
cc⊤: A Tool for Checking Advanced Correspondence
Problems in Answer-Set Programming⋆

Johannes Oetsch1, Martina Seidl2, Hans Tompits1, and Stefan Woltran1

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,tompits,stefan}@kr.tuwien.ac.at
2 Institut für Softwaretechnik 188/3, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Abstract. In previous work, a general framework for specifying correspond-
ences between logic programs under the answer-set semantics has been defined.
The framework allows to define different notions of equivalence, including well-
known notions likestrong equivalenceas well as refined ones based on theprojec-
tion of answer sets, where not all parts of an answer set are of relevance (like, e.g.,
removal of auxiliary letters). In the general case, deciding the correspondence of
two programs lies on the fourth level of the polynomial hierarchy and therefore
this task can (presumably) not be efficiently reduced to answer-set programming.
In this paper, we describe an implementation to verify program correspondences
in this general framework. The system, called cc⊤, relies on linear-time con-
structible reductions toquantified propositional logicusing extant solvers for the
latter language as back-end inference engines. We provide some preliminary per-
formance evaluation which shed light on some crucial design issues.

1 Introduction

Nonmonotonic logic programs under the answer-set semantics [13], with which we are
dealing with in this paper, represent the canonical and, dueto the availability of efficient
answer-set solvers, arguably most widely used approach to answer-set programming
(ASP). The latter paradigm is based on the idea that problemsare encoded in terms
of theories such that the solutions of a given problem are determined by the models
(“answer sets”) of the corresponding theory. Logic programming under the answer-
set semantics has become an important host for solving many AI problems, including
planning, diagnosis, and inheritance reasoning (see [12] for an overview).

To support engineering tasks of ASP solutions, an importantissue is to determine
the equivalence of different problem encodings. To this end, various notions of equiva-
lence between programs under the answer-set semantics havebeen studied in the liter-
ature, including the recently proposed framework by Eiteret al. [10], which subsumes

⋆ This work was partially supported by the Austrian Science Fund (FWF) under grant P18019;
the second author was also supported by the Austrian Federal Ministry ofTransport, Innova-
tion, and Technology (BMVIT) and the Austrian Research Promotion Agency (FFG) under
grant FIT-IT-810806.

most of the previously introduced notions. Within this framework, correspondence be-
tween two programs,P andQ, holds iff the answer sets ofP ∪ R andQ ∪ R satisfy
certain criteria, for any programR in a specified class, called thecontext. We shall focus
here on correspondence problems where both the context and the comparison between
answer sets are determined in terms ofalphabets. This kind of program correspondence
includes, as special instances, the well-known notions ofstrong equivalence[19], uni-
form equivalence[11], relativised variants thereof [26], as well as the practicably im-
portant case of program comparison underprojectedanswer sets. In the last setting, not
a whole answer set of a program is of interest, but only its intersection on a subset of
all letters; this includes, in particular, removal of auxiliary letters.

For illustration, consider the following two programs which both express the selec-
tion of exactly one of the atomsa, b. An atom can only be selected if it can be derived
together with the context:

P = { sel(b)← b,not out(b); Q = { fail ← sel(a),not a,not fail ;

sel(a)← a,not out(a); fail ← sel(b),not b,not fail ;

out(a) ∨ out(b)← a, b }. sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b }.

Both programs use “local” atoms,out(·) andfail , respectively, which are expected
not to appear in the context. In order to compare the programs, we could specify an
alphabet,A, for the context, for instanceA = {a, b}, or, more generally, any setA
of atoms not containing the atomssel(a), sel(b), out(a), out(b), andfail , and check
whether, for each addition of a context program overA, the answer sets correspond
when taking only atoms fromB = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of such correspondence problems
together with some initial experimental results. The overall approach of the system,
which we call cc⊤ (“correspondence-checking tool”), is to reduce the problem of cor-
respondence checking to the satisfiability problem ofquantified propositional logic, an
extension of classical propositional logic characterisedby the condition that its sen-
tences, usually referred to asquantified Boolean formulas(QBFs), are permitted to
contain quantifications over atomic formulas.

The motivation to use such an approach is twofold. First, complexity results [10]
show that correspondence checking within this framework ishard, lying on the fourth
level of the polynomial hierarchy. This indicates that implementations of such checks
cannot be realised in a straightforward manner using ASP systems themselves. In turn,
it is well known that decision problems from the polynomial hierarchy can be effi-
ciently represented in terms of QBFs in such a way that determining the validity of
the resultant QBFs is not computationally harder than checking the original problem.
In previous work [24], such translations from correspondence checking to QBFs have
been developed; moreover, they are constructible inlinear time. Second, various prac-
ticably efficient solvers for quantified propositional logic are currently available (see,
e.g., [17] for an overview). Hence, such tools are used as back-end inference engines
in our system to verify the correspondence problems under consideration. In fact, re-
duction methods to QBFs have already been successfully applied in diverse fields like
nonmonotonic reasoning [6, 5], paraconsistent reasoning [3, 1], and planning [23].

Previous systems implementing different forms of equivalence, being special cases
of correspondence notions in the framework of Eiteret al. [10], also based on a re-
duction approach, are SELP [4] and DLPEQ [21]. Concerning SELP, here the problem
of checking strong equivalence is reduced to propositionallogic, making use of SAT
solvers as back-end inference engines. Our system generalises SELP in the sense that
cc⊤ handles a correspondence problem which coincides with a test for strong equiva-
lence by the same reduction as used in SELP. The system DLPEQ,on the other hand,
is capable of comparing disjunctive logic programs under ordinary equivalence. Here,
the reduction of a correspondence problem results in further logic programs such that
the latter have no answer set iff the encoded problem holds. Hence, this system uses
answer-set solvers themselves in order to check for equivalence.

