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Abstract

We address the problem of belief revision in (nonmonotonic)
logic programming under answer set semantics: given logic
programsP and@), the goal is to determine a prografnthat
corresponds to the revision &f by @, denotedP * Q. Un-

like previous approaches in logic programming, our formal
technigques are analogous to those of distance-based teelief
vision in propositional logic. In developing our resultse w
build upon the model theory of logic programs furnished by
SE models. Since SE models provide a formal, monotonic
chacterisation of logic programs, we can adapt well-known
techniques from the area of belief revision to revision mido
programs. We investigate two specific operators: (logic pro
gram) expansion and a revision operator based on the distanc
between the SE models of logic programs. It proves to be the
case that expansion is an interesting operator in its o, rig
unlike in classical AGM-style belief revision where it id+e
atively uninteresting. Expansion and revision are shown to
satisfy a suite of interesting properties; in particula, @vi-

sion operators satisfy the majority of the AGM postulates fo
revision. A complexity analysis reveals that our revisiqgn o
erators do not increase the complexity of the base formalism
As a consequence, we present an encoding for computing the
revision of a logic program by another, within the same logic
programming framework.

Introduction

Torsten Schaubl
Institut fUr Informatik
Universitat Potsdam
August-Bebel-Str. 89
D-14482 Potsdam, Germany

Hans Tompits and Stefan Woltran
Institut fur Informationssysteme
Technische Universitat Wien,
FavoritenstraRe 9-11
A-1040 Vienna, Austria

logic programs as new information is received. In KRR, the
area ofbelief revision(Alchourrén, Gardenfors, and Makin-
son 1985; Gardenfors 1988) addresses just such change to
a knowledge base. IAGM belief revision (named after the
aforecited developers of the approach) one has a knowledge
baseK and a formulay, and the issue is how to consistently
incorporatex in K to obtain a new knowledge bas€g. The
interesting case is wheR U {a} is inconsistent, since be-
liefs have to be dropped frorK” beforea can be consis-
tently added. Hence a fundamental issue concerns how such
change should be managed.

In classical propositional logic, specific belief revision
operators have been proposed based on the distance between
modelsof a knowledge base and a formula for revision. That
is, a characterisation of the revision of a knowledge bgse
by formula« is to set the models of the revised knowledge
baseK’ to be the models ofy that are “closest” to those
of K. Of course the notion of “closest” needs to be pinned
down, but natural definitions based on the Hamming dis-
tance (Dalal 1988; Satoh 1988) are well known. Clearly,
also the set of models of a knowledge base gives an abstract
characterisation of the knowledge base, suppressingrrel
vant syntactic details.

Itis natural then to consider belief change in the context of
logic programs. Indeed, there has been substantial effort i
developing approaches to so-called logic program updating

Answer set programmin@ASP) (Baral 2003) has emerged under answer set semantics (we discuss previous work in
as a major area of research in knowledge representation andthe next section). Unfortunately, given the nonmonotonic
reasoning (KRR). On the one hand, ASP has an elegant nature of answer set programs, the problem of change in
and conceptually simple theoretical foundation, whiletzan t logic programs has appeared to be intrinsically more difficu
other hand efficient implementations of ASP solvers exist thanin a monotonic setting.
which have been finding application to practical problems.  |n this paper, our goal is to reformulate belief change in
At its heart, ASP exploits negation as failure with respectt  |ogic programs in a manner analogous to belief revision in
a fixed-point semantics; this enables the specification of a classical propositional logic, and to investigate spedifie
wide variety of problems. Consequently, ASP provides an |ief revision operators for extended logic programs. Caintr
appealing approach for representing problems in KRR. for our approach arS8E model§Turner 2003), which are se-
Given that knowledge is continually evolving and always mantic structures characterisisjong equivalenckeetween
subject to change, there is also a need to be able to reviseprograms (Lifschitz, Pearce, and Valverde 2001). This par-
ticular kind of equivalence plays a major role for different
problems in logic programming—in particular, in program
simplifications and modularisation. This is due to the fact
that strong equivalence gives rise tgubstitution principle
in the sense that, for all program®s@, PUR andQUR have
the same answer sets, famyprogrampR. As is well known,
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ordinary equivalence between programs (which holds if two junctive and conjunctive connectives.d&fault literalis an
programs have the same answer sets) does not yield a sub-atoma or its (default) negationva. A rule r as in (1) is

stitution principle. Hence, strong equivalence can be ssen
the logic programming analogue of ordinary equivalence in
classical logic. The important aspect of strong equivadenc
is that it coincides with equivalence in a specifionotonic
logic, the logic ofhere and ther¢HT), which is intermediate
between intuitionistic logic and classical logic. As shdwn

Turner (2003), equivalence between programs in HT corre-
sponds in turn to equality between sets of SE models. De-
tails on these concepts are given in the next section; the key X+

called afactif p = 1, normalif n = 1, positiveif m = n
ando = p, disjunctiveif m n, and anintegrity con-
straintif n = 0, yielding an empty disjunction denoted by
L. Accordingly, a program is calledisjunctive(or a DLP),
etc., if it consists of disjunctive, etc., rules only. We-fur
thermore definéf (r) = {a1, ..., am, ~bm+t1,...,~by} as
theheadof r andB(r) = {cn41,- - -, Co, ~dot1, ..., ~dp}
as thebody of r. Moreover, given a seX of literals,
{lacAlae X}, X" ={ac A| ~ac€ X},

point is that logic programs can be expressed in terms of a and~X = {~a | a € X N A}. For simplicity, we some-

non-classical but monotonic logic, and it is this point tivat
exploit here.
More specifically, given this monotonic characterisation

(via sets of SE models) of strong equivalence, we adapt tech-

niques for revision in propositional logic to revision irgio

programs. Hence we come up with specific operators for be-

lief change in ASP analogous to operators in propositional
logic. We first consider aexpansionoperator. In classi-
cal logic, the expansion of knowledge baseby formulaa
amounts to the deductive closurefofJ{«}. Hence it is not

a very interesting operator, serving mainly as a tool for ex-
pressing concepts in belief revision and its dual, coniwact

In logic programs however, expansion appears to be a more
useful operator, perhaps due to the apparent “looser” no-

tion of satisfiability provided by SE models. As well, it has

times use a set-based notation, expressing a rule as in (1) as
H(r)*;~H(r)~ — B(r)*, ~B(r)".

In what follows, we restrict ourselves to a finite alphabet
A. An interpretation is represented by the subset of atoms
in A that are true in the interpretation. &lgssica) model
of a programP is an interpretation in which all of the rules
in P are true according to the standard defintion of truth
in propositional logic, and where default negation is tedat
as classical negation. By/od(P) we denote the set of all
classical models aP. An answer set” of a programP is a
subset-minimal model of

{H(r)* < B(r)" |re P,H(r)” CY,B(r)” NY = 0}.

