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Abstract

Ordered disjunctions have been introduced as a simple, yet
expressive approach for representing preferential kriyde

by means of logic programs. The semantics for the resulting
language is based on the answer-set semantics, but comes in
different variants, depending on the particular intergtien

of preference aggregation associated to the ordered disjun
tion connective. While in standard answer-set programming
the question of when a program is to be considered equivalent
to another received increasing attention in recent yehis, t
problem has not been addressed for programs with ordered
disjunctions so far. In this paper, we discuss the concept of
strong equivalence in this setting. We introduce differart
sions of strong equivalence for programs with ordered dis-
junctions and provide model-theoretic characterisatiens
tending well-known ones for strong equivalence between or-
dinary logic programs. Furthermore, we discuss the reiatio
ships between the proposed notions and study their computa-
tional complexity.

Introduction

During the last decadenswer-set programmin@\SP) has
become an increasingly acknowledged tool for declarative
knowledge representation and reasoning (Gelfond & Lif-
schitz 1988; Marek & Truszczyhski 1999; Niemela 1999;
Baral 2002). A main advantage of ASP is that it is based on
solid theoretical foundations while being able to model eom
monsense reasoning in an arguably satisfactory way. The
availability of efficient solvers has furthermore stimeiet

its use in practical applications in recent years. This de-
velopment had quite some implications on ASP research.
For example, increasingly large applications requireufiesest

for modular programming. Another issue is the fact that in
applications, ASP code is often generated automatically by
so-calledfrontends calling for optimisation methods which
remove redundancies, as also found in database query op-
timisers. For these purposes, the fairly recently sugdeste
notion of strong equivalencéor ASP (Lifschitz, Pearce, &
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Valverde 2001; Turner 2003) can be used. Intuitively, two
programsP and( are strongly equivalent iff, for any pro-
gramR, PUR and@U R have the same answer sets. To put
it another way, two ASP programs are strongly equivalent
if they can be used interchangeably in any context (accord-
ingly, the progranmR above is also referred to as tbentext
program). This gives a handle on showing the equivalence
of ASP modules. Moreover, if a program is strongly equiv-
alent to a subprogram of itself, then one can always use the
subprogram instead of the original program, yielding peten
tial for optimisation.

Among the different lines of ASP research, many exten-
sions of the basic formalism have been proposed—an impor-
tant one is the modelling of preferences in ASP (Delgrande
et al. 2004). Strongly rooted in the research of nonmono-
tonic formalisms, the ability to specify preferences is ac-
knowledged to be particularly beneficial to ASP, since they
constitute a very natural and effective way of resolving in-
determinate solutions.

A recent means of representing preferences is ASP with
ordered disjunctiongBrewka 2002; Brewka, Niemela, &
Syrjanen 2004). The basic idea is to augment the syntax
by a designated operatok” to form ordered disjunctions.
Programs of this form (callebbgic programs with ordered
disjunctionsor LPODSs) can be evaluated in a standard way
or with respect to different preferential semantics whattet
the occurrences of this new operator into account. The sys-
tem psmodelgBrewka, Niemela, & Syrjanen 2004) serves
as a computational engine for these semantics. Applica-
tions of logic programs with ordered disjunctions include
policy languages (Bertino, Mileo, & Provetti 2005), plan-
ning (Zepedeet al. 2005), and game theory (Foo, Meyer,
& Brewka 2004). Also, extended ASP formalisms, like CR-
Prolog (Balduccini & Mellarkod 2003), have been enhanced
with ordered disjunctions.

In this paper, we examine how the inclusion of prefer-
ences in the form of ordered disjunctions affects equiva-
lence, and in particular strong equivalence of ASP. To this
end, we introduce different notions of strong equivalence
for LPODs. The distinguishing aspects of these notions
are (i) whether the context programs are arbitrary LPODs
or just ordinary programs, i.e., whether the context may
change preferential information, and (ii) whether the sema
tics is taken in terms of standard answer sets or preferred an



swer sets. Following Brewka, Niemela, & Syrjanen (2004),
we study three different preference strategies, viz. Baret
inclusion-, and cardinality-based relations (identifieing
the lettersp, ¢, andc, respectively). More formally, we in-
troduce the following relations: for all LPODR and(),

e P =, @ holds iff the standard answer sets Bfand Q
coincide under any extension by ordinary programs;

e P =, . @ holdsiff the standard answer setsi®fand @
coincide under any extension by LPODs;

o P =7 ) holds iff thes-preferred answer sets #fand@
coincide under any extension by ordinary programs (for

o € {p,i,c}); and
e P =7, Q holds iff the o-preferred answer sets df

and@ coincide under any extension by LPODs (fore

{p,i,c}).

For all of these notions we provide novel model-theoretic
characterisations and we discuss relations among them. Fur
thermore, the notions coincide for ordinary programs, so
they properly generalise the usual concept of strong equiv-
alence. Interestingly, the two relations on standard answe
sets,=; and=; «, coincide and can be characterised in a
similar fashion as strong equivalence for ordinary proggzam
That is to say, this characterisation uses a generalisafion
the concept of aBE-mode(Turner 2003), based on a novel
notion of a reduct, extending the usual reduct as introduced
by Gelfond & Lifschitz (1988). For the two relations on pre-
ferred answer setsz7 and=¢ ,, it turns out that, for each
o € {p,i,c}, =2, is a proper subrelation aE?. Hence,

—s,X : ?
for all LPODs P, Q, P =7, Q implies P =7 (@, but
the converse direction does not hold in general. The model-
theoretic characterisations for these notions includettes

for =, but in addition require specific conditions (with re-

spect to the chosen preference strategy) on answer-sets can

didates.

Our analysis about the relationships between the different
introduced equivalence notions actually provides a cotaple
picture. Moreover, we also discuss the computational com-
plexity of equivalence checking, showing that equivalence
checking for LPODs under the considered notions has the

LPODs over univers&. Letr be a rule of form (1). We
call k the arity of r, and denote it byx(r). Furthermore,
risnormalif £k = 1 andHornif £ = 1 andm = n.

We usehead(r) = {p1,...,pr} to denote theneadof r

andhead ;(r) to denote thg-th elementp;, from the head
of r (for j > k, let head;(r) = pi). Moreover, we de-
fine bOdy(T) = {pk+17 -+ Pm, not Pm+1y-- -5 not pn}y

called thebody of =, body™ (1) = {prs1,...,pm}, and
body~ (r) = {pm+1,---,pn}. Thej-thoption(l < j < k)

of r is defined as

il =p;i = DPriis---
not pi, ..

We will also write a ruler of form (1) asp; x -+ X pp «—
body(r) whenever convenient, andj] as head;(r) <«
body(r), not head:(r),...,not head;_1(r).

Fora progran®, atoms(P) is given byl J, . p (head(r)U
body™ () U body~ (r)). Furthermore, we say that is over
V if atoms(P) C V. A program isnormal, or a logic pro-
gram (LP)simpliciter, if each rule in it is normal. A pro-
gram isHorn if each rule in it is Horn. Asplit programof
an LPOD is obtained by replacing each rule by one of its
options. Clearly, any split program is normal, and a normal
program is the unique split program of itself. The set of all
split programs of an LPOI is denoted asP(P).