The methodologies of both of the above systems have in commonthat their range
of applicability is restricted to very special forms of program correspondences, while
cc⊤ provides a wide range of more fine-grained equivalence notions, allowing practical
comparisons useful for debugging and modular programming.

The outline of the paper is as follows. We start with recapitulating the basic facts
about logic programs under the answer-set semantics and quantified propositional logic.
In describing how to implement correspondence problems, wefirst give a detailed re-
view of the encodings, followed by a discussion how these encodings (and thus the
present system) behave in the case the specified correspondence coincides with special
equivalence notions. Then, we address some technical questions which arise when ap-
plying the encodings to QBF solvers which require its input to be in a certain normal
form. Finally, we present the concrete system cc⊤ and illustrate its usage. The penulti-
mate section is devoted to experimental evaluation and comparisons. We conclude with
some final remarks and pointers to future work.

2 Preliminaries

Throughout the paper, we use the following notation: For an interpretationI (i.e., a set
of atoms) and a setS of interpretations, we writeS|I = {Y ∩ I | Y ∈ S}. For a
singleton setS = {Y }, we writeY |I instead ofS|I , whenever convenient.

2.1 Logic Programs

We are concerned withpropositional disjunctive logic programs(DLPs), which are
finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where allai are propositional atoms from some fixed universeU and
not denotes default negation. If all atoms occurring in a program P are from a given
setA ⊆ U of atoms, we say thatP is a programoverA. The set of all programs overA
is denoted byPA.

Following Gelfond and Lifschitz [13], an interpretationI is an answer setof a
programP iff it is a minimal model of thereductP I , resulting fromP by (i) deleting

all rules containing some default negated atomnot a such thata ∈ I, and (ii) deleting
all default negated atoms in the remaining rules. The collection of all answer sets of a
programP is denoted byAS(P).

In order to semantically compare programs, different notions of equivalence have
been introduced in the context of the answer-set semantics.Besidesordinary equiv-
alencebetween programs, which checks whether two programs have the same an-
swer sets, the more restrictive notions ofstrong equivalence[19] anduniform equiv-
alence[11] have been introduced. Two programs,P andQ, are strongly equivalent iff
AS(P ∪ R) = AS(Q ∪ R), for any programR, and they are uniformly equivalent iff
AS(P ∪ R) = AS(Q ∪ R), for any setR of facts, i.e., rules of forma ←, for some
atoma. Also, relativised equivalence notions, taking the alphabet of the extension set
R into account, have been defined [26].

In abstracting from these notions, Eiteret al. [10] introduced a general framework
for specifying differing notions of program correspondence. In this framework, one
parameterises, on the one hand, thecontext, i.e., the class of programs used to be added
to the programs under consideration, and, on the other hand,the relation that has to
hold between the collection of answer sets of the extended programs. More formally,
the following definition has been introduced:

Definition 1. A correspondence frame, F , is a triple (U , C, ρ), whereU is a set of
atoms, called theuniverse ofF , C ⊆ PU , called thecontext ofF , andρ ⊆ 22U × 22U .

Two programsP,Q ∈ PU are calledF-corresponding, in symbolsP ≃F Q, iff, for
all R ∈ C, (AS(P ∪R),AS(Q ∪R)) ∈ ρ.

Clearly, the equivalence notions mentioned above are special cases ofF-corres-
pondence. Indeed, for any universeU and anyA ⊆ U , strong equivalence relative to
A coincides with(U ,PA,=)-correspondence, and ordinary equivalence coincides with
(U , {∅},=)-correspondence.

Following Eiteret al. [10], we are concerned with correspondence frames of form
(U ,PA,⊆B) and(U ,PA,=B), whereA,B ⊆ U are sets of atoms and⊆B and=B

are projections of the standard subset and set-equality relation, respectively, defined as
follows: for any setS,S ′ of interpretations,S ⊆B S

′ iff S|B ⊆ S ′|B , andS =B S
′ iff

S|B = S ′|B .
A correspondence problem, Π, (overU) is a quadruple(P,Q, C, ρ), whereP,Q ∈

PU and (U , C, ρ) is a correspondence frame. We say thatΠ holds iff P ≃(U,C,ρ) Q
holds. For a correspondence problemΠ = (P,Q, C, ρ) over U , we usually leaveU
implicit, assuming that it consists of all atoms occurring in P , Q, andC. We callΠ an
equivalence problemif ρ is given by=B , and aninclusion problemif ρ is given by⊆B ,
for someB ⊆ U . Note that(P,Q, C,=B) holds iff (P,Q, C,⊆B) and(Q,P, C,⊆B)
jointly hold.

The following proposition summarises the complexity landscape within this frame-
work [10, 22, 26].

Proposition 1. Given programsP andQ, sets of atomsA andB, andρ ∈ {⊆B ,=B},
deciding whether a correspondence problem(P,Q,PA, ρ) holds is:

1. ΠP
4 -complete, in general;

2. ΠP
3 -complete, forA = ∅;

3. ΠP
2 -complete, forB = U ; and

4. coNP-complete forA = U .

