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Abstract

In recent work, a general framework for specifying cor-
respondences between logic programs under the answer-set
semantics has been defined. The framework allows to define
different notions of equivalence, including well-known no-
tions like strong equivalence as well as refined ones based
on the projection of answer sets, where not all parts of an
answer set are of relevance. In this paper, we describe a
system, called cc>, to verify program correspondences in
this general framework, relying on linear-time constructible
reductions to quantified propositional logic using extant
solvers for the latter language as back-end inference en-
gines. We provide a preliminary performance evaluation
which sheds light on some crucial design issues.

1. Introduction

Nonmonotonic logic programs under the answer-set se-
mantics [12] represent the canonical and, due to the avail-
ability of efficient answer-set solvers, arguably most widely
used approach to answer-set programming (ASP). The latter
paradigm is based on the idea that problems are encoded in

∗This work was partially supported by the Austrian Science Fund
(FWF) under grant P18019. The second author was also supported by
the Austrian Federal Ministry of Transport, Innovation, and Technology
(BMVIT) and the Austrian Research Promotion Agency (FFG) under grant
FIT-IT-810806.

terms of theories such that the solutions of a given problem
are determined by the models (“answer sets”) of the cor-
responding theory. Logic programming under the answer-
set semantics has become an important host for solving
many AI problems, including planning, diagnosis, and in-
heritance reasoning (see, e.g., Gelfond and Leone [11] for
an overview).

To support engineering tasks of ASP solutions, an im-
portant issue is to determine the equivalence of different
problem encodings. To this end, various notions of equiv-
alence between programs under the answer-set semantics
have been studied in the literature, including the recently
proposed framework by Eiter et al. [10], which subsumes
most of the previously introduced notions. Within this
framework, correspondence between two programs, P and
Q, holds iff the answer sets of P ∪R and Q∪R satisfy cer-
tain criteria, for any program R in a specified class, called
the context. We shall focus here on correspondence prob-
lems where both the context and the comparison between
answer sets are determined in terms of alphabets. This kind
of program correspondence includes, as special instances,
the well-known notions of strong equivalence [17], uniform
equivalence [9], relativised variants thereof [23], as well as
the practicably important case of program comparison un-
der projected answer sets. In the last setting, not a whole
answer set of a program is of interest, but only its intersec-
tion on a subset of all letters. This includes, in particular,
removal of auxiliary letters.

For illustration, consider the following two programs
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which both express the selection of exactly one of the atoms
a, b. An atom can only be selected if it can be derived to-
gether with the context:

P = { sel(b)← b,not out(b); sel(a)← a,not out(a);
out(a) ∨ out(b)← a, b};

Q = { sel(a) ∨ sel(b)← a; sel(a) ∨ sel(b)← b;
fail ← sel(a),not a,not fail ;
fail ← sel(b),not b,not fail}.

Both programs use “local” atoms, out(·) and fail , re-
spectively, which are expected not to appear in the con-
text. In order to compare the programs, we could specify
an alphabet, A, for the context, for instance A = {a, b}, or,
more generally, any set A of atoms not containing the atoms
sel(a), sel(b), out(a), out(b), and fail . On the other hand,
we want to check whether, for each addition of a context
program over A, the answer sets correspond when taking
only atoms from B = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of such
correspondence problems together with some initial exper-
imental results. The overall approach of the system, which
we call cc> (“correspondence-checking tool”), is to re-
duce correspondences problems to satisfiability in quanti-
fied propositional logic, an extension of classical proposi-
tional logic characterised by the condition that its sentences,
usually referred to as quantified Boolean formulas (QBFs),
are permitted to contain quantifications over atoms.

The motivation to use such an approach is twofold. First,
complexity results [10] show that correspondence checking
within this framework is hard, lying on the fourth level of
the polynomial hierarchy. This indicates that implementa-
tions of such checks cannot be realised in a straightforward
manner using ASP systems themselves. In turn, it is well
known that decision problems from the polynomial hierar-
chy can be efficiently represented in terms of QBFs in such
a way that determining the validity of the resultant QBFs is
not computationally harder than checking the original prob-
lem. In recent work [21], such translations from correspon-
dence checking to QBFs have been developed; moreover,
they are constructible in linear time. Second, various practi-
cably efficient solvers for quantified propositional logic are
currently available (see, e.g., Le Berre et al. [15]). Hence,
such tools are used as back-end inference engines in our
system to verify the correspondence problems under con-
sideration. In fact, reduction methods to QBFs have already
been successfully applied in diverse areas like nonmono-
tonic reasoning [6, 5], paraconsistent reasoning [3, 1], and
planning [20].