An interpretation/, i.e., a set of atomssatisfiesa rule
r, symbolically I = r, iff I N head(r) # 0 whenever
body™(r) € I andI N body~ (r) = © jointly hold. An
interpretation/ satisfies an LPODP, symbolicallyl = P,
iff I |=r, foreachr € P. I is then also called aclassica)
modelof P.

Thereduct(Gelfond & Lifschitz 1988) of an LFP rela-
tive toan interpretatior is defined byP! = {head(r) «—
body™ (r) | r € P,body~ (r) NI = (}. The smallest inter-
pretation satisfying a Horn programis denoted byCn(P).

An interpretation/ is ananswer sebf a normal progran?

if Cn(P!) = I. The answer sets of an LPOP are defined
as the collection of all answer sets of its split programs.
We useAS(P) for denoting the set of all answer setsf
Hence,AS(P) = {I | 3P’ € SP(P) : I € AS(P')}. In

y Pms not Pm+1y-- -5 not Pn,

., not pj_1.

for ordinary programs, viz. this task is @6P-complete for
each equivalence notion.

Preliminaries

A logic program with ordered disjunctioft POD) (Brewka,
Niemela, & Syrjanen 2004) is a finite set of rules of the form

., not pp, (1)

wherel < k < m < n,and eactp; (1 < i < n)is
an atomt from a universel/;2 Py denotes the set of all

PLX XDk < Dkt1s-- - Pms MOt Dint1, - -

1In contrast to previous work (Brewka 2002; Brewka, Niemela
& Syrjanen 2004), we do not consider strong negation fosoaa
of simplicity.

2In general, we assume that this universe is fixed and suitably
large. Usually, we assume that the universe amounts to thaf se
atoms occurring in the considered programs.

preferred answer sets defined below, we call elements from
AS(P) also thestandardanswer sets oP.

Let r be a rule of arityk. An interpretation/ satisfiesr
to degreej, in symbols! =; r, forl < j <k, if I = r[j]
and foralll <i < j, I £ r[i]. Note thatl |=; r also holds
if the body ofr is not satisfied by. Intuitively, satisfying
a rule to degred means that there is “no better way” to
satisfy it. We also usé;(r) to denote the degree to which
r is satisfied undef. This concept gives rise to program
partitions, formed by rules which are satisfied to the same
degree. Given a prograf, an interpretatiod, and a degree
J, we denote these partitions B [j] = {r € P | I |=; r}.

In contrast to Brewka, Niemela, & Syrjanen (2004), we
define the concept of preferences in a more general way:

3Brewka, Niemela, & Syrjanen (2004) provide an alterrativ
definition of answer sets for LPODs based on a reduct. We-intro
duce a different notion of a reduct for our purposes latendwer.



While in (Brewka, Niemela, & Syrjanen 2004) preferences
(of different kinds) are always defined with respect to a pro-
gram, we would like to abstract from programs and refer
to a “type” of preference without fixing the program. A
preference schemgor preference for short) is a mapping

o:Py— 92 %27 assigning each LPOIP over universé/
a preference relationr between interpretations ovér, de-
noted by>%. We call>% also aninstanceof preference.

We now define four preference schematap, ¢, and,
¢, respectively referring to thempty a Pareto-basedan
inclusion-basedand acardinality-basedoreference. Their
instances>¢,, >4, >4, and>%, are as follows: Lef, J be
(classical) models of a program Then,

e [ >% J never holds,

e I >Y Jiffthereis aruler € P such thatl;(r) < d;(r),
and fornor € P, dy(r) > dj(r),

e [ >4 Jiff there is ak such thatP;[k] D P;[k], and for
all j < k, Pr[j] = Pyl3],

e I >¢ Jiff there is ak such that Pr[k]| > |P;[k]|, and
forall j < k, | Pr[j]] = | Ps[j]|-

Given a preference, an interpretatiod is ac-preferred
answer setof an LPODP I € AS(P) and there is no
J € AS(P) such that/ > I. Intuitively, theo-preferred
answer set of an LPOIP are the standard answers sets of
P which are maximal with respect t8%. The set of alb-
preferred answer sets of an LPQDis denoted byd S (P).
We observe thatlS¢(P) = AS(P).

Note that, for the preferences defined abale>{ J
trivially implies 1 >%, J, I >, J implies/ >% J, and
I >% JimpliesI >% J, for any programP. Hence,
AS(P) C AS'(P) C ASP(P) C AS(P). There are
programs for which all subset-relations are proper, as the
following example demonstrates.

Example 1 Consider the following progran® (we label
rules with ordered disjunctions for easier referejice

a < not b, not c;
c < not a, not b;
e 1 b X d— a;

Teia XbXce—z;

b < not a, not c;
z+—by z+g¢
rpiexexX f— a;
rg:cXb— z.

The standard answer sets fare A; = {a,d, e}, As =
{a,d, f}, A3 = {b, 2z}, and A4 = {c, =z}, with the following
rule-satisfaction degrees:

1| 2 | 3
Ay [ P\{ra,m} | {rasme} | O
Ay | P\Ara,mo} | {ra} | {re}
As | P\A{re,ra} | {re;rat | 0
Ay P\ {r.} {re}

We have thatd, >$ As, Ay >% Az, and Ay >% Ay,
and therefored 5¢(P) = {A4}. We also havel; >%, A,
Ay >% As, but Ay #% Ap and A3 #% Ay, hence
AS'(P) = {A;,A4}. But then we havel, #7 Aj
(da,(rq) < da,(rq), butda,(rc) > da,(re)) and also
Ay A% Az and Ay 4% As. Inaddition,A; >4, A, holds,
and therefored S*(P) = { A1, Az, A4}.

We conclude this section with a discussion of different
equivalence notions. Two LPOD4$? and @, are said to
be (ordinarily) equivalent denotedP = @, iff AS(P) =
AS(Q), ando-equivalentdenotedP =7 Q, iff AS7(P) =
AS%(Q), for any preference. Two LPs P, and P, are
strongly equivalen{Lifschitz, Pearce, & Valverde 2001),
denotedP;, =; P, iff, for any LP P, AS(P, U P) =
AS(P, U P). Following Turner (2003), strong equivalence
between LPs can be characterised as follows: R dte an
LP (overU) andX,Y sets ofatomssuchtha&i CY C U.
The pair(X,Y) is anSE-modeloverU) of P if Y = P
and X | PY. By SE(P) we denote the set of all SE-
models of P. Then, for any LPsP; and P, P, =, P, iff
SE(Py) = SE(Ps).

Defining a Reduct for LPODs

As noted above, we now provide a definition of a reduct
which properly extends the usual one due to Gelfond & Lif-
schitz (1988), and which allows us to characterise answer
sets of LPODs just in the same way as answer sets of LPs.

Definition 1 Let P be an LPOD andl an interpretation.
Then,P! is given by

{head;(r) « body™(r) | r € P,IN body™ (r) = 0,
I r}U{headyy(r) < body™ (r) | r € P,I {1}

In other words, fora rule = p; X - -+ X pr < body(r), we
take the positive parh; < body™ (r), of the j-th option of

7 to build the reduct’?, in casel N body ™ (r) = () andr is
satisfied to degregby I; if r is not satisfied by (note that

in this casdNbody ™ (r) = () holds as well), we take the pos-
itive part of the least option, i.ehead o) (1) body ™ (r).
Therefore, all rules € P with I N body™ (r) # () are not
taken into account in the construction Bf, which is in
accordance with the original concept of a program reduct.
In particular, for a normal prograr®, our definition of a
reduct coincides with the usual notion of a reduct, since, fo
any normal rule-, we have that = r[1], and thud &= r iff

I |=1 r, hencer € PLiff I N body™(r) = 0. Thus,P! as
defined in the background for LPs, is properly generalised to
LPODs by Definition 1. The difference to the redut} as
defined by Brewka, Niemela, & Syrjanen (2004) is that rules
r from P with I j~ r are not necessarily presentity .