While Case 1 provides the result in the general setting, for the other cases we have the
following: Case 2 amounts toordinary equivalence with projection, i.e., the answer sets
of two programs relative to a specified setB of atoms are compared; Case 3 amounts
to strong equivalence relative toA and includes, as a special case (viz. forA = ∅),
ordinary equivalence; finally, Case 4 includesstrong equivalence(for B = U) as well
as strong equivalence with projection.

TheΠP
4 -hardness result shows that, in general, checking the correspondence of two

programs cannot (presumably) be efficiently encoded in terms of ASP, which has its
basic reasoning tasks located at the second level of the polynomial hierarchy (i.e., they
are contained inΣP

2 or ΠP
2). However, correspondence checking can be efficiently en-

coded in terms ofquantified propositional logic, whose basic concepts we recapitulate
next.

2.2 Quantified Propositional Logic

Quantified propositional logic is an extension of classicalpropositional logic in which
formulas are permitted to contain quantifications over propositional variables. In partic-
ular, this language contains, for any atomp, unary operators of form∀p and∃p, called
universalandexistential quantifiers, respectively, where∃p is defined as¬∀p¬. Formu-
las of this language are also calledquantified Boolean formulas(QBFs), and we denote
them by Greek upper-case letters.

Given a QBFQpΨ , for Q ∈ {∃,∀}, we callΨ thescopeof Qp. An occurrence of
an atomp is free in a QBFΦ if it does not occur in the scope of a quantifierQp in
Φ. In what follows, we tacitly assume that every subformulaQpΦ of a QBF contains
a free occurrence ofp in Φ, and for two different subformulasQpΦ, Qq Ψ of a QBF,
we requirep 6= q. Moreover, given a finite setP of atoms,QP Ψ stands for any QBF
Qp1Qp2 . . .QpnΨ such that the variablesp1, . . . , pn are pairwise distinct andP =
{p1, . . . , pn}. Finally, for an atomp (resp., a setP of atoms) and a setI of atoms,Φ[p/I]
(resp.,Φ[P/I]) denotes the QBF resulting fromΦ by replacing each free occurrence of
p (resp., eachp ∈ P) in Φ by⊤ if p ∈ I and by⊥ otherwise.

For an interpretationI and a QBFΦ, the relationI |= Φ is inductively defined as in
classical propositional logic, whereby universal quantifiers are evaluated as follows:

I |= ∀p Φ iff I |= Φ[p/{p}] andI |= Φ[p/∅].

A QBF Φ is true underI iff I |= Φ, otherwiseΦ is false underI. A QBF issatisfi-
able iff it is true under at least one interpretation. A QBF isvalid iff it is true under any
interpretation. Note that aclosedQBF, i.e., a QBF without free variable occurrences, is
either true under any interpretation or false under any interpretation.

A QBFΦ is said to be inprenex normal form(PNF) iff it is closed and of the form

QnPn . . .Q1P1 φ, (2)

wheren ≥ 0, φ is a propositional formula,Qi ∈ {∃,∀} such thatQi 6= Qi+1 for
1 ≤ i ≤ n − 1, (P1, . . . , Pn) is a partition of the propositional variables occurring in
φ, andPi 6= ∅, for each1 ≤ i ≤ n. We say thatΦ is in prenex conjunctive normal
form (PCNF) iffΦ is of the form (2) andφ is in conjunctive normal form. Furthermore,
a QBF of form (2) is also referred to as an(n,Qn)-QBF. Any closed QBFΦ is easily
transformed into an equivalent QBF in prenex normal form such that each quantifier
occurrence from the original QBF corresponds to a quantifieroccurrence in the prenex
normal form. Let us call such a QBF aprenex normal form ofΦ. In general, there
are different ways to obtain an equivalent prenex QBF (cf. [7] for more details on this
issue). The following property is essential:

Proposition 2. For everyk ≥ 0, deciding the truth of a given(k,∃)-QBF(resp.,(k,∀)-
QBF) is ΣP

k -complete(resp.,ΠP
k -complete).

Hence, any decision problemD in ΣP
k (resp.,ΠP

k) can be mapped in polynomial
time to a(k,∃)-QBF (resp.,(k,∀)-QBF)Φ such thatD holds iff Φ is valid. In particu-
lar, any correspondence problem(P,Q,PA, ρ), for ρ ∈ {⊆B ,=B}, can be reduced in
polynomial time to a(4,∀)-QBF. Our implemented tool, described next, relies on two
such mappings, which are actually constructible inlinear space and time.

3 Computing Correspondence Problems

We now describe the system cc⊤, which allows to verify the correspondence of two
programs. It relies on efficient reductions from correspondence problems to QBFs as
developed by Tompits and Woltran [24]. These encodings are presented in the first sub-
section. Then, we discuss how the encodings behave if the specified correspondence
problem coincides with special forms of inclusion or equivalence problems, viz. those
restricted cases discussed in Proposition 1. Afterwards, we give details concerning the
transformation of the resultant QBFs into PCNF, which is necessary because most ex-
tant QBF solvers rely on input of this form. Finally, we give some details concerning
the general syntax and invocation of the cc⊤ tool.

3.1 Basic Encodings

Following Tompits and Woltran [24], we consider two different reductions from inclu-
sion problems to QBFs,S[·] andT[·], whereT[·] can be seen as an explicit optimisation
of S[·]. Recall that equivalence problems can be decided by the composition of two
inclusion problems. Thus, a composed encoding for equivalence problems is easily ob-
tained via a conjunction of two particular instantiations of S[·] or T[·].

