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Abstract. For a given semantics, two nonmonotonic theofigsandI7» can be
said to be equivalent if they have the same intended modélstaongly (resp.,
uniformly) equivalent if for any?’, IT; UX andII.UX are equivalent, wherg is

a set of sentences (resp., literals). In the general casestrictions are placed on
the language (signature) &f. Relativised notions of strong and uniform equiv-
alence are obtained by requiring theitbelongs to a specified sublanguagef
the theoried1; andIl-. For normal and disjunctive logic programs under stable-
model semantics, relativised strong and uniform equivadmave been defined
and characterised in previous work by Woltran. Here, wergktbese concepts
to nonmonotonic theories in equilibrium logic and discuppli@ations in the
context of prediction and explanation.

1 Introduction

Equilibrium logic [12] is a general purpose formalism fommeonotonic reasoning ex-
tending the stable-model and answer-set semantics fohalusual classes of logic
programs, adhering to the geneeadswer-set programminfASP) paradigm. It is a
form of minimal-model reasoning in the non-classical logichere-and-therewhich

is basically intuitionistic logic restricted to two worldthere” and “there”, and sub-
sumes all important syntactic extensions considered in, A8Riding the addition of
strong negation, rules with negation-by-default in theiatts, and nested programs, as
well as those constructs like cardinality and weight caxists and aggregates that have
equivalent representations in the more general syntaxwifilegum logic [4, 5].

Recent research in ASP focuses on advanced notions of pnagaivalence rele-
vant for program optimisation and modular programming [114]. A traditional con-
cept of equivalence, where two nonmonotonic theories, uadgven semantics, are
viewed as being equivalent if they have the same intendedetsod not adequate for
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under projects TIC-2003-9001-C02 and TIN2006-15455-C&] by the Austrian Science
Fund (FWF) under grant P18019.
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these purposes because such a notion does not satisfy aem@plat property like in
classical logic. Better candidates, however, are stronguaiform equivalence. While
the former meets a replacement principle by definition, &tiet is suitable for hierar-
chically ordered modules. In formal terms, two honmonatoinéories]I; andil,, are
strongly (resp., uniformly) equivalent if for any, 11, U X andIl, U X are equiva-
lent, whereX' is a set of sentences (resp., literals). In the general casesstrictions
are placed on the language (signaturefoRelativised notionsf strong and uniform
equivalence are obtained by requiring thalbelongs to a specified sublanguabef the
theorieslI; andIl,. For normal and disjunctive logic programs under stablelehse-
mantics, relativised strong and uniform equivalence haenluefined and characterised
in previous work by Woltran [19], together with a discussaiout complexity issues
and implementation strategies. Furthermore, relatividehg and uniform equivalence
are special cases apdate equivalendatroduced by Inoue and Sakama [7].

In this paper, we extend the work of Woltran [19] and Pearas \éadverde [14]
by characterising relative notions of equivalence for taaloy (propositional) theories
in equilibrium logic. Furthermore, we discuss how relatad equivalences can be ap-
plied to certain problems from the areas of diagnosis andetimh, with respect to the
problem of deciding whether two logical descriptions hdgeedame explanatory power,
and provide a semantical characterisation of this problére.formal model of an ab-
ductive explanation our discussion is based is an extemdiarcorresponding concept
used by Inoue and Sakama [8] for disjunctive logic progrartls default negation in
their heads. Finally, we address the computational conitglekrelative equivalence in
equilibrium logic, showing that it remains on the same lesefor logic programs.

2 Equilibrium Logic

We work in the nonclassical logic of here-and-there witlosty negatioriN; and its
nonmonotonic extension, equilibrium logic [12], which gealises the answer-set se-
mantics for logic programs to arbitrary propositional thes[11]. For more details, the
reader is referred to [12, 13] and the logic texts cited below

Formulas ofN5 are built-up in the usual way using the logical constants, —,

-, ~, standing respectively for conjunction, disjunction, lroation, weak (or intuition-
istic) negation, and strong negation. The axioms and rdlegerence forN; include
those of intuitionistic logic (see, e.g., [16]) and the sggmegation axioms from the
calculus of Vorob’ev [17, 18]; for details, see [13].