We furthermore note that the reduct as defined by Brewka,
Niemela, & Syrjanen (2004) differs from the original no-
tion of a reduct as defined by Gelfond & Lifschitz (1988)
on some normal programs, while the reduct of Definition 1
does not. For example, for the progrdtm= {a — b}, we
haveP!" = ¢, while P{t} = {a — b} according to Defi-
nition 1 and Gelfond & Lifschitz (1988). Also, observe that
{b} E Pib} while {b} = P, a scenario that cannot occur
with the reduct of Definition 1. Indeed, this is a consequence
of the general property stated next.

Lemma 1 For each LPODP and each interpretation,
I = Piff I = PL

Proof. (=) FromI |= P, we have, foreache P, I = r,
and thusl |=; r, for some degreg. Thus, for eachr € P,



we have eithetl N body ™ (r) # 0 or I = head;(r) «
body™ (r), andI = P! follows.

(<) If I £ P, then there exists somee P such that
body™*(r) C I andI N (head(r) U body ™ (r)) = 0. This
implies body™ (r) C I andI N head(r) = (. Hence, for
anyl <i < «(r), I £ head;(r) < body™ (r). This holds,
in particular, fori = a(r) and sincep, () — body™ (r) is
contained inP!, we getl [~ P!. O

Lemma 2 Let P be an LPOD,S € SP(P), andI an inter-
pretation. Then/ = S implies] = P.

Proof. Supposd (£~ P. Hence, there exists a rulee P

such thatody ™ (r) C I andI N (head(r) U body ~(r)) = 0.

SinceS € SP(P), thej-th option ofr, r[j], is contained
in S, for somej. Sincebody™(r[j]) = body™(r), and
(head (r[§])Ubody ~ (r[j])) C (head(r)Ubody~ (1)), we get
body™* (r[j]) € I andI N (head(r[j]) U body~ (r[4])) = 0,

thusl £ S. O

Now we can use our notion of reduct to characterise the
standard answers of an LPOD.

Theorem 3 Let P be an LPOD andl an interpretation.
Then,I € AS(P)iff I = Cn(PT).

Proof. (<) Assumel = Cn(P'), and consider the program
S which contains, for each rule € P the j-th option,r[j],
of rif I |=; r for somel < j < k, and thex(r)-th option
of r otherwise. By constructiorfj € SP(P) andP! = S7.
Sincel = On(P?) by hypothesis, we gdt= Cn(S?), and
thusI € AS(P).

(=) FromI € AS(P) we get that there exists a split
programS € SP(P) such thatl = Cn(S?). We show that
I = Cn(PT). FromI = ST (and sinceS is an LP) we know
I S.BylLemma2] = P, andthus, by Lemma 1, we get
I |= P!. It remains to show that for eachC I, J £ PL.
So, fix someJ C I. We know.J [~ ST, i.e.J [~ {r[j]}!, for
somej-th option of arule- € P. FromJ k& {r[j]}!, we get
INbody (r) =0, 1N {head(r),..., head;—1(r)} =0,
body™ (r) C J, andhead;(r) ¢ J. Buthead;(r) € I hasto
hold, otherwisel [~ S. But then, we havéody™ (r) C I,
sinceJ C I, InNbody (r) = 0, head;(r) € I and
I N {heads(r),...,head;—1(r)} = (. Therefore, by
definition, |=; r, and since N body ~ (r) = (), we get that
headj(r) « body™(r) is contained inP!. Consequently,
JEPL O

We also mention a basic property, which one expects from
a reduct, and which clearly holds by the definition which
defines a reduct rule by rule.

Proposition 4 For any LPODP, @, and any interpretation
I,(PuQ)! =P uq@.

Non-preferential Strong Equivalence

will see later, this notion is also underlying (preferehtia
strong equivalence which relies on comparisons of prederre
answer sets. However, already for standard strong equiva-
lence we can, in principle, distinguish between two possibl
scenarios for the types of programs which are considered as
context of the comparison. In fact, we distinguish between
a non-preferential context, which refers to any normal pro-
gram, or an arbitrary context which also includes the entire
class of LPODs.

Definition 2 Let P and @Q be two LPODs. ThenP and

Q are standard strongly equivalent for non-preferential con-
text, symbolicallyP =, Q, iff, for any LPR, (PUR) =

(Q U R). P and( are standard strongly equivalent (for ar-
bitrary context) symbolicallyP =, « @, iff, for any LPOD
R,(PUR)=(QUR).

In order to characterise these strong-equivalence notions
between LPODs, we define the notion of an SE-model for
LPODs in the same way as done for LPs, but using our new
notion of a reduct.

Definition 3 A pair (X,Y") of interpretations withX C Y
is an SE-modelof an LPODP iff Y = P and X = PY.
The set of all SE-models of an LPOPx is denoted by
SE(P).

Our generalised notion for LPODs shares some impor-
tant property with the traditional notion of SE-models for
LPs—in particular, the following one, which easily follows
from Proposition 4 and the fact the satisfaction is defined in
a standard way.

Proposition 5 For all LPODs P, Q, SE(P) N SE(Q) =
SE(PUQ).

The next result shows that the extended concept of an
SE-model characterises both LPOD- and LP-strong equiv-
alence. Thus, the latter two notions coincide.

Theorem 6 For all LPODs P, @), the following statements
are equivalent(1) P =, « @Q; (2) P =5 Q; (3) SE(P) =
SE(Q).

Proof. The proof proceeds basically along the lines of the
corresponding proof by Turner (Turner 2003). Recall that
following Theorem 3, for any LPOLP, I € AS(P) iff
I = PandnoJ C I satisfies] |= P?.

(1) = (2): Follows by definition.
(2) = (3): Suppose, without loss of generalityX,Y) €
SE(P)\ SE(Q).

Case 1:X =Y. Then,Y P andY }£ Q. Clearly,
YeAS(PU{y—|yeY})butY ¢ AS(QU{y —|y e

1)

Case 2:X C Y and(Y,Y) € SE(P) N SE(Q). Take
R={z —[zeX}U{p—qlpgeY\X}

Then,Y = Q U R, and, for eaclZ C Y with X # Z,
Z = RY = R. SinceX [~ QY, by hypothesis{X,Y))ﬁé
SE(Q), we obtain that nd/ C Y satisfiesV = (Q U R)".
Consequentlyy” € AS(Q U R). On the other handX =

In this section, we extend the concept of strong equivalence PY by hypothesis, an& = RY is easily checked, since
to LPODs by comparing their standard answer sets. Aswe R = RY. Butthen, X = PY URY = (PU R)Y. Hence,



Y ¢ AS(P U R). In both cases we used an LA#Pto show
AS(PUR) # AS(QU R), henceP #; Q.

