ccT: A Tool for Checking Advanced Correspondence
Problems in Answer-Set Programming

Johannes OetsthMartina Seidf, Hans Tompit$, and Stefan Woltran

L Institut fur Informationssysteme 184/3, Technische Univéataiien,
FavoritenstralRe 9-11, A-1040 Vienna, Austria
{oet sch, tonpits, stefan}@r.tuw en. ac. at
2 |nstitut fur Softwaretechnik 188/3, Technische Universitvien,
FavoritenstralRe 9-11, A-1040 Vienna, Austria
sei dl @i g.tuw en. ac. at

Abstract. In previous work, a general framework for specifying corregpon
ences between logic programs under the answer-set semanticseheddfieed.
The framework allows to define different notions of equivalence, tiolywell-
known notions likestrong equivalencas well as refined ones based onghgec-
tion of answer sets, where not all parts of an answer set are of rele(ie; e.g.,
removal of auxiliary letters). In the general case, deciding the quoresence of
two programs lies on the fourth level of the polynomial hierarchy andetbes
this task can (presumably) not be efficiently reduced to answer-sgtgmming.
In this paper, we describe an implementation to verify program cornegrees
in this general framework. The system, calledl ¢caelies on linear-time con-
structible reductions tquantified propositional logiasing extant solvers for the
latter language as back-end inference engines. We provide someipaglimper-
formance evaluation which shed light on some crucial design issues.

1 Introduction

Nonmonotonic logic programs under the answer-set sensqits}, with which we are
dealing with in this paper, represent the canonical andtaltree availability of efficient
answer-set solvers, arguably most widely used approachswex-set programming
(ASP). The latter paradigm is based on the idea that probm&ncoded in terms
of theories such that the solutions of a given problem arerdehed by the models
(“answer sets”) of the corresponding theory. Logic prograng under the answer-
set semantics has become an important host for solving mapyohlems, including
planning, diagnosis, and inheritance reasoning (see i overview).

To support engineering tasks of ASP solutions, an importasute is to determine
the equivalence of different problem encodings. To this @adous notions of equiva-
lence between programs under the answer-set semanticbdavestudied in the liter-
ature, including the recently proposed framework by Eéteal. [10], which subsumes

* This work was partially supported by the Austrian Science Fund (FWFngihnt P18019;
the second author was also supported by the Austrian Federal Ministinae$port, Innova-
tion, and Technology (BMVIT) and the Austrian Research Promotionn8gdFFG) under
grant FIT-IT-810806.

most of the previously introduced notions. Within this fework, correspondence be-
tween two programsP and @, holds iff the answer sets d? U R and@ U R satisfy
certain criteria, for any prograt in a specified class, called thentext We shall focus
here on correspondence problems where both the contexharminparison between
answer sets are determined in termalphabets This kind of program correspondence
includes, as special instances, the well-known notiorstrohg equivalencfl 9], uni-
form equivalencgl1l], relativised variants thereof [26], as well as the ficably im-
portant case of program comparison unpiejectedanswer sets. In the last setting, not
a whole answer set of a program is of interest, but only itsrggction on a subset of
all letters; this includes, in particular, removal of aiedy letters.

For illustration, consider the following two programs wihigoth express the selec-
tion of exactly one of the atoms b. An atom can only be selected if it can be derived
together with the context:

P = { sel(b) < b, not out(b); Q = { fail < sel(a), not a, not fail;
sel(a) « a, not out(a); fail — sel(b), not b, not fail;
out(a) V out(b) — a,b }. sel(a) V sel(b) —

(
sel(a) V sel(b) — b }

Both programs use “local” atomsyut(-) andfail, respectively, which are expected
not to appear in the context. In order to compare the programascould specify an
alphabet,A, for the context, for instancd = {a,b}, or, more generally, any set
of atoms not containing the atomasl(a), sel(b), out(a), out(b), andfail, and check
whether, for each addition of a context program oerthe answer sets correspond
when taking only atoms fromB = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of suchespwndence problems
together with some initial experimental results. The olexpproach of the system,
which we call cd” (“correspondence-checking tool”), is to reduce the pnobtd cor-
respondence checking to the satisfiability problemudntified propositional logican
extension of classical propositional logic characterisgdhe condition that its sen-
tences, usually referred to agiantified Boolean formula@QBFs), are permitted to
contain quantifications over atomic formulas.