For our encodings, we use the following building blocks. Theidea hereby is to use
sets of globally new atoms in order to refer to different assignments of the atoms from
the compared programs within a single formula. More formally, given an indexed set
V of atoms, we assume (pairwise) disjoint copiesVi = {vi | v ∈ V }, for everyi ≥ 1.
Furthermore, we introduce the following abbreviations:

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj);

2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi); and
3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
Roughly speaking, these three “operators” allow us to compare different subsets

of atoms from a common set,V , under subset inclusion, proper-subset inclusion, and
equality, respectively. Note that the comparison tests arerealised with respect to a
single interpretation. As an example, considerV = {v, w, u} and an interpretation
I = {v1, v2, w2}, implicitly representing setsX = {v} (via the relationI|V1

= {v1})
andY = {v, w} (via the relationI|V2

= {v2, w2}). Then, we have that(V1 ≤ V2) as
well as(V1 < V2) are true underI which matches the observation thatX is indeed a
proper subset ofY , while (V1 = V2) is false underI reflecting the fact thatX 6= Y .

In accordance to this renaming of atoms, we use subscripts asa general renaming
schema for formulas and rules. That is, for eachi ≥ 1, αi expresses the result of
replacing each occurrence of an atomp in α by pi, whereα is any formula or rule.
Furthermore, for a ruler of form (1), we defineH(r) = a1 ∨ · · · ∨ al, B+(r) =
al+1 ∧ · · · ∧ am, andB−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with⊤. Finally, for a programP , we define

Pi,j =
∧

r∈P

(

(B+(ri) ∧B
−(rj))→ H(ri)

)

.

Formally, we have the following relation: LetP be a program over atomsV , I an
interpretation, andX,Y ⊆ V such that, for somei, j, I|Vi

= Xi andI|Vj
= Yj . Then,

X |= PY iff I |= Pi,j . Hence, we are able to characterise models ofP (in case that
i = j) as well as models of certain reducts ofP (in case thati 6= j).

Having defined these building blocks, we proceed with the first encoding.

Definition 2. LetP,Q be programs overV , letA,B ⊆ V , and letΠ = (P, Q, PA,
⊆B) be an inclusion problem. Then,

S[Π] := ¬∃V1

(

P1,1 ∧ S1(P,A) ∧ ∀V3

(

S2(Q,A,B)→ S3(P,Q,A)
)

)

,where

S1(P,A) := ∀V2

(

((A2 = A1) ∧ (V2 < V1))→¬P2,1

)

,

S2(Q,A,B) :=
(

(A ∪B)3 = (A ∪B)1
)

∧Q3,3, and

S3(P,Q,A) := ∃V4

(

(V4 < V3) ∧Q4,3 ∧
(

(A4 < A1)→

∀V5(((A5 =A4)∧(V5 ≤ V1))→¬P5,1)
))

.

LetΦ be the scope of∃V1. This formula encodes the conditions for deciding whether
a so-calledpartial spoiler [10] for the inclusion problemΠ exists. Such spoilers test
certain relations on the reducts of the two programs involved, in order to avoid an ex-
plicit enumeration of allR ∈ PA for deciding whetherΠ holds. In fact, a spoiler for
Π exists iffΠ doesnot hold. Accordingly,Φ is unsatisfiable iffΠ holds, and thus the
closed QBFS[Π] = ¬∃V1Φ is valid iff Π holds.

In more detail, given a correspondence problemΠ and its encodingS[Π] = ¬∃V1Φ,
the general task of the QBFΦ is to test, for an answer-set candidateX of P , that no
Y with Y |B = X|B becomes an answer set ofQ under some implicitly considered

extension (in fact, it is sufficient to check only potential candidatesY of the form
Y |A∪B = X|A∪B). Now, the subformulaP1,1 ∧ S1(P,A) tests whetherX is such
a candidate forP , with X being represented byV1. In the remaining part of the en-
coding,S2(Q,A,B) returns as its models those setsY (represented byV3) which are
potential candidates for being answer sets ofQ. These candidates are now checked to
be non-minimal and whether there is a further model (represented byV4) of the reduct
of Q with respect toY surviving an extension ofQ, for whichX turns into an answer
set of the extension ofP .

In what follows, we review a more compact encoding which, in particular, reduces
the number of universal quantifications. The idea is to save on the fixed assignments, as,
e.g., inS2(Q,A,B), where we have(A∪B)3 = (A∪B)1. That is, inS2(Q,A,B), we
implicitly ignore all assignments toV3 where atoms fromA or B have different truth
values as the corresponding assignments toV1. Therefore, it makes sense to consider
only atoms fromV3 \ (A3 ∪B3) and usingA1 ∪B1 instead ofA3 ∪B3 in Q3,3.

This calls for a more subtle renaming schema for programs, however. LetV be a set
of indexed atoms, and letr be a rule. Then,rVi,k results fromr by replacing each atom
x in r by xi, providingxi ∈ V, and byxk otherwise. For a programP , we define

PV
i,j,k :=

∧

r∈P

(

(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)
)

.

Moreover, for everyi ≥ 1, every setV of atoms, and every setC, V C
i := (V \ C)i.

Definition 3. Let P,Q be programs overV andA,B ⊆ V . Furthermore, letΠ =
(P,Q,PA,⊆B) be an inclusion problem andV = V1 ∪ V

A
2 ∪ V

A∪B
3 ∪ V4 ∪ V

A
5 . Then,

T[Π] := ¬∃V1

(

P1,1 ∧ T1(P,A,V) ∧ ∀V A∪B
3

(

QV
3,3,1 → T3(P,Q,A,V)

)

)

,where

T1(P,A,V) := ∀V A
2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

and

T3(P,Q,A,V) := ∃V4

((

V4 < ((A∪B)1 ∪ V
A∪B
3)

)

∧QV
4,3,1 ∧

(

(A4 < A1)→

∀V A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))

.

