE-model of P. Then, (X,Y)
isa UE-model of P iff X =Y or (Y \ X) isasingleton that is unfounded for P with
respectto Y.
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Example 6. Recall the SE-modél), ab) of Q = {a « notb; b — nota}. The loops
of @ are{a} and{b}; thus,Q is tight. This allows us to immediately conclude that
(B, ab) is not a UE-model o), without looking for any further SE-model to rebutt.

The above result shows that, for tight programs, the stracttUE-models is par-
ticularly simple, viz. they are always of the for(¥,Y") or (Y \ {a},Y), for some
a € Y. As we will see in the next section, this also allows for siifigdl encodings.

4 Characterizationsfor Program Equivalence

In this section, we further exploit unfounded sets to charéze different notions of
program equivalence. We start by comparing two progrdtand @, regarding their
unfounded sets for deriving conditions under whigland @ are ordinarily, strongly,
and uniformly equivalent, respectively. Based on thesdlitimms, we then provide
novel encodings in propositional logic.

4.1 Characterizationsbased on Unfounded Sets

Two programs are ordinarily equivalent if they possess émessanswer sets. As Propo-
sition 1 shows, answer sets are precisely the models of agrothat do not contain
any nonempty unfounded set. Hence, ordinary equivalentbedescribed as follows:

Theorem 3. Let P and Q be programs. Then, P and @ are ordinarily equivalent iff,
for every interpretation Y, the following two conditions are equivalent:

1. Y | P and no nonempty subset of Y is unfounded for P with respectto Y’;
2. Y = @ and no nonempty subset of Y is unfounded for @ with respectto Y.

Note that ordinarily equivalent programs are not necelyselassically equivalent,
as is for instance witnessed by prografms- {a Vb —} and@ = {a Vb «—; a «— ¢}
possessing the same answer sgig:and{b}. However,{b, c} is a model ofP but not
of Q. In turn, for strong and uniform equivalence, classicaliegjence is a necessary
(but, in general, not a sufficient) condition. This followsr the fact that every model
of a program participates in at least one SE-model (respiyidHel) and is thus relevant
for testing strong (resp., uniform) equivalence. Indebd,following characterization
of strong equivalence considers all classical models.

Theorem 4. Let P and Q be programs. Then, P and @ are strongly equivalent iff,
for every interpretation Y suchthat Y = Por Y E @, P and Q possess the same
unfounded sets with respect to Y.

Proof. (=) Assume thatP and @ are strongly equivalent. Fix any interpretatish
suchthaly” = P (orY | Q). Then,(Y,Y) is an SE-model of’ (or @), and sinceP

and(@ are strongly equivalentY,Y") is also an SE-model af (or P). That is, both
Y E PandY [ @ hold. Fix any set/ C /. By Lemma 2 and the fact thd& and@

are strongly equivalent/ is unfounded forP with respect toY” iff (Y \ U,Y) is an
SE-model ofP. But the latter holds iff Y \ U,Y") is an SE-model of2, which in turn
holds iff U is unfounded foi with respect tay".
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(«) Assume that? and(@ are not strongly equivalent. Then, without loss of gen-
erality, there is an SE-modéK, Y') of P that is not an SE-model @ (the other case
is symmetric). By the definition of SE-models, we h&fe= P, and by Lemma 2,
(Y \ X) is unfounded forP with respect taY’, but eitherY” j£ Q or (Y \ X) is not
unfounded for with respect taY". If (Y \ X) is not unfounded fo€) with respect to
Y, thenP and@ do not possess the same unfounded sets with resp&ct@herwise,
if Y i~ @, by Lemma 1, there is a sét C ¢/ \ Y that is not unfounded fof) with
respect td’, butU is unfounded forP with respect tay'. a0

Theorem 4 shows that strong equivalence focuses primarithe unfounded sets
admitted by the compared programs. In the setting of unifequivalence, the consid-
eration of unfounded sets is further restricted to minimr@(cf. Theorem 2), and by
Proposition 2, these are exactly the elementarily unfodrse¢s.