Previous systems implementing different forms of equiv-
alence, being special cases of correspondence notions in
the framework of Eiter et al. [10], are SELP [4] and
DLPEQ [18]. In SELP, the problem of checking strong
equivalence is reduced to propositional logic, making use

of SAT solvers as back-end inference engines. Our system
generalises SELP in the sense that cc> handles correspon-
dence problems which coincide with testing strong equiva-
lence by the same reduction as used in SELP. The system
DLPEQ, on the other hand, is capable of comparing dis-
junctive logic programs under ordinary equivalence by a
reduction to logic programs, employing extant answer-set
solvers as underlying inference engines. While both SELP
and DLPEQ are dedicated tools designed to handle specific
forms of program correspondence, cc>, in contrast, allows
for checking a wide range of parameterisable equivalence
tests, useful for debugging purposes and modular program-
ming.

The paper is organised as follows. In the next section,
we recapitulate the basic facts about logic programs under
the answer-set semantics and quantified propositional logic.
Section 3 deals with the details about our tool: first, we re-
view the underlying encodings, then we discuss some spe-
cial cases as well as some normalisation steps required for
most QBF solvers, and finally we provide some information
regarding its usage. Section 4, then, reports experimental
results and Section 5 wraps up the paper with some con-
cluding remarks.

2. Preliminaries

Throughout the paper, we use the following notation: For
an interpretation I , i.e., a set of atoms, and a set S of inter-
pretations, we write S|I = {Y ∩ I | Y ∈ S}. For a sin-
gleton set S = {Y }, we write Y |I instead of S|I , whenever
convenient.

2.1. Logic Programs

We are concerned with propositional disjunctive logic
programs (DLPs) which are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where all ai are propositional atoms from
some fixed universe U and not denotes default negation. If
all atoms occurring in a program P are from a given set A ⊆
U of atoms, we say that P is a program over A. The set of
all programs over A is denoted by PA. A rule r of form (1)
is said to be true under an interpretation I , symbolically
I |= r, iff {a1, . . . , al}∩I 6= ∅whenever {al+1, . . . , am} ⊆
I and {am+1, . . . , an} ∩ I = ∅. If I |= r holds, then I is
also said to be a model of r. As well, I is a model of a
program P iff I |= r, for all r ∈ P .

Following Gelfond and Lifschitz [12], an interpretation I
is an answer set of a program P iff it is a minimal model of
the reduct P I , resulting from P by

• deleting all rules containing default negated atoms
not a such that a ∈ I; and
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• deleting all default negated atoms in the remaining
rules.

The collection of all answer sets of a program P is denoted
by AS(P ).

In order to semantically compare programs, different no-
tions of equivalence have been introduced in the context of
the answer-set semantics. Besides ordinary equivalence be-
tween programs, which checks whether two programs have
the same answer sets, the more restrictive notions of strong
equivalence [17] and uniform equivalence [9] have been in-
troduced: Two programs, P and Q, are strongly equivalent
iffAS(P ∪R) = AS(Q∪R), for any program R, and they
are uniformly equivalent iffAS(P ∪R) = AS(Q∪R), for
any set R of facts, i.e., rules of form a←, for some atom a.
Also, relativised equivalence notions, taking the alphabet of
the extension set R into account, have been defined [23].