Note that the subformulaV4 < ((A∪B)1 ∪ V
A∪B
3) in T3(P,Q, A,V) denotes

((

(A ∪B)4 ≤ (A ∪B)1
)

∧ (V A∪B
4 ≤ V A∪B

3)
)

∧

¬
((

(A ∪B)1 ≤ (A ∪B)4
)

∧ (V A∪B
3 ≤ V A∪B

4)
)

.

Also note that, compared to our first encodingS[Π], we do not have a pendant to sub-
formulaS2 here, which reduces simply toQV

3,3,1 due to the new renaming schema.

Proposition 3 ([24]).For any inclusion problemΠ, the following statements are equiv-
alent: (i) Π holds;(ii) S[Π] is valid; and(iii) T[Π] is valid.

In what follows, let, for every equivalence problemΠ = (P, Q, PA, =B), Π ′ and
Π ′′ denote the associated inclusion problems(P, Q, PA, ⊆B) and(Q, P, PA, ⊆B),
respectively.

Corollary 1. LetΠ be an equivalence problem. The following statements are equiva-
lent: (i) Π holds;(ii) S[Π ′]∧ S[Π ′′] is valid; and(iii) T[Π ′]∧ T[Π ′′] is valid.

3.2 Special Cases

We now analyse how our encodings behave in certain instancesof the equivalence
framework which are located at lower levels of the polynomial hierarchy (cf. Propo-
sition 1). We point out that the following simplifications are correspondingly imple-
mented within our system.

In the case ofstrong equivalence[19], i.e., problems of formΠ = (P, Q, PA,
=A) with A = U , the encodingsT[Π ′] andT[Π ′′] can be drastically simplified, since
V A

2 = V A
3 = V A

5 = ∅. In particular,T[Π ′] is equivalent to

¬∃V1

(

P1,1 ∧
(

Q1,1 → ∃V4

(

(V4 < V1) ∧Q4,1 ∧ ¬P4,1

))

)

.

Now, the composed encoding for strong equivalence, i.e., the QBFT[Π ′] ∧ T[Π ′′],
amounts to a single propositional unsatisfiability test, witnessing the coNP-complete-
ness complexity for checking strong equivalence [22, 20]. This holds also for problems
of the form (P,Q,PU ,=B) with arbitraryB. One can show that similar reductions
given by Pearceet al.[22] and Lin [20] for testing strong equivalence in terms of propo-
sitional logic are simple variants thereof. Indeed, the methodology of the tool SELP [4]
is basically mirrored in our approach, in case the parameterisation of the given problem
corresponds to a test for strong equivalence.

Strong equivalencerelative to a setA of atoms [26], i.e., problems of form(P,
Q, PA, =B) with B = U , also yields simplifications withinT[Π ′] andT[Π ′′], since
V A∪B

3 = ∅. In fact,T[Π ′] can be rewritten to

¬∃V1

(

P1,1 ∧ ∀V
A
2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

∧
(

Q1,1 → ∃V4

((

V4 < V1

)

∧Q4,1∧
(

(A4 < A1)→ ∀V
A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))))

.

When putting this QBF into prenex normal form (see below), it turns out that the result-
ing QBF amounts to a(2,∀)-QBF, again reflecting the complexity of the encoded task.
Note that for equivalence problems(P,Q,PA,=B) with A∪B = U we also have that
V A∪B

3 = ∅. Thus, the same simplifications also apply for this special case.
The case of ordinary equivalence, i.e., considering problems of formΠ = (P, Q,

PA, =) with A = ∅, is, indeed, a special case of relativised strong equivalence. As an
additional optimisation we can drop the subformula

(A4 < A1)→ ∀V
A
5

(

(V A
5 ≤ V

A
1)→ ¬PV

5,1,4

)

(3)

from partT3 of T[Π ′]. This is becauseA = ∅, and therefore

(A4 < A1) =
∧

a∈A

(

a4 → a1

)

∧ ¬
∧

a∈A

(

a1 → a4

)

reduces to⊤ ∧ ¬⊤, and thus to⊥. Hence, the validity of the implication (3) follows.
However, this does not affect the number of quantifier alternations compared to the case
of relativised strong equivalence. Indeed, this is in accord with theΠP

2 -completeness
for ordinary equivalence. Putting things together, and observing that forA = ∅ we have
V A

2 = V2, the encodingT[Π ′] results for ordinary equivalence in

¬∃V1

(

P1,1 ∧ ∀V2((V2 < V1)→ ¬P2,1) ∧ (Q1,1 → ∃V4((V4 < V1) ∧Q4,1))
)

.

This encoding is related to encodings for computing answer sets via QBFs, as discussed
by Egly et al. [6]. Indeed, taking the two main conjuncts fromT[Π ′], viz. φ = P1,1 ∧
∀V2((V2 < V1) → ¬P2,1) andψ = Q1,1 → ∃V4((V4 < V1) ∧ Q4,1), we get, for any
assignmentY1 ⊆ V1, thatY1 is a model ofφ iff Y is an answer set ofP , andY1 is a
model ofψ only if Y is not an answer set ofQ.