The set of all answer sets of a progrdtis denoted by
AS(P). For example, the prograli = {a «—, ¢ d «

appealing properties. We also develop a revision operator ~b} has answer set$S(P) = {{a, c}, {a,d}}.
based on a notion of distance between SE models and show  As defined by Turner (2003), aBE interpretationis a

that it satisfies the majority of the corresponding AGM pos-
tulates. Curiously, in our approaches there is effectinely

pair (X,Y) of interpretations such that C Y C A. An
SE interpretation is aBE modebf a programP if Y = P

mention of answer sets; rather definitions of expansion and gnd x = PY. The set of all SE models of a prografhis

revision are given entirely with respect to logic programs.

denoted bySE(P). Note thatY is an answer set aP iff

Notably too, our operators are syntax inde_pendent, Which is (YY) € SE(P) and no(X,Y) € SE(P) with X Cc Y
to say, they are independent of how a logic program is ex- exists. Also, we havéY,Y) € SE(P)iff Y € Mod(P).

pressed; hence, our operators deal withltggcal content
of a logic program.
Following an introductory background section, we show

that there is a ready mapping between concepts in belief re-

vision in classical logic and in ASP; this serves to place be-
lief revision in ASP firmly in the “standard” belief revision

camp. After this we describe our approachesto belief expan-
sion and revision in ASP. The next section covers complexity (a, ab) instead of({a}, {a,b})

A program P is satisfiablejust if SE(P) # (. Two
programsP and @@ are strongly equivalentsymbolically
P =, Q, iff SE(P) = SE(Q). Alternatively, P =; Q
holds iff AS(P U R) = AS(Q U R), for every program
R (Lifschitz, Pearce, and Valverde 2001). We also write
P C, Qiff SE(P) C SE(QR). For simplicity, we often drop
set-notation within SE interpretations and simply writg, e

issues and shows how we can in fact express the process of A set S of SE interpretations isvell-definedif, for each
belief change in ASP. We conclude with a discussion. Proofs (X,Y) € S, also(Y,Y) € S. A well-defined setS of

of our results are relegated to an appendix.

Background and Formal Preliminaries

Answer Set Programming A (generalisedl logic pro-
gram* (GLP) over an alphabetl is a finite set of rules of
the form

ar;y... —

am; ~bmat; ..~y 1)
Cn+ly.-- acoaNdo+17 s

wherea;, b;,cx,d; € Aareatomsforl < ¢ <m < j <

n <k <o <1< p Operators‘; and ', express dis-

7Ndpa

1Such programs were first considered by Lifschitz and Woo
(1992) and coinedjeneralised disjunctive logic progranigy In-
oue and Sakama (1998).

SE interpretations isompletsf, for each(X,Y’) € S, also
(X,Z) € S, foranyY C Z with (Z,Z) € S. We have the
following properties:

e Foreach GLPP, SE(P) is well defined.
e Foreach DLPP, SE(P) is complete.

Furthermore, for each well defined sgtof SE interpreta-
tions, there exists a GLP such thatSE(P) = S, and for
each complete sétof SE interpretations, there exists a DLP
P such thatSE(P) = S. Programs meeting these condi-
tions can be constructed thus (Eiter, Tompits, and Woltran
2005; Cabalar and Ferraris 2007): In caSe a well-defined
set of SE interpretations over a (finite) alphaldedefineP

by adding



1. therulery : L — Y,~(A\Y), foreach(Y,Y) ¢ S,
and

2. therulerxy : (Y \ X);~Y « X,~(A\Y), for each
X CY suchtha(X,Y) ¢ Sand(Y,Y) € S.

In caseS is complete, definé” by adding
1. therulery, foreach(Y,Y’) ¢ S, as above, and

2. therulery y - (Y\X) — X,~(A\Y),foreachX C Y
suchtha(X,Y) ¢ Sand(Y,Y) € S.

We call the resulting prograntanonical
For illustration, consider

S ={(p,p), (a9, (r,pq); (¢,pq), (pg; pq), (D, p)}

overA = {p, q}. Note thatS is not complete. The canonical
GLP is as follows:

T L= ~p~g
T0,q aG~q = D
T0,pq p;q;~ps~q

For obtaining a complete set, we have to &fidpq) to S.
Then, the canonical DLP is as follows:

1

q «—

~Pp, ~q;

Ty
T0.q

One feature of SE models is that they contain “more in-

formation” than answer sets, which makes them an appeal-

is receiving information concerning a statidomain. Be-
lief states are modeled by logically closed sets of sentence
calledbelief sets A belief set is a sek of sentences which
satisfies the constraint

if K logically entails3, thens € K.

K can be seen as a partial theory of the world. For belief set
K and formulac, K + « is the deductive closure df U

{a}, called theexpansiorof K by . K, is the inconsistent
belief set (i.e. K, is the set of all formulas).

Subsequently, Katsuno and Mendelzon (1992) reformu-
lated the AGM approach so that a knowledge base was also
represented by a formula in some languageThe follow-
ing postulates comprise Katsuno and Mendelzon’s reformu-
lation of the AGM revision postulates, whetés a function
fromL x Lto L:

R1: ¥ puF p.

R2: If ¢ A u is satisfiable, theg * u < ¥ A p.

R3: If u is satisfiable, the x p is also satisfiable.

R4: If i1 < ho andus < p2, thenyy * puy < g * po.
R5: (s p) A1+ (1A g).

R6: If (¢xu)A¢ is satisfiable, thegh« (uAd) - (Yxu)Ad.

Thus revision is successful (R1), and corresponds to con-
junction when the knowledge base and formula for revision
are jointly consistent (R2). Revision leads to inconsisyen
only when the formula for revision is unsatisfiable (R3). Re-

ing candidate for problems where programs are examined vision is also independent of syntactic representatior).(R4

with respect to further extension (in fact, this is what styo
equivalence is about). We illustrate this issue with the fol
lowing well-known example, involving programs

Here, we haved S(P) = AS(Q) = {{p}, {q}}. However,
the SE models (we list them fot = {p, ¢}) differ:

SE(P) = {(p,p), (¢,9) (P, pa), (q:Pq), (Pq; pq) };
SE(Q) ={(p.p), (¢, 9), (p,pa), (¢.149), (P, pq), (D, pq)}.

This is to be expected, since and Q behave differently
with respect to program extension (and thus are not strongly
equivalent). ConsideR = {p < ¢,q < p}. ThenAS(P U

R) = {{p, q}}, while AS(Q U R) has no answer set.

b —~q

P ={p;q~} and Q={ g — ~p

Belief Revision The best known and, indeed, seminal
work in belief revision is théAGM approach(Alchourron,
Gardenfors, and Makinson 1985; Gardenfors 1988), in
which standards for belieévisionandcontractionfunctions

are given. In belief revision, a formula is added to a knowl-

edge base such that the resulting knowledge base is consis-

tent (unless the formula to be added is noBelief con-
traction is a dual notion, in which information is removed
from a knowledge base; given that it is of limited interest
with respect to our approach, we do not consider it further.
In the AGM approach it is assumed that a knowledge base

Last, (R5) and (R6) express that revision by a conjunction is
the same as revision by a conjunct conjoined with the other
conjunct, when the result is satisfiable.

In classical belief change, the revision of a knowledge
base represented by formulaby a formulay, ¥ * pu, is
a formulag such that the models @f are just those models
of i that are “closest” to those @f. There are two main spe-
cific approaches to distance-based revision. Both are based
on the Hamming distance between two interpretations, that
is on the set of atoms on which the interpretations disagree.
The first, due to Dalal (1988), uses a distance measure based
on the number of atoms with differing truth values in two
interpretations. The second, by Satoh (1988), is based on
set containment. A set containment-based approach seems
more appropriate in the context of ASP, since answer sets are
defined in terms of subset-minimal interpretations. Hence,
we focus on Satoh (1988) here.