In abstracting from these notions, Eiter et al. [10] in-
troduced a general framework for specifying differing no-
tions of program correspondence. In this framework, one
parameterises, on the one hand, the context, i.e., the class
of programs used to be added to the programs under con-
sideration, and, on the other hand, the relation that has
to hold between the collection of answer sets of the ex-
tended programs. In what follows, we focus on two impor-
tant instantiations of the general framework, viz. inclusion
problems, given by quadruples of form (P,Q,PA,⊆B),
and equivalence problems, given by quadruples of form
(P,Q,PA,=B). Here, A and B are sets of atoms, with
A fixing the alphabet of the context PA, and ⊆B and =B

are projections (into B) of the standard subset and set-
equality relation, respectively, defined as follows: for ev-
ery set S,S ′, S ⊆B S

′ iff S|B ⊆ S ′|B , and S =B S
′ iff

S|B = S ′|B . We say that Π = (P,Q,PA,⊆B) (resp.,
Π = (P,Q,PA,=B)) holds iff, for all R ∈ PA, AS(P ∪
R)⊆BAS(Q ∪ R) (resp., AS(P ∪ R) =B AS(Q ∪ R)).
Note that (P,Q,PA,=B) holds iff (P,Q,PA,⊆B) and
(Q,P,PA,⊆B) jointly hold.

The following proposition briefly summarises the com-
plexity landscape within this framework [10, 19, 23].

Proposition 1 Given programs P and Q, sets A and B of
atoms, and ρ ∈ {⊆B ,=B}, deciding whether a correspon-
dence problem (P,Q,PA, ρ) holds is:

1. ΠP
4 -complete, in the general case;

2. ΠP
3 -complete, providing A = ∅;

3. ΠP
2 -complete, providing B = U; and

4. coNP-complete, providing A = U .

While Case 1 deals with arbitrary correspondence problems
of the considered forms, for the other cases, we have the

following observations: Case 2 amounts to ordinary equiv-
alence with projection, i.e., the answer sets of two programs
relative to a specified set B of atoms are compared; Case 3
amounts to strong equivalence relative to A and includes,
as a special case (viz., for A = ∅), ordinary equivalence;
finally, Case 4 includes strong equivalence (for B = U) as
well as strong equivalence with projection.

The ΠP
4 -hardness result shows that, in general, checking

the correspondence of two programs cannot (presumably)
be efficiently encoded in terms of ASP, which has its basic
reasoning tasks contained in ΣP

2 or ΠP
2 . However, corre-

spondence checking can be efficiently encoded in terms of
quantified propositional logic.

2.2. Quantified Propositional Logic

Quantified propositional logic is an extension of classi-
cal propositional logic in which formulas are permitted to
contain quantifications over propositional variables. In par-
ticular, this language contains, for any atom p, unary op-
erators of form ∀p and ∃p, called universal and existential
quantifiers, respectively, where ∃p is defined as ¬∀p¬. For-
mulas of this language are also called quantified Boolean
formulas (QBFs), and we denote them by Greek upper-case
letters throughout this paper.

For a QBF of form QpΨ, where Q ∈ {∃, ∀}, we call
Ψ the scope of Qp. An occurrence of an atom p is free in
a QBF Φ if it does not occur in the scope of a quantifier
Qp in Φ. In what follows, we tacitly assume that every
subformula QpΦ of a QBF contains a free occurrence of p
in Φ, and for two different subformulas QpΦ, Qq Ψ of a
QBF, we require p 6= q. Moreover, given a finite set P of
atoms, QP Ψ stands for any QBF Qp1Qp2 . . . QpnΨ such
that the variables p1, . . . , pn are pairwise distinct and P =
{p1, . . . , pn}. Finally, for an atom p and a set I of atoms,
Φ[p/I] denotes the QBF resulting from Φ by replacing each
free occurrence of p in Φ by> if p ∈ I and by⊥ otherwise.

For an interpretation I and a QBF Φ, the relation I |=
Φ is inductively defined as in classical propositional logic,
whereby universal quantifiers are evaluated as follows:

I |= ∀p Φ iff I |= Φ[p/{p}] and I |= Φ[p/∅].

The terms true, false, satisfiable, and valid are defined
as in classical propositional logic. Note that a closed QBF,
i.e., a QBF without free variable occurrences, is either true
under any interpretation or false under any interpretation.