Theorem 5. Let P and @ be programs. Then, P and @ are uniformly equivalent iff,
for every interpretation Y suchthat Y = Por Y E @, P and Q possess the same
elementarily unfounded sets with respect to Y.

Proof. (=) Assume thatP and(@ are uniformly equivalent. Fix any interpretatidh
such thaty = P (orY = Q). Then,(Y,Y) a UE-model ofP (or @), and sinceP
and@ are uniformly equivalent,Y,Y") is also a UE-model of) (or P). That is, both
Y = P andY [ @ hold. Fix any elementarily unfounded gétfor P (or Q) with
respecttaY. If U C U \ Y, by Lemma 1 and Proposition 2 is a singleton that is
unfounded for bothP and @) with respect toY’, which implies that’ is elementarily
unfounded forQ (or P) with respect toY’. Otherwise, ifU NY # (), then Lemma 1
and Proposition 2 imply/ C Y. By Proposition 2 and Theorem 2y \ U,Y)) is a
UE-model of P (or @), and since” and(@ are uniformly equivalen{Y \ U,Y") is also
a UE-madel of@ (or P). Since() # U C Y, by Theorem 2 and Proposition 2, we
conclude that/ is elementarily unfounded fap (or P) with respect tar".

(<) Assume thatP and @ are not uniformly equivalent. Then, without loss of
generality, there is a UE-modgX, V') of P thatis not a UE-model af) (the other case
is symmetric). SincéX,Y) is also an SE-model d?, we haveY” = P. If Y [£ Q, by
Lemma 1, there is a singletdn C ¢/ \ Y that is not unfounded fa) with respect to
Y, butU is unfounded forP with respect toY'. That is,U is elementarily unfounded
for P with respect td", but not for@ with respect tdv". Otherwise, ifY” = Q, (Y,Y)
is a UE-model both o’ and of@. We conclude thak C Y, and by Theorem 2 and
Proposition 2(Y '\ X) is elementarily unfounded fd? with respect td”. Furthermore,
the fact that X, Y") is not a UE-model of), by Theorem 2 and Proposition 2, implies
that(Y \ X) is not elementarily unfounded f@p with respect tdr". O

In contrast to arbitrary unfounded sets, elementarily unéted sets exhibit a certain
structure as they are in fact loops or, even more accur&ieyentary sets (cf. Corol-
lary 1). By Theorem 5, such structures alone are materiatiforum equivalence.

4.2 Characterizationsin Propositional Logic

We now exploit the above results about unfounded sets todenmagram equivalence
in propositional logic. For ordinary equivalence, we usetell-known concept of loop
formulas, while for strong and uniform equivalence we disexefer to unfounded sets.
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In what follows, we write for a set of default literals, likg(r), and a set of atoms,
like H(r), B(r) — H(r) as a shorthand for
(Naen+ @A Nacp- ™) = Ve

where, as usual, empty conjunctions (resp., disjunctians)understood as (resp.,
1). For instance, for a rule of the form (1),B(r) — H(r) yields the implication

A1 N Nam N Cmie1 AN ANy — a1 V.- Vag.

Furthermore, within the subsequent encodings, an ocatereia progranP is under-
stood as\, . p(B(r) — H(r)).

As a basis for the encodings, we use the following conceplowimg Lee [7], for
a programP andU C U, theexternal support formula of U for P is

ESp(U) = V,cp umnvs0,8+rynv—o"(Br) — (H(r) \U)). (@)
The relation between unfounded sets and external suppartifas is as follows:

Lemma 3. Let P be a program, Y an interpretation, and U C U. Then, U is un-
founded for P with respectto Y iff Y £ ESp(U).

Proof. (=) Assume thal” |= ESp(U). Then, there is a rule € P such that

(@) Hir)nU #0,

(B) BF(r)nU =0,

(y) BY(r) CYandB~(r)NY =0, and
@) (HMH\NU)NY =H(r)n(Y\U)=10.