The motivation to use such an approach is twofold. First, glerity results [10]
show that correspondence checking within this framewohaigl, lying on the fourth
level of the polynomial hierarchy. This indicates that ieplentations of such checks
cannot be realised in a straightforward manner using ASeesysthemselves. In turn,
it is well known that decision problems from the polynomiararchy can be effi-
ciently represented in terms of QBFs in such a way that detémg the validity of
the resultant QBFs is not computationally harder than dnegcthe original problem.
In previous work [24], such translations from correspormgechecking to QBFs have
been developed; moreover, they are constructiblaear time Second, various prac-
ticably efficient solvers for quantified propositional logire currently available (see,
e.g., [17] for an overview). Hence, such tools are used ak-bad inference engines
in our system to verify the correspondence problems undesideration. In fact, re-
duction methods to QBFs have already been successfullyedppl diverse fields like
nonmonotonic reasoning [6, 5], paraconsistent reaso@intj,[and planning [23].

Previous systems implementing different forms of equivede being special cases
of correspondence notions in the framework of E#éerl. [10], also based on a re-
duction approach, are SELP [4] and DLPEQ [21]. ConcerningFSEere the problem
of checking strong equivalence is reduced to proposititmgit, making use of SAT
solvers as back-end inference engines. Our system gesexr&ELP in the sense that
ccT handles a correspondence problem which coincides witht daestrong equiva-
lence by the same reduction as used in SELP. The system DL&ERe other hand,
is capable of comparing disjunctive logic programs unddirary equivalence. Here,
the reduction of a correspondence problem results in fuftgéc programs such that
the latter have no answer set iff the encoded problem holdacél this system uses
answer-set solvers themselves in order to check for egurcal

The methodologies of both of the above systems have in conthadriheir range
of applicability is restricted to very special forms of pram correspondences, while
ccT provides a wide range of more fine-grained equivalence nstialowing practical
comparisons useful for debugging and modular programming.

The outline of the paper is as follows. We start with recdating the basic facts
about logic programs under the answer-set semantics amdifigépropositional logic.
In describing how to implement correspondence problemdijnategive a detailed re-
view of the encodings, followed by a discussion how theseeéings (and thus the
present system) behave in the case the specified correspmncleincides with special
equivalence notions. Then, we address some technicaligpsthich arise when ap-
plying the encodings to QBF solvers which require its ingubé in a certain normal
form. Finally, we present the concrete systent @nd illustrate its usage. The penulti-
mate section is devoted to experimental evaluation and adsgns. We conclude with
some final remarks and pointers to future work.

2 Preliminaries

Throughout the paper, we use the following notation: Fomaerpretatiory (i.e., a set
of atoms) and a sef of interpretations, we writsS|; = {Y NI |Y € S}. Fora
singleton setS = {Y'}, we writeY'|; instead ofS|;, whenever convenient.

2.1 Logic Programs

We are concerned witpropositional disjunctive logic program@LPs), which are
finite sets of rules of form

a1 V- NVap < a1, .., Ay, MOt Ay, - - ., NOE Ay, Q)

n>m>12>0, where alla; are propositional atoms from some fixed univetsand
not denotes default negation. If all atoms occurring in a progfaare from a given
setA C U of atoms, we say tha? is a programover A. The set of all programs ovet
is denoted byP 4.

Following Gelfond and Lifschitz [13], an interpretatidnis an answer setbof a
programP iff it is a minimal model of thereduct P7, resulting fromP by (i) deleting

all rules containing some default negated atet o such that € I, and (ii) deleting
all default negated atoms in the remaining rules. The cidle®f all answer sets of a
programP is denoted byAS(P).

In order to semantically compare programs, different matiof equivalence have
been introduced in the context of the answer-set semamB&sidesordinary equiv-
alencebetween programs, which checks whether two programs haveame an-
swer sets, the more restrictive notionsstiong equivalenc§l9] and uniform equiv-
alence[11] have been introduced. Two progranisand(@, are strongly equivalent iff
AS(P U R) = AS(Q U R), for any programR, and they are uniformly equivalent iff
AS(P U R) = AS(Q U R), for any setR of facts i.e., rules of forma «, for some
atoma. Also, relativised equivalence notions, taking the algalf the extension set
R into account, have been defined [26].