A QBF Φ is said to be in prenex normal form (PNF) iff
it is closed and of the form

QnPn . . . Q1P1 φ, (2)

where n ≥ 0, φ is a propositional formula, Qi ∈ {∃,∀}
such that Qi 6= Qi+1 for 1 ≤ i ≤ n − 1, (P1, . . . , Pn)
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is a partition of the propositional variables occurring in φ,
and Pi 6= ∅, for each 1 ≤ i ≤ n. We say that Φ is
in prenex conjunctive normal form (PCNF) iff Φ is of the
form (2) and φ is in conjunctive normal form. Furthermore,
a QBF of form (2) is also referred to as an (n, Qn)-QBF.
Any closed QBF Φ is easily transformed into an equivalent
QBF in prenex normal form such that each quantifier oc-
currence from the original QBF corresponds to a quantifier
occurrence in the prenex normal form. Let us call such a
QBF the prenex normal form of Φ. In general, there are dif-
ferent ways to obtain an equivalent prenex QBF (cf. Egly et
al. [7] for more details on this issue). The following prop-
erty is essential:

Proposition 2 For every k ≥ 0, deciding the truth of
a given (k,∃)-QBF (resp., (k,∀)-QBF) is ΣP

k -complete
(resp., ΠP

k -complete).

Hence, any decision problemD in ΣP
k (resp., ΠP

k ) can be
mapped in polynomial time to a (k,∃)-QBF (resp., (k,∀)-
QBF) Φ such that D holds iff Φ is valid. In particular, any
correspondence problem (P,Q,PA, ρ), for ρ ∈ {⊆B ,=B},
can be reduced in polynomial time to a (4,∀)-QBF. Our
implemented tool, described next, relies on two such map-
pings, which are actually constructible in linear time.

3. Computing Correspondence Problems

We now describe the system cc>, which allows to verify
the correspondence of two programs. It relies on efficient
reductions from correspondence problems to QBFs [21],
reviewed in the first subsection. Then, we briefly discuss
special forms of inclusion or equivalence problems. After-
wards, we give details concerning the transformation of the
resultant QBFs into PCNF, which is necessary because most
extant QBF solvers rely on input of this form. Finally, we
give some details concerning the general syntax and invo-
cation of cc>.

3.1. Basic Encodings

Following Tompits and Woltran [21], we present two re-
ductions from inclusion problems to QBFs, S[·] and T[·],
where T[·] is an explicit optimisation of S[·] yielding QBFs
that always reflect (with respect to their structure) the com-
plexity of the encoded problem (cf. Proposition 1). Equiv-
alence problems can be decided by the composition of two
inclusion problems. An encoding for equivalence problems
is thus obtained via a conjunction of two instantiations of
S[·] (or T[·]). In view of this, for every equivalence problem
Π = (P, Q, PA, =B), we shall denote by Π′ and Π′′ the
associated inclusion problems (P, Q, PA, ⊆B) and (Q, P,
PA, ⊆B), respectively.

For our encodings, we use the following building blocks.
We use sets of globally new atoms in order to refer to dif-
ferent assignments of the atoms from the compared pro-
grams within a single formula. Formally, given an in-
dexed set V of atoms, we assume (pairwise) disjoint copies
Vi = {vi | v ∈ V }, for every i ≥ 1. Furthermore, let

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj);

2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi); and

3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
These three “operators” allow to compare different sub-

sets of atoms from a common set under subset inclusion,
proper-subset inclusion, and equality, respectively. In ac-
cordance to the renaming of atoms, we use subscripts as
a general renaming schema for formulas and rules. That
is, for each i ≥ 1, αi is the result of replacing each oc-
currence of an atom p in α by pi, where α is any formula
or rule. Furthermore, for a rule r of form (1), we define
H(r) = a1 ∨ · · · ∨ al, B+(r) = al+1 ∧ · · · ∧ am, and
B−(r) = ¬am+1 ∧ · · · ∧ ¬an; and for a program P , we
define

Pi,j =
∧

r∈P

(

(B+(ri) ∧B−(rj))→ H(ri)
)

.

Formally, we have the following relation: Let P be a pro-
gram over atoms V , I an interpretation, and X,Y ⊆ V
such that, for some i, j, I|Vi

= Xi and I|Vj
= Yj . Then,

X |= PY iff I |= Pi,j .
We proceed with the first encoding.