The model theory olN5 is based on the usual Kripke semantics for Nelson’s con-
structive logicN (see, e.g., [6, 16]), bu¥ 5 is complete for Kripke frame& = (W, <)
(where as usuall is the set ofpointsor worlds and < is a partial-ordering oiV)
having exactly two worlds, say (“here”) andt (“there”) with h < ¢. As usual, anodel
is a frame together with an assignmérthat associates to each elementiéfa set
of literals! such that ifw < w’ theni(w) C i(w’). An assignment is then extended
inductively to all formulas via the usual rules for conjunat, disjunction, implication
and (weak) negation in intuitionistic logic together wittetfollowing rules governing

1 We use the term “literal” to denote an atom, or an atom prefixesitrong negation.
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strongly negated formulas:

~(p AY) €i(w) iff ~p ei(w) or ~) € i(w);
~(p V) €i(w) iff ~pci(w) and ~y € i(w);
~(p — ) €i(w) iff pei(w); and ~y € i(w);
~=p € f(w) iff ~rp € d(w) iff @ € i(w).

It is convenient to represent &i;-model as an ordered pdifl, T') of sets of literals,
whereH = i(h) andT = i(t) under a suitable assignmentBy h < ¢ it follows
thatH C T'. Again, by extending inductively we know what it means for an arbitrary
formulagp to be true in a modeM = (H, T'). We write M, w |= ¢ to express thap is
true at worldw in model M.

A formulay is true in a here-and-there model = (H,T'), in symbolsM = ¢,
if it is true at each world inM. A formulay is said to bevalid in N5, in symbols= ¢,
if it is true in all here-and-there models. Logical consateeforN5 is understood as
follows: ¢ is said to be ailN;-consequencef a setl] of formulas, writtenlT |= ¢, iff
for all modelsM and any worldv € M, M, w = IT impliesM, w = ¢. Equivalently,
this can be expressed by saying thas true in all models of . Further properties of
N5 are studied in [10].

Equilibrium models are special kinds of mininfsl Kripke models. We first define
a partial orderingd on N5 models that will be used both to characterise the equilibriu
property as well as the property of uniform equivalence.

Definition 1. Given any two modeld?, T), (H',T"), we se{ H, T) < (H',T') if T =
T andH C H'.

Definition 2. Let [T be a set olN; formulas and H, T") a model off!.

1. (H,T) is said to betotal if H = T (otherwise, ifH C T, it is non-total)
2. (H,T) is said to be arequilibriummodel if it is total and minimal undeg among
models of/].

In other words, a modélH, T') of IT is in equilibrium if it is total and there is no model
(H',T) of IT with H' C H. Equilibrium logic is the logic determined by the equi-
librium models of a theory. It generalises answer-set séicgim the following sense:
For all the usual classes of logic programs, including nérendended, disjunctive and
nested programs, equilibrium models correspond to ansste[52, 11]. The “transla-
tion” from the syntax of programs @5 propositional formulas is the trivial one, viz.,
a ground rule of an (extended) disjunctive program of thenfor

KiV...VKiy<—Ly,...Ly,notLyy1,...,n0tL,,
where thelL; andK; are literals, corresponds to ttN sentence
Lin...ANLpy AN=Lpii Ao . ALy — K1 V.0V K.

A set of N5 sentences is calledtaeory. Two theories arequivalentf they have the
same equilibrium models.
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3 Relativised Equivalence Concepts

We consider theorieH, I1,, etc., and languaged £’, etc. It will be convenient nota-
tionally viewing a language as a set of literals. A theoryaglgo bein the language
if all its atomic formulas belong td.

Definition 3. Let II; and I, be theories.

(i) II; andIl; arestrongly equivalent relative t6 iff for any (empty or non-empjget
X of £ formulas,/7; UX andI1, U X are equivalent, i.e., have the same equilibrium
models.

(ii) II, andIl, areuniformly equivalent relative td iff for any (empty or non-empjy
setX of £ literals, IT; U X andI1, U X are equivalent, i.e., have the same equi-
librium models.

Note that if the theories are logic programs, this meanstiagg the same answer sets.

We explain some terminology and notation. A mod#l, T') of a theoryIT is said
to be maximally non-totalor just maxima) if it is non-total and is maximal among
models ofIT under the orderingd. In other words, a mod€lH, T') of IT is maximal
if for any model(H’,T) of II, if H C H' thenH’ = T. Itis clear that if a theory
I1 is finite and has a non-total mod@l, T'), then it has a maximally non-total model
(H',T) such thatd C H’. However, maximal models need not exist in case fhas
an infinite theory. In what follows, we shall assume thatladidries are finite.