TheSatoh revision operatot) x, i, is defined as follows.
Let A be the symmetric difference of two sets. For formulas
a andg, defineA™™" (a, 3) as

minc ({wAw' | w € Mod(a),w" € Mod(3)}).
Furthermore, defin@fod (¢ x, 1) as
{w € Mod (1) | 3w' € Mod(¢)) s.t.wAw' € A™ (1, )}

2 Note that “static” does not imply “with no mention of time”.
For example, one could have information in a knowledge base
about the state of the world at different points in time, agndse
information at these points in time.



Belief Change in Logic Programming Most previous Turning our attention to the few works amevision of
work on belief change for logic programs goes under the logic programs, early work in this direction includes a se-
titte of update(Foo and Zhang 1997; Przymusinski and ries of investigations dealing with restoring consistefary
Turner 1997; Zhang and Foo 1998; Alferes et al. 1998; programs possessing no answer sets (cf., e.g., Witteveen,
2000; Leite 2003; Inoue and Sakama 1999; Eiter et al. 2002; van der Hoek, and de Nivelle (1994)). Other work uses
Zacarias et al. 2005; Delgrande, Schaub, and Tompits 2007) logic programs under a variant of the stable semantics to

Strictly speaking, however, such approaches often do not ad
dress “update” as used in the belief revision community, in
that the requirement that the underlying domain being mod-
elled has changed is not taken into account. Following the
investigations of the Lisbon group of researchers (Alfettes
al. 1998; 2000; Leite 2003), a common feature of most up-
date approaches is to consider a sequadcer, ..., P,

of programs where each; is a logic program. FoP;, P;,

i > j, the intuition is thatP; has higher priority or prece-

specify database revision, i.e., the revision of knowledge
bases given as sets of atomic facts (Marek and Truszczyhski
1998). Finally, an approach following the spirit of AGM
revision is discussed by Kudo and Murai (2004). In their
work, they deal with the question of constructing revisions
of form P x A, whereP is an extended logic program ard

is a conjunction of literals. They give a procedural aldgorit

to construct the revised programs; however no propertees ar
analysed.

dence. Given such a sequence, a set of answer sets is deter-

mined that in some sense respects the ordering. This may be

done by translating the sequence into a “flat” logic program
that contains an encoding of the priorities, or by treathg t
sequence as a prioritised logic program, or by some other

appropriate method. The net result, one way or another, is to
obtain a set of answer sets from such a program sequence
and not a single new program expressed in the language of

the original logic programs. Hence, these approaches fall
outside the general AGM belief revision paradigm.
However, various principles have been proposed for such
approaches to logic program update. In particular, Eiter et
al. (2002) consider the question of what principles the up-
date of logic programs should satisfy. This is done by re-
interpreting different AGM-style postulates for revising
updating classic knowledge bases, as well as introducing
new principles. Among the latter, let us note the following:

Initialisation: ()« P = P.

Idempotency: (P x P) = P.

Tautology: If @ is tautologous, the® x Q = P.
Absorption: If @ = R, then((P*Q) * R) = (P * Q).
Augmentation: If Q C R, then((P * Q) * R) = (P * R).

In view of the failure of several of the discussed postulates
in the approach of Eiter et al. (2002) (as well as in others),
Osorio and Cuevas (2007) noted that for re-interpreting the
standard AGM postulates in the context of logic programs,
the logic underlying strong equivalence should be adopted.
Since they studied programs with strong negation, in their
case this logic iN, an extension of HT by allowing strong
negatior® They also introduced a new principle, which they
calledweak independence of synt@¥1S), which they pro-
posed any update operator should satisfy:

WIS: If Q =5 R,then(PxQ) = (P R).

Indeed, following this spirit, the above absorption and
augmentation principles can be accordingly changed by re-
placing their antecedents by)* =, R” and “Q Cs R”,
respectively. We note that the WIS principle was also dis-
cussed in an update approach basedlmiuctive programs
(Zacarias et al. 2005).

N, itself traces back to an extension of intuitionist logiclwit
strong negation first studied by Nelson (1949).

Belief Change in ASP based on SE Models

In AGM belief change, an agent’s beliefs may be abstractly
characterised in various different ways. In the classical
AGM approach an agent’s beliefs are given byedief setor
deductively-closed set of sentences. As well, an agent’s be
liefs may also be characterised abstractly by a set of inderp
tations orpossible worldsthese would correspond to mod-
els of the agent’s beliefs. Last, as proposed in the Katsuno-
Mendelzon formulation, and given the assumption of a finite
language, an agent’s beliefs can be specified by a formula.
Given a finite language, it is straightforward to translage b
tween these representations.

In ASP, there are notions analogous to the above for spec-
ifying an agent’s beliefs. Though we do not get into it here,
the notion ofstrong equivalencef logic programs can be
employed to define aldgic progran) belief set Indeed,

SE modelsharacterise a class of equivalent logic programs.
Hence the set of SE models of a program can be considered
as thepropositionexpressed by the program. Continuing
this analogy, a specific logic program can be considered to
correspond to a formula or set of formulas in classical logic

Belief Expansion in Logic Programs Belief expansions
a belief change operator that is much more basic than revi-
sion or contraction, and in a certain sensgrisr to revision
and contraction (since in the AGM approach revision and
contraction postulates make reference to expansion).dienc
it is of interest to examine expansion from the point of view
of logic programs. As well, it proves to be the case that ex-
pansion in logic programs is of interest in its own right.

The next definition corresponds model-theoretically with
the usual definition of expansion in AGM belief change.

Definition 1 For logic programsP and(@), define thexpan-
sionof P and@, P + @, to be a logic progrank such that
SE(R) = SE(P)N SE(Q).

For illustration, consider the following examplés:
1. {p <} + {L < p} has no SE models.
2. {p < ¢} +{L < p} has SE mode(d, 0).

4Unless otherwise noted, we assume that the language of dis-
course in each example consists of just the atoms mentioned.



B {p—t+{gpl=s{pt+{qg<}=s{p—,q}. of distance will do, for example an operator defined in terms
of a cardinality-based distance measure.
4. {p—~q}t+{qg— ~p} =s { p : ~q } We extend the definition of symmetric difference
4= ~p so that it can be used with SE interpretations: If
P — ~g _ P q (X1,X2) and (Y1,Y3) are two SE interpretations, then
>. { q— ~p } +{p—4q} =s { p— ~q } (X1, X2)A\(Y1,Ys) is defined as follows:
6. | p—ra R G (X1, X2)A(M1,Ys) = (X1AY), XoAY3)
"L ge—~p a1 =e AR = (X1 \Y)U Y1\ Xy), (X2\Y2)U (Y2 \ X))
. — Similarly, (X7, X5) C (Y1, Ys) iff X3 C Y7 andX, C Y,
7. Apig =t +{L—d} = { JZ_)<—q } and morec()vel(,Xl,Xg)(C (Yl?yg) iff (X1, X2) C (V1,Ya)
and eitherX; C Y; or Xs C Y5.
8. {pig—t+{L—pq} =, { p§f: } Given this, we next define, for two sets;, £, of inter-
b, q pretations, the subset df, that is closest td7y, where the
Belief expansion has desirable properties. The following notion of “closest”is given in terms of symmetric differenc
all follow straightforwardly from the definition of expasi Definition 2 Let F;, E, be two sets of either classical or
with respect to SE models. SE interpretations. Then:

