
Belief Revision of Logic Programs under Answer Set Semantics∗

James Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6

Torsten Schaub†
Institut für Informatik
Universität Potsdam
August-Bebel-Str. 89

D–14482 Potsdam, Germany

Hans Tompits and Stefan Woltran
Institut für Informationssysteme

Technische Universität Wien,
Favoritenstraße 9–11

A–1040 Vienna, Austria

Abstract

We address the problem of belief revision in (nonmonotonic)
logic programming under answer set semantics: given logic
programsP andQ, the goal is to determine a programR that
corresponds to the revision ofP by Q, denotedP ∗ Q. Un-
like previous approaches in logic programming, our formal
techniques are analogous to those of distance-based beliefre-
vision in propositional logic. In developing our results, we
build upon the model theory of logic programs furnished by
SE models. Since SE models provide a formal, monotonic
chacterisation of logic programs, we can adapt well-known
techniques from the area of belief revision to revision in logic
programs. We investigate two specific operators: (logic pro-
gram) expansion and a revision operator based on the distance
between the SE models of logic programs. It proves to be the
case that expansion is an interesting operator in its own right,
unlike in classical AGM-style belief revision where it is rel-
atively uninteresting. Expansion and revision are shown to
satisfy a suite of interesting properties; in particular, our revi-
sion operators satisfy the majority of the AGM postulates for
revision. A complexity analysis reveals that our revision op-
erators do not increase the complexity of the base formalism.
As a consequence, we present an encoding for computing the
revision of a logic program by another, within the same logic
programming framework.

Introduction
Answer set programming(ASP) (Baral 2003) has emerged
as a major area of research in knowledge representation and
reasoning (KRR). On the one hand, ASP has an elegant
and conceptually simple theoretical foundation, while on the
other hand efficient implementations of ASP solvers exist
which have been finding application to practical problems.
At its heart, ASP exploits negation as failure with respect to
a fixed-point semantics; this enables the specification of a
wide variety of problems. Consequently, ASP provides an
appealing approach for representing problems in KRR.

Given that knowledge is continually evolving and always
subject to change, there is also a need to be able to revise

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019.

†Affiliated with Simon Fraser University, Canada, and Griffith
University, Australia.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

logic programs as new information is received. In KRR, the
area ofbelief revision(Alchourrón, Gärdenfors, and Makin-
son 1985; Gärdenfors 1988) addresses just such change to
a knowledge base. InAGM belief revision (named after the
aforecited developers of the approach) one has a knowledge
baseK and a formulaα, and the issue is how to consistently
incorporateα inK to obtain a new knowledge baseK ′. The
interesting case is whenK ∪ {α} is inconsistent, since be-
liefs have to be dropped fromK beforeα can be consis-
tently added. Hence a fundamental issue concerns how such
change should be managed.

In classical propositional logic, specific belief revision
operators have been proposed based on the distance between
modelsof a knowledge base and a formula for revision. That
is, a characterisation of the revision of a knowledge baseK
by formulaα is to set the models of the revised knowledge
baseK ′ to be the models ofα that are “closest” to those
of K. Of course the notion of “closest” needs to be pinned
down, but natural definitions based on the Hamming dis-
tance (Dalal 1988; Satoh 1988) are well known. Clearly,
also the set of models of a knowledge base gives an abstract
characterisation of the knowledge base, suppressing irrele-
vant syntactic details.

It is natural then to consider belief change in the context of
logic programs. Indeed, there has been substantial effort in
developing approaches to so-called logic program updating
under answer set semantics (we discuss previous work in
the next section). Unfortunately, given the nonmonotonic
nature of answer set programs, the problem of change in
logic programs has appeared to be intrinsically more difficult
than in a monotonic setting.

In this paper, our goal is to reformulate belief change in
logic programs in a manner analogous to belief revision in
classical propositional logic, and to investigate specificbe-
lief revision operators for extended logic programs. Central
for our approach areSE models(Turner 2003), which are se-
mantic structures characterisingstrong equivalencebetween
programs (Lifschitz, Pearce, and Valverde 2001). This par-
ticular kind of equivalence plays a major role for different
problems in logic programming—in particular, in program
simplifications and modularisation. This is due to the fact
that strong equivalence gives rise to asubstitution principle
in the sense that, for all programsP,Q,P∪R andQ∪R have
the same answer sets, foranyprogramR. As is well known,

ordinary equivalence between programs (which holds if two
programs have the same answer sets) does not yield a sub-
stitution principle. Hence, strong equivalence can be seenas
the logic programming analogue of ordinary equivalence in
classical logic. The important aspect of strong equivalence
is that it coincides with equivalence in a specificmonotonic
logic, the logic ofhere and there(HT), which is intermediate
between intuitionistic logic and classical logic. As shownby
Turner (2003), equivalence between programs in HT corre-
sponds in turn to equality between sets of SE models. De-
tails on these concepts are given in the next section; the key
point is that logic programs can be expressed in terms of a
non-classical but monotonic logic, and it is this point thatwe
exploit here.

More specifically, given this monotonic characterisation
(via sets of SE models) of strong equivalence, we adapt tech-
niques for revision in propositional logic to revision in logic
programs. Hence we come up with specific operators for be-
lief change in ASP analogous to operators in propositional
logic. We first consider anexpansionoperator. In classi-
cal logic, the expansion of knowledge baseK by formulaα
amounts to the deductive closure ofK∪{α}. Hence it is not
a very interesting operator, serving mainly as a tool for ex-
pressing concepts in belief revision and its dual, contraction.
In logic programs however, expansion appears to be a more
useful operator, perhaps due to the apparent “looser” no-
tion of satisfiability provided by SE models. As well, it has
appealing properties. We also develop a revision operator
based on a notion of distance between SE models and show
that it satisfies the majority of the corresponding AGM pos-
tulates. Curiously, in our approaches there is effectivelyno
mention of answer sets; rather definitions of expansion and
revision are given entirely with respect to logic programs.
Notably too, our operators are syntax independent, which is
to say, they are independent of how a logic program is ex-
pressed; hence, our operators deal with thelogical content
of a logic program.

Following an introductory background section, we show
that there is a ready mapping between concepts in belief re-
vision in classical logic and in ASP; this serves to place be-
lief revision in ASP firmly in the “standard” belief revision
camp. After this we describe our approaches to belief expan-
sion and revision in ASP. The next section covers complexity
issues and shows how we can in fact express the process of
belief change in ASP. We conclude with a discussion. Proofs
of our results are relegated to an appendix.

Background and Formal Preliminaries
Answer Set Programming A (generalised) logic pro-
gram1 (GLP) over an alphabetA is a finite set of rules of
the form

a1; . . . ; am;∼bm+1; . . . ;∼bn ←
cn+1, . . . , co,∼do+1, . . . ,∼dp,

(1)

whereai, bj , ck, dl ∈ A areatoms, for 1 ≤ i ≤ m ≤ j ≤
n ≤ k ≤ o ≤ l ≤ p. Operators ‘;’ and ‘,’ express dis-

1Such programs were first considered by Lifschitz and Woo
(1992) and coinedgeneralised disjunctive logic programsby In-
oue and Sakama (1998).

junctive and conjunctive connectives. Adefault literal is an
atoma or its (default) negation∼a. A rule r as in (1) is
called afact if p = 1, normal if n = 1, positiveif m = n
and o = p, disjunctiveif m = n, and anintegrity con-
straint if n = 0, yielding an empty disjunction denoted by
⊥. Accordingly, a program is calleddisjunctive(or a DLP),
etc., if it consists of disjunctive, etc., rules only. We fur-
thermore defineH(r) = {a1, . . . , am,∼bm+1, . . . ,∼bn} as
theheadof r andB(r) = {cn+1, . . . , co,∼do+1, . . . ,∼dp}
as thebody of r. Moreover, given a setX of literals,
X+ = {a ∈ A | a ∈ X}, X− = {a ∈ A | ∼a ∈ X},
and∼X = {∼a | a ∈ X ∩ A}. For simplicity, we some-
times use a set-based notation, expressing a rule as in (1) as
H(r)+;∼H(r)−← B(r)+,∼B(r)−.

In what follows, we restrict ourselves to a finite alphabet
A. An interpretation is represented by the subset of atoms
in A that are true in the interpretation. A (classical) model
of a programP is an interpretation in which all of the rules
in P are true according to the standard defintion of truth
in propositional logic, and where default negation is treated
as classical negation. ByMod(P) we denote the set of all
classical models ofP . An answer setY of a programP is a
subset-minimal model of

{H(r)+← B(r)+ | r ∈ P,H(r)− ⊆ Y,B(r)− ∩ Y = ∅}.