Let £ be a sublanguage &'. If M = (H,T) is anL’ model, its£-1-reductis
defined by

(HNL,T)

and denoted byM| L. The term “1-reduct” stems from the fact that it refers to fihst
component of the model.

4 Characterising Relative Equivalence

For logic programs, the above relativised notions of edaivee are characterised by
Woltran [19] in terms of what are calledlativised strongresp.,uniform) equivalence
models or RSE(resp.,RUE) modelsfor short. We start by re-expressing these concepts
in terms of ordinary models in the log¥5.

Definition 4. LetII be atheoryin’ and a sublanguage of’. AmodelM = (H,T)
is anRSE;-modelof [T if it meets the following criteria:

4.1 M is atotal model of 7 or
4.2 M is the£-1-reduct of a non-total modéH’, T') of I, and
4.3 for any non-total modél/, T') of IT, T\ J N L # 0.

In other words, 4.3 holds together with one of 4.1 or 4.2.&asy to see that for disjunc-
tive logic programs, the above concept coincides with thandRSE-model as defined
by Woltran [19]. Indeed, we must check a preliminary comditand Conditions (i)-(iii)
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of Definition 6 by Woltran [19]. Clearly, both 4.1 and 4.2 alkamply that?" is a clas-
sical model offT as required by (i). Condition 4.3 above re-expresses Claiysehile
Condition 4.2 re-expresses Clause (iii). Finally, we chibekpreliminary condition of
Woltran [19]. By 4.2, ifH # T then(H,T) is the reduct of a non-total modell’, T
of IT,soH’ C T. Therefore H' N L C TN L.Butby4.3,H NL # TN L. Since
H = H' N L, itfollows thatH C T N L as required by the original definition of an
RSE-model.

Now the following lemma is straightforward but useful. lysahat two models with
the sameC-1-reduct satisfy the sam@& sentences.

Lemma 1. Let M and M’ be N5 models andy a formula all of whose atoms belong
to the language’. If M|L = M'|L, thenM |= ¢ iff M’ |= .

4.1 Relativised Strong Equivalence

Relativised strong equivalence (RSE) is defined as Woltt&hdoes but for arbitrary
theories. We can now show that sameness of RSE-models ificgentfcondition to
ensure RSE.

Theorem 1. Let IT; and 1, be theories having the same RSHodels. Thenl/; and
11, are strongly equivalent relative t6.

Proof. Assume the hypothesis of the theorem and consider the tHéaryy’ whereX
is any set of sentences ih Consider any equilibrium modé\t = (T',T') of I, U X.
We shall show that is also an equilibrium model dff; U X. By the symmetry of the
situation, the same argument will show that any equilibriandel of 17, U X must be
an equilibrium model of7; U Y.

We first show thatM is an RSE:-model of I7;. Evidently, it is a total model of
11, so Condition 4.1 holds. Suppose that Condition 4.3 fadghsit there is a model
(J,T) of II with J € T suchthatl' N £ = J N L. Since(T,T) = X, by Lemma 1,
(J,T) & X, but this contradicts the assumption th#& T') is an equilibrium model
of II; U X. So Condition 4.3 applies antM is an RSE-model of I7; and hence by
assumption ofI,. Therefore

(T,T) = I, U X.

We need to show that it is in equilibrium. Note that siq@eT") is an RSE-model of
115, by Condition 4.3 there is no modél, T') of II, with J C T such thatl' N L =
J N L. Suppose that is not an equilibrium model ofl; U Y. Thenil; U X' has a
model(H,T) with H C T, so in particulatH,T') = II, and by 4.3T\H N L # {.
So,HNL CcTnL CT.ltfollows that(H N £,T) is the £-1-reduct of a model
(H,T) |= IIy, with H C T. By Condition 4.2{H N L, T) is therefore an RSEmodel
of II,, hence ofll;. So, again by 4.2, it is th&€-1-reduct of some modélH’, T") of
II, with H' € T suchthatd’ N £ = HN L. By Lemma 1, sincéH,T) = X also
(H',T) E ¥ and hencéH’,T) = II; U X. But this contradicts the assumption that
(T, T) is an equilibrium model of7; U X. Therefore (T, T') is an equilibrium model
of I, U X, O
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We now tackle the converse of Theorem 1.