Theorem 1 Let P and(@ be logic programs. Then: o(E1, Es) = {A € E; | 3B € E» suchthat

;. ]1:+ g |§a]IDog|c program(belief se}. VA € B\ VB € By, AAB' ¢ AAB).
. P+ s P.
- It might seem that we could now define the SE models

431' :;Ji %S g :22:11.; I g ES g.+ R of P x @ to be given bys (SE(Q), SE(P)). However, for

' =85 % =s % ' ) our revision operator to be meaningful, it must also pro-
5. If SE(P) and SE(Q) are defined, then so 8E (P + Q). duce awell-definedset of SE models. Unfortunately, it
6. If SE(P)andSE(Q) are complete, then so B2 (P+Q). proves to be the case that Definition 2 does not preserve
7. 1fQ =, 0, thenP +Q =, P. well-definedness. For an example, consifte= { L — p}

While these results are indeed elementary, following ag the gﬁg) o {{p@(_) (Np}')} Tgﬁg' gf;@%(@){é%?}%aw
do from the monotonicity of the SE interpretations frame- {0, p)} aowngri(g’p)}’is not WeII-defined o
work, they are still of interest. Notably, virtually everyep T’ﬁe 'roblem is the{tpfor rogran@ and () there mav be
vious approach to updating logic programs has trouble with P Prog ' Y

the last property, expressindautologypostulate. Here, ex- anSSEE mogeE(); V) t())ftQ V;”QX cY sugg that(g%};) <

pansion by a tautologous program presents no problem, asasencé@r’\ deg"n')r)w ut r71 tgrmf ofU(SE(Q)7 SE(P)).

it corresponds to an intersection with the set of all SE in- we mu:stl modi:‘yltr?eps;%le(Q) SE(]g)() in(s%)rﬁe fa(lsh)i)(;n

terpretations. We note also that the other principles men- to obtain a weli-defined set of models

tioned earlier—nitialisation, idempotencyabsorption and In Vi f this. our approach is bésed on the followin

augmentation-are trivially satisfied by expansion. id N ;nevxgto_ 1S, IlIJd [;_p d tl f modelsit O b Vé' 9
In classical logic, the expansion of two formulas can be idea to obtain a well-defined set of models/ok () base

. . . , ! on our notion of distance given
given in terms of the intersection of their models. It should )
be clear from the preceding that the appropriate notion of 1. Determine the “closest” models @fto P of form (Y, Y).

the set of “models” of a logic program is given by a set 2 Determine the “closest” models 6fto P limited to mod-

of SE_modeIs, and not by a set of answer sets. _Henpe, els(X,Y) of Q where(Y,Y) was found in the first step.
there is no natural notion of expansion that is given in

terms of answer sets. For instance, in Example 3, we have Thus, we give preference to potential answer sets, in the
AS({p <}) = {{p}} andAS({q — p}) = {0} while form of modelgY; Y'), and then to general models.

AS({p <,q < p}) = {{p,q}}. Likewise, in Exam- Definition 3 For logic programsP and @, define theevi-
ple 4, the intersection allS({{p «— ~q}}) = {{p}} and sionof P by Q, P * @, to be a logic program such that:

AS({{q — ~p}}) = {{q}} is empty, whereaslS({p — i _ «O) — :
RS LTI 74 if SE(P) = 0, thenSE(P Q) = SE(Q);

otherwise

Belief Revision We nextturn to a specific operator for be- SE(P+Q)={(X,Y)|Y € o(Mod(Q), Mod(P))

lief revision. As discussed earli_er, for a revisién« Q we . andif X C Y then (X,Y) € o(SE(Q), SE(P))}.
suggest that the most natural distance-based notion of revi

sion for logic programs uses set containment as the appro- As is apparentSE(P x @) is well-defined, and thus is rep-
priate means of relating SE interpretations. Herfte) is a resentable through a canonical logic program. Furthermore
logic program whose SE models are a subset of the SE mod- over classical models, the definition of revision reduces to
els of Q, comprising just those models ¢f that are closest Satoh revision. As we show below, the result of revisihg

to those ofP. We note however thanyreasonable notion by @ is identical to that of expanding by @ wheneverP



and@ possess common SE models. Hence, all previous ex- Straightforward computations show that
amples of expansions (when the result is non-empty) are also

valid program revisions. We have the following examples of SEP*(Q+R) = A{(rs,rs),(p,p)}  while
revision that do not reduce to expansfon. SE(P+xQ)+R) = {(p}
1 {p = ~pt+{L < p} = {L <p} S0,P#(Q+R) Z, (P*Q)+R. SinceSE((P+Q)+R) # 0,
Over the languagép, ¢}, L «— p has SE model§), 0), this shows that RA6 indeed fails.
(0, 9), and(q, q). Last, we have the following result concerning other prin-
pe pe ciples for updating logic programs listed earlier:
2. { q— } *{le—at = { 1y } Theorem 3 Let P andQ be logic programs. Ther? x Q

satisfies initialisation, idempotency, tautology, andaps

The first program has a single SE mo , while ’ ; .
prog g dekz, pa) tion with respect to strong equivalence.

the second has thre€), 0), (0, p), and (p,p). Among

the latter,(p, p) has the least pairwise symmetric differ- Augmentation however does not hold, nor would one
ence to(pg, pq). The program induced by the singleton expect it to hold in a distance-based approach. For ex-
set{(p,p)} of SE modelsigp —, L — ¢}. ample, consider the case whefe (), and R are charac-
. o terised by model$SE(P) = {(a,a), (ab,ab)}, SE(Q) =
3. { p(_ } x{L «—p,q} = { p,f(_ } . {(ab, ab), (ac, ac), (b,b)}, andSE(R) = {(ac, ac), (b,b)}.

q . . . P4 ThusSE(R) C SE(Q) and soQ C R for the underlying
Thus, if one originally believes thatandg are true, and programs. We obtain th&#E(P « Q) = SE(P + Q) =
revises by the fact that one is false, then the resultis that (4}, qp)1, and thusSE((P Q) = R) = {(b, b)}. However
precisely one of, ¢ is true. SE(P * R) = {(b,b), (¢, c)}, contradicting augmentation.