The set of all answer sets of a programP is denoted by
AS(P). For example, the programP = {a ←, c; d ←
a,∼b} has answer setsAS (P) = {{a, c}, {a, d}}.

As defined by Turner (2003), anSE interpretationis a
pair (X,Y) of interpretations such thatX ⊆ Y ⊆ A. An
SE interpretation is anSE modelof a programP if Y |= P
andX |= PY . The set of all SE models of a programP is
denoted bySE (P). Note thatY is an answer set ofP iff
(Y, Y) ∈ SE(P) and no(X,Y) ∈ SE (P) with X ⊂ Y
exists. Also, we have(Y, Y) ∈ SE (P) iff Y ∈ Mod(P).

A programP is satisfiablejust if SE (P) 6= ∅. Two
programsP andQ are strongly equivalent, symbolically
P ≡s Q, iff SE (P) = SE (Q). Alternatively,P ≡s Q
holds iff AS(P ∪ R) = AS (Q ∪ R), for every program
R (Lifschitz, Pearce, and Valverde 2001). We also write
P ⊆s Q iff SE (P) ⊆ SE (Q). For simplicity, we often drop
set-notation within SE interpretations and simply write, e.g.,
(a, ab) instead of({a}, {a, b}).

A setS of SE interpretations iswell-definedif, for each
(X,Y) ∈ S, also (Y, Y) ∈ S. A well-defined setS of
SE interpretations iscompleteif, for each(X,Y) ∈ S, also
(X,Z) ∈ S, for anyY ⊆ Z with (Z,Z) ∈ S. We have the
following properties:

• For each GLPP , SE (P) is well defined.

• For each DLPP , SE (P) is complete.

Furthermore, for each well defined setS of SE interpreta-
tions, there exists a GLPP such thatSE (P) = S, and for
each complete setS of SE interpretations, there exists a DLP
P such thatSE (P) = S. Programs meeting these condi-
tions can be constructed thus (Eiter, Tompits, and Woltran
2005; Cabalar and Ferraris 2007): In caseS is a well-defined
set of SE interpretations over a (finite) alphabetA, defineP
by adding

1. the rulerY : ⊥ ← Y,∼(A \ Y), for each(Y, Y) /∈ S,
and

2. the rulerX,Y : (Y \ X);∼Y ← X,∼(A \ Y), for each
X ⊆ Y such that(X,Y) /∈ S and(Y, Y) ∈ S.

In caseS is complete, defineP by adding

1. the rulerY , for each(Y, Y) /∈ S, as above, and

2. the ruler′X,Y : (Y \X)← X,∼(A \ Y), for eachX ⊆ Y
such that(X,Y) /∈ S and(Y, Y) ∈ S.

We call the resulting programscanonical.
For illustration, consider

S = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, p)}

overA = {p, q}. Note thatS is not complete. The canonical
GLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q;∼q ← ∼p;
r∅,pq : p; q;∼p;∼q ← .

For obtaining a complete set, we have to add(∅, pq) to S.
Then, the canonical DLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q ← ∼p.

One feature of SE models is that they contain “more in-
formation” than answer sets, which makes them an appeal-
ing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong
equivalence is about). We illustrate this issue with the fol-
lowing well-known example, involving programs

P = {p; q ←} and Q =

{

p← ∼q
q ← ∼p

}

.

Here, we haveAS(P) = AS(Q) = {{p}, {q}}. However,
the SE models (we list them forA = {p, q}) differ:

SE(P) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE(Q) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, sinceP andQ behave differently
with respect to program extension (and thus are not strongly
equivalent). ConsiderR = {p← q, q ← p}. ThenAS(P ∪
R) = {{p, q}}, whileAS(Q ∪R) has no answer set.

Belief Revision The best known and, indeed, seminal
work in belief revision is theAGM approach(Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988), in
which standards for beliefrevisionandcontractionfunctions
are given. In belief revision, a formula is added to a knowl-
edge base such that the resulting knowledge base is consis-
tent (unless the formula to be added is not).Belief con-
traction is a dual notion, in which information is removed
from a knowledge base; given that it is of limited interest
with respect to our approach, we do not consider it further.
In the AGM approach it is assumed that a knowledge base

is receiving information concerning a static2 domain. Be-
lief states are modeled by logically closed sets of sentences,
calledbelief sets. A belief set is a setK of sentences which
satisfies the constraint

if K logically entailsβ, thenβ ∈ K.

K can be seen as a partial theory of the world. For belief set
K and formulaα, K + α is the deductive closure ofK ∪
{α}, called theexpansionofK byα. K⊥ is the inconsistent
belief set (i.e.,K⊥ is the set of all formulas).

Subsequently, Katsuno and Mendelzon (1992) reformu-
lated the AGM approach so that a knowledge base was also
represented by a formula in some languageL. The follow-
ing postulates comprise Katsuno and Mendelzon’s reformu-
lation of the AGM revision postulates, where∗ is a function
fromL× L toL:

R1: ψ ∗ µ ⊢ µ.

R2: If ψ ∧ µ is satisfiable, thenψ ∗ µ↔ ψ ∧ µ.

R3: If µ is satisfiable, thenψ ∗ µ is also satisfiable.

R4: If ψ1 ↔ ψ2 andµ1 ↔ µ2, thenψ1 ∗ µ1 ↔ ψ2 ∗ µ2.

R5: (ψ ∗ µ) ∧ φ ⊢ ψ ∗ (µ ∧ φ).

R6: If (ψ∗µ)∧φ is satisfiable, thenψ∗(µ∧φ) ⊢ (ψ∗µ)∧φ.

Thus revision is successful (R1), and corresponds to con-
junction when the knowledge base and formula for revision
are jointly consistent (R2). Revision leads to inconsistency
only when the formula for revision is unsatisfiable (R3). Re-
vision is also independent of syntactic representation (R4).
Last, (R5) and (R6) express that revision by a conjunction is
the same as revision by a conjunct conjoined with the other
conjunct, when the result is satisfiable.

In classical belief change, the revision of a knowledge
base represented by formulaψ by a formulaµ, ψ ∗ µ, is
a formulaφ such that the models ofφ are just those models
of µ that are “closest” to those ofψ. There are two main spe-
cific approaches to distance-based revision. Both are based
on the Hamming distance between two interpretations, that
is on the set of atoms on which the interpretations disagree.
The first, due to Dalal (1988), uses a distance measure based
on the number of atoms with differing truth values in two
interpretations. The second, by Satoh (1988), is based on
set containment. A set containment-based approach seems
more appropriate in the context of ASP, since answer sets are
defined in terms of subset-minimal interpretations. Hence,
we focus on Satoh (1988) here.

TheSatoh revision operator,ψ ∗sµ, is defined as follows.
Let△ be the symmetric difference of two sets. For formulas
α andβ, define△min(α, β) as

min⊆({w△w′ | w ∈ Mod(α), w′ ∈ Mod(β)}).

Furthermore, defineMod(ψ ∗s µ) as

{w ∈ Mod(µ) | ∃w′∈Mod(ψ) s.t.w△w′ ∈ △min(ψ, µ)}.

2 Note that “static” does not imply “with no mention of time”.
For example, one could have information in a knowledge base
about the state of the world at different points in time, and revise
information at these points in time.

Belief Change in Logic Programming Most previous
work on belief change for logic programs goes under the
title of update (Foo and Zhang 1997; Przymusinski and
Turner 1997; Zhang and Foo 1998; Alferes et al. 1998;
2000; Leite 2003; Inoue and Sakama 1999; Eiter et al. 2002;
Zacarı́as et al. 2005; Delgrande, Schaub, and Tompits 2007).
Strictly speaking, however, such approaches often do not ad-
dress “update” as used in the belief revision community, in
that the requirement that the underlying domain being mod-
elled has changed is not taken into account. Following the
investigations of the Lisbon group of researchers (Alfereset
al. 1998; 2000; Leite 2003), a common feature of most up-
date approaches is to consider a sequenceP1, P2, . . . , Pn

of programs where eachPi is a logic program. ForPi, Pj ,
i > j, the intuition is thatPi has higher priority or prece-
dence. Given such a sequence, a set of answer sets is deter-
mined that in some sense respects the ordering. This may be
done by translating the sequence into a “flat” logic program
that contains an encoding of the priorities, or by treating the
sequence as a prioritised logic program, or by some other
appropriate method. The net result, one way or another, is to
obtain a set of answer sets from such a program sequence,
and not a single new program expressed in the language of
the original logic programs. Hence, these approaches fall
outside the general AGM belief revision paradigm.

However, various principles have been proposed for such
approaches to logic program update. In particular, Eiter et
al. (2002) consider the question of what principles the up-
date of logic programs should satisfy. This is done by re-
interpreting different AGM-style postulates for revisingor
updating classic knowledge bases, as well as introducing
new principles. Among the latter, let us note the following:

Initialisation: ∅ ∗ P ≡ P .