That is,U is not unfounded foP with respect td".
(<) Assume thatU is not unfounded forP with respect toY'. Then, there is a
ruler € P for which («), (3), (v), and ¢) hold. From ¢) and ¢), we conclude

Y = ~(B(r) = (H(r)\U)),
which together with¢) and (3) impliesY = ESp(U). O

For a programP andU C U, the (conjunctive)oop formula [7] of U for P is

LFp(U) = (/\peUp) — ESp(U).

With respect to an interpretatidn, the loop formula o is violated if Y containsU/
as an unfounded set, otherwise, the loop formul& @ satisfied.

Proposition 3 ([7,5]). Let P bea programand Y an interpretation such that Y = P.
Then, the following statements are equivalent:

(a) Y isananswer set of P;

(b) Y = LF p(U) for every nonempty subset U of U/;
() Y E LFp(U) for everyloop U of P;

(d) Y = LFp(U) for every elementary set U of P.
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For ordinary equivalence, the following encodings (as waslidifferent combina-
tions thereof) can thus be obtained.

Theorem 6. Let P and Q beprograms. Let £ and £ denote the set of all loopsand ele-
mentary sets, respectively, of P and Q). Then, the following statements are equivalent:

(a) P and Q@ are ordinarily equivalent;

0) (PANgrvcy LEP(U)) < (Q A Ny LFo(U)) isatautology;
© (PAAper LFP(U)) < (Q A N\pyer LFo(U)) isatautology;

(d) (PAApes LFp(U)) < (Q A Npee LF(U)) isatautology.

Recall that, for tight programs, each loop (and thus, eaemehtary set) is a sin-
gleton. In this case, the encodings @) &nd () are thus polynomial in the size of the
compared programs. Moreover, one can verify that they amtouchecking whether
the completions [12] of the compared programs are equivalarassical logic.

For strong and uniform equivalence betwerand @, the models ofP and @
along with the corresponding unfounded sets are compaseth@rem 4 and 5 show.
We thus directly consider external support formulas, natitien loop formulas.

Theorem 4 and Lemma 3 yield the following encoding for streggivalence:

Theorem 7. Let P and @ be programs. Then, P and @) are strongly equivalent iff
(PVQ) = (Aucu (BESp(U) — ESq(U))) isatautology.

In order to also encode uniform equivalence, we have to singt elementarily
unfounded sets. To this end, we modify the definition of thiemal support formula,
ESp(U), and further encode the case tiais (not) a minimal nonempty unfounded
set. For a progran? andU C U, we define theminimality external support formula as

ESH(U) = ESp(U)V ~(Agev v ESp(V)).

Similar to external support formulas and unfounded setajmality external support
formulas correspond to elementarily unfounded sets agvisl

Lemmad4. Let P be a program, Y an interpretation,and ® ¢ U C U. Then, U is
elementarily unfounded for P with respect to Y iff Y = ESH(U).

Proof. (=) Assume that” = ES}(U). Then, one of the following two cases holds:

1. Y = ESp(U): By Lemma 3,U is not unfounded foP with respect tdY”, which
implies thatU is not elementarily unfounded fdt with respect tay'.

2.Y ¥ (NgcveyESp(V)): For someV such that) ¢ V C U, we haveY [~
ESp(V). By Lemma 3,V is unfounded forP with respect toY". We conclude
that U is not a minimal nonempty unfounded set®fwith respect toY’, and by
Proposition 20V is not elementarily unfounded fd@? with respect ta".

(<) Assume that” £~ ESH(U). Then,Y = ESp(U), and by Lemma 3U is un-
founded forP with respect ta". FurthermoreY = (Aycy oy ESp(V)), and thus no
setV such that) ¢ V C U is unfounded foi® with respect tdr” (again by Lemma 3).
We conclude thal/ is a minimal nonempty unfounded set Bfwith respect td", and
by Proposition 2{J is elementarily unfounded fa? with respect tdy". a0
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Theorem 5 and Lemma 4 allow us to encode uniform equivalentallaws.