(3) = (1). Suppose there exists an LPO® such that
AS(PUR) # AS(Q U R). Without loss of generality,
assumethat” € AS(PUR)\ AS(QUR). We getY’ = P
andY E R, and thus have two cases for¢ AS(Q U R).
First, Y £ Q. We immediately getY,Y) ¢ SE(Q) and
are done, sincéY,Y) € SE(P) holds in view ofY = P.
So suppos&” l/: Q but someX C Y satisfies(Q U R)Y .
Then,X = Q¥ and we obtain X,Y) € SE(Q). On the
other hand, sinc& = RY, we haveX [~ PY, otherwise
X E PYURY = (PUR)Y, which contradicts the
assumptiony’ € AS(P U R). FromX [ PY, we get
(X,Y) ¢ SE(P). O

By definition, it is clear that standard strong equivalence

implies standard equivalence between LPODs. The example

given next shows that such an implication does, in general,
not hold foro-equivalence, where € {p, i, c}.

Example 2 Consider the programs

p
Q

We compute the SE-models of these two programs.
this end, let us first establish the interpretations (over
{a,b,c,d}) satisfyingP, and resp.). Recall that the no-
tion of satisfaction does not take care of the actual order of
atoms in rule heads, and thus it is quite obvious tReand

Q are satisfied by the same interpretations, iz}, {b},
{a,d}, {b,d}, {a,c,d}, {b,c,d}, {c,d}, {a,b,c,d}. TO see
that also the (non-total) SE-models Bfand @) coincide we
show thatP’ = Q' holds for each model from above. In
fact, there is only one rule which differs ia and @, so we
have to checkc x a x b} = {c x b x a}!, for each such

I. By definition of the redudftc x a x b} # {c x b x a}!

is only possible for interpretations containing{a, b} but
notc. However no such interpretation satisfies the two pro-
grams. Thus, we have shovith=, Q.

Moreover,AS(P) = AS(Q) = {{a}, {b}}. But for each
preferencer € {p, i, c}, the respective preference relations
include{a} >% {b} and{b} >¢, {a}, yielding AS*(P)
AS'(P) = AS®(P) = {{a}} and AS"(Q) = AS*(Q) =
ASe(Q) = {{b}}. Hence,P £° Q, foro € {p, i, c}.

{e x axb;c—ab;d—c notd},

{e xbXxa;c—ab;d—c, notd}.

o-Strong Equivalence for LP Context

We next consider strong equivalence for preferred answer
sets where the context is restricted to normal programs
(LPs). For this case, we provide a general characterisation
which applies to any preference relations satisfying some
basic criteria. As our three example types of preferenges,

i, ande, satisfy these criteria, we thus obtain concrete char-
acterisations for these kinds of equivalence.

Definition 4 Let P and@ be LPODs and any preference
schema. ThenP and @ are o-strongly equivalent for LP
contextsin symbolsP? =7 Q, iff, for each LPR, (PUR) =°
(QUR).

To

Recall that P U R) =° (Q U R) denotes ordinary equiv-
alence between preferred answer sets, 465(P U R) =
AS?(QUR).

Before turning to our characterisations, we need a techni-
cal lemma.

Lemma 7 LetY, Z be models of an LPO over atomd/
and let

RI,‘Z = {a<—mnotb; b—nota}U
{y—alyeY}u{z<blzeZ}U
{w—a,y,notw|y eV\Y}U
{w b,z notw |z e V\Z},

wherea, b, w are new atoms. The S(P U RI/‘Z) ={Yu
{a}, ZU{b}}.

The proof is straightforward. Note that the constrainélik
rules usingw are required since the answer sets of LPODs
do not necessarily satisfy the anti-chain property.

The basic property underlying our characterisation is the
following:

Definition 5 A preferences is LP-invariantiff, for each
LPOD P, each LPR, and each modeY, Z of P U R, it
holdsthaty >¢ Ziff Y >% , Z.

We are now prepared to characteisstrong equivalence
for LP contexts for any prefereneewhich is LP-invariant.
Note that in the forthcoming result the paifSE(P), >%)
are assigned to a single program, and thus do not depend on
the context of a particular comparison.

Theorem 8 For all LPODs P and@, if o is an LP invariant
preference, the®® =7 Q iff (SE(P), >%)=(SE(Q), >7).

Proof. (=) First, suppos&E(P) # SE(Q). By Theo-
rem 6, we knowP %, ). Hence, there exists an LIR such
that, without loss of generality,e¢ AS(PUR)\ AS(QUR).
LetU = atoms(P U Q U R) and consider the program

R =RU{w « TU{nota|a € U\I}}U{w— not w},
wherew ¢ U. Then,I U {w} is the only answer set of
PUR' and thus alse-preferred, while) U R’ possesses no
answer set and thus, in particular,si@referred answer-set.
But then, sinceR’ is an LP,P #£7 Q.

Second, supposgr (P) = SE(Q) and>%#>¢,. Since
SE(P) = SE(Q), the classical models d? and@ have to
coincide, and thus-%.#>7, yields that there exist models
Y, Z of both P and@ such that, without loss of generality,

Z >% Y andZ #¢, Y. Moreover, letV = atoms(P U Q).
By Lemma 7,

{YU{a},ZU{b}} = AS(PURI ;) = AS(QUR!, »).

Now, sinceZ >% Y anda,b ¢ P, ZU{b} >% Y U{a}is
easily seen. Since is LP-invariant, and botty U {b} and
YU{a} are models oPUR}, ,, we obtainZu{b} >7, .
! Y,.Z
Y'U{a}. This shows"U{a} ¢ AS?(PUR}, ;). By similar
arguments, one can show thatJ {a} € AS?(Q U R{/’Z).

SinceR{,’Z is an LP, we have® #£7 Q.



(<) AssumeP #7 @ and, without loss of generality,
Y € AS°(PUR)\ AS?(Q U R) for some LPR. Clearly,
Y € AS(P U R) then holds, so in casg ¢ AS(Q U R)
we are done, since then, by definitio®, %, @, and
consequenthSE(P) # SE(Q), in view of Theorem 6. So
assum&” € AS(Q U R). Then, there exists & >7, 5 Y
suchthatZ € AS(QUR). If Z ¢ AS(PUR) we are again
done since this yield® #, Q, i.e., SE(P) # SE(Q).
Hence,Y andZ are answer sets of bofAU R andQ@ U R.
Thus,Y and Z have to satisfy botl® and@, as well asR.
Hence, we have that (§ #% 5, Y (asY € AS?(P U R))
and (i) Z >g r Y (@sY ¢ AS?(Q U R)). Sinceo is
LP-invariant, we obtainz #% Y while Z >7, Y. This
shows>%#>¢). O

Concerning our concrete preference relations, we first
show that they are indeed LP-invariant.

Lemma 9 Preferences, i, c, are all LP-invariant.

Proof. We have to show that for each LPOB) each LPR,
and each modél, Z of PUR,Y >% Ziff Y >%  Z, for
o € {p,i,c}.

SinceR is an LP, for everyr € R, we obtaindy (r) =
dz(r) = 1 and Ry[l] = Rgz[l]. Moreover, for any
k > 1, it holds thatRy[k] = Rz[k] = 0, and hence
(P U R)ylk] = Pylk] and(P U R)z[k] = Pzlk]. It

follows that|(P U R)y[1]| = |Py[l]| + |Ry[l]] and
|]gP[u] R)z[1]| = |Pz[1]| + |Rz[1]|, and sinceRy[1] =
ALNE

(P UR)y[1]] > |(PUR)z[1]| iff |Py[1]| > [Pz[1]]
and
|(PUR)y[l]| = [(PUR)z[1]]iff [Py [1]| = [Pz[1]|.