Idempotency: (P ∗ P) ≡ P .

Tautology: If Q is tautologous, thenP ∗Q ≡ P .

Absorption: If Q = R, then((P ∗Q) ∗R) ≡ (P ∗Q).

Augmentation: If Q ⊆ R, then((P ∗Q) ∗R) ≡ (P ∗R).

In view of the failure of several of the discussed postulates
in the approach of Eiter et al. (2002) (as well as in others),
Osorio and Cuevas (2007) noted that for re-interpreting the
standard AGM postulates in the context of logic programs,
the logic underlying strong equivalence should be adopted.
Since they studied programs with strong negation, in their
case this logic isN2, an extension of HT by allowing strong
negation.3 They also introduced a new principle, which they
calledweak independence of syntax(WIS), which they pro-
posed any update operator should satisfy:

WIS: If Q ≡s R, then(P ∗Q) ≡ (P ∗R).

Indeed, following this spirit, the above absorption and
augmentation principles can be accordingly changed by re-
placing their antecedents by “Q ≡s R” and “Q ⊆s R”,
respectively. We note that the WIS principle was also dis-
cussed in an update approach based onabductive programs
(Zacarı́as et al. 2005).

3
N2 itself traces back to an extension of intuitionist logic with

strong negation first studied by Nelson (1949).

Turning our attention to the few works onrevision of
logic programs, early work in this direction includes a se-
ries of investigations dealing with restoring consistencyfor
programs possessing no answer sets (cf., e.g., Witteveen,
van der Hoek, and de Nivelle (1994)). Other work uses
logic programs under a variant of the stable semantics to
specify database revision, i.e., the revision of knowledge
bases given as sets of atomic facts (Marek and Truszczyński
1998). Finally, an approach following the spirit of AGM
revision is discussed by Kudo and Murai (2004). In their
work, they deal with the question of constructing revisions
of formP ∗A, whereP is an extended logic program andA
is a conjunction of literals. They give a procedural algorithm
to construct the revised programs; however no properties are
analysed.

Belief Change in ASP based on SE Models
In AGM belief change, an agent’s beliefs may be abstractly
characterised in various different ways. In the classical
AGM approach an agent’s beliefs are given by abelief set, or
deductively-closed set of sentences. As well, an agent’s be-
liefs may also be characterised abstractly by a set of interpre-
tations orpossible worlds; these would correspond to mod-
els of the agent’s beliefs. Last, as proposed in the Katsuno-
Mendelzon formulation, and given the assumption of a finite
language, an agent’s beliefs can be specified by a formula.
Given a finite language, it is straightforward to translate be-
tween these representations.

In ASP, there are notions analogous to the above for spec-
ifying an agent’s beliefs. Though we do not get into it here,
the notion ofstrong equivalenceof logic programs can be
employed to define a (logic program) belief set. Indeed,
SE modelscharacterise a class of equivalent logic programs.
Hence the set of SE models of a program can be considered
as thepropositionexpressed by the program. Continuing
this analogy, a specific logic program can be considered to
correspond to a formula or set of formulas in classical logic.

Belief Expansion in Logic Programs Belief expansionis
a belief change operator that is much more basic than revi-
sion or contraction, and in a certain sense isprior to revision
and contraction (since in the AGM approach revision and
contraction postulates make reference to expansion). Hence
it is of interest to examine expansion from the point of view
of logic programs. As well, it proves to be the case that ex-
pansion in logic programs is of interest in its own right.

The next definition corresponds model-theoretically with
the usual definition of expansion in AGM belief change.

Definition 1 For logic programsP andQ, define theexpan-
sionof P andQ, P +Q, to be a logic programR such that
SE(R) = SE (P) ∩ SE (Q).

For illustration, consider the following examples:4

1. {p←}+ {⊥ ← p} has no SE models.

2. {p← q}+ {⊥ ← p} has SE model(∅, ∅).

4Unless otherwise noted, we assume that the language of dis-
course in each example consists of just the atoms mentioned.

3. {p←}+ {q ← p} ≡s {p←}+ {q ←} ≡s {p←, q ←}.

4. {p← ∼q}+ {q ← ∼p} ≡s

{

p← ∼q
q ← ∼p

}

.

5.

{

p← ∼q
q ← ∼p

}

+ {p← q} ≡s

{

p← q
p← ∼q

}

.

6.

{

p← ∼q
q ← ∼p

}

+ {p; q ←} ≡s {p; q ←}.

7. {p; q ←}+ {⊥ ← q} ≡s

{

p←
⊥← q

}

.

8. {p; q ←}+ {⊥ ← p, q} ≡s

{

p; q←
⊥← p, q

}

.

Belief expansion has desirable properties. The following
all follow straightforwardly from the definition of expansion
with respect to SE models.

Theorem 1 LetP andQ be logic programs. Then:

1. P +Q is a logic program(belief set).
2. P +Q ⊆s P .
3. If P ⊆s Q, thenP +Q ≡s P .
4. If P ⊆s Q, thenP +R ⊆s Q+R.
5. If SE (P) andSE (Q) are defined, then so isSE (P +Q).
6. If SE (P) andSE (Q) are complete, then so isSE(P+Q).
7. IfQ ≡s ∅, thenP +Q ≡s P .

While these results are indeed elementary, following as they
do from the monotonicity of the SE interpretations frame-
work, they are still of interest. Notably, virtually every pre-
vious approach to updating logic programs has trouble with
the last property, expressing atautologypostulate. Here, ex-
pansion by a tautologous program presents no problem, as
it corresponds to an intersection with the set of all SE in-
terpretations. We note also that the other principles men-
tioned earlier—initialisation, idempotency, absorption, and
augmentation—are trivially satisfied by expansion.

In classical logic, the expansion of two formulas can be
given in terms of the intersection of their models. It should
be clear from the preceding that the appropriate notion of
the set of “models” of a logic program is given by a set
of SE models, and not by a set of answer sets. Hence,
there is no natural notion of expansion that is given in
terms of answer sets. For instance, in Example 3, we have
AS({p ←}) = {{p}} andAS ({q ← p}) = {∅} while
AS({p ←, q ← p}) = {{p, q}}. Likewise, in Exam-
ple 4, the intersection ofAS({{p ← ∼q}}) = {{p}} and
AS({{q ← ∼p}}) = {{q}} is empty, whereasAS({p ←
∼q, q ← ∼p}) = {{p}, {q}}.

Belief Revision We next turn to a specific operator for be-
lief revision. As discussed earlier, for a revisionP ∗ Q, we
suggest that the most natural distance-based notion of revi-
sion for logic programs uses set containment as the appro-
priate means of relating SE interpretations. Hence,P ∗Q is a
logic program whose SE models are a subset of the SE mod-
els ofQ, comprising just those models ofQ that are closest
to those ofP . We note however thatanyreasonable notion

of distance will do, for example an operator defined in terms
of a cardinality-based distance measure.

We extend the definition of symmetric difference
so that it can be used with SE interpretations: If
(X1, X2) and (Y1, Y2) are two SE interpretations, then
(X1, X2)△(Y1, Y2) is defined as follows:

(X1, X2)△(Y1, Y2) = (X1△Y1, X2△Y2)
= ((X1 \ Y1) ∪ (Y1 \X1), (X2 \ Y2) ∪ (Y2 \X2)).

Similarly, (X1, X2) ⊆ (Y1, Y2) iff X1 ⊆ Y1 andX2 ⊆ Y2,
and moreover,(X1, X2) ⊂ (Y1, Y2) iff (X1, X2) ⊆ (Y1, Y2)
and eitherX1 ⊂ Y1 orX2 ⊂ Y2.

Given this, we next define, for two setsE1, E2 of inter-
pretations, the subset ofE1 that is closest toE2, where the
notion of “closest” is given in terms of symmetric difference.

Definition 2 Let E1, E2 be two sets of either classical or
SE interpretations. Then:

σ(E1, E2) = {A ∈ E1 | ∃B ∈ E2 such that

∀A′ ∈ E1, ∀B′ ∈ E2, A
′∆B′ 6⊂ A∆B}.

It might seem that we could now define the SE models
of P ∗ Q to be given byσ(SE (Q),SE (P)). However, for
our revision operator to be meaningful, it must also pro-
duce awell-definedset of SE models. Unfortunately, it
proves to be the case that Definition 2 does not preserve
well-definedness. For an example, considerP = {⊥ ← p}
andQ = {p ← ∼p}. Then, SE (P) = {(∅, ∅)} and
SE(Q) = {(∅, p), (p, p)}, and soσ(SE (Q),SE (P)) =
{(∅, p)}. However{(∅, p)} is not well-defined.