Theorem 8. Let P and Q beprograms. Let £ and £ denote the set of all loopsand ele-
mentary sets, respectively, of P and Q). Then, the following statements are equivalent:

(a) P and @ are uniformly equivalent;

(b) (PVQ)—= (Aycy (ESp(U) — ESH(U))) isatautology;
© (PVQ)— (Ayes (BESH(U) < ESH(U))) isatautology;
d) (PVQ)— (Apes (BSH(U) < ESH(U))) isatautology.

Proof. By Theorem 5P and@ are uniformly equivalent iff, for every interpretatiah
such that” = P orY | @, P andQ possess the same elementarily unfounded sets
with respect taY'. Clearly, any elementarily unfounded set®for Q belongs to the
set& of all elementary sets aP and @, which is a subset of the sét of all loops

of P and@, and every element of is a subset of{. Furthermore, by Lemma 4, a
set) ¢ U C U is elementarily unfounded faP (resp.,Q) with respect toY” iff

Y [£ ESp(U) (resp..Y = ESH(U)). Finally, we haveES () = ES5(0) = L, so
thatY = (ESH(0) < ESH(0)) for any interpretatiory’. From this, the statement of
Theorem 8 follows. O

Again, we exploit the fact that, for tight programs, all I@oand elementary sets
are singletons. It is thus sufficient to consider only theemdl support formulas of
singletons. To the best of our knowledge, this provides &hechnique to decide uni-
form equivalence between tight programs. Indeed, thewiatig result is an immediate
consequence of (c), or likewise (d), in Theorem 8.

Corollary 3. Let P and @ betight programs. Then, P and (Q are uniformly equivalent
iff (PVQ)— (Aseu (BESp({a}) « ESq({a}))) isatautology.

Indeed, for singletonga}, =( Agcyc (o) ESp(V)) (resp..=( Apcvcgay ESa(V)))
can be dropped fromiS% ({a}) (resp.,ESG ({a})) because it is equivalent to.

Except for ordinary and uniform equivalence between tigioigpams, all of the
above encodings are of exponential size. As with the knowndings for answer sets,
reproduced in Proposition 3, we do not suggest fwiori reduce the problem of de-
ciding program equivalence to propositional logic. Ratleer encodings provide an
alternative view on the conditions underlying program egigince; similar characteri-
zations have already been successfully exploited in anrsatesolving [6, 13].

For strong equivalence, however, we can resolve the exp@henmber of con-
juncts in Theorem 7 as follows. We use a cégfy= {p’ | p € U} of the universé/,
where allp’ are mutually distinct new atoms, and introduce a moduleesgting
ESp(U), as given in (2), but without explicitly referring to cemasetsU; rather, a
particularU is determined by the true atoms from the cégyof ¢/. We define:

ESp =\, ,cp (VPGH(T)P/ ANper ) (p" vV —p) A Npep+ oy (PA —p') A Npen- () —p).

Given a progran®, for an interpretatioy” (over/) andU C U, U is unfounded fotP?
with respecttd’ iff (Y U{p’ |p € U}) £ ESp. This yields the following result:

Theorem 9. Let P and @ be programs. Then, P and @) are strongly equivalent iff
(PV Q) — (ESp < ESg) isatautology.
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Discussion

We provided novel characterizations for program equivadein terms of unfounded
sets, along with the related notions of loops and elemersaty. This allowed us to
identify close relationships between these important eptec While answer sets, and
thus ordinary equivalence, rely on the absence of (nonémpfpunded sets, we have
shown that potential extensions of programs, captured bya8& UE-models, can also
be characterized directly by appeal to unfounded setsellyeaivoiding any reference
to reducts of programs. We have seen that uniform equivalentocated in between
ordinary and strong equivalence, in the sense that it cersidll models, similar to
strong equivalence, but only minimal (nonempty) unfounsiets, which are sufficient
to decide whether a model is an answer set. This allowed uswvelab particularly
simple characterizations for uniform equivalence betwtegt programs.
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