Consequently” >% Z iff Y >% » Z.

Since Ry [1] = Rz[1], also(P U R)y[l] = Py[1] U
Ry[l] D (PU R)Z[l] = Pz[l] URz[l] iff Py[l] D Pz[l],
and(P U R)y[l] = (P U R)Z[l] iff Py[l] = Pz[l] Con-
sequentlyy >% Ziff Y >4 . Z.

Since, for anyr € R, dy(r) = dz(r) if there is some
rule " € P U R such thatdy (') < dz(r'), we obtain
r’ € P. Moreover, for no rule” € R, dy (r") > dz(r")
can hold. Consequently, >%, Ziff Y >%, . Z. O

We thus obtain the following characterisation:
Theorem 10 For all LPODsP, Q,
o P =2 Qiff (SE(P),>%) = (SE(Q). >),
o P=LQiff (SE(P),>%) = (SE(Q), >§9>,
o P=CQIff (SE(P),>%) = (SE(Q), >§)-
Note that this allows also for even more flexible defini-

tions of strong equivalence notions as follows: For instanc
given two LP-invariant preferences and n’/, we can ask

whether, for each LR, AS™(PUR) = AS™ (QUR) holds.

A possible application would be if one wants to apply a pro-
gram to a different preference relation without changireg th
meaning under any new information (which itself does not
provide new preferential information).

o-Strong Equivalence for Arbitrary Context

We next consider the case where LPODs can be possible
context programs. Hereby, it is not only necessary tHat
agrees on all pairs of models, but also that all pairs of mod-
els that can become comparable with respectfoagree
when adding an appropriate LPOD. It is worthwhile noting
that this additional requirement applies to pairs of models
that are incomparable with respecttd. It turns out that

this requirement gives rise to quite different conditioos f
differento.

Definition 6 Let P and @Q be two LPODs. ThenP and
Q are o-strongly equivalent for arbitrary contextsymboli-
cally P =7, Q, iff, forany LPODR, (PUR) =° (QUR).

The following result is straightforward.

Theorem 11 For any preferencer and LPODsP and Q,
P=Z, QimpliesP =7 Q.

However, for each of the preference schemata {p,
i, c}, the converse of the above theorem does not hold. But,
as follows from our results below, adding a further conditio
does ensure that =7 @ impliesP =7, Q. In the sequel,
when referring tor-strong equivalence, we meat ..

Pareto Preferred Strong Equivalence For the comparison

of Pareto-preferred answer sets, we note that the only way in
which two uncomparable models of a program can be made
answer sets and comparable by addition of an LPOD is when
they satisfy all rules to the same degree. To this end, we
define a relation identifying pairs of models that have this
property.

Definition 7 For any programP and interpretationsy, Z
oversomé/ 2O atoms(P),Y =% Ziff Y andZ are models
of Pandforallr € P,dy(r) = dz(r).

Note that=%C 2V x 2V, just like >¥,. We then obtain
the following characterisation:
As we show below=E | is then fully characterised by

comparing triples of the ’forrnS'E(P), >, =h).
Lemma 12 For all LPODs P and @, if P ={ , @, then
(SE(P),>p,=p) = (SE(Q), >4, =)

Proof. First observe that due to Theorem 10, if either
SE(P) # SE(Q) or >p#>{(,, thenP #? Q. This means
that there exists an LR such thatd S (PUR) # AS?(QU
R), and therefore als&® #° , Q.

Now assume thafE(P) = SE(Q) and >}=>7,, but
that=Y, and={, differ. That is, without loss of generality,
for two modelsY, Z, Y =} Z butY #(, Z. So, for
eachr € P, dy(r) = dz(r), but there exists an’ € Q
such thatdy (') # dz(r'), and without loss of generality,
let dy (1) > dz(r"). ConsiderR = R;,z U {a x b},
with RI/,Z as in Lemma 7. ThenY’ = Y U {a} and

A Z U {b} are the only standard answer sets of
PURand@ U R. Sincedy/(a x b) < dz/(a x b)
anddy(r) = dgz(r), for eachr € P U R, we obtain
Y’ > » Z'and thusASP(P U R) = {Y’}. On the other
hand, sincely (') > dz(r") holds, we obtairy”’ 4, Z’



andZ’ 44,z Y'. Therefore AS*(QU R) = {Y’, Z'} and Proof. Assume without loss of generality that there are two

henceP £, Q. O modelsY, Z of P and@ such tha” > Z butY %, Z
Then, there is somé such thatPy[k] D Pz[k] and for
, all j < k, Py[j] = Pz[j], while either (a) for alli > 0,
Lemma 13pForpaII LPODs JZ, Q, if (SE(P),>%,=%) = Qy[i] = Qz[i] or (b) there is somé such thatQy [h] C
(SE(Q), >, =g) thenP =, Q. Qz[h] andQy [g] = Qz[g], forall g < h.
p _ p We observe thatp (Y, Z) = k > 0 while in case (a),
Proof. AssumelSE(P), >, =p) = (SE(Q), > =0, 0o(Y,Z) = 0 holds, and in case (b}o(Y,Z) = 0

also holds, sincé) < 6g(Y,Z) < h cannot hold as
Theorem 6 we know thal S(PU R) = AS(QU R). Inthe the respective sets are equé(Y,Z) = h cannot hold
following, consider arbitraryX, Y € AS(P U R). becauseQy[h] C @Qz[h], and 6o(Y,Z) > h cannot

If X >pyr Y holds, there is amy € P U R such hold either asQy [k h]. Therefore, in either case
that dx(ro) < dy(ro) and for allry € PURItholds 5 (y 7) 5;?}”[2])_7&5@2[ ) e

thatdx(r1) < dy(r1). If there is anry € P such that
dx(r2) < dy(r2), thenX >% Y, and since>%, is equal
to >7, alsoX >¢, Y andX >¢, Y. If there is no such
, thend =d , for eachrs € P, and hence . .
T)?' =0y, grﬁ??’noreo)\//gz)e R. Sincgi” is equal to=7 Corollary 16 Given LPODsP and @, if {SE(P),dp) =
L P ’ (SE(P),dq), thenP =% Q.
we obtainX >f, ,, Y also in this case.
Using a symmetric argument, we can show that  Proof. By Theorem 15 and Theorem 100
X >4ug YimpliesX >4, . Y, andin totalX >% p V
iff X >0,z Y. ItfollowsthatAS?(PUR) = AS?(QUR),
and sinceR is arbitrary,P =, Q. O

and letR be an arbitrary LPOD. SlncﬁE( ) = SE(Q), by
AS(

Towards our characterisationsf, ., we note the follow-
ing ancillary result:

As we show below=!, , is then fully characterised by
comparing pairs of the forfiSE(P), dp).