Finally, we discuss the case of ordinary equivalence with projection, i.e., problems
of form (P,Q,PA,=B) with A = ∅. Problems of this form areΠP

3 -complete, and thus
we expect that our reductions can be simplified (after transformation to prenex form) to
(3,∀)-QBFs. Indeed, the only simplification is to get rid off the subformula (3). We can
do this for the same reason as above, viz. sinceA = ∅. The simplifications are then as
follows (once again using the fact thatV A

2 = V2 as well asV A∪B
3 = V B

3):

¬∃V1

(

P1,1 ∧ ∀V2

(

(V2 < V1)→ ¬P2,1

)

∧

∀V B
3

(

QV
3,3,1 → ∃V4

((

V4 < (B1 ∪ V
B
3)

)

∧QV
4,3,1

)))

.

Compared to the case of relativised equivalence, as discussed above, this time we have
V A∪B

3 6= ∅ and thus an additional quantifier alternation “survives” the simplification.
After bringing the encoding into its prenex form, we therefore get a(3,∀)-QBF, once
again reflecting the intrinsic complexity of the encoded problem.

For the encodingT[·], the structure of the resulting QBF always reflects the com-
plexity of the correspondence problem according to Proposition 1. This does not hold
for formulas stemming fromS[·], however. In any case, our tool implements both en-
codings in order to provide interesting benchmarks for QBF solvers with respect to their
capability to find implicit optimisations for equivalent QBFs.

3.3 Transformations into Normal Forms

Most available QBF solvers require its input formula to be ina certain normal form, viz.
in prenex conjunctive normal form (PCNF). Hence, in order toemploy these solvers for
our tool, the translations described above have to be transformed by a further two-
phased normalisation step:

1. translating the given QBF into prenex normal form (PNF); and
2. translating the propositional part of the resulting formula in PNF into CNF.

Both steps require to address different design issues. In what follows, we describe
the fundamental problems, and then briefly provide our solutions in some detail.

First, the step of prenexing is not deterministic. As discussed by Eglyet al.[7], there
are numerous so-calledprenexing strategies. The concrete selection of such a strategy
(also depending on the specific solver used) crucially influences the running times (see
also our results below). In prenexing a QBF, certaindependenciesbetween quantifiers
have to be respected when combining the quantifiers of different subformulas to one
linear prefix. For our encodings, these dependencies are rather simple and analogous
for both encodingsS[·] andT[·]. First, observe, however, that both encodings have a
negation as their main connective which has to be shifted into the formula by applying
suitable equivalence preserving transformations which are similar to ones well-known

from first-order logic. In what follows, we implicitly assume that this step has already
been performed. This allows us to consider the quantifier dependencies cleansed with
respect to their polarities. The dependencies for the encoding S[·] can then be illustrated
as follows:

∀V1

∃V2 ∃V3

∀V4

∃V5

Here, the left branch results from the subformulaS1 and the right one results from the
subformula∀V3(S

2(Q,A,B)→ S3(P,Q,A)).
Inspecting these quantifier dependencies, we can group∃V2 either together with∃V3

or with ∃V5. This yields the following two basic ways for prenexing our encodings:

↑: ∀V1∃(V2 ∪ V3)∀V4∃V5; and ↓: ∀V1∃V3∀V4∃(V5 ∪ V2).

Together with the two encodingsS[·] andT[·], we thus get four different alternatives
to represent an inclusion problem in terms of a prenex QBF; wewill denote them by
S↑[·], S↓[·], T↑[·], andT↓[·], respectively. Our experiments below show their different
performance behaviour (relative to the employed QBF solverand the benchmarks).

Concerning the transformation of the propositional part ofa prenex QBF into CNF,
we apply a method following Tseitin [25] in which new atoms, so-called labels, are
introduced abbreviating subformula occurrences and whichhas the property that the re-
sultant CNFs are always polynomial in the size of the input formula. Recall that a stan-
dard translation of a propositional formula into CNF based on distributivity laws yields
formulas of exponential size in the worst case. However, thenormal form translation
into CNF using labels is not validity preserving like the onebased on distributivity laws
but onlysatisfiability equivalent. In the case of closed QBFs, the following result holds:

Proposition 4. Let Φ = QnPn . . .Q1P1φ, for Qi ∈ {∃,∀} andn > 0, be either an
(n,∀)-QBF withn being even or an(n,∃)-QBF withn being odd. Furthermore letφ′

be the CNF resulting from the propositional partφ of Φ by introducing new labels fol-
lowing Tseitin [25]. Then,Φ andQnPn . . . Q1P1∃V φ

′ are logically equivalent, where
V are the new labels introduced by the CNF transformation.

Note that forΦ as in the above proposition, we have thatQ1 = ∃. Hence, in
this case,QnPn . . .Q1P1∃V φ

′ is the desired PCNF, equivalent toΦ, used as input
for QBF solvers requiring PCNF format for evaluatingΦ. In order to transform a QBF
Ψ = QnPn . . .Q1P1ψ which is an(n,∀)-QBF withn being odd or an(n,∃)-QBF with
n being even, we just apply the above proposition toQnPn . . .Q1P1¬ψ, whereQi = ∃
if Qi = ∀ andQi = ∀ otherwise, which is equivalent to¬Ψ . That is, in order to evalu-
ateΨ by means of a QBF solver requiring PCNF input, we computeQnPn . . .Q1P1¬ψ
and “reverse“ the output. This is accommodated in cc⊤ that either the original corre-
spondence problem or the complementary problem is encoded whenever an input yields
a QBF likeΨ .