Theorem 2. Let IT; and I1, be theories such tha; and I7, are strongly equivalent
relative toL. Then, they have the same RSfodels.

Proof. Suppose thail; andIl; have different RSE-models. We shall define a set of
L-sentenced’ such thatll; UX' and/l,U X have different equilibrium models. Without
loss of generalisation, assume there is\drwhich is an RSE-model of I7; but not of
II,. We consider several cases and subcases.

Casel. M = (T,T) is atotal RSE-model of/1; that is not an RSE-model ofI15.
SetY = T'NL. Then clearlyM |= I1; U X. Moreover, M is an equilibrium model
of IT; U X. For, if not, there is a mod€lH, T") of I1; U X with H C T. Since
Y =TnNL,wemusthavd' NL C H.ButthenT'n L = HNL, which contradicts
Condition 4.3 forM being an RSE-model of I7;. There are two reasons whiyt
is not an RSE-model of IT5.

SuBCASE 1.1. M [~ II,. Inthis case, sinca1 [~ 1, it cannot be an equilibrium
model of 1, U X.

SuBCASE1.2. M E II,, but Condition 4.3 fails forll,. So, there is a model
(J,T) of Iy with J C T such thatl' n £ = J N L. Applying Lemma 1, we
conclude thatJ, T') = X' since(T, T) = X. Therefore{J,T) |= II, U X, so
M is not an equilibrium model ofi; U X.

CAase2. M = (H,T) is a non-total RSE-model of IT; that is not an RSE-model
of IT,. Observe thatT, T') is a total RSE-model of IT,. Hence, in caséT’, T) is
not an RSEz-model of I7,, we can apply the same argument of Case 1 to conclude
that(T, T') is an equilibrium model of7; U X’ and, again, cannot be an equilibrium
model of [T, U X.

So suppos€T, T is an RSE-model of I, and Condition 4.2 fails foM =

(H,T), i.e., there is no non-total model éf, whose£-1-reduct equals\. Let

I'={A —- B | A,B € (T\H) N L}. By Condition 4.3,I" is non-empty. Set

Y = H UT. Now, evidently(T, T) is a model of bothH, sinceH C T, and

of I', so (T, T) | II, U X. We claim it is an equilibrium model of7, U X,

For, if not, there is a model/, T') of II, U X with J c T. Clearly, H C J, but

H # Jn L, otherwise(J N £L,T) = M would be an RSE-model of I1,. So,

H c Jn L. Thus,(J N £)\H is non-empty, and by Condition 4.8T\J) N £

is also non-empty. Choose ahfrom (J N £)\H and B from (T\J) N L. Then,

A— BeTl but{JT)E A— B,since(J,T),h = Abut(J,T),h £ B. It

follows that(J,T) = X and so(T,T) is an equilibrium model of7; U X'. On

the other hand, it is not an equilibrium model &@§ U X. In particular, we know
that (H',T) = II; U H, since there is a non-total mod@l’, T") of II; whose

L-1-reduct equals\t. Moreover,(H',T) = I since(H',T),h [~ A for each

A— Beland(H',T),t}= BforeachA — Be . O

4.2 Relativised Uniform Equivalence

We now turn to the characterisation of relativised unifogmigalence via the concept
of a relativised uniform equivalence model. First, we mamthe following lemma that
will be useful later.
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Lemma 2. Supposdl; and ], are theories which are uniformly equivalent relative to
L. Then, they have same total RSmodels.

Proof. Assume the hypothesis. Suppdge has a total RSE-model(T, T') that is not

a total RSEz-model of IT5. Evidently,(T, T') = 11, U (T N £). Moreover, by Condi-
tion 4.3,(T, T') must be an equilibrium model df; U (7' N £) since there is no model
(J,T) of IT; with J € T suchthal’' N £ C JN L. Clearly, if (T, T') | II5, it cannot
be an equilibrium model ofl; U (T' N £). On the other hand, if7,T) = II, and

it is not an RSE-model of I15, then Condition 4.3 fails fofl,. So, there is a model
(J,T) of II, with J € T such thatl’ N £ = J N L, whence clearlyT,T) is not in
equilibrium for 11> U (T' N £). This contradicts the assumption of relativised uniform
equivalence. a0

From now on we assume that all theories are finite. As merdigneviously, this
means that, under th€-ordering among their models, maximal elements are guaran-
teed to exist. So, the following notion is well-defined.