Lemma 17 For all LPODs P and Q, if P =, , Q, then
Lemmata 12 and 13 provide us with the following char- (SE(P),dp) = (SE(Q),dq)-

acterisation: Proof.  Suppose(SE(P),dp) # (SE(Q),dq). If

Theorem 14 For all LPODs P and Q, P =f @ iff SE(P) # SE(Q) by Theorem 1P # (. This means that

(SE(P), >, =2 = (SE(Q), >, =P2). ’ there exists an LR such thatAS* (P U R) # AS'(QUR),
@ e and therefore als® # , Q.

Inclusion Preferred Strong Equivalence Different to the So let us examine the situationS (P) = SE(Q) and

situation of Pareto preference, adding rules under inclu- (again without loss of generality) for two modéfsand Z
sion preference may invalidate the relationship between tw 0f P andQ, k = 0p(Y, Z) < 0q(Y, Z) = /.

models in one program, but not in the other one. Indeed, If £ = 0 we differentiate two cases: (i})j > 0 : Py|j]
this may happen if the inclusion relation holds at a differen  Pz[j] and (i) 3i : Py[i] C Pz[i] andVh < i : Py[h]
degree in the two programs. More specifically, there may be Pz[h]. Sincel = do(Y, Z) we have either (apy[é]
an incomparability on different satisfaction degreesvont ~ Qz[¢] or (b) bothQy [¢] £ Qz[¢] andQy[(] 2 Qz[{]
models on the two programs or an incomparability on some if (i) and (a) thenY” %% Z andY’ >22 Z, if (ii) and (a) then
satisfaction degree for two models on one program, while 7 >4 Y andY >1'Q Z, and if (i) and (b) therz >% Y and

there is no incomparability for the other program. A unified i i
criterion for these two situations is comparing the degree o Z 7o Y. Inthese cases we obtainz; () by Theorem 10

which two models are incomparable, and setting this degree 219 hence (as discussed abakey; . Q. ‘
to a special value if no such degree exists. In the following ~ If () and (b) thenY %%, Z, Z #p Y andY %, Z,
definition, we choose the value 0 as this special value, as z ;u’Q Y but we construct an LPOR* = RI/,Z U R}

satisfaction degrees are always greater than O. where
Definition 8 For each LPODP, letdp : 2V x 2V — N be Ry ={v—c¢,notv|l1<i</{}U
the partial function defined on the modelsfotuch that for {1 X -+ X1 X a x b}
modelsy” and 2 wherecy, . .., co_1,v are symbols that do not occur inor
k if Py[k] € Pz[k] and Q. Using Lemma 7 we obtain thatS(PU R*) = AS(QU
op(Y,Z) = Vi < k: Py[j] = Pz[j]; R*) ={Y",Z'},whereY’' =Y U {a} andZ’ = Z U {b}.
0 otherwise. Now for all degreeg < ¢, both(P U R*)y-[g] = (P U

R*)z:/[g] and(QU R*)y~ [j U R*)z[j] hold, whereas
We first observe that if these partial functions coincide for (p)j gj)y/ [g%QD (P )Uyly*]) [%]Qhencé}zﬂ[ i) i 7' but

two programs, then also the respective preference refation () y r*)y.[/] ¢ (QU R*)z[(] and (Q U R*)Y/ G
are equal. (Q U R*)z[(] hence neithet’ >{, . Z' norZ' >4 p.

Theorem 15 For all LPODs P and@ having the same mod- ~ Y”. ThereforeAS’(P U R*) = {Y'} # AS'(PUR*) =
els, ifop = dq then>1, is equal to>f,. Y, Z'}andP # , Q.



For £k > 0, we construct an LPOR =
similar to R*, where

R}, , U R¥,

={vc,notv|1<i<k}U

{rt:ieg x -+ xecp1 xbxal| Pylk] D Pz[k]}U
{7‘_ 10l XX Cp—1 Xaxb | Py[k] z Pz[k]},
with ¢y, ..., cx_1,v being symbols that do not occur iR

or @, andR;Z as in Lemma 7. Again, we first observe that

AS(PUR) = AS(QUR) ={Y"’, Z'}, whereY’ = Y U{a}
andZ’ = Z U {b}.
Suppose thaPy [k] D Pz[k]. Then,dy (rt) = k + 1

anddz: (r*) = k, therefore neithe(P U R)y-[k] C (P U
R)z/[k] nor (P U R)y/[k] 2 (P U R)z [k]. Note also that
(PUR)y/[j] = (PUR)zlj] forall j < k, so neither
Y' >4 o Z'norZ' >4 Y holds. If Py (k] 7 Pylk],
thensinceép (Y, Z) = k alsoPy [k] € Pz[k]. Itfollows that
(PUR)y [k] 5 (PUR)Z[K] and(PUR)y [k] Z (PUR)7[k].
Hence also in this case neithgf >% . Z' nor Z' >% p
Y’ holds. In any case we therefore obtais*(P U R) =
{Y',z'}.

Now recall that by hypothesidy(Y,Z) > k, thus
Qv[k] = Qz[k] but now due tor™, (Q U R)z[k] D
(Q U R)y/[k], i.e., we haveZ' >{, p Y’. Hence,

AS'(QUR)={Z'},and thusP ! , Q. O
Lemma 18 For all LPODs P and Q, if (SE(P),dp) =
(SE(Q),dq) thenP = Q.

Proof. By Theorem 15 we know that, is equal to>(, and
by Corollary 16 we knowP =¢ Q.

Let R be an arbitrary LPOD. By Theorem 6 we know

P =, Q,andthusAS(PUR) = AS(QUR). Now consider
arbitrary X, Y € AS(P U R). We show thatX' >}, Y iff
X >ur Y, fromwhichP = . Q then follows.

AssumeX >PuR Y. Hence, there exists /asuch that

(PUR)x[k] > (PUR)yl[k] and, for eacly < k, (P
?T[]] (PUR)y[j] ie.Px[j] = Py[]andRX[]:
Y |J

First, supposéx [k] D Py[k] andRx[k] 2 Ry [k]. This
means that >p Y and thusX > Y. We also have
dp(X,Y) = k. Sincedp = dq, alsodg(X,Y) = k and
therefore eitheQ x[k] > Qv [k] or Qx[k] € Qy[k] and

k] ¢ Qyl[k]. The latter, however, would contradict
X >4 Y, and so we knowQx (k] D Qy[k] and hence
X >pRY.

Second, supposBx[k] O Ry [k] and Px[k] = Pyk].
Hence, 0p(X,Y) > k or 0p(X,Y) = 0. So also
Io(X,Y) > kor 6Q(X Y) = 0, which implies that for
eachj < k, Qx[j] = Qylj] (while Qx[j] C Qy[j] could
hold in case obg(X,Y) = 0, that means” >, X and
by Theorem 15Y >% X and hence alsd¥ ;APUR
which would contradict the initial assumptioh >%  Y).
It follows that (Q U R)x[k] D (Q U R)y[k], as weII as
(Q UR)x[j] = (QU R)y[j], for eachj < k. Hence,
X>6urY.

Symmetrically, we can show that' >{, Y implies
X >pupY. O

Lemmata 17 and 18 provide us with the following char-
acterisation.

Theorem 19 For all LPODs P and Q, P =., Q iff

Cardinality Preferred Strong Equivalence The remain-

ing equivalence notion to considerss; , . Here, the fact
that thenumberof rules appearing in the context program
is of relevance for making an interpretation preferred over
another one, makes things more involving and cumbersome.
We therefore omit proofs here. In any case, we can make
use of similar concepts as before.