Le—n~p - 1L ~p,~q Definition 3 is certainly not the only possibility to con-

4. { 1 n~gq } *{L—paqt = { Lepq } : struct a revision operator. Let us now briefly discuss an al-
Observe that the classical models in the programs here €rnative definition for revision.
are exactly the same as above. This example shows thatDefinition 4 For logic programsP and @, define theveak
the use of SE models provides finer “granularity” com- revisionof P by ) to be a logic progranP x,, ¢ such that:
pared to using classical models of programs together with if SE(P) = 0, thenSE(P %, Q) = SE(Q);
known revision techniques. )
Leyp g otherwise
5. { Leg }*{p;q<—} =s { 1 pq } SE(P *y Q) = 0(SE(Q), SE(P))U
We next rephrase the Katsuno-Mendelzon postulates for {(Y.Y) | 3X st.(X,Y) € o(SE(Q), SE(P))}.

belief revision. Herex is a function from ordered pairs of

: . The main drawback to this approach is that it introduces
logic programs to logic programs.

possibly irrelevant interpretations in order to obtain lwel

RAL PxQ Cs Q. definedness. As well, Definition 3 appears to be the more
RA2: If P+ Q is satisfiable, the® « Q =, P + Q. natural. Consider the following example, which also serves
RA3: If Q is satisfiable, thew «  is satisfiable. to distinguish Definition 3 from Definition 4. Let
RA4: If Pi=,P, andQ1=,Qo, thenP; x Q1=,Ps * Qo. P = {lep, Leg, L},
RA5: (P+Q)+ RC, P*(Q+ R). Q = {r p—gq p—r~q}
RAG6: If (P« Q) + R is satisfiable, the® x (Q + R) C, Then, we get the following SE-models:

PxQ)+ R.

(P> ) - | o SE(P) = {(0.0)),

We obtain that logic program revision as given in Defini- SE -
tion 3 satisfies the first five of the revision postuldtes. (Q) = A{(r.par), (pr,pr), (pr,pgr), (pqr,pqr)},
Theorem 2 The logic program revision operatof from and
Definition 3 satisfies postulates RA1 — RA5.

That our revision operator does not satisfy RA6 can be SE(P Q) = {(pr;pr)},
X SE(P+,Q) = SE(Q\{(pr.par)}

seen by the following example: Consider
— I -~ ConsequentlyP x @ is given by the prograrip, L < ¢,r}.
P={pi~p a=pr—ps—p L—rna Thus, in this exampleP * ) gives the dersﬂred result, }pre-
L —~pr, L ~p, st serving the falsity of from P, while incorporating the truth

Q={p;r, L—gq, L—p,r, L ps, s;~s71} of » andp from Q. This then reflects the assumption of
minimal change to the program being revised, in this case
P. P x, @Q on the other hand represents a very cautious

SNote that{p < ~p} has SE models but no answer sets. approach to program revision.

®We note in passing that this is analogous to set-containment  Finally, we have that our definition of revision is strictly
based approaches in propositional logic. stronger than the alternative given by:

R={pr, L—gq, L—p,r, L—ps, sr}



Theorem 4 Let P and Q be programs. ThenP x Q C,
Py Q.

For completeness, let us mention that enforcing well-
definedness by simply determine the “closest” model§ of
to P of form (Y,Y) is inadequate. For our motivating ex-
ample, we would obtai$E({p < ~p} * { L « p}) = 0,
violating the key postulate RA3, that the result of revising
by a satisfiable program results in a satisfiable revision.

Computational Aspects

Complexity Analysis We first consider the worst-case
complexity of our approach to revision. The standard deci-
sion problem for revision in classical logic is: Given formu
las P, Q, R, doesP * () entail R? Eiter and Gottlob (1992)
showed that approaches to classical propositional revisio
arell}’-complete. The next result shows that this property
carries over to our approach for program revision.

Theorem 5 Deciding whethe” « Q C, R holds, for given
GLPsP, Q, R, isII{-complete. Moreover, hardness holds
already for P being a set of factsy being positive or nor-
mal, andR being a single fact.

Although we do not show it here, we mention that the same
results holds for the cautious revision operatgr

Computing Revision via ASP It is not difficult to come
up with an algorithm implementing our approaches to ex-
pansion and revision: given prograiand(Q), the set of SE
models of each can be generated straightforwardly (Turner
2003). The resulting SE models for expansion or revision
can be determined by an appropriate implementation of Def-
inition 1 or 3. Then, given the resulting set of SE models,
a corresponding GLP can be determined as detailed in the
section on canonical programs in the background section

Rather, our interest now is to consider the question of
computing revisions more abstractly. We address the fol-
lowing issue: Can we find an encoding scheshsuch that
for any progranmP, @, there is a one-to-one correspondence
between the answer sets of the progréf®, Q)] and ele-
ments inSE(P = Q)? By our complexity result, efficient
construction ofS[P, Q], given P, Q, is possible, although
disjunction is required it$ [P, Q].

It is well known how classical models or SE models can

are then checked for being an SE mo@¥l Y") and for fur-
ther properties. The set«$7 andA7 are used to support the
guess as usual. The superscglmnl allow us to deal with
several SE interpretations at once in a single program.

We also need a corresponding renaming schema for the
rules from the original programB and@. In what follows,
rd, denotes the rule after replacing each atom by a’,.
Accordlngly,r7 replaces atoms by a’,.

Finally, to link arbitrary interpretations ovérC Uj AU

Al back to SE interpretations ovet, we use the follow-
ing mappings: For an interpretatidnand an index;, let
(D) ={(X,Y)| X,Y CA X = InA Y] = InAl},
and, for a sef of interpretations, letl? (Z) = (J, ., 7/ (I).
We define a first module as follows:

M|[P,j) = {al;a), «—, | «—al,,al

w?r w wr W

acAwe {ht}} U
(L B ), H (), BY (), B (7)),
L HH), H (), BY (). B~ () | 7 € P).

Then, we have for any progran® and any indexj,
IV (AS(M[P,])) = SE(P).

To avoid a additional modules for classical models, we
will sometimes use SE-mode(#/, V') where only theV -
part comes into play. Our goal is now to filter those
(X1,Y1) € SE(Q), such that(X;,Y;) € SE(P x Q).
To this end, we first compute all possible combinations
(Xh}/l) S SE(Q), (XQ,}/Q) S SE(P), and(Xg,}/g) S
SE(P) (via M[Q,1], M[P,2], M[P,3]) and then check:
(i) whether for each further pairs of SE modéls,,Y,) €
SE(Q), (X5,Y5) € SE(P), it holds thatY,;AYs ¢ Y1 AY,
and (X4, Y)A(X5,Y5) ¢ (X1, Y1)A(Xs,Ys) (this is just
along the lines of Definition 3). Our second module is
used to guess such further pai{&,,Y;) € SE(Q) and
(Xs5,Ys) € SE(P). However, compared td/ [P, j| we now
use a spoiling technique rather than constraints, to eeclud
SE interpretations which are not SE models of the respec-
tive program. This spoiling technique is important in the
final program, which has to ensure that no such further pair
(X4,Ys), (X5,Y5) exists, which satisfy,AYs C Y1AY,
or (X47 n)A(X& }/5) C (X17 H)A(Xl% }/3)

We use the same renaming concepts as before plus a fur-

J =7
1L —ay,al |

be characterized by means of answer sets (see, e.g., Eiter et

al. (2004)). However, the encodings of the checks for con-
tainmentino (-, -) are a bit cumbersome. Therefore, instead
of a full formal proof, we introducé[ P, Q] step-by-step and
describe the functioning of the different parts in someitieta
Basically, the programs follows the argumentation used in
the membership part of the proof of Theorem 5.