Definition 1 Let P and Q be programs over V , A,B ⊆ V ,
and Π = (P,Q,PA,⊆B) an inclusion problem. Then,

S[Π] := ¬∃V1

(

P1,1 ∧ S1(P,A)∧

∀V3

(

S2(Q,A,B)→ S3(P,Q,A)
)

)

, where

S1(P,A) := ∀V2

(

((A2 = A1) ∧ (V2 < V1))→¬P2,1

)

,

S2(Q,A,B) :=
(

(A ∪B)3 = (A ∪B)1
)

∧Q3,3, and
S3(P,Q,A) := ∃V4

(

(V4 < V3) ∧Q4,3 ∧
(

(A4 < A1)→

∀V5(((A5 =A4)∧(V5 ≤ V1))→¬P5,1)
))

.

In the scope, Φ, of ∃V1 the conditions for deciding
whether a so-called spoiler [10] for the inclusion problem
Π exists are encoded. Such a spoiler for Π exists iff Π does
not hold. Hence, the encoding Φ is unsatisfiable iff Π holds.
Thus, since S[Π] = ¬∃V1Φ, we get:

Proposition 3 ([21]) For any inclusion problem Π, Π holds
iff S[Π] is valid.
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In what follows, we review a more compact encoding
which, in particular, reduces the number of universal quan-
tifications. The idea is to save on the fixed assignments, as,
e.g., in S2(Q,A,B), where we have (A∪B)3 = (A∪B)1.
This calls for a more subtle renaming schema for programs,
however. Let V be a set of indexed atoms, and let r be a
rule. Then, rVi,k results from r by replacing each atom x
in r by xi, providing xi ∈ V , and by xk otherwise. For a
program P , we define

PV
i,j,k :=

∧

r∈P

(

(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)
)

.

Moreover, for every i ≥ 1, every set V of atoms, and every
set C, V C

i := (V \ C)i.

Definition 2 Let P and Q be programs over V and A,B ⊆
V . Furthermore, let Π = (P,Q,PA,⊆B) be an inclusion
problem and V = V1 ∪ V A

2 ∪ V A∪B
3 ∪ V4 ∪ V A

5 . Then,

T[Π] := ¬∃V1

(

P1,1 ∧ T1(P,A,V)∧

∀V A∪B
3

(

QV
3,3,1 → T3(P,Q,A,V)

)

)

, where

T1(P,A,V) := ∀V A
2

(

(V A
2 < V A

1 )→ ¬PV
2,1,1

)

and
T3(P,Q,A,V) := ∃V4

((

V4 < ((A∪B)1 ∪ V A∪B
3 )

)

∧

QV
4,3,1 ∧

(

(A4 < A1)→

∀V A
5 ((V A

5 ≤ V A
1 )→ ¬PV

5,1,4)
))

.

Analogous to Proposition 3, the following holds:

Proposition 4 ([21]) For any inclusion problem Π, Π holds
iff T[Π] is valid.

Corollary 1 Let Π be an equivalence problem. The fol-
lowing statements are equivalent: (i) Π holds; (ii) S[Π′]∧
S[Π′′] is valid; and (iii) T[Π′]∧ T[Π′′] is valid.

3.2. Special Cases

We now analyse how our encodings behave in certain
instances of the equivalence framework which are located at
lower levels of the polynomial hierarchy (cf. Proposition 1).

For the case of strong equivalence [17], i.e., problems of
form Π = (P, Q, PA, =A) with A = U , the encodings
T[Π′] and T[Π′′] can be drastically simplified, since V A

2 =
V A

3 = V A
5 = ∅. In particular, T[Π′] is equivalent to

¬∃V1

(

P1,1 ∧
(

Q1,1 → ∃V4

(

(V4 < V1)∧Q4,1 ∧¬P4,1

))

)

.

Now, the encoding for strong equivalence amounts to a sin-
gle unsatisfiability test, witnessing the coNP-completeness
complexity for this problem [19].

It is straightforward to check that for other special cases
similar simplifications can be achieved [21]. For strong

equivalence relative to a set A of atoms [23], the QBF sim-
plifies since V A∪B

3 = ∅. The case of ordinary equivalence,
i.e., problems of form Π = (P, Q, PA, =) with A = ∅, is,
indeed, a special case of relativised strong equivalence. As
an additional optimisation we can drop the subformula

(A4 < A1)→ ∀V
A
5

(

(V A
5 ≤ V A

1 )→ ¬PV
5,1,4

)

from part T3 of T[Π′] because A = ∅. We point out that
those simplifications are incorporated within our system.