Definition 9 For each LPODP, letAp : 2V x2U xN — Z
be the partial function defined on the modeldo$uch that
for modelsY’, Z andn € N,

Ap(Y, Z,n) = |Py[n]| — [Pz[n]|.

Different to thed functions for inclusion preference, the
conditionAp = Aq does not imply>%=>¢, (for LPODs
P and(@). Our characterisation therefore also needs to in-
clude a comparison of these two relations.

Theorem 20 For all LPODs P and@, we have thaP” =¢
Qiff (SE(P),>p,Ap) = (SE(Q),>q,Aqg)-

Some Properties

We now discuss some properties of the introduced equiva-
lence relations. First, we give a full picture on the relatio
ship between the different concepts. Afterwards, we aealys
the computational complexity of checking program equiva-
lence.

Relationships We already know from Theorem 6 that,
and=; » coincide. Moreover, as a consequence of Theo-
rems 6, 10, and 11, we obtain the following result:

Theorem 21 For everys € {p,i,c} and every LPOLP, @,
P =7, QimpliesP =, « Q (or, equivalentlyP =, Q).

From Theorem 10 we also know th&t =¢ @ implies
P =, Q, for eacho € {p,i,c}. The converse, however,
does not hold. In fact, Example 2 shows that LP-strong
equivalence=, between LPODs does not even imply (or-
dinary) o-equivalence=°. Moreover, for any preference
o € {p,i,c}, we have that” =7, Q implies P =
but, as already noted above, in neither case the converse
holds. Finally, if we compare only LPs, not surprisingly
all strong-equivalence notions introduced in our work col-
lapse to standard strong equivalence between normal logic
programs, although preference information may be added in
the context. This indeed shows that each notion is a general-
isation of standard strong equivalence as introduced by Lif
schitz, Pearce and Valverde (Lifschitz, Pearce, & Valverde
2001).

Proposition 22 For all normal programsP, @ and every
o € {p,i,c}, the following statements are equivalent:

DP=QAP=xQ Q) P=Q HP=,Q.
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Figure 1: Relationships between equivalence notions.

As for the remaining relationships, Figure 1 provides a
complete picture concerning the different equivalence no-
tions. Implications between relations hold precisely ineca
there is an arc in the transitive closure of the graph in Fig-
ure 1. For illustration, we first give an example showing that
P =! . Q does notimplyP =? @, from which in turn we
getthatP =! . Q does notimplyP = . Q andP =. Q
does not implyP =% Q. Then, we also give an example
thatP =5, Q does neither |mpl)4D =P QnorP = Q.
Counterexamples for the remaining three reIatlons are-omit
ted here for space reasons.

Example 3 Consider the following two programs:

p
Q

{ri:exaxb; a—c; b—c; c—a,b},

{ri:exaxb ra:cxexbxa; a—c

b« ¢; ¢+ a,b}.

Both programs have the same moddls}, {b}, {a,b,c},
and SE-modelsSE(P) = SE(Q) = {({a}, {a}), ({0},
{b}), ({a, b, c},{a,b,c})}. The rule-satisfaction degrees of
the models of” and( are as follows:

P ] 1 | 2 | 3
{a} [ P\{r}[{n}] 0
for | P\{m}| 0 | {n}
{a,b,c} P 0 0
Q | 1 | 2 | 3 4
{a} | Q\{ri,r2} | {r1} 0 {ra}
for | @\{rim} | 0 | {ri,r} | 0
{a,b,c} Q 0 0 0
We then obtain the following inclusion relations:
{a}>p{b} {a}>5{b}
{a,b,c}>pla} {a,b,c}>p{a}
{a,b,c}>p{b} {a, b, C}>b{b}
So0,>%=>{,. Moreover, we have:
dp({a}, {b})=2 do({a}, {b})=2
({avb’c} { ):1 5@({&,1), C}’ {a})=1
op({a,b,ct, {b})=1  dq({a,b,c}, {b})=1

From this it follows thatP = . Q holds. On the other
hand, we obtain the following the Pareto relations.

p {a}#0{b}
i e
7 b a,b,ci>H10
B AL B TS S 415!

So,>%,#>" and hence? #° Q.

Example 4 Consider the following programs:

P = {r1:c><d; roicXbxa; rg:cXxcexd,
d—a;d—b;a—c b—c; c—a,b}

{r2:c><b><a; ra:ecxaxb rs:ecxbxaxd;

d—a;d—b;a—c b—c; c—a,b}

Both programs have the same modefs, d}, {b,d},
{a,bec,d}, and SE modelsSE(P) SE(Q)
{({a,d},{a,d}), ({b, d}, {b, d}), ({a, b, ¢, d},{a, b, ¢, d})}.
The rule satisfaction degrees of the model$’cind @ are
as follows:

P 1 2 3
{a,d} P\ {ri,r2,r3} {r:} {ra,r3}
{body | P\{ri,ra,rs} | {r1,m2} | {rs}

{a,b,c,d} P

Q 1 2 3
{avd} Q\{?”z,?’q,?”s} {7”4} {7‘2,7’5}
{b,d} | Q\{rz,ra, s} | {r2,rs} | {ra}

{a,b,c,d} Q 1]

The following is easy to see.

{b,d}>%{a, d} {b,d}>g{a, d}
{a,b,¢,d}>%{a,d} {a,b, ¢, d}>cQ{a, d}

{a,b,¢,d}>%{b,d}  {a,b,c,d}>5{b, d}
So>%=>¢,. Moreover, we have:

Ab({ad). {b,d)
AP({av d}7 {ba d}
»({a,d}, {b,d}
({a,b,¢,d}, {a,d}
({a,b,¢c,d},{a,d}
({a,b,¢c,d},{a,d}
E{a, b,c,d}, {b,d}
(

0

g
w w =
l\)»—l

)
)=—
)
)
)=—
)=—
)
{a,b,¢c,d}, {b,d})=—
{a,b,c,d},{b,d})=—
)
)=—
)
)
)=—
)=—
)
)=—

}—‘[\3

Ap({a,d}, {b,d} 0
A% ({a, d}, {b, d}
Ay ({a,d}, {b,d}
{a7 b? C7 d}7 {a7 d}
{a,b,¢,d},{a,d}

(
(
(({a7 b,c,d},{a,d}
ol

W =

l\)H

{a,b,c,d}, {b,d}
{a,b,c,d},{b,d}
5({a,b,c,d}, {b,d})=—
SoP =;, Q holds. However, we observe the following
inclusion relations.

w

R&@E&@%@'ﬁ



{a,d} 44 {b,d}

(b, d}#5{a, d}
{a,b,¢,d}>p1a, d}
{a,b,c,d}>51{b,d}
Therefore>%#>(,, and as a consequende,#. Q. More-

over, we also observe that the following Pareto relations
hold.

{b,d}>p{a, d}
{a,b,c,d}>"%{a,d}
{a,b,c,d}>%{b,d}

{a, d}#5{b,d}
{0, d}%g{a, d}
{CL, b7 ¢, d}>g{@, d}
{a,b,¢,d}>5{b, d}

Therefore>%,#>7,, and as a consequend®, #? Q.

{b,d}>7{a,d}
{a,b,c,d}>pfa, d}
{a,b,c,d}>p{b,d}

Computational Complexity Checking whether two LPs
are strongly equivalent is well known to be d@-complete
(Lin 2002). It turns out that this complexity bound also reold
for the generalised notions studied here.