In abstracting from these notions, Eittral. [10] introduced a general framework
for specifying differing notions of program correspondentn this framework, one
parameterises, on the one hand,¢batexti.e., the class of programs used to be added
to the programs under consideration, and, on the other hhadglation that has to
hold between the collection of answer sets of the extendegrams. More formally,
the following definition has been introduced:

Definition 1. A correspondence framé, is a triple (U, C, p), wherel{ is a set of
atoms, called theniverse ofF, C C Py, called thecontext of 7, andp C 22 x 22.

Two programsP, Q € P,, are calledF-correspondingin symbolsP ~r Q, iff, for
alReC, (AS(PUR),AS(QU R)) € p.

Clearly, the equivalence notions mentioned above are apeases ofF-corres-
pondence. Indeed, for any univeigeand anyA C U, strong equivalence relative to
A coincides with(l/, P4, =)-correspondence, and ordinary equivalence coincides with
(U, {0}, =)-correspondence.

Following Eiteret al.[10], we are concerned with correspondence frames of form
(U,Pa,Cp) and (U, Pa,=p), WwhereA, B C U are sets of atoms andp and=p
are projections of the standard subset and set-equal@iar] respectively, defined as
follows: for any setS, S’ of interpretationsS Cp S’ iff S|p C S§’|p, andS =p S’ iff
Sl =58|B.

A correspondence probleni/, (overl{) is a quadruplé P, Q,C, p), whereP, Q €
Py and(U,C, p) is a correspondence frame. We say thaholdsiff P~ ¢) Q
holds. For a correspondence problém= (P, Q,C, p) overi, we usually leavé/
implicit, assuming that it consists of all atoms occurringH, @, andC. We call I an
equivalence problerif p is given by=p, and arinclusion problenif p is given byC 3,
for someB C U. Note that(P,Q,C,=p) holds iff (P,Q,C,Cpg) and(Q, P,C,Cp)
jointly hold.

The following proposition summarises the complexity laragse within this frame-
work [10, 22, 26].

Proposition 1. Given programsP and @, sets of atomsl and B, andp € {Cp,=5},
deciding whether a correspondence problefQ, P4, p) holds is:

1. TI¥-complete, in general;

2. TI¥-complete, ford = 0);
3. I1f’-complete, forB = U/; and
4. coNRcomplete ford = U.

While Case 1 provides the result in the general setting, #®iother cases we have the
following: Case 2 amounts trdinary equivalence with projectigne., the answer sets
of two programs relative to a specified getof atoms are compared; Case 3 amounts
to strong equivalence relative td and includes, as a special case (viz. for= (),
ordinary equivalencgfinally, Case 4 includestrong equivalencéor B = U/) as well

as strong equivalence with projection.

Thellf -hardness result shows that, in general, checking thesysrelence of two
programs cannot (presumably) be efficiently encoded ingesfmASP, which has its
basic reasoning tasks located at the second level of theqaiial hierarchy (i.e., they
are contained it or IT}’). However, correspondence checking can be efficiently en-
coded in terms ofjuantified propositional logicwhose basic concepts we recapitulate
next.

2.2 Quantified Propositional Logic

Quantified propositional logic is an extension of classpralpositional logic in which
formulas are permitted to contain quantifications over psitional variables. In partic-
ular, this language contains, for any atpfrunary operators of forrap and3p, called
universalandexistential quantifiergespectively, wherép is defined as-Vp—. Formu-
las of this language are also callgdantified Boolean formulg®BFs), and we denote
them by Greek upper-case letters.

Given a QBFQp Y, for Q € {3,V}, we call¥ the scopeof Qp. An occurrence of
an atomp is freein a QBF @ if it does not occur in the scope of a quantifi@p in
®. In what follows, we tacitly assume that every subformQla® of a QBF contains
a free occurrence qf in ¢, and for two different subformula®p @, Qq ¥ of a QBF,
we requirep # ¢. Moreover, given a finite s@? of atoms,Q P ¥ stands for any QBF
Qp1Qps ... Qp,¥ such that the variables,, ..., p, are pairwise distinct and®® =
{p1,...,pn} Finally, for an atonp (resp., a seP of atoms) and a sdtof atoms®[p/I]
(resp.®[P/I]) denotes the QBF resulting frofby replacing each free occurrence of
p (resp.,eachh € P)in® by T if p € I and byl otherwise.