The problem is that for programsP andQ, there may be
an SE model(X,Y) of Q with X ⊂ Y such that(X,Y) ∈
σ(SE (Q),SE (P)) but (Y, Y) 6∈ σ(SE (Q),SE (P)).
Hence, in definingP ∗ Q in terms ofσ(SE (Q),SE (P)),
we must modify the setσ(SE (Q),SE (P)) in some fashion
to obtain a well-defined set of models.

In view of this, our approach is based on the following
idea to obtain a well-defined set of models ofP ∗ Q based
on our notion of distance given inσ:

1. Determine the “closest” models ofQ toP of form (Y, Y).

2. Determine the “closest” models ofQ toP limited to mod-
els(X,Y) of Q where(Y, Y) was found in the first step.

Thus, we give preference to potential answer sets, in the
form of models(Y, Y), and then to general models.

Definition 3 For logic programsP andQ, define therevi-
sionofP byQ, P ∗Q, to be a logic program such that:

if SE (P) = ∅, thenSE (P ∗Q) = SE (Q);

otherwise

SE (P ∗Q) = {(X,Y) | Y ∈ σ(Mod(Q),Mod(P))

and ifX ⊂ Y then (X,Y) ∈ σ(SE (Q),SE (P))}.

As is apparent,SE (P ∗ Q) is well-defined, and thus is rep-
resentable through a canonical logic program. Furthermore,
over classical models, the definition of revision reduces to
Satoh revision. As we show below, the result of revisingP
byQ is identical to that of expandingP by Q wheneverP

andQ possess common SE models. Hence, all previous ex-
amples of expansions (when the result is non-empty) are also
valid program revisions. We have the following examples of
revision that do not reduce to expansion.5

1. {p← ∼p} ∗ {⊥ ← p} ≡s {⊥ ← p}.
Over the language{p, q}, ⊥ ← p has SE models(∅, ∅),
(∅, q), and(q, q).

2.

{

p←
q←

}

∗ {⊥ ← q} ≡s

{

p←
⊥← q

}

.

The first program has a single SE model,(pq, pq), while
the second has three,(∅, ∅), (∅, p), and (p, p). Among
the latter,(p, p) has the least pairwise symmetric differ-
ence to(pq, pq). The program induced by the singleton
set{(p, p)} of SE models is{p←, ⊥ ← q}.

3.

{

p←
q←

}

∗ {⊥ ← p, q} ≡s

{

p; q←
⊥← p, q

}

.

Thus, if one originally believes thatp andq are true, and
revises by the fact that one is false, then the result is that
precisely one ofp, q is true.

4.

{

⊥← ∼p
⊥← ∼q

}

∗ {⊥ ← p, q} ≡s

{

⊥←∼p,∼q
⊥← p, q

}

.

Observe that the classical models in the programs here
are exactly the same as above. This example shows that
the use of SE models provides finer “granularity” com-
pared to using classical models of programs together with
known revision techniques.

5.

{

⊥← p
⊥← q

}

∗ {p; q ←} ≡s

{

p; q←
⊥← p, q

}

.

We next rephrase the Katsuno-Mendelzon postulates for
belief revision. Here,∗ is a function from ordered pairs of
logic programs to logic programs.

RA1: P ∗Q ⊆s Q.

RA2: If P +Q is satisfiable, thenP ∗Q ≡s P +Q.

RA3: If Q is satisfiable, thenP ∗Q is satisfiable.

RA4: If P1≡sP2 andQ1≡sQ2, thenP1 ∗Q1≡sP2 ∗Q2.

RA5: (P ∗Q) +R ⊆s P ∗ (Q+R).

RA6: If (P ∗ Q) + R is satisfiable, thenP ∗ (Q + R) ⊆s

(P ∗Q) +R.

We obtain that logic program revision as given in Defini-
tion 3 satisfies the first five of the revision postulates.6

Theorem 2 The logic program revision operator∗ from
Definition 3 satisfies postulates RA1 – RA5.

That our revision operator does not satisfy RA6 can be
seen by the following example: Consider

P = {p;∼p, q ← p, r ← p, s← p, ⊥ ← ∼p, q,

⊥ ← ∼p, r, ⊥ ← ∼p, s},

Q = {p; r, ⊥ ← q, ⊥ ← p, r, ⊥ ← p, s, s;∼s← r},

R = {p; r, ⊥ ← q, ⊥ ← p, r, ⊥ ← p, s, s← r}.

5Note that{p← ∼p} has SE models but no answer sets.
6We note in passing that this is analogous to set-containment

based approaches in propositional logic.

Straightforward computations show that

SE (P ∗ (Q+R)) = {(rs, rs), (p, p)} while

SE ((P ∗Q) +R) = {(p, p)}.

So,P ∗(Q+R) 6⊆s (P ∗Q)+R. SinceSE ((P ∗Q)+R) 6= ∅,
this shows that RA6 indeed fails.

Last, we have the following result concerning other prin-
ciples for updating logic programs listed earlier:

Theorem 3 LetP andQ be logic programs. Then,P ∗ Q
satisfies initialisation, idempotency, tautology, and absorp-
tion with respect to strong equivalence.

Augmentation however does not hold, nor would one
expect it to hold in a distance-based approach. For ex-
ample, consider the case whereP , Q, andR are charac-
terised by modelsSE (P) = {(a, a), (ab, ab)}, SE (Q) =
{(ab, ab), (ac, ac), (b, b)}, andSE (R) = {(ac, ac), (b, b)}.
ThusSE(R) ⊆ SE (Q) and soQ ⊆ R for the underlying
programs. We obtain thatSE (P ∗ Q) = SE (P + Q) =
{(ab, ab)}, and thusSE ((P ∗Q) ∗R) = {(b, b)}. However
SE(P ∗R) = {(b, b), (c, c)}, contradicting augmentation.

Definition 3 is certainly not the only possibility to con-
struct a revision operator. Let us now briefly discuss an al-
ternative definition for revision.

Definition 4 For logic programsP andQ, define theweak
revisionofP byQ to be a logic programP ∗w Q such that:

if SE (P) = ∅, thenSE (P ∗w Q) = SE (Q);

otherwise

SE(P ∗w Q) = σ(SE (Q),SE (P))∪

{(Y, Y) | ∃X s.t. (X,Y) ∈ σ(SE (Q),SE (P))}.

The main drawback to this approach is that it introduces
possibly irrelevant interpretations in order to obtain well-
definedness. As well, Definition 3 appears to be the more
natural. Consider the following example, which also serves
to distinguish Definition 3 from Definition 4. Let

P = {⊥ ← p, ⊥ ← q, ⊥ ← r},

Q = { r, p← q, p← ∼q }.

Then, we get the following SE-models:

SE (P) = {(∅, ∅)},

SE (Q) = {(r, pqr), (pr, pr), (pr, pqr), (pqr, pqr)},

and

SE (P ∗Q) = {(pr, pr)},

SE (P ∗w Q) = SE (Q) \ {(pr, pqr)}.

Consequently,P ∗Q is given by the program{p,⊥ ← q, r}.
Thus, in this example,P ∗ Q gives the desired result, pre-
serving the falsity ofq fromP , while incorporating the truth
of r and p from Q. This then reflects the assumption of
minimal change to the program being revised, in this case
P . P ∗w Q on the other hand represents a very cautious
approach to program revision.

Finally, we have that our definition of revision is strictly
stronger than the alternative given by∗w:

Theorem 4 Let P andQ be programs. Then,P ∗ Q ⊆s

P ∗w Q.

For completeness, let us mention that enforcing well-
definedness by simply determine the “closest” models ofQ
to P of form (Y, Y) is inadequate. For our motivating ex-
ample, we would obtainSE ({p ← ∼p} ∗ {⊥ ← p}) = ∅,
violating the key postulate RA3, that the result of revising
by a satisfiable program results in a satisfiable revision.

Computational Aspects
Complexity Analysis We first consider the worst-case
complexity of our approach to revision. The standard deci-
sion problem for revision in classical logic is: Given formu-
lasP ,Q,R, doesP ∗Q entailR? Eiter and Gottlob (1992)
showed that approaches to classical propositional revision
areΠP

2 -complete. The next result shows that this property
carries over to our approach for program revision.

Theorem 5 Deciding whetherP ∗Q ⊆s R holds, for given
GLPsP , Q, R, is ΠP

2 -complete. Moreover, hardness holds
already forP being a set of facts,Q being positive or nor-
mal, andR being a single fact.

Although we do not show it here, we mention that the same
results holds for the cautious revision operator∗w.