Fig. 1.Running times (in seconds) for true (left chart) and false (right chart)instances subdivided
by solvers and encodings.

For the entire normal-form transformation, one can use the quantifier-shifting tool
qst [27]. It accepts arbitrary QBFs inboole format (see below) as input and returns
an equivalent PCNF QBF inqdimacsformat, which is nowadays a de-facto standard
for PCNF-QBF solvers. The toolqst implements 14 different strategies (among them
↑ and↓ we use here) to obtain a PCNF and uses the mentioned structure-preserving
normal-form transformation for the transformation to CNF.

3.4 The Implemented Tool

The system cc⊤ implements the reductions from inclusion problems(P, Q, PA, ⊆B)
and equivalence problems(P, Q, PA, =B) to corresponding QBFs, together with the
potential simplifications discussed above. It takes as input two programs,P andQ, and
two sets of atoms,A andB, whereA specifies the alphabet of the context andB the
set of atoms for projection on the correspondence relation.The reduction (S[·] or T[·])
and the type of correspondence problem (⊆B or =B) are specified via command-line
arguments:-S, -T to select the kind of reduction, and-i, -e to check for inclusion or
equivalence between the two programs.

In general, the syntax to specify the programs in cc⊤ corresponds to the basicDLV
syntax.3 PropositionalDLV programs can be passed to cc⊤ and programs processible
for cc⊤ can be handled byDLV.

We developed cc⊤ entirely inANSI C; hence, it is highly portable. The parser for
the input data was written usingLEX andYACC. The complete package in its current
version consists of more than 2000 lines of code. Further information about cc⊤ and
how to use it, as well as information about the benchmarks below, can be found at

http://www.kr.tuwien.ac.at/research/ccT/.

4 Experimental Results

Our experiments were conducted to determine the behaviour of different QBF solvers in
combination with the encodingsS[·] andT[·] for inclusion checking, or, if the employed

3 Seehttp://www.dlvsystem.com/ for more information aboutDLV.

Fig. 2.Whisker-box plots corresponding to Figure 1 for true (upper chart) and false (lower chart)
instances.

QBF solver requires the input in prenex form, withS↑[·], S↓[·], T↑[·], andT↓[·]. To this
end, we implemented a generator of inclusion problems whichemanate from the proof
of theΠP

4 -hardness of inclusion checking [10], and thus provides us with benchmark
problems capturing the intrinsic complexity of this task.

The strategy to generate such instances is as follows:

1. generate a(4,∀)-QBFΦ in PCNF by random;
2. reduceΦ to a problemΠ = (P,Q,PA,⊆B) such thatΠ holds iffΦ is valid;
3. apply cc⊤ to derive the corresponding encodingΨ for Π.

0.01

0.10

1.00

10.00

100.00

 10 12 14 16 18 20 22 24

se
co

nd
s

qpro
qube-bj

semprop
skizzo

DLPEQ

Fig. 3.Comparing cc⊤ against DLPEQ subdivided by solvers.

Incidentally, this procedure also yields a simple method for verifying the correctness
of the overall implementation by simply checking whetherΨ is equivalent toΦ. We use
here a parameterisation for the generation of random QBFs such that the benchmark set
yields a nearly 50% distribution between the true and false instances. Therefore, the set
is neither over- nor underconstrained and thus presumably located in a hard region.

We have set up a test series comprising 1000 instances of inclusion problems gen-
erated that way (465 of them evaluating to true). The first programP has 620 rules, and
the second programQ has 280 rules, using a total of 40 atoms. The setsA andB of
atoms are chosen to contain 16 atoms. After employing cc⊤, the resulting QBFs pos-
sess, in case of translationS[·], 200 atoms and, in case of translationT[·], 152 atoms.
The additional prenexing step (together with the translation of the propositional part
into CNF) yields, in case ofS[·], QBFs with 6575 clauses over 2851 atoms and, in case
of T[·], QBFs with 6216 clauses over 2555 atoms.

We compared four state-of-the-art QBF solvers:qube-bj [15], semprop [18],
skizzo [2], andqpro [8]. The former three require QBFs in PCNF as input (thus, we
tested them using encodingsS↑[·], S↓[·], T↑[·], andT↓[·]), whileqpro admits arbitrary
QBFs as input (we tested it with the non-prenex encodingsS[·] andT[·]).

The (arithmetically) average running times are depicted inFigure 1. They-axis
shows the running time (time-out was 100 seconds) for each solver with respect to
the chosen translation and prenexing strategy. As expected, for all solvers, the more
compact encodings of formT[·] were evaluated faster than the QBFs stemming from
encodings of formS[·]. The performance of the prenex-form solversqube-bj, sem-
prop, andskizzo is highly dependent on the chosen prenexing strategy. However,
the shifting strategy↓ dominates strategy↑. A more thorough analysis of the data with
respect to their distribution is given in Figure 2. By means of whisker-box plots, we
depict, for each measuring point, median (horizontal line inside the box), 25%- and
75%-quantile (lower and upper border of the boxes, respectively), and the 5%- and
95%-quantile (lower and upper horizontal bar at the end of the vertical lines, the so-

calledwhiskers, respectively). Due to the chosen time-out of 100 seconds, the whisker-
box plots are slightly distorted near the 100 seconds border.