For an interpretatiod and a QBF®, the relation/ = @ is inductively defined as in
classical propositional logic, whereby universal quastifiare evaluated as follows:

I EVp@iff I = P[p/{p}andl | 2[p/0].

A QBF @ is true underl iff I = @, otherwise? is false underl. A QBF is satisfi-
ableiff it is true under at least one interpretation. A QBFvalid iff it is true under any
interpretation. Note that@osedQBF, i.e., a QBF without free variable occurrences, is
either true under any interpretation or false under anypnétation.

A QBF ¢ is said to be irprenex normal fornfPNF) iff it is closed and of the form

QnPn~~'Q1P1¢7 (2)

wheren > 0, ¢ is a propositional formulaQ; € {3,V} such thatQ, # Q,; for
1<i<n-1,(P,...,P,)is a partition of the propositional variables occurring in
¢, andP; # 0, for eachl < i < n. We say that is in prenex conjunctive normal
form (PCNF) iff @ is of the form (2) and is in conjunctive normal form. Furthermore,
a QBF of form (2) is also referred to as &m, Q,,)-QBF. Any closed QBF® is easily
transformed into an equivalent QBF in prenex normal formhsihat each quantifier
occurrence from the original QBF corresponds to a quantfieurrence in the prenex
normal form. Let us call such a QBF @enex normal form ofb. In general, there
are different ways to obtain an equivalent prenex QBF (dffd7 more details on this
issue). The following property is essential:

Proposition 2. For everyk > 0, deciding the truth of a givefk, 3)-QBF (resp.,(k, V)-
QBF) is X' -complete(resp.,I17 -completg.

Hence, any decision problef in X1 (resp.,II¥) can be mapped in polynomial
time to a(k, 3)-QBF (resp.,(k, ¥)-QBF) @ such thatD holds iff @ is valid. In particu-
lar, any correspondence problél, @), P4, p), for p € {Cp, =g}, can be reduced in
polynomial time to &4, ¥)-QBF. Our implemented tool, described next, relies on two
such mappings, which are actually constructiblériear space and time

3 Computing Correspondence Problems

We now describe the systemTcwhich allows to verify the correspondence of two
programs. It relies on efficient reductions from correspon@ problems to QBFs as
developed by Tompits and Woltran [24]. These encodings i@septed in the first sub-

section. Then, we discuss how the encodings behave if trefiggecorrespondence

problem coincides with special forms of inclusion or eglén&e problems, viz. those

restricted cases discussed in Proposition 1. Afterwardgyive details concerning the

transformation of the resultant QBFs into PCNF, which isassary because most ex-
tant QBF solvers rely on input of this form. Finally, we givense details concerning

the general syntax and invocation of théfcool.

3.1 Basic Encodings

Following Tompits and Woltran [24], we consider two diffateéeductions from inclu-
sion problems to QBF§[-] and T[], whereT[-] can be seen as an explicit optimisation
of S[-]. Recall that equivalence problems can be decided by the asitign of two
inclusion problems. Thus, a composed encoding for equical@roblems is easily ob-
tained via a conjunction of two particular instantiatiofisg] or T/[-].

For our encodings, we use the following building blocks. Tdea hereby is to use
sets of globally new atoms in order to refer to different gissients of the atoms from
the compared programs within a single formula. More forgpaliven an indexed set
V of atoms, we assume (pairwise) disjoint copigés= {v; | v € V'}, for everyi > 1.
Furthermore, we introduce the following abbreviations:

1 (Vi <Vj) = Ay (vi = v5);

2. (V; < Vj) = (Vi < V;) A=(V; < Vi) and
3. (V= V)= (V; < V) A (V; < V).

Observe that the latter is equivalentAg ., (v; < v;).

Roughly speaking, these three “operators” allow us to comp#ferent subsets
of atoms from a common se&l}, under subset inclusion, proper-subset inclusion, and
equality, respectively. Note that the comparison testsreatised with respect to a
single interpretation. As an example, considér= {v,w,u} and an interpretation
I = {v1,v2, ws}, implicitly representing setX’ = {v} (via the relationl|y, = {v1})
andY = {v,w} (via the relation/|y, = {v2,w>}). Then, we have thatl; < 13) as
well as(V; < V4) are true undef which matches the observation th#tis indeed a
proper subset of’, while (V; = V%) is false under reflecting the fact thak” = Y.