In what follows, we make use of the univetdebut men-
tion that for S|P, @], A can always be set toar(P U Q).
Moreover, we need to make several copieglofTherefore,
for j € {1...5} andw € {h,t}, denote by.AJ the set
{al, | a € A}, and by A/, the set{a’, | a € A}. All these
new atoms are mutually distinct. The role of these sets in the
subsequent encoding is that, for eacW togetherW|thAJ

are used to guess two sefs(via A7) andY” (via A7) which

ther new atonx, and define:
NP, j) = {dl;al, —, z < al,,al,
zal,a] |aec Awe {ht}}U
{L e H(r]),H (r]),B*(r]), B~ (1),
L HY(r), H (r]),B*(r}),B~(}) | r € P}}.

al, «—z, al, «— z,

Instead of answer sets we investigate the classical mod-
els of N[P, j] (overvar(N[P, j])). First, we have that the
spoiled interpretatio®’ = {z} U Uwe{h 1y A, is a model
of N [P, j]. The remaining models are in relation to the SE
models again, i.ell’ (Mod (NP, j]) \ O7) = SE(P).

We need two final modules to compare ) AY5 with
Y1AYa; (i) (X4, Ya)A(X5,Ys) with (X1, Y1)A(X3,Y3).

Let us first give the comparison module for (i): The basic



idea hereby is as follows: ¥;AY5; ¢ Y;/AY; holds, we
derive the dedicated atom already used in modul€€|-, -]:

Cir={ z+a},a?,a},a}, 2« aj,a?,a},a?,
Z &%,&f,&f,a?,
a} — af, a7, a}, a3,
a} — af,a},a},af,
a} < aj,af,a}, a3,

J
ay

z%&%,&f,af,&?,
aj < aj,aj,af,a;,
a} < aj,aj,at, a7,
aj < aj,af,a}, af,
aj — a;,aj,af, a7,

U{z=A },

where A is a set of new atoms. The appearance of4et
in a rule body stands for the sequence of all its elements.

The second comparison modul® is obtained fronC1
as follows: replace each atoni (resp.,a ) by a} (resp.,

a3); make a copy of each rule except— At and exchange
in the copy each subscriptoy h; finally, replacez «— A?
by z « AJ, AS.

Now it can be observed that is derived for a guess
of (X4,Ys), (X5,Ys) if neither Y,AY; C Y1AY; nor
(X1, Y))A(X5,Ys) C (X1,Y1)A(Xs, Ya). If this is the
case for all such guesses, we get &, Y1) € SE(P Q)
and thus the corresponding answer-set should survive. On
the other hand if some guess does not requite be in the
model, the corresponding answer set(f&F , Y7) should not
survive. Thanks to the spoiling technique, this behavieur i
exactly matched by adding a single constraint— ~z.
Thus, we put our modules as follows together

S[P, Q) M[Q,1]UM[P,2)U M[P,3]UNIQ,4]U
N[P,5]U01UOQU{J_<—NZ}

Ha%aa%aataa’t |a’€"4}

and obtain as result:
Theorem 6 For all programs P and @, SE(P x Q) =
I (AS(S[P, Q])).

Discussion
We have addressed the problem of belief revision in logic

programming under the answer set semantics. Our approach

is based on a monotonic characterisation of logic programs,
given in terms of the set of SE models of a program. Based
on the latter, we defined and examined operators for logic
program expansion and revision. As well as giving prop-

erties of these operators, we also considered the complex-

ity and an encoding scheme for revision. This work is
novel, in that it addresses belief change in terms famil-
iar to researchers in belief revision: expansion is charac-
terised in terms of intersections of models, and revision is
characterized in terms of minimal distance between mod-
els. While we considered set-containment-based revision
here, cardinality-based revision can be defined also. In fu-
ture work we will consider more general notions of distance;
as well we will separately address the issue of general char-
acterisations and representation results for logic progra
again via SE models and the logic of here and there.

We finally note that previous work on logic program revi-
sion was formulated at the level of the individual program,

and not in terms of an abstract characterisation (via strong
equivalence or sets of SE interpretations). The net result i
that such previous work is generally difficult to work with:
properties are difficult to come by, and often desirable prop
erties (such asautology are lacking. The main point of
departure for the current approach then is to lift the pnoble
of logic program revision from the program (or syntactic)
level to an abstract (or semantic) level.

Appendix
Proof of Theorem 1

Most of the parts follow immediately from the fact that

SE(P + Q) = SE(P) N SE(Q).

1. We need to show that Definition 1 results in a well-defined
set of SE models.
For SE(P) N SE(Q) = () we have tha§ is trivially well-
defined (and? can be given byl «).
Otherwise, forSE(P) N SE(Q) # 0, we have the follow-
ing: If (X,Y) € SE(P)NSE(Q), then(X,Y) € SE(P)
and (X,Y) € SE(Q); whence(Y,Y) € SE(P) and
(YY) € SE(Q) since SE(P) and SE(Q) are well-
defined by virtue ofP and Q being logic programs.
Hence, (Y,Y) € SE(P) N SE(Q). Since this holds
for arbitrary (X,Y) € SE(P) N SE(Q) we have that
SE(P)N SE(Q) is well-defined.

2. Immediate from the definition of.
f P Cy Q, thenSE(P) C SE(Q).
SE(Q)=SE(P),orP+Q=; P

. Similar to the previous part.

. This was established in the first part.

. To show completeness, we need to show that for any
(X,Y) e SE(P+Q)and(YUY'  YUY’) € SE(P+Q)
that(X,YUY’) € SE(P + Q).

If (X,)Y) € SE(P+Q)and (YUY Y UY’) €
SE(P+ @), then(X,Y) € SE(P)N SE(Q) and(Y U
Y . YUY') e SE(P)HSE(Q) Hence(X,Y) € SE(P

Hence,SE(P) N

and(YUY',YUY’) € SE(P), and so, sinc&E(P) is
complete by assumption, we hal®, Y UY") € SE(P).
The same argument gives theX, Y U Y’) € SE(Q),

whence(X,Y UY’) € SE(P) N SE(Q) and (X, YU
Y') e SE(P + Q).

If Q =5 0, thenSE(Q) = {(X,Y) | X CY C A} from
which the result follows immediatelya

Proof of Theorem 2

RAL1: This postulate follows immediately from Defini-
tion 3. Note that(X,Y) € SE(P % Q) only if
Y € o(Mod(Q), Mod(P)), and therefore(Y,Y) €

o(SE(Q),SE(P)). So,SE(P = Q) is well-defined.

RA2: If P+ Q is satisfiable, thea(Mod(Q), Mod(P)) #
0 ando (SE(Q), SE(P)) # 0.
Further, forY € Mod(Q) (or (X,Y) € SE(Q)) we have
that there isY’ € Mod(P) (resp.,(X',Y’') € SE(P))
such thatY AY’ = 0 ((X,Y)A(X',Y’") = 0), from
which our result follows.



RA3: From Definition 3 we have that, iP is unsatisfiable,
then( is satisfiable iffP * () is satisfiable.
Otherwise, if P is satisfiable and) is satisfiable, then
there is someY,Y) € o(Mod(Q), Mod(P)) (since
SE(Q) is well-defined and given Definition 2). Hence,
SE(P* Q) # 0.

RA4: Immediate from Definition 3.

RA5: If SE(P) = 0, then the result follows immediately
from the first part of Definition 3.