For the special case of ordinary equivalence, we compared our approach against the
system DLPEQ [21] which is based on a reduction to disjunctive logic programs, using
gnt [16] as underlying answer-set solver. The benchmarks rely on randomly generated
(2,∃)-QBFs using Model A [14]. Each QBF is reduced to a program suchthat the latter
possesses an answer set iff the original QBF is valid [9]. Theidea of the benchmarks is
to compare each such program with one in which one randomly selected rule is dropped,
simulating a “sloppy” programmer, in terms of ordinary equivalence.

The average running times are shown in Figure 3. The numbern of variables in
the original QBF varies from 10 to 24, and, for eachn, 100 such program compar-
isons are generated for which the portion of cases where equivalence holds is between
40% and 50% (for details about the benchmarks, cf. [21]). ForDLPEQ, we considered
the slightly faster two-phased mode only. We set a time-out of 120 seconds. For cc⊤,
we compared the same back-end solvers as above, using encoding T[·]. Recall that,
for ordinary equivalence, cc⊤ provides(2,∀)-QBFs; thus, we can refrain from the dis-
tinction between prenexing strategies. The dedicated DLPEQ approach turns out to be
faster, but, interestingly, among the tested QBF solvers,qpro is the most competitive
one, while the PCNF-QBF solvers perform bad even for small instances. Moreover, the
entire QBF approach behaves worse on true instances, compared to false ones.

5 Conclusion

In this paper, we discussed an implementation for advanced program comparison in
answer-set programming via encodings into quantified propositional logic. This ap-
proach was motivated by the high computational complexity one has to face for corre-
spondence checking, making a direct realisation via ASP hard to accomplish. Since cur-
rently practicably efficient solvers for quantified propositional logic are available, they
can be employed as back-end inference engines to verify the correspondence problems
under consideration using the proposed encodings. Moreover, since such problems are
one of the few natural ones lying above the second level of thepolynomial hierarchy,
yet still part of the polynomial hierarchy, we believe that our encodings also provide
valuable benchmarks for evaluating QBF solvers, for which there is currently a lack of
structured problems with more than one quantifier alternation (cf. [17]).

References

1. O. Arieli and M. Denecker. Reducing Preferential ParaconsistentReasoning to Classical
Entailment.Journal of Logic and Computation, 13(4):557–580, 2003.

2. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. InProc. CADE’05, volume
3632 ofLNCS, pages 369–376. Springer, 2005.

3. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning
via Quantified Propositional Logic. InInconsistency Tolerance, volume 3300 ofLNCS, pages
84–118. Springer, 2005.

4. Y. Chen, F. Lin, and L. Li. SELP - A System for Studying Strong Equivalence Between Logic
Programs. InProc. LPNMR’05, volume 3552 ofLNAI, pages 442–446. Springer, 2005.

5. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief
Change Scenarios.Journal of Logic and Computation, 14(6):801–826, 2004.

6. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. InProc. AAAI’00, pages 417–422. AAAI Press, 2000.

7. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-
ing Strategies for Quantified Boolean Formulas. InProc. SAT’03. Selected Revised Papers,
volume 2919 ofLNCS, pages 214–228. Springer, 2004.

8. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. InProc. ECAI’06,
2006.

9. T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming:
Propositional Case.Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323,
1995.

10. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences inAnswer Set Program-
ming. InProc. IJCAI’05, pages 97–102, 2005.

11. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. InProc. ICLP’03, volume 2916 ofLNCS, pages 224–238. Springer, 2003.

12. M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - The A-
Prolog Perspective.Artificial Intelligence, 138(1-2):3–38, 2002.

13. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

14. I. Gent and T. Walsh. Beyond NP: The QSAT Phase Transition. InProc. AAAI’99, pages
648–653. AAAI Press, 1999.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic
Satisfiability.Artificial Intelligence, 145:99–120, 2003.

16. T. Janhunen, I. Niemelä, D. Seipel, and P. Simons. Unfolding Partiality and Disjunctions in
Stable Model Semantics.ACM Transactions on Computational Logic, 7(1):1–37, 2006.

17. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation. InProc. SAT’04. Revised Selected Papers, volume 3542 ofLNCS, pages
376–392. Springer, 2005.

18. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formu-
las. InProc. TABLEAUX’02, volume 2381 ofLNCS, pages 160–175. Springer, 2002.

19. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

20. F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. InProc. KR’02, pages 170–176. Morgan Kaufmann, 2002.

21. E. Oikarinen and T. Janhunen. Verifying the Equivalence of LogicPrograms in the Disjunc-
tive Case. InProc. LPNMR’04, volume 2923 ofLNCS, pages 180–193. Springer, 2004.

22. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Pro-
grams with Nested Expressions. InProc. EPIA’01, volume 2258 ofLNCS, pages 306–320.
Springer, 2001.

23. J. Rintanen. Constructing Conditional Plans by a Theorem Prover.Journal of Artificial
Intelligence Research, 10:323–352, 1999.

24. H. Tompits and S. Woltran. Towards Implementations for Advanced Equivalence Checking
in Answer-Set Programming. InProc. ICLP’05, volume 3668 ofLNCS, pages 189–203.
Springer, 2005.

25. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus.In Studies in
Constructive Mathematics and Mathematical Logic, Part II, pages 234–259, 1968.

26. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. InProc. JELIA’04, volume 3229 ofLNCS, pages 161–173. Springer, 2004.

27. M. Zolda.Comparing Different Prenexing Strategies for Quantified Boolean Formulas. Mas-
ter’s Thesis, Technische Universität Wien, Institut f̈ur Informationssysteme, 2004.