In accordance to this renaming of atoms, we use subscrigggaseral renaming
schema for formulas and rules. That is, for eack 1, «; expresses the result of
replacing each occurrence of an atgnn « by p;, where« is any formula or rule.
Furthermore, for a rule of form (1), we defineH(r) = a1 V --- V a;, BT (r) =
41 N - A, aNAdB7(r) = —am41 A -+ - A —ay,. We identify empty disjunctions
with L and empty conjunctions witfi. Finally, for a progranP, we define

P;; = /\ ((BT(ri) A B (r;)) — H(ry)).

Formally, we have the following relation: L&® be a program over atomis, I an
interpretation, and(, Y C V' such that, for some j, I|y, = X; andI|y, = Yj. Then,
X = PY iff I = P;;. Hence, we are able to characterise model® @i case that
1 = 7) as well as models of certain reductsi®fin case that # j).

Having defined these building blocks, we proceed with thédinsoding.

Definition 2. Let P, Q be programs ovel/, let A, B C V, and letll = (P, Q, Pa,
Cp) be an inclusion problem. Then,

S[11] == -3V, (PL1 ASY(P, A) AVV5(S3(Q, A, B) — S3(P,Q, A))),where

SU(P, A) :=Va(((Ay = A1) A (Vo < V1)) ——Pay),
S2(Q,A,B):=((AUB)3; = (AUB)1) AQ33, and
S3(P,Q,A) = EIV4((V4 < V3)AQasz A ((A4 < Ap) —

YVs(((As=As)A(Vs < V1)) —=—Ps1))).

Let® be the scope aiV/; . This formula encodes the conditions for deciding whether
a so-calledpartial spoiler [10] for the inclusion problemi] exists. Such spoilers test
certain relations on the reducts of the two programs invahlue order to avoid an ex-
plicit enumeration of allR € P4 for deciding whethet holds. In fact, a spoiler for
1T exists iff IT doesnot hold. Accordingly,® is unsatisfiable ifffif holds, and thus the
closed QBFS[11] = —-3V4 @ is valid iff IT holds.

In more detail, given a correspondence problérand its encodin§[I7] = -3V, P,
the general task of the QB# is to test, for an answer-set candidafeof P, that no
Y with Y| = X|p becomes an answer set @f under some implicitly considered

extension (in fact, it is sufficient to check only potentiandidatesY” of the form
Y|aus = X|aus)- Now, the subformulaP; ; A S!(P, A) tests whethelX is such

a candidate for?, with X being represented by;. In the remaining part of the en-
coding,S%(Q, A, B) returns as its models those s&trepresented bys) which are
potential candidates for being answer setg)ofThese candidates are now checked to
be non-minimal and whether there is a further model (reprtesibyV,) of the reduct

of @ with respect td¥” surviving an extension af), for which X turns into an answer
set of the extension a?.

In what follows, we review a more compact encoding which,antipular, reduces
the number of universal quantifications. The idea is to savhe fixed assignments, as,
e.g.,inS?(Q, A, B), where we havéAU B); = (AU B);. That s, inS?(Q, 4, B), we
implicitly ignore all assignments tb; where atoms from or B have different truth
values as the corresponding assignmentg; toT herefore, it makes sense to consider
only atoms fromV; \ (As U Bs) and using4; U B; instead ofA; U Bs in Q3 3.

This calls for a more subtle renaming schema for programgeter. Let) be a set
of indexed atoms, and letbe a rule. Thenr;}fk results fromr by replacing each atom
x inr by x;, providingz; € V, and byzx; otherwise. For a prograR?, we define

Plvjk = /\ ((B+(7"Zk) A B_(T;{k)) — H<7"2)k))
reP
Moreover, for every > 1, every set/ of atoms, and every sét, V. := (V \ C);.

Definition 3. Let P,Q be programs ovel’ and A, B C V. Furthermore, letl] =
(P,Q,Pa,Cp) be aninclusion problem and = V; U VA U VAYB UV, U V. Then,

TIT] i= =3V (Pra A TP, AV) AVVYB(QY5 0 — TH(P,Q, A,V))), where

THP,AY) =V (V5 < Vi) — —-PY, ;) and
T3(P,Q, A, V) :=3Vy((Va < (AUB)1 UVSYE)) A QY51 A ((As < A1) —
vV5A((V5A < VlA) - _‘P51{1,4)))-
Note that the subformult; < ((AUB); U ViYB)in T3(P,Q, A, V