Otherwise, we show that, ifX,Y) is an SE model of
(P+Q)+ R,then(X,Y) is an SE model oP % (Q + R).
Let(X,Y) € SE(P*Q)+R). Then,(X,Y) € SE(Px
Q) and(X,Y) € SE(R). Since(X,Y) € SE(P *Q),
by RA1 we have thatX,Y) € SE(Q), and so(X,Y) €
SE(Q)NSE(R),or(X,Y) € SE(Q + R).

There are two cases to consider:

X =Y: Since(X,Y) = (Y,Y) € SE(P xQ), we have
thatY € o(Mod(Q), Mod(P)). Hence, from Defini-
tion 2,Y € Mod(Q) and there is som¥&’ € Mod(P)
such that there is nd; € Mod(Q) and noY, €
Mod(P) such thatr1 AY> C YAY”.

We established at the outset tiiat, V) € SE(Q+ R).
Hence,Y € Mod(Q + R). This gives us that” €
Mod(Q + R) and there is som&’ € Mod(P) such
that noY, Y, exist withY; € Mod(Q), Y2 € Mod(P),
andY;AY; C YAY'.

Clearly, in the above, if there is ri§ € Mod(Q) such
that the above condition holds, then there is¥joe
Mod(Q + R) such that the above condition holds.
Thus, we hav&”™ € Mod(Q + R) and there is some
Y’ € Mod(P) for which noY; € Mod(Q + R) and no
Y> € Mod(P) exists such that; AY> C YAY”.
Thus, from Definition 2, we getY” € o(Mod(Q +
R), Mod(P)), henceY,Y) € SE(P * (Q + R)).

X CY: We haveY € o(Mod(Q), Mod(P)) by virtue
of (X,Y) € SE(P«Q). Inthe previous part we estab-
lished thatt” € o(Mod(Q + R), Mod(P)).

As well, (X,Y) € o(SE(Q), SE(P)) since(X,Y) €
SE(PxQ). Thus, from Definition 2, we have that there
is some(X’,Y’) € SE(P) such that ndJ, V,U’, V'
exist such thatU, V) € SE(Q), (U',V') € SE(P),
and(U, V)AU", V') C (X,Y)A(X",Y").
Therefore, there is nqU,V) € SE(Q + R) and
no (U’,V’) € SE(P) such that(U, V)A(U',V') C
(X, Y)AX', Y.

We previously showed théi,Y') € SE(Q+R). Con-
sequently, from Definition 3, we obtain thgk,Y") e
o(SE(Q + R),SE(P)). Hence,(X,Y) € SE(P x
(Q+R)).

Thus, in either case, we geX,Y") € SE(P x (Q + R)),

which was to be shownO

Proof of Theorem 3
For initialisation, idempotency, and tautology, in thetdef

For absorption, we hav@ = R, and so((P * Q) * R) =
(P *Q)* Q). SinceSE(P x Q) C SE(Q), then from
Theorem 1, Part 3, we have tHdt « Q) + Q = P * Q. As
well, (P*Q)*Q) = ((P*Q)+ Q), from which our result
follows. O

Proof of Theorem 4

We need to show thatE(P x Q) C SE(P *, Q). If

SE(P) =0,thenSE(P x Q) = SE(Q) = SE(P x, Q).
Otherwise, there are two cases to consider:

1. (X,Y) € SE(P xQ) whereX C Y. Then,(X,Y)
o(SE(P),SE(Q)) by Definiton 3, and(X,Y)
SE(P %, Q) by Definition 4.

2. (YY) € SE(P % Q). From Definition 3, we have that
Y € o(Mod(Q), Mod(P)). Y € o(Mod(Q), Mod(P))
impliesthat(Y,Y") € o(SE(Q), SE(P)). Hence, accord-
ing to Definition 4,(Y,Y") € SE(P *,, Q).

Therefore,(X,Y) € SE(P x Q) implies that(X,Y) €
SE(P %y Q), whenceSE(P x Q) C SE(P #, Q). O

S
S

Proof of Theorem 5

Since we deal with a globally fixed language, we first need
a few lemmata.

Lemma 1l Let P, Q be programsY an interpretation, and
x € Y\ var(PUQ). ThenY € o(Mod(Q), Mod(P))
impliesY \ {z} € o(Mod(Q), Mod(P)).

Proof. SinceY € o(Mod(Q), Mod(P)), soY € Mod(Q)
and there existsZ € Mod(P), such that for each
Y’ € Mod(Q) andZ' € Mod(P),Y'AZ' ¢ YAZ. We
show thatr € Z holds. Suppose this is not the case: Then,
we haver € YAZ, sincex € Y. Now, sincex ¢ var(P),
alsoZ U {z} € Mod(P). Butthenz ¢ YA(Z U {z})
which yieldsYA(Z U {z}) C YAZ, a contradiction to
our assumption. Hence, we can suppeses Z. Now
sinceY € Mod(Q) obviouslyY \ {z} € Mod(Q) as
well. We obtainYAZ = (Y \ {z})A(Z \ {z}), thus
Y\ {z} € 0(Mod(Q), Mod(P)) holds. O

Lemma2 Let P,QQ be programs, (X,Y) an SE-
interpretation, andz € Y \ war(P U Q). Then
(X,Y) € 0(SE(Q), SE(P)) implies(X \ {z},Y \ {z}) €
o(SE(Q), SE(P)).

Proof. Since (X,Y) € o(SE(Q),SE(P)),
(X,Y) € SE(Q) and there exists U, Z) € SE(P),
such that for each(X’,Y’) € SE(Q) and each
(U, Z') € SE(P), (X',Y'\AU'",Z") ¢ (X,Y)AU, Z).
We show that the following relations hold: (&) € Z,
2z € U iff x € X. Towards a contradiction, First
supposer ¢ Z. Then, we haver € YAZ, sincex € Y.
Now, sincex ¢ var(P), also(U, Z U {z}) € SE(P) and
(UU{z},ZU{z}) € SE(P). We haver ¢ YA(Z U {z})
which vyields YA(Z U {z}) C YAZ. Thus
(X, VAU, Zu{z}) C (X,Y)A(U, Z), which would be
a contradiction to the assumption. Hence, we can suppose

hand side of the given equivalence, revision corresponds =z € Z. If (2) does not hold, we get € XAU. Now in

with expansion via RA2, from which the resultis immediate.

caser € X andx ¢ U, we have( X, Y)A(U U{z},Z) C



(X, Y)A(U,Z). Incasex € U andz ¢ X, we have
(X, Y)AWU \ {z},2) Cc (X, Y)A(U,Z). Again both
cases yield a contradiction. ClearlgX,Y) € SE(Q)
implies (X \ {z},Y \ {z}) € SE(Q) and we obtain
(X, Y)AU, 2) = (X\ {2}, Y\ {2}) AU\ {2}, 2\ {x}).
(X \{z}, Y\ {z}) € 0(SE(Q), SE(P)) thus follows. O

Lemma 3 For any programsP, @, R, P xQ Z R iff there
existX CY C var(PUQUR) suchthaf{X,Y) € SE(Px
Q)and(X,Y) ¢ SE(R).

Proof. The if-direction is by definition.