Computing Revision via ASP It is not difficult to come
up with an algorithm implementing our approaches to ex-
pansion and revision: given programsP andQ, the set of SE
models of each can be generated straightforwardly (Turner
2003). The resulting SE models for expansion or revision
can be determined by an appropriate implementation of Def-
inition 1 or 3. Then, given the resulting set of SE models,
a corresponding GLP can be determined as detailed in the
section on canonical programs in the background section

Rather, our interest now is to consider the question of
computing revisions more abstractly. We address the fol-
lowing issue: Can we find an encoding schemaS such that
for any programP ,Q, there is a one-to-one correspondence
between the answer sets of the programS[P,Q] and ele-
ments inSE (P ∗ Q)? By our complexity result, efficient
construction ofS[P,Q], givenP , Q, is possible, although
disjunction is required inS[P,Q].

It is well known how classical models or SE models can
be characterized by means of answer sets (see, e.g., Eiter et
al. (2004)). However, the encodings of the checks for con-
tainment inσ(·, ·) are a bit cumbersome. Therefore, instead
of a full formal proof, we introduceS[P,Q] step-by-step and
describe the functioning of the different parts in some detail.
Basically, the programs follows the argumentation used in
the membership part of the proof of Theorem 5.

In what follows, we make use of the universeA, but men-
tion that forS[P,Q], A can always be set tovar (P ∪ Q).
Moreover, we need to make several copies ofA: Therefore,
for j ∈ {1 . . . 5} andw ∈ {h, t}, denote byAj

w the set
{aj

w | a ∈ A}, and byĀj
w the set{āj

w | a ∈ A}. All these
new atoms are mutually distinct. The role of these sets in the
subsequent encoding is that, for eachj,Aj

h together withAj
t

are used to guess two setsX (viaAj
h) andY (viaAj

t) which

are then checked for being an SE model(X,Y) and for fur-
ther properties. The sets̄Aj

h andĀj
t are used to support the

guess as usual. The superscriptj will allow us to deal with
several SE interpretations at once in a single program.

We also need a corresponding renaming schema for the
rules from the original programsP andQ. In what follows,
rj
w denotes the ruler after replacing each atoma by aj

w.
Accordingly,r̄j

w replaces atomsa by āj
w.

Finally, to link arbitrary interpretations overI ⊆
⋃

j A
j
h∪

Aj
t back to SE interpretations overA, we use the follow-

ing mappings: For an interpretationI and an indexj, let
πj(I) = {(X,Y) | X,Y ⊆ A, Xj

h = I∩Aj
h, Y

j
t = I∩Aj

t},
and, for a setI of interpretations, letΠj(I) =

⋃

I∈I π
j(I).

We define a first module as follows:

M [P, j] = {aj
w; āj

w ←, ⊥ ← aj
w, ā

j
w, ⊥ ← aj

h, ā
j
t |

a ∈ A, w ∈ {h, t}} ∪

{⊥ ← H+(r̄j
t), H

−(rj
t), B

+(rj
t), B

−(r̄j
t),

⊥ ← H+(r̄j
h), H−(rj

t), B
+(rj

h), B−(r̄j
t) | r ∈ P}.

Then, we have for any programP and any indexj,
Πj(AS(M [P, j])) = SE (P).

To avoid a additional modules for classical models, we
will sometimes use SE-models(U, V) where only theV -
part comes into play. Our goal is now to filter those
(X1, Y1) ∈ SE (Q), such that(X1, Y1) ∈ SE (P ∗ Q).
To this end, we first compute all possible combinations
(X1, Y1) ∈ SE (Q), (X2, Y2) ∈ SE (P), and(X3, Y3) ∈
SE(P) (via M [Q, 1], M [P, 2], M [P, 3]) and then check:
(i) whether for each further pairs of SE models(X4, Y4) ∈
SE(Q), (X5, Y5) ∈ SE (P), it holds thatY4△Y5 6⊂ Y1△Y2

and(X4, Y4)△(X5, Y5) 6⊂ (X1, Y1)△(X3, Y3) (this is just
along the lines of Definition 3). Our second module is
used to guess such further pairs(X4, Y4) ∈ SE (Q) and
(X5, Y5) ∈ SE (P). However, compared toM [P, j] we now
use a spoiling technique rather than constraints, to exclude
SE interpretations which are not SE models of the respec-
tive program. This spoiling technique is important in the
final program, which has to ensure that no such further pair
(X4, Y4), (X5, Y5) exists, which satisfyY4△Y5 ⊂ Y1△Y2

or (X4, Y4)△(X5, Y5) ⊂ (X1, Y1)△(X3, Y3).
We use the same renaming concepts as before plus a fur-

ther new atomz, and define:

N [P, j] = {aj
w; āj

w ←, z ← aj
w, ā

j
w, a

j
w ← z, āj

w ← z,

z ← aj
h, ā

j
t | a ∈ A, w ∈ {h, t}}∪

{⊥ ← H+(r̄j
t), H

−(rj
t), B

+(rj
t), B

−(r̄j
t),

⊥ ← H+(r̄j
h), H−(rj

t), B
+(rj

h), B−(r̄j
t) | r ∈ P}}.

Instead of answer sets we investigate the classical mod-
els ofN [P, j] (overvar (N [P, j])): First, we have that the
spoiled interpretationOj = {z} ∪

⋃

w∈{h,t}A
j
w is a model

of N [P, j]. The remaining models are in relation to the SE
models again, i.e.,Πj(Mod(N [P, j]) \Oj) = SE (P).

We need two final modules to compare (i)Y4△Y5 with
Y1△Y2; (ii) (X4, Y4)△(X5, Y5) with (X1, Y1)△(X3, Y3).
Let us first give the comparison module for (i): The basic

idea hereby is as follows: IfY4△Y5 6⊂ Y1△Y2 holds, we
derive the dedicated atomz, already used in modulesN [·, ·]:

C1 = { z ← a1
t , a

2
t , a

4
t , ā

5
t , z ← a1

t , a
2
t , ā

4
t , a

5
t ,

z ← ā1
t , ā

2
t , a

4
t , ā

5
t , z ← ā1

t , ā
2
t , ā

4
t , a

5
t ,

aδ
t ← a1

t , ā
2
t , a

4
t , ā

5
t , a

δ
t ← ā1

t , a
2
t , a

4
t , ā

5
t ,

aδ
t ← a1

t , ā
2
t , ā

4
t , a

5
t , a

δ
t ← ā1

t , a
2
t , ā

4
t , a

5
t ,

aδ
t ← a1

t , a
2
t , a

4
t , a

5
t , a

δ
t ← a1

t , a
2
t , ā

4
t , ā

5
t ,

aδ
t ← ā1

t , ā
2
t , a

4
t , a

5
t , a

δ
t ← ā1

t , ā
2
t , ā

4
t , ā

5
t | a ∈ A}

∪ { z ← Aδ
t },

whereAδ
t is a set of new atoms. The appearance of setAδ

t

in a rule body stands for the sequence of all its elements.
The second comparison moduleC2 is obtained fromC1

as follows: replace each atoma2
t (resp.,ā2

t) by a3
t (resp.,

ā3
t); make a copy of each rule exceptz ← Aδ

t and exchange
in the copy each subscriptt by h; finally, replacez ← Aδ

t

by z ← Aδ
h,A

δ
t .

Now it can be observed thatz is derived for a guess
of (X4, Y4), (X5, Y4) if neither Y4△Y5 ⊂ Y1△Y2 nor
(X4, Y4)△(X5, Y5) ⊂ (X1, Y1)△(X3, Y3). If this is the
case for all such guesses, we get that(X1, Y1) ∈ SE (P ∗Q)
and thus the corresponding answer-set should survive. On
the other hand if some guess does not requirew to be in the
model, the corresponding answer set for(X1, Y1) should not
survive. Thanks to the spoiling technique, this behaviour is
exactly matched by adding a single constraint⊥ ← ∼z.
Thus, we put our modules as follows together

S[P,Q] = M [Q, 1] ∪M [P, 2] ∪M [P, 3] ∪N [Q, 4] ∪

N [P, 5] ∪ C1 ∪ C2 ∪ {⊥ ← ∼z}

and obtain as result:

Theorem 6 For all programsP and Q, SE (P ∗ Q) =
Π1(AS(S[P,Q])).

Discussion
We have addressed the problem of belief revision in logic
programming under the answer set semantics. Our approach
is based on a monotonic characterisation of logic programs,
given in terms of the set of SE models of a program. Based
on the latter, we defined and examined operators for logic
program expansion and revision. As well as giving prop-
erties of these operators, we also considered the complex-
ity and an encoding scheme for revision. This work is
novel, in that it addresses belief change in terms famil-
iar to researchers in belief revision: expansion is charac-
terised in terms of intersections of models, and revision is
characterized in terms of minimal distance between mod-
els. While we considered set-containment-based revision
here, cardinality-based revision can be defined also. In fu-
ture work we will consider more general notions of distance;
as well we will separately address the issue of general char-
acterisations and representation results for logic programs,
again via SE models and the logic of here and there.