Definition 5. Let IT be a theory inf’ and £ a sublanguage of’. An RSE-model of

11 is anRUE,-modelof I7 if it is either total or maximal undex among all non-total
RSE:-models ofi].

Theorem 3. Let I7; and I1; be theories which are uniformly equivalent relativeto
Then, they have the same RkJEodels.

Proof. Assume the hypothesis. By Lemma 2, the two theories have ahe gotal
RSE;-models, hence total RUEmodels. Suppose that they differ on non-total RUE
models, say thall; has a non-total RUEmodel(H, T') that is not an RUE-model of
IIs.

Case 1. Suppose there is a non-total RSEodel(.J, T') of II; with H C J. So,Il,
has a non-total mod€H’, Ty with H' N £ = J. Choose an elemeunt from J\ H
and setX = H U {A}. Clearly,(T,T) = II; U X and by maximality{T, T is
an equilibrium model offl; U X. On the other hand, by inspectiofff’, T') is a
non-total model of 7> U X, so(T", T') is not an equilibrium model ofl; U X .

CASE 2. Suppose there is no non-total RSEodel(J, T') of II, with H C J. Since
(H,T) is not an RUEz-model of IT5, it cannot be an RSEmodel of I, as well.
Consider the modé€ll’, T'). Since Condition 4.3 holds fdif;, clearly (T, T') is an
RSE;-model of IT;, and hence by Lemma 2 an Rg#nodel of I1>. So,(T, T) |=
IT, U H. Since there is ndl> 2 H such thatds C T and(Hs, T) | I, (T, T)
is an equilibrium model of7, U H. On the other hand’, T') is not an equilibrium
model of [T, U H since(H',T) = II; U H, forsomeH’' N L = H. O

Theorem 4. Suppose thatl; and 1, are theories with the same RYEnodels. Then,
they are uniformly equivalent relative 1o

Proof. Assume the hypothesis and suppose that for som¥& &t atoms,/7; U X has
an equilibrium mode{T’, T') that is not an equilibrium model df, U X . Clearly,(T, T
is a total RUEz-model of I7; and so, by assumption, also B%,. Therefore(T,T) =
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II,. Since itis not an equilibrium model @1, U X, there is a modelH, T') = [IoUX
with H C T and clearlyX C H.Then,(H N L, T) is an RSEk-model ofI1,. Keeping
T fixed, we extend this to a maximal non-total RSEodel (H,, T) of II5, where
H C Hs. Then, there is a modeH’, T') of IT, such that

HNL=H,D>DHNL.

Evidently, (H>, T is an RUE:-model of I1. However, it is not even an RgEmodel
of IT;. If it were, there would be a modéH,T') of IT; with H; N L = Hs. Since
X C HNL C Hy, {Hy,T)would be a non-total model df; U X, which is impossible
by the initial assumption thaf", T') is an equilibrium model of7; U X. O

As we have seen in Lemma 2, total RHenodels and total RSEmodels coincide.
For non-total RUE-models, we obtain an alternative characterisation asvisi

Lemma 3. LetIT be atheory in.’ and £ a sublanguage of’. A pair (H,T') is a non-
total RUE;-model ofIT iff (T',T) | IT and it is theL-projection of an(unrelativiseq
UE-model(H', T) of T withH' N L C TN L.

5 An Application to Prediction and Explanation

In this section, we illustrate how the concept of relatidismiform equivalence can be
applied in contexts such as prediction and abductive infaxand explanation. Differ-
ent types of scenarios are possible. For instance, in gneglibhe behaviour of physical
systems we might have a general thefirgomprising strict laws as well as nonmono-
tonic rules, e.g., describing inertia axioms, default dbods etc., together with initial
conditions represented by atomic formulas in a suitableetudif the language. Another
type of scenario is represented by &nductive logic program(II, A), wherelI is a
logic program (of any general type, e.g., disjunctive, @egsetc.) andd is a set of lit-
erals calledabduciblesn a suitable sublanguage &f. In each case, we are interested
in the question: When are two such “theories” equivalenemmts of predictive power,
explanatory capacity, and so on? The structure of inferensimilar in the two cases
mentioned. In each case, the thedrfyconjoined with a se{ 4, ..., 4, } of literals
representing initial conditions, abducibles, etc., dataisentence, say, representing,
e.g., the prediction of a physical state, the effects of gioacor an explanandum in an
abductive system. In the context of equilibrium logic andPA8ntailment is of course
nonmonotonic

To fix notation and terminology, let us consider the geneaakoofabductive the-
ories which are given as pairs of forfil, A), wherelI is a theory and4 is a set of
literals, and the matter of equivalence with respect to atideiexplanations. This leads
to the following definition.