As for the only-if direction, since? * Q Zs R, there
exists a pair(X,Y) such that(X,Y) € SE(P * Q)
and (X,Y) ¢ SE(R). LetV = war(P U Q U R).
We first show that(X N VY NY) e SE(P = Q).
By definition, (X,Y) € SE(Q). If SE(P) 0,
SE(P x Q) = SE(Q), and since(X,Y) € SE(Q)
obviously implies (X N VY Nn'Y) € SE(Q),
(XNV,YNY) e SE(P Q) thus follows in this case. So
SupposeSE(P) # 0. Then,Y € o(Mod(Q), Mod(P)).
By iteratively applying Lemma 1, we obtain that also
Y NV € o(ModQ), Mod(P)). Analogously us-
ing Lemma 2, (X,Y) € o(SE(Q),SE(P)) yields
XNV, Y nV) e o(SE(Q), SE(P)). By Definition 3,
we get(X NV, Y NV) € SE(P % Q). Finally, it is clear
that(X,Y) ¢ SE(R), implies(XNV,YNV) ¢ SE(R). O

We now proceed with the proof of Theorem 5.

We first show membership ix{ for the complemen-
tary problem. From Lemma 3, the complementary problem
holds iff there existX, Y C wvar(P U Q U R), such that
(X,Y) e SE(P+Q)and(X,Y) ¢ SE(R). In what fol-
lows letV = wvar(P U Q U R). We first state the follow-
ing observation: Recall thaf € o(Mod(Q), Mod(P)) iff
Y € Mod(Q) and there exists &8 € Mod(P), such that
W C V and for eacl”’ € Mod(Q) andW’ € Mod(P),
Y'AW' ¢ YAW. Now, if Y C V then there is also a
W C V satisfying above test (this is seen by the arguments
used in the proof of Lemma 1). A similar observation holds
for (X,Y) € o(SE(Q), SE(P)).

Thus an algorithm to decid® * Q Z, R is as follows.
We guess interpretations, Y, W, U, Z C V and start with
checking(X,Y) € SE(Q) and(X,Y) ¢ SE(R). Then,
we check whethefE(P) = () which can be done via a sin-
gle call to an NP-oracle. If the answer is yes, we already
have found an SE-interpretati¢X,Y'), suchthatX,Y) €
SE(P % Q) and (X,Y) ¢ SE(R) and thus the comple-
mentary problem holds. If the answer is no, we next check
(U,Z) € SE(P), W € Mod(P). Then, (1) givert” andW
we check whether for eadt’ C V and eachV’ C V, such
thatY’ € Mod(Q) andW' € Mod(P),Y'AW' ¢ YAW
holds. It is easy to see that then the same relation holds for
arbitrary modelsY” and W’. From that we can conclude
thatY € o(Mod(Q), Mod(P)). Next, (2) given(X,Y) and
(U, Z), we check whether for eack’ C Y’ C V and each
U C Z' CV,suchthatl X', Y') € SE(Q), (U, W') €
SE(P), (X", Y")AU' W) ¢ (X,Y)A(U,W). Again, it
is easy to see that in this caSE,Y) € o(SE(Q), SE(P))

follows. But then we obtaiftX,Y) € SE(P = Q) by Def-
inition 3 which together with X,Y") ¢ SE(R) solves the
complementary problem, cf. Lemma 3.

We recall that model checking as well as SE-model check-
ing are inP. So most of the checks used above arE if@ex-
pect the already mentioned call to an NP-oracle) and it re-
mains to settle the complexity of the checks (1) and (2). As
well they can be done by an NP-oracle. This can be seen by
considering the respective complementary problems, where
one guesses the sats, W’ (resp.X’,Y’, U’, Z') and then
performs model checking or SE-model checking together
with some other simple tests which are all ih Thus
the overall algorithm runs in nondeterministic polynomial
time with access to an NP-oracle. This shows -
membership as desired.

As for the hardness-part, we use a reduction foh2)-
QSAT, which is the prototypical complete problem 1ds .
Let® = VY3 Xy be a QBF where is a CNF overtX UY.
In what follows, let, for eachh € X U Y, 2’ be a new atom,
and, foreachclause= z; V.- -VzpV-ozpi1 Ve - Vozy, in
o, letébethe sequencd, . .., 2, zp11, . . ., zm. Moreover,
let w be a further new atomarld = X UY U {2’ | z €
X UY}U{w}. We define the following programs?s =
{ve—|veV}, Ry ={w 1}, and

Qo

= v~y =~y L=y, v/ |yeY}U
{z — ~a' w; 2/ — ~x,w; we—z; W 2';
Lz |zeX}U
{L « ¢,w]|caclauseinp}.
The SE-models ove¥” of these programs are as follows
(for a setZ of atoms,Z’ stands fo{z’ | z € Z}):

SE(Ps) = {(V,V)}
SE(Qe) = {(8,8)|S=Tu(\I),ICY}U
{(.17), (T.T) | S=Tu (Y \I),
T={wluSUJU(X\J),
ICY,JCX,IUJ [ ¢}
SE(R@) = {(Wl,WQ) | {w} - W1 - W2 - V}

We show thatb is true iff P x Q¢ Cs Rg holds.

Only-if direction SupposePs * Q¢ Cs Rg does not
hold. By Lemma 3, there exist C T C war(Ps U
Qs U Rg) = V such that(S,T) € SE(Ps * Qg) and
(S,T) ¢ SE(Rg). Inspecting the SE-models dts, we
obtain thatw ¢ S. From(S,T) € SE(Ps * Qs), (S,T) €
SE(Qs), and thusS has to be of the fornT U (Y \ )/
for somel C Y. Recall that(V, V) is the only SE-model
of Py over V. Hence,S T holds, since otherwise
(T, T)A(V,V) C (S, T)A(V,V), which is in contradiction
to (S,T) € SE(Ps * Qg). Now we observe that for eadh
withS =T CcUCV,(U,U) ¢ SE(Qs) has to hold, (oth-
erwise (U, U)A(V,V) c (5,5)A(V,V)). Inspecting the
SE-models ofSE(Qs ), this only holds if, for eacly C X,
I'UJ £~ ¢. Butthend is false.

If direction: Supposed is false. Then, there exists an
I CY suchthatforalll C X,TUJ [~ ¢. We know that



(S,8) = (TUY\I),Iu(Y\I)) € SE(Qs) and(V,V) €
SE(Pg). Next, to obtain(S, S) € SE(Ps * Q3), we show
S € o(Mod(Qs), Mod(Pg)). Suppose this is not the case.
SinceS C V andV is the minimal model of’s, there has
to exist anU with S C U C V, such thatll' € Mod(Qs).
Recall thatS = T U (Y \ I)’ and, by assumption, for all
J C X, TUJ £ ¢. Byinspecting the SE-models 6§,

it is clear that no sucl/ € Mod(Q4) exists. By essentially
the same arguments, S) € o(SE(Qs), SE(Pg)) can be
shown. Thereforg,S, S) € SE(Pyp *Q4) and sincev ¢ S,
Ps + Qe Cs Re does not hold.

This showsIIZ-hardness for normal progrand. The
result for positive program® is obtained by replacing in
Qo rulesy «— ~y', 3/ «— ~y byy;y <, and likewise
rulesz «— ~z’,w, 2’ «— ~z,w by z;2’ — w. Due to
the presence of constraints — y,%’ and L « =z, 2/, this
modification does not change the program’s SE-models.
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