We start with some simple observations:

Lemma 23 Given interpretations”, Z, and an LPODP,
deciding any out of (iY” > Z, foro € {p,i,c}, (i) Y =4
Z, (iii) 0p(Y.Z) = dq(V.Z), and (V) Ap(Y,Z,n) =
Aq(Y, Z,n) is feasible in polynomial time.

Proof. For the relations>%, and=}, we can determine,
given an interpretatio” and ruler, the degreely (r) in
polynomial time; thus we can proceed rule by rule, and com-
pute for eachr € P its degree w.r.ty” andZ. Simple com-
parisons then are sufficient to decide>, Z, and likewise,
Y =% Z.

For >%,, one can check that for any computingPy [5]
(and likewisePz[j]) and thus decidind®-[j] D Pz[j] as
well as Py-[j] = Pz[j] can be done in polynomial time.
Thus for decidingy’ >, Z, we can start withj = 1 and
check whethePy [j] D Pz[j] or Py[j] = Pz[j] holds. In
the former case we return “true”, in the latter case we incre-
ment;j and do the same check; otherwise, gr ifached the
maximal arity of a rule inP, we return “false”.

For>¢ given somet, counting the the number of rules in
P satisfied to degrek under a given interpretation, i.e.,
to establish| Py [j]| can be done in polynomial time. The
same algorithm as far%, shows that” >% Z can thus be
decided in polynomial time as well.

For (iii), i.e.,6p(Y, Z) = §q (Y, Z), itis sufficient to see
that computingd can be done in polynomial time. Once
again, we can use an algorithm which starts with 1 and
checksPy [j] € Pz[j] or Py [j] = Pz[j]. Inthe former case
we returnj, in the latter case we incremeptand return to
the check, and otherwise we retrnWe also returr if j
reaches the maximal arity of rules ih We do the same for
@, and compare the values the two algorithms return. Obvi-
ously, all involved steps can be done in polynomial time.

Since, as noted earliel,Py[j]| can be computed in
polynomial time, given an interpretatidnand an integey,
also (iv) can be determined in polynomial time.

Theorem 24 Given LPODsP and @, decidingP = Q is
co-NP-complete for all = € {=;,=:x,=,=J | 0 €

{p,i,ch}

Proof. Hardness follows from Lin (2002), together with
Proposition 22. Membership fae, (and thus, for=; )
between LPODs is easily seen via Theorem 6: In fact, for
the complementary problem, we can guess a &irY") of
interpretations and check whethgX,Y) is SE-model of
exactly one of the compared programs. SE-model-checking
is feasible in polynomial time—in particular, since the eon
struction of the reducPY can be done in polynomial time
and since checking® = P and X = PY amounts

to classical model checking. This shoiN®-membership

for the complementary problem. Thus, we obtainN\B-
membership for=; and=; . Membership foe=7 and=7 ,

(for o € {p,i,c}) involves tests additional tes;, as we
show next. Since these additional tests are independent of
the check for=,, colNP-membership of the entire equiva-
lence test follows.

For=7 (for o € {p,1i,c}), we know from Theorem 10
that P =7 Q holds iff P =; @ and for each pait’, Z of
joint models of P and@, Y >% Z iff Y >7 Z. Hence,
to decide the complementary problem of the latter test, it is
sufficient to guess two interpretatiol’s Z, check whether
both are models aP and(@ (this can be done in polynomial
time), and check that either (if >% Z andY ¢ Z; or
(i) Y #% ZandY >¢, Z. By Lemma 23 these four checks
can be done in polynomial time, and thus the complement of
checking whethet” >% Z iff Y >¢, Z, for each pait, Z
of models ofP and@), is inNP. Thus=? (foro € {p,i,c})
is in coNP.

For =% ., we know from Theorem 14, tha® =, Q
iff (SE(P),>%,=1L) = <SE(Q),>”,:’Q’)>, e, P =4,

Q iff P =L Q and=), is the same relation asf,. We
have shown above th& =2 @ is in coNP, and to see that
checking whether=, is equal to=, is also in coNP, the
same argumentation as above is sufficient, making use of the

corresponding result for checking =", Z from Lemma 23.
For=: , we know from Theorem 14, thd =¢ _ Q iff

8, X ,
(SE(P),(Sp) = (SE(Q),(SQ), i.e., iff P =, Q andép =

d¢. The first problem is already shown in &&2. To decide

dp = d¢g, we once more take the complementary problem,
guess model¥, Z and check thadp (Y, Z) # 6q (Y, Z). By
Lemma 23 this can be done in polynomial time.

Finally for =¢ ., we know from Theorem 20, that
P Eg % Q iff (SE(P),>p,Ap) = (SE(Q),>Q,AQ),
i.e. iff P =¢ Q andAp = Ag. Again, the first problem is
already shown in cd¥P, and to decidé\ p = A, we once
more can make use of Lemma 28.

Discussion

In this paper, we discussed different notions of strongwequi
alence for logic programs with ordered disjunctions, edten
ing the usual one for normal logic programs. Following
Brewka (2002) and Brewka, Niemela, & Syrjanen (2004),



we studied Pareto-, inclusion-, and cardinality-basetepre
ence relations and introduced corresponding equivalemce n
tions based on these strategies. We provided model-thieoret
characterisations and introduced to that end a novel nofion
a reduct for LPODs, leading to a direct generalisation of the
well-known characterisation of strong equivalence for LPs
by Turner (2003).

Although =7, for 0 € {p,i,c}, is arguably the most
direct generalisation of strong equivalence for normal pro
grams, in the sense that it tests whether two LPODs have the

same preferred answer sets in any context, the other strong-

equivalence notions are nonetheless relevant—in 2t
can be characterised in terms of some of the other strong-
equivalence notions, provided that additional conditions
hold as well.

Concerning related work, to the best of our knowledge,
strong equivalence with respect to programs allowing for

a representation of preferences has been studied only by

Faber & Konczak (2006) (called “strong order equiva-
lence”). However, the formalism studied there differs con-
siderably from LPODs. Already syntactically, preferences
are specified among rules using a construct different from

rules. In LPODs, preferences are specified among atoms us-
ing an extended rule syntax. For this reason, also the seman-

tics of the formalisms are hardly comparable. Indeed, also
the characterisations of strong order equivalence olddige
Faber and Konczak (Faber & Konczak 2006) are quite differ-
ent: For instance, the preferences expressed in two syrongl
order equivalent programs have to be exactly equal. This
also implies that the rules upon which preferences are de-
fined must occur in both strongly order equivalent programs.
Therefore, one can never substitute a rule upon which a pref-
erence is expressed by another one without losing strong or-
der equivalence.

Interesting issues for future work include the consider-
ation of notions foruniform equivalencéetween LPODs.
We plan to apply the new equivalence notions to derive syn-
tactic program transformations (see, e.g. Egeml; Ca-
balar, Pearce, & Valverde (2004; 2007), for transformagion
in the context of LPs) for LPODs as a basis for LPOD op-
timisation. We recall that in “traditional” answer-set pro
gramming, characterisations for strong equivalence paved
the way for characterising also weaker notions of equiva-
lence, which in turn provided more potential for optimising
programs. Thus, our work may serve as a starting point for
further work in this direction.
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