2 The main difference between a prediction in the former samskan abductive explanation
in the latter sense imethodologicalin the first case, the literalgA4,, ..., A, } are specified
in advance as part of the initial conditions of the systemilevim the second case, it ig
that is supplied in advance as an explanandum, and the &beli€id,, ..., A, } are to be
discovered.
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Definition 6. An abductive explanationf a sentence» by an abductive theorfp =
(IT, Ay is aset{4,, ..., A, } satisfying

HU{A, ..., A} o 1)
as well as the following two conditions:

6.1 {Ay,...,A4,} C Aand
6.2 TU{A,...,A,} is consistent,

wherep is nonmonotonic entailment.

Note that Condition 6.2 merely ensures that the explanaifop is non-trivial. For
present purposes we do not, however, insist théf, ..., A, } be a minimal set of
abducibles explaining, nor even that it is non-empty. We note further that Defini-
tion 6 is equivalent to the definition of an abductive exptamaas given by Inoue and
Sakama [8] for the case of disjunctive logic programs witfadk negations in their
heads.

If {A4,...,A,} is an abductive explanation gf from P, then we also say that
{A1,..., A, } explainsp in P. P is said to havexplanatory poweif there exist some
pand{A,...,A,} satisfying (1) as well as Conditions 6.1 and 6.2. Evideritl
abductive theories can have the same explanatory powerakexner stronger senses.
They may capture the same explananda by means of possifayimtif explanans (ab-
ducibles), and therefore differing explanations, or theymsupport essentially the same
explanations. In this latter sense, we can say therefotawlmeabductive theories?;
andP», based on the same abducible ggthave thesame explanatory power in the
strong senséf, for any p and any{4;,...,4,} C A, {A;,...,A,} explainsy in
Py iff {A41,..., A} explainsy in Py. We consider here only abductive theories with
(non-vacuous) explanatory power.

We can easily relate this notion of explanatory equivalénceslativised uniform
equivalence. The following is straightforward.

Proposition 1. Let P, = (IT,, A) andPy = (II5, A) be abductive theories based on
the same abducibles. if; and Il are uniformly equivalent relative td, thenP; and
P> have the same explanatory power the strong senge

If IT; andIl, are uniformly equivalent relative td, then for any{A,,..., A,} C A,

I U{A,...,A,}andll; U{A;, ..., A, } have the same equilibrium models, so the
explanatory power oP; andP; is the same whether we interpret entailmgnin the
cautious or brave sense.

To establish a converse of Proposition 1, we need to pin dbetype of inference
defined by|~. Evidently, brave reasoning has a greater chance of suicggesince
prima facieit seems possible that theories might have the same consesgia the
cautious sense, even under the addition of new atoms, yetdifferent equilibrium
models and therefore not be relativised uniformly equivale

So let us suppose that is entailment with respect to to some equilibrium model;
in other words /I | ¢ iff  is true in some equilibrium model df. Then we have:

% We leave open for the moment whether entailment is to be stwist in the cautious or brave
sense.
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Proposition 2. If P, and P, have the saméon-vacuoupexplanatory powe(in the
strong sensggthenil; andIl; are uniformly equivalent relative td.