We finally note that previous work on logic program revi-
sion was formulated at the level of the individual program,

and not in terms of an abstract characterisation (via strong
equivalence or sets of SE interpretations). The net result is
that such previous work is generally difficult to work with:
properties are difficult to come by, and often desirable prop-
erties (such astautology) are lacking. The main point of
departure for the current approach then is to lift the problem
of logic program revision from the program (or syntactic)
level to an abstract (or semantic) level.

Appendix
Proof of Theorem 1
Most of the parts follow immediately from the fact that
SE(P +Q) = SE (P) ∩ SE (Q).

1. We need to show that Definition 1 results in a well-defined
set of SE models.
ForSE (P)∩ SE (Q) = ∅ we have that∅ is trivially well-
defined (andR can be given by⊥ ←).
Otherwise, forSE (P)∩SE (Q) 6= ∅, we have the follow-
ing: If (X,Y) ∈ SE (P)∩SE (Q), then(X,Y) ∈ SE (P)
and (X,Y) ∈ SE (Q); whence(Y, Y) ∈ SE (P) and
(Y, Y) ∈ SE (Q) since SE (P) and SE (Q) are well-
defined by virtue ofP and Q being logic programs.
Hence,(Y, Y) ∈ SE (P) ∩ SE (Q). Since this holds
for arbitrary (X,Y) ∈ SE (P) ∩ SE (Q) we have that
SE (P) ∩ SE (Q) is well-defined.

2. Immediate from the definition of+.

3. If P ⊆s Q, thenSE (P) ⊆ SE (Q). Hence,SE (P) ∩
SE (Q) = SE (P), orP +Q ≡s P .

4. Similar to the previous part.

5. This was established in the first part.

6. To show completeness, we need to show that for any
(X,Y) ∈ SE (P+Q) and(Y ∪Y ′, Y ∪Y ′) ∈ SE (P+Q)
that(X,Y ∪ Y ′) ∈ SE (P +Q).
If (X,Y) ∈ SE (P + Q) and (Y ∪ Y ′, Y ∪ Y ′) ∈
SE (P + Q), then(X,Y) ∈ SE (P) ∩ SE (Q) and(Y ∪
Y ′, Y ∪Y ′) ∈ SE (P)∩SE (Q). Hence,(X,Y) ∈ SE (P)
and(Y ∪ Y ′, Y ∪ Y ′) ∈ SE (P), and so, sinceSE (P) is
complete by assumption, we have(X,Y ∪Y ′) ∈ SE (P).
The same argument gives that(X,Y ∪ Y ′) ∈ SE (Q),
whence(X,Y ∪ Y ′) ∈ SE (P) ∩ SE (Q) and (X,Y ∪
Y ′) ∈ SE (P +Q).

7. If Q ≡s ∅, thenSE (Q) = {(X,Y) | X ⊆ Y ⊆ A} from
which the result follows immediately.2

Proof of Theorem 2
RA1: This postulate follows immediately from Defini-

tion 3. Note that(X,Y) ∈ SE (P ∗ Q) only if
Y ∈ σ(Mod(Q),Mod(P)), and therefore(Y, Y) ∈
σ(SE (Q),SE (P)). So,SE (P ∗Q) is well-defined.

RA2: If P +Q is satisfiable, thenσ(Mod(Q),Mod(P)) 6=
∅ andσ(SE (Q),SE (P)) 6= ∅.
Further, forY ∈ Mod(Q) (or (X,Y) ∈ SE (Q)) we have
that there isY ′ ∈ Mod(P) (resp.,(X ′, Y ′) ∈ SE (P))
such thatY∆Y ′ = ∅ ((X,Y)∆(X ′, Y ′) = ∅), from
which our result follows.

RA3: From Definition 3 we have that, ifP is unsatisfiable,
thenQ is satisfiable iffP ∗Q is satisfiable.
Otherwise, ifP is satisfiable andQ is satisfiable, then
there is some(Y, Y) ∈ σ(Mod (Q),Mod(P)) (since
SE (Q) is well-defined and given Definition 2). Hence,
SE (P ∗Q) 6= ∅.

RA4: Immediate from Definition 3.

RA5: If SE (P) = ∅, then the result follows immediately
from the first part of Definition 3.
Otherwise, we show that, if(X,Y) is an SE model of
(P ∗Q)+R, then(X,Y) is an SE model ofP ∗ (Q+R).
Let (X,Y) ∈ SE ((P ∗Q)+R). Then,(X,Y) ∈ SE (P ∗
Q) and(X,Y) ∈ SE (R). Since(X,Y) ∈ SE (P ∗ Q),
by RA1 we have that(X,Y) ∈ SE (Q), and so(X,Y) ∈
SE (Q) ∩ SE (R), or (X,Y) ∈ SE (Q+R).
There are two cases to consider:

X = Y : Since(X,Y) = (Y, Y) ∈ SE (P ∗Q), we have
thatY ∈ σ(Mod(Q),Mod(P)). Hence, from Defini-
tion 2,Y ∈ Mod(Q) and there is someY ′ ∈ Mod(P)
such that there is noY1 ∈ Mod(Q) and noY2 ∈
Mod(P) such thatY1∆Y2 ⊂ Y∆Y ′.
We established at the outset that(X,Y) ∈ SE (Q+R).
Hence,Y ∈ Mod(Q + R). This gives us thatY ∈
Mod(Q + R) and there is someY ′ ∈ Mod(P) such
that noY1, Y2 exist withY1 ∈ Mod(Q), Y2 ∈ Mod(P),
andY1∆Y2 ⊂ Y∆Y ′.
Clearly, in the above, if there is noY1 ∈ Mod(Q) such
that the above condition holds, then there is noY1 ∈
Mod(Q+R) such that the above condition holds.
Thus, we haveY ∈ Mod(Q + R) and there is some
Y ′ ∈ Mod(P) for which noY1 ∈ Mod(Q+R) and no
Y2 ∈ Mod(P) exists such thatY1∆Y2 ⊂ Y∆Y ′.
Thus, from Definition 2, we getY ∈ σ(Mod(Q +
R),Mod(P)), hence(Y, Y) ∈ SE(P ∗ (Q+R)).

X ⊂ Y : We haveY ∈ σ(Mod (Q),Mod(P)) by virtue
of (X,Y) ∈ SE (P ∗Q). In the previous part we estab-
lished thatY ∈ σ(Mod(Q+R),Mod(P)).
As well, (X,Y) ∈ σ(SE (Q),SE (P)) since(X,Y) ∈
SE (P ∗Q). Thus, from Definition 2, we have that there
is some(X ′, Y ′) ∈ SE (P) such that noU, V, U ′, V ′

exist such that(U, V) ∈ SE (Q), (U ′, V ′) ∈ SE (P),
and(U, V)∆(U ′, V ′) ⊂ (X,Y)∆(X ′, Y ′).
Therefore, there is no(U, V) ∈ SE (Q + R) and
no (U ′, V ′) ∈ SE (P) such that(U, V)∆(U ′, V ′) ⊂
(X,Y)∆(X ′, Y ′).
We previously showed that(X,Y) ∈ SE (Q+R). Con-
sequently, from Definition 3, we obtain that(X,Y) ∈
σ(SE (Q + R),SE (P)). Hence,(X,Y) ∈ SE (P ∗
(Q+R)).

Thus, in either case, we get(X,Y) ∈ SE (P ∗ (Q+R)),
which was to be shown.2

Proof of Theorem 3
For initialisation, idempotency, and tautology, in the left-
hand side of the given equivalence, revision corresponds
with expansion via RA2, from which the result is immediate.

For absorption, we haveQ = R, and so((P ∗Q) ∗R) =
((P ∗ Q) ∗ Q). SinceSE (P ∗ Q) ⊆ SE (Q), then from
Theorem 1, Part 3, we have that(P ∗Q) +Q ≡s P ∗Q. As
well, ((P ∗Q)∗Q) = ((P ∗Q)+Q), from which our result
follows. 2

Proof of Theorem 4
We need to show thatSE (P ∗ Q) ⊆ SE (P ∗w Q). If
SE(P) = ∅, thenSE (P ∗Q) = SE (Q) = SE (P ∗w Q).

Otherwise, there are two cases to consider:

1. (X,Y) ∈ SE (P ∗ Q) whereX ⊂ Y . Then,(X,Y) ∈
σ(SE (P),SE (Q)) by Definition 3, and (X,Y) ∈
SE (P ∗w Q) by Definition 4.