For the encoding T[·], the structure of the resulting QBF
always reflects the complexity of the correspondence prob-
lem according to Proposition 1. This does not hold for for-
mulas stemming from S[·], however. In any case, our tool
implements both encodings in order to provide interesting
benchmarks for QBF solvers with respect to their capability
to find implicit optimisations for equivalent QBFs.

3.3. Transformations into Normal Forms

Most available QBF solvers require the input QBF to be
in a certain normal form, viz. in prenex conjunctive normal
form (PCNF). Hence, to employ these solvers for our tool,
the translations described above have to be transformed by
a further two-phased normalisation step: (1) translation of
the QBF into prenex normal form (PNF); and (2) translation
of the propositional part of the formula in PNF into CNF.

The step of prenexing is not deterministic. Indeed, there
are various so-called prenexing strategies [7]. The selec-
tion of such a strategy (also depending on the solver used)
crucially influences the running times (see also our results
below). For illustration, consider the quantifier dependen-
cies for the encoding S[·]:

∀V1

∃V2 ∃V3

∀V4

∃V5

Note that we consider the quantifier dependencies cleansed
with respect to their polarities by applying the usual equiv-
alence preserving transformations as known from first-
order logic. Here, the left branch results from the sub-
formula S1 and the right one results from the subformula
∀V3(S

2(Q,A,B)→ S3(P,Q,A)).
Inspecting these quantifier dependencies, we can group

∃V2 either together with ∃V3 or with ∃V5. This yields the
following two basic ways for prenexing our encodings:

↑: ∀V1∃(V2 ∪ V3)∀V4∃V5; and

↓: ∀V1∃V3∀V4∃(V5 ∪ V2).

Together with the two encodings S[·] and T[·], we thus get
four different alternatives to represent an inclusion problem
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Figure 1. ΠP

4
-hard random problems: Running times (in seconds) for true (left chart) and false (right

chart) instances.

in terms of a prenex QBF; we will denote them by S↑[·],
S↓[·], T↑[·], and T↓[·], respectively.

Concerning the transformation of the propositional part
of a prenex QBF into CNF, we apply a method following
Tseitin [22] in which new atoms, so-called labels, are intro-
duced abbreviating subformula occurrences and which has
the property that the resultant CNFs are always polynomial
in the size of the input formula.

3.4. The Implemented Tool

The system cc> implements the reductions from inclu-
sion problems (P, Q, PA, ⊆B) and equivalence problems
(P, Q, PA, =B) to corresponding QBFs, together with the
potential simplifications discussed above. It takes as input
two programs, P and Q, and two sets of atoms, A and B,
where A specifies the alphabet of the context and B the set
of atoms for projection on the correspondence relation. The
reduction (S[·] or T[·]) and the type of correspondence prob-
lem (⊆B or =B) are specified via command-line arguments:

• -S, -T to select the kind of reduction; and

• -i, -e to check for inclusion or equivalence between
the two programs.

The syntax to specify programs in cc> corresponds to the
basic DLV syntax.1 cc> is entirely developed in ANSI C,
hence, it is highly portable. The parser for the input data
was written using LEX and YACC. The complete package in
its current version consists of more than 2000 lines of code.
More information about cc> and how to use it, as well as
information about the benchmarks below, is available at the
following URL:

http://www.kr.tuwien.ac.at/research/ccT.

1See http://www.dlvsystem.com/ for more information about
DLV.

4. Experimental Results

Our experiments were conducted to determine the be-
haviour of different QBF solvers in combination with the
encodings S[·] and T[·], or, if the employed QBF solver re-
quires the input in prenex form, with S↑[·], S↓[·], T↑[·], and
T↓[·]. We implemented a generator of inclusion problems
which emanate from the proof of the ΠP

4 -hardness of inclu-
sion checking [10]. The strategy to obtain such instances is
to

1. generate a (4,∀)-QBF Φ in PCNF by random;

2. reduce Φ to a problem Π = (P,Q,PA,⊆B) such that
Π holds iff Φ is valid; and

3. apply cc> to derive the corresponding encoding Ψ for
Π.