Proof. Assume the hypothesis of the proposition and suppose thgtate not uni-
formly equivalent relative tod. Then, there exists a subsed;,..., A4,} C A such
thatIl; U {A;,..., A,} andIl; U {A,,..., A, } have different equilibrium models.
Say,IT; U{A4,...,A,} has an equilibrium modeW1 that is not an equilibrium model
of IT, U {A,,...,A,}. We can establish th&®; and P, have different explanatory
powers if we can find a sentengehat is true inM, so that

H1U{A1,...,An}}‘\/§0 (2)

but
HQU{Al,,An} *\/(p (3)

This means thap has to be chosen so there is no other equilibrium modélpfJ
{A4,..., A} in which ¢ is true. Moreover, Conditions 6.1 and 6.2 above should also
hold for (2). By assumption, no equilibrium model@bU{ A4, . .., A, } can be equiva-
lentto M in that it satisfies exactly the same sentences; otherwismiid make exactly
the same literals true and false and so be exaktlySo, for each equilibrium model
M, of IT;U{A,, ..., A, }, there must be some sentengdrue in M thatis not true in
M. Since we are assuming that the theories are finite, therat anest finitely many
equilibrium modelsM; of II, U {44,..., A,} and therefore finitely many such;.
Evidently, the sentencf,; a; is true in M but not true in any equilibrium model of
I, U{A,,...,A,}. So, we have

HlU{Al,...,An} }v/\aiand (4)

HQU{Al,...,An}*\J/\Oéi. (5)

Furthermore, we have that 6.1 is satisfied and 6.2 holds $iee{A;,..., A, } hasa
model. This contradicts the initial assumption tRatandP, have the same explanatory
power. O

Combining Propositions 1 and 2 with Theorems 3 and 4 yieldsfellowing se-
mantic characterisation of explanatory equivalence.

Corollary 1. Two abductive theorieB;, = (II;,.A) and’Py = (II,, A) have the same
explanatory powe(in the strong sengéff 17, and i, have the same RUEmModels.

We note that Inoue and Sakama [8, 9] provided for the casedfalve logic pro-
grams with default negations in the heads a charactensatmilar to our Proposi-
tions 1 and 2. However, they derived that two abductive @mogg I1;, .A) and(I1;, A)
have the same explanatory power iff and I1; are strongly equivalent relative td.

In view of our results, it seems that relativised strong eajence should in their char-
acterisation be replaced by relative uniform equivaleBezause otherwise we would
obtain that, for any4, strong equivalence relative td4 would coincide with uniform
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equivalence relative tod, which is obviously violated (consider, e.g., the programs
{a Vb <} and{a < notb; b — nota} which are uniformly equivalent relative to
{a, b} but not strongly equivalent relative {@, b}). Let us also note that they do not
apply any semantic characterisations of equivalence goakto Corollary 1 above. On
the other hand, they also consider equivalence in the cooten extended abduction
concept [9].

6 Complexity

The complexity of relativised equivalence between disjwedogic programs has been
established by Woltran [19] and has been further studiedtey,Eink, and Woltran [2].
Both notions, i.e., RSE and RUE, yield{’-complete decision problems. Thug} -
hardness for these problems is immediate for equilibriugicloTo show that RSE and
RUE remain in clasd7{ for the general setting studied here, first observe that the
central subtask of checking whether a given gdirT) is an equilibrium model of
some theorylT is in coNP. Moreover, to decide the complementary probleRWE
between/I; andIl,, one can guess s€f5 F' of literals and check whethét”, T') is an
equilibrium model of exactly one dff; U F' andIl, U F'. This algorithm runs in non-
deterministic time with access to an NP-oracle, and thusin 171-membership for
RUE follows immediately. The same argumentation holds f8ERn view of the proof
of Theorem 2, where it is shown that only very simple theofidsich are polynomial
in the size to the compared programs) are sufficient to ddR®ie.

7 Conclusions and Future Work

In this paper, we extended results for relativised notidresjaivalence from logic pro-
grams under the answer-set semantics to arbitrary (pribmuesi) theories in equilib-
rium logic. To this end, we introduced the concept of &i-reduct which restricts
the language of one world in the two-world Kripke-model fqudibrium logic. These
partially bound models can be shown to characterise rédativstrong and uniform
equivalence between theories in the same manner as redatidE- and UE-models
are used for logic programs [19]. Furthermore, we discusspdssible application of
relativised equivalences in the area of abduction and veflpstudied the complexity
of the introduced equivalence notions.

An interesting topic for further work is to extend our notsao include the removal
of auxiliary letters—important for considering submodubé theories having dedicated
output atoms—tantamount to consideripgjected equilibrium modelsvhere only
a subset of the atoms are of interest. This would be an extertdithe framework
introduced by Eiter, Fink, and Woltran [3] for disjunctivagiic programs.
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