2. (Y, Y) ∈ SE (P ∗ Q). From Definition 3, we have that
Y ∈ σ(Mod (Q),Mod(P)). Y ∈ σ(Mod (Q),Mod(P))
implies that(Y, Y) ∈ σ(SE (Q),SE (P)). Hence, accord-
ing to Definition 4,(Y, Y) ∈ SE (P ∗w Q).

Therefore,(X,Y) ∈ SE (P ∗ Q) implies that(X,Y) ∈
SE(P ∗w Q), whenceSE (P ∗Q) ⊆ SE (P ∗w Q). 2

Proof of Theorem 5
Since we deal with a globally fixed language, we first need
a few lemmata.

Lemma 1 Let P,Q be programs,Y an interpretation, and
x ∈ Y \ var(P ∪ Q). ThenY ∈ σ(Mod (Q),Mod(P))
impliesY \ {x} ∈ σ(Mod(Q),Mod(P)).

Proof. SinceY ∈ σ(Mod(Q),Mod(P)), soY ∈ Mod(Q)
and there existsZ ∈ Mod(P), such that for each
Y ′ ∈ Mod(Q) andZ ′ ∈ Mod(P), Y ′△Z ′ 6⊂ Y△Z. We
show thatx ∈ Z holds. Suppose this is not the case: Then,
we havex ∈ Y△Z, sincex ∈ Y . Now, sincex /∈ var (P),
alsoZ ∪ {x} ∈ Mod(P). But thenx /∈ Y△(Z ∪ {x})
which yieldsY△(Z ∪ {x}) ⊂ Y△Z, a contradiction to
our assumption. Hence, we can supposex ∈ Z. Now
sinceY ∈ Mod(Q) obviously Y \ {x} ∈ Mod(Q) as
well. We obtainY△Z = (Y \ {x})△(Z \ {x}), thus
Y \ {x} ∈ σ(Mod (Q),Mod(P)) holds. 2

Lemma 2 Let P,Q be programs, (X,Y) an SE-
interpretation, and x ∈ Y \ var (P ∪ Q). Then
(X,Y) ∈ σ(SE (Q),SE (P)) implies(X \ {x}, Y \ {x}) ∈
σ(SE (Q),SE (P)).

Proof. Since (X,Y) ∈ σ(SE (Q),SE (P)),
(X,Y) ∈ SE (Q) and there exists a(U,Z) ∈ SE (P),
such that for each(X ′, Y ′) ∈ SE (Q) and each
(U ′, Z ′) ∈ SE (P), (X ′, Y ′)△(U ′, Z ′) 6⊂ (X,Y)△(U,Z).
We show that the following relations hold: (1)x ∈ Z,
(2) x ∈ U iff x ∈ X . Towards a contradiction, First
supposex /∈ Z. Then, we havex ∈ Y△Z, sincex ∈ Y .
Now, sincex /∈ var(P), also(U,Z ∪ {x}) ∈ SE (P) and
(U ∪ {x}, Z ∪ {x}) ∈ SE (P). We havex /∈ Y△(Z ∪ {x})
which yields Y△(Z ∪ {x}) ⊂ Y△Z. Thus
(X,Y)△(U,Z ∪ {x}) ⊂ (X,Y)△(U,Z), which would be
a contradiction to the assumption. Hence, we can suppose
x ∈ Z. If (2) does not hold, we getx ∈ X△U . Now in
casex ∈ X andx /∈ U , we have(X,Y)△(U ∪ {x}, Z) ⊂

(X,Y)△(U,Z). In casex ∈ U and x /∈ X , we have
(X,Y)△(U \ {x}, Z) ⊂ (X,Y)△(U,Z). Again both
cases yield a contradiction. Clearly,(X,Y) ∈ SE (Q)
implies (X \ {x}, Y \ {x}) ∈ SE (Q) and we obtain
(X,Y)△(U,Z) = (X \{x}, Y \{x})△(U \{x}, Z \{x}).
(X \ {x}, Y \ {x}) ∈ σ(SE (Q),SE (P)) thus follows. 2

Lemma 3 For any programsP ,Q,R, P ∗Q 6⊆s R iff there
existX ⊆ Y ⊆ var(P ∪Q∪R) such that(X,Y) ∈ SE (P ∗
Q) and(X,Y) /∈ SE (R).

Proof. The if-direction is by definition.
As for the only-if direction, sinceP ∗ Q 6⊆s R, there

exists a pair(X,Y) such that(X,Y) ∈ SE (P ∗ Q)
and (X,Y) /∈ SE (R). Let V = var (P ∪ Q ∪ R).
We first show that(X ∩ V, Y ∩ Y) ∈ SE (P ∗ Q).
By definition, (X,Y) ∈ SE (Q). If SE (P) = ∅,
SE (P ∗ Q) = SE (Q), and since(X,Y) ∈ SE (Q)
obviously implies (X ∩ V, Y ∩ Y) ∈ SE (Q),
(X ∩ V, Y ∩ Y) ∈ SE (P ∗Q) thus follows in this case. So
supposeSE (P) 6= ∅. Then,Y ∈ σ(Mod(Q),Mod(P)).
By iteratively applying Lemma 1, we obtain that also
Y ∩ V ∈ σ(Mod(Q),Mod(P)). Analogously us-
ing Lemma 2, (X,Y) ∈ σ(SE (Q),SE (P)) yields
(X ∩ V, Y ∩ V) ∈ σ(SE (Q),SE (P)). By Definition 3,
we get(X ∩ V, Y ∩ V) ∈ SE(P ∗ Q). Finally, it is clear
that(X,Y) /∈ SE (R), implies(X∩V, Y ∩V) /∈ SE (R). 2

We now proceed with the proof of Theorem 5.
We first show membership inΣP

2 for the complemen-
tary problem. From Lemma 3, the complementary problem
holds iff there existX,Y ⊆ var (P ∪ Q ∪ R), such that
(X,Y) ∈ SE (P ∗ Q) and(X,Y) /∈ SE (R). In what fol-
lows letV = var (P ∪ Q ∪ R). We first state the follow-
ing observation: Recall thatY ∈ σ(Mod (Q),Mod(P)) iff
Y ∈ Mod(Q) and there exists aW ∈ Mod(P), such that
W ⊆ V and for eachY ′ ∈ Mod(Q) andW ′ ∈ Mod(P),
Y ′△W ′ 6⊂ Y△W . Now, if Y ⊆ V then there is also a
W ⊆ V satisfying above test (this is seen by the arguments
used in the proof of Lemma 1). A similar observation holds
for (X,Y) ∈ σ(SE (Q),SE (P)).

Thus an algorithm to decideP ∗ Q 6⊆s R is as follows.
We guess interpretationsX,Y,W,U, Z ⊆ V and start with
checking(X,Y) ∈ SE (Q) and (X,Y) /∈ SE (R). Then,
we check whetherSE (P) = ∅ which can be done via a sin-
gle call to an NP-oracle. If the answer is yes, we already
have found an SE-interpretation(X,Y), such that(X,Y) ∈
SE (P ∗ Q) and (X,Y) /∈ SE (R) and thus the comple-
mentary problem holds. If the answer is no, we next check
(U,Z) ∈ SE (P),W ∈ Mod(P). Then, (1) givenY andW
we check whether for eachY ′ ⊆ V and eachW ′ ⊆ V , such
thatY ′ ∈ Mod(Q) andW ′ ∈ Mod(P), Y ′△W ′ 6⊂ Y△W
holds. It is easy to see that then the same relation holds for
arbitrary modelsY ′ andW ′. From that we can conclude
thatY ∈ σ(Mod(Q),Mod(P)). Next, (2) given(X,Y) and
(U,Z), we check whether for eachX ′ ⊆ Y ′ ⊆ V and each
U ′ ⊆ Z ′ ⊆ V , such that(X ′, Y ′) ∈ SE (Q), (U ′,W ′) ∈
SE (P), (X ′, Y ′)△(U ′,W ′) 6⊂ (X,Y)△(U,W). Again, it
is easy to see that in this case(X,Y) ∈ σ(SE (Q),SE (P))

follows. But then we obtain(X,Y) ∈ SE (P ∗ Q) by Def-
inition 3 which together with(X,Y) /∈ SE (R) solves the
complementary problem, cf. Lemma 3.

We recall that model checking as well as SE-model check-
ing are inP. So most of the checks used above are inP (ex-
pect the already mentioned call to an NP-oracle) and it re-
mains to settle the complexity of the checks (1) and (2). As
well they can be done by an NP-oracle. This can be seen by
considering the respective complementary problems, where
one guesses the setsY ′,W ′ (resp.X ′, Y ′, U ′, Z ′) and then
performs model checking or SE-model checking together
with some other simple tests which are all inP. Thus
the overall algorithm runs in nondeterministic polynomial
time with access to an NP-oracle. This shows theΣP

2 -
membership as desired.

As for the hardness-part, we use a reduction from(∀, 2)-
QSAT, which is the prototypical complete problem forΠP

2 .
Let Φ = ∀Y ∃Xϕ be a QBF whereϕ is a CNF overX ∪ Y .
In what follows, let, for eachz ∈ X ∪ Y , z′ be a new atom,
and, for each clausec = z1∨· · ·∨zk∨¬zk+1∨· · ·∨¬zm in
ϕ, let ĉ be the sequencez′1, . . . , z

′
k, zk+1, . . . , zm. Moreover,

let w be a further new atom andV = X ∪ Y ∪ {z′ | z ∈
X ∪ Y } ∪ {w}. We define the following programs:PΦ =
{v←| v ∈ V },RΦ = {w←}, and

QΦ = {y ← ∼y′; y′ ← ∼y; ⊥ ← y, y′ | y ∈ Y } ∪

{x← ∼x′, w; x′ ← ∼x,w; w ← x; w← x′;

⊥ ← x, x′ | x ∈ X} ∪

{⊥ ← ĉ, w | c a clause inϕ}.

The SE-models overV of these programs are as follows
(for a setZ of atoms,Z ′ stands for{z′ | z ∈ Z}):

SE (PΦ) = {(V, V)};

SE (QΦ) = {(S, S) | S = I ∪ (Y \ I)′, I ⊆ Y } ∪

{(S, T), (T, T) | S = I ∪ (Y \ I)′,

T = {w} ∪ S ∪ J ∪ (X \ J)′,

I ⊆ Y, J ⊆ X, I ∪ J |= ϕ};

SE (RΦ) = {(W1,W2) | {w} ⊆W1 ⊆W2 ⊆ V }.

We show thatΦ is true iffPΦ ∗QΦ ⊆s RΦ holds.

Only-if direction: SupposePΦ ∗ QΦ ⊆s RΦ does not
hold. By Lemma 3, there existS ⊆ T ⊆ var(PΦ ∪
QΦ ∪ RΦ) = V such that(S, T) ∈ SE (PΦ ∗ QΦ) and
(S, T) /∈ SE (RΦ). Inspecting the SE-models ofRΦ, we
obtain thatw /∈ S. From(S, T) ∈ SE (PΦ ∗QΦ), (S, T) ∈
SE(QΦ), and thusS has to be of the formI ∪ (Y \ I)′

for someI ⊆ Y . Recall that(V, V) is the only SE-model
of PΦ over V . Hence,S = T holds, since otherwise
(T, T)△(V, V) ⊂ (S, T)△(V, V), which is in contradiction
to (S, T) ∈ SE (PΦ ∗QΦ). Now we observe that for eachU
with S = T ⊂ U ⊆ V , (U,U) /∈ SE (QΦ) has to hold, (oth-
erwise(U,U)△(V, V) ⊂ (S, S)△(V, V)). Inspecting the
SE-models ofSE (QΦ), this only holds if, for eachJ ⊆ X ,
I ∪ J 6|= ϕ. But thenΦ is false.

If direction: SupposeΦ is false. Then, there exists an
I ⊆ Y such that for allJ ⊆ X , I ∪ J 6|= ϕ. We know that

(S, S) = (I∪(Y \I)′, I∪(Y \I)′) ∈ SE (QΦ) and(V, V) ∈
SE (PΦ). Next, to obtain(S, S) ∈ SE (PΦ ∗QΦ), we show
S ∈ σ(Mod(QΦ),Mod(PΦ)). Suppose this is not the case.
SinceS ⊂ V andV is the minimal model ofPΦ, there has
to exist anU with S ⊂ U ⊆ V , such thatU ∈ Mod(QΦ).
Recall thatS = I ∪ (Y \ I)′ and, by assumption, for all
J ⊆ X , I ∪ J 6|= ϕ. By inspecting the SE-models ofQΦ,
it is clear that no suchU ∈ Mod(QΦ) exists. By essentially
the same arguments(S, S) ∈ σ(SE (QΦ),SE (PΦ)) can be
shown. Therefore,(S, S) ∈ SE (PΦ ∗QΦ) and sincew /∈ S,
PΦ ∗QΦ ⊆s RΦ does not hold.

This showsΠP
2 -hardness for normal programsQ. The

result for positive programsQ is obtained by replacing in
QΦ rulesy ← ∼y′, y′ ← ∼y by y; y′ ←, and likewise
rulesx ← ∼x′, w, x′ ← ∼x,w by x;x′ ← w. Due to
the presence of constraints⊥ ← y, y′ and⊥ ← x, x′, this
modification does not change the program’s SE-models.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet functions
for contraction and revision.Journal of Symbolic Logic
50(2):510–530.
Alferes, J.; Leite, J.; Pereira, L.; Przymusinska, H.; and
Przymusinski, T. 1998. Dynamic logic programming. In
Proc. KR ’98, 98–109. Morgan Kaufmann.
Alferes, J.; Leite, J.; Pereira, L.; Przymusinska, H.;
and Przymusinski, T. 2000. Dynamic updates of non-
monotonic knowledge bases.Journal of Logic Program-
ming45(1–3):43–70.
Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Cabalar, P., and Ferraris, P. 2007. Propositional theoriesare
strongly equivalent to logic programs.Theory and Practice
of Logic Programming7(6):745–759.
Dalal, M. 1988. Investigations into theory of knowledge
base revision. InProc. AAAI ’88, 449–479.
Delgrande, J.; Schaub, T.; and Tompits, H. 2007. A pref-
erence-based framework for updating logic programs. In
Proc. LPNMR 2007, 71–83. Springer.
Eiter, T., and Gottlob, G. 1992. On the complexity of
propositional knowledge base revision, updates, and coun-
terfactuals.Artificial Intelligence57(2-3):227–270.
Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.
On properties of update sequences based on causal rejec-
tion.Theory and Practice of Logic Programming2(6):711–
767.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. InProc. LPNMR 2004, 87–99. Springer.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solu-
tion correspondences in answer-set programming. InProc.
IJCAI 2005, 97–102. Professional Book Center.
Foo, N., and Zhang, Y. 1997. Towards generalized rule-
based updates. InProc. IJCAI ’97, 82–88. Morgan Kauf-
mann.

Gärdenfors, P. 1988.Knowledge in Flux: Modelling the
Dynamics of Epistemic States. The MIT Press.
Inoue, K., and Sakama, C. 1998. Negation as failure in the
head.Journal of Logic Programming35(1):39–78.
Inoue, K., and Sakama, C. 1999. Updating extended logic
programs through abduction. InProc. LPNMR ’99, 147–
161. Springer.
Katsuno, H., and Mendelzon, A. 1992. On the difference
between updating a knowledge base and revising it. InBe-
lief Revision, 183–203. Cambridge University Press.
Kudo, Y., and Murai, T. 2004. A method of belief base
revision for extended logic programs based on state transi-
tion diagrams. InProc. KES 2004, 1079–1084. Springer.
Leite, J. 2003.Evolving Knowledge Bases: Specification
and Semantics. IOS Press.
Lifschitz, V., and Woo, T. 1992. Answer sets in general
nonmonotonic reasoning (Preliminary report). InProc. KR
’92, 603–614. Morgan Kaufmann.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs.ACM Transactions on Compu-
tational Logic2(4):526–541.
Marek, V. W., and Truszczyński, M. 1998. Revision pro-
gramming.Theoretical Computer Science190:241–277.
Nelson, D. 1949. Constructible falsity.Journal of Symbolic
Logic14(2):16–26.
Osorio, M., and Cuevas, V. 2007. Updates in answer
set programming: An approach based on basic structural
properties. Theory and Practice of Logic Programming
7(4):451–479.
Przymusinski, T., and Turner, H. 1997. Update by means of
inference rules.Journal of Logic Programming30(2):125–
143.
Satoh, K. 1988. Nonmonotonic reasoning by minimal be-
lief revision. InProc. FGCS ’88, 455–462. Springer.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints.Theory and Practice
of Logic Programming3(4-5):609–622.
Witteveen, C.; van der Hoek, W.; and de Nivelle, H. 1994.
Revision of non-monotonic theories: Some postulates and
an application to logic programming. InProc. JELIA ’94,
137–151. Springer.
Zacarı́as, F.; Osorio, M.; Acosta Guadarrama, J. C.; and
Dix, J. 2005. Updates in answer set programming based
on structural properties. InProc. COMMONSENSE 2005,
213–219. TUD–FI05–04, TU Dresden.
Zhang, Y., and Foo, N. Y. 1998. Updating logic programs.
In Proc. ECAI ’98, 403–407. IOS Press.