We use here a parameterisation for the generation of random
QBFs such that the benchmark set yields a nearly 50% dis-
tribution between the true and false instances. We set up a
test series comprising 1000 instances of inclusion problems
generated that way (465 of them evaluating to true). Pro-
gram P has 620 rules, and program Q has 280 rules, using
a total of 40 atoms; the sets A and B contain 16 atoms. Af-
ter employing cc>, the resulting QBFs possess, in case of
translation S[·], 200 atoms and, in case of translation T[·],
152 atoms. The additional prenexing step (together with
the translation of the propositional part into CNF) yields, in
case of S[·], QBFs with 6575 clauses over 2851 atoms and,
in case of T[·], QBFs with 6216 clauses over 2555 atoms.

We compared four state-of-the-art QBF solvers in our
analysis: qube-bj [13], semprop [16], skizzo [2], and
qpro [8]. The former three require QBFs in PCNF as in-
put (thus, we tested them using encodings S↑[·], S↓[·], T↑[·],
and T↓[·]), while qpro admits arbitrary QBFs as input (we
tested it with the non-prenex encodings S[·] and T[·]).
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Figure 2. Whisker-box plots corresponding to Figure 1 for true (left chart) and false (right chart)
instances.

Our results are depicted in Figure 1. The y-axis shows
the (arithmetically) average running time in seconds (time-
out was 100 seconds) for each solver with respect to the
chosen translation and prenexing strategy. The performance
of the PCNF-solvers turned out to be highly dependent on
the prenexing strategy, and ↓ dominated ↑.

A more thorough analysis of the data with respect to their
distribution is given in Figure 2. By means of whisker-box
plots, we depict, for each measuring point, median (hori-
zontal line inside the box), 25%- and 75%-quantile (lower
and upper border of the boxes, respectively), and the 5%-
and 95%-quantile (lower and upper horizontal bar at the end
of the vertical lines, the so-called whiskers, respectively).
Due to the chosen time-out of 100 seconds, the whisker-box
plots are slightly distorted near the 100 seconds border.

For the special case of ordinary equivalence, we com-
pared our approach against the system DLPEQ [18], which
is based on a reduction to disjunctive logic programs, us-
ing gnt [14] as underlying answer-set solver. The bench-
marks rely on randomly generated (2,∃)-QBFs. Each QBF
is reduced to a program such that the latter possesses an
answer set iff the original QBF is valid. The idea is to com-
pare the program with itself having a randomly selected rule
dropped, thus simulating a “sloppy” programmer (for more
details, cf. Oikarinen and Janhunen [18]). The results are
shown in Figure 3. The size of the original QBFs (with re-
spect to the number of variables) is given on the x-axis, and
running times (in seconds) are given on the y-axis; time-out
was set to 120 seconds. For cc>, we compared the same
back-end solvers as above, using encoding T[·]. Recall that
for ordinary equivalence cc> provides (2,∀)-QBFs, thus
we can resign on the distinction between prenexing strate-
gies.

Not surprisingly, the special-purpose DLPEQ system
turns out to be faster than cc>. Interestingly, however, is
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Figure 3. Comparing ccT against DLPEQ for
the special case of ordinary equivalence.

the observation that, among the tested QBF solvers, qpro
is the most competitive one, while the PCNF-QBF solvers
perform bad even for small instances.

5. Conclusion

In this paper, we discussed an implementation for ad-
vanced program comparisons in answer-set programming
via encodings into quantified propositional logic. This ap-
proach was motivated by the high computational complex-
ity we have to face for correspondence checking, making a
direct realisation via ASP hard to accomplish. Since practi-
cably efficient solvers for quantified propositional logic are
available, they can be employed as back-end inference en-
gines to verify correspondence problems using the proposed
encodings. Moreover, since such problems are one of the

Proceedings of the 15th International Conference on Computing (CIC'06)
0-7695-2708-6/06 $20.00  © 2006



few natural ones lying above the second level of the poly-
nomial hierarchy, yet still in PSPACE, we believe that our
encodings also provide valuable benchmarks for evaluating
QBF solvers, for which there is currently a lack of struc-
tured problems with more than one quantifier alternation
(cf. Le Berre et al. [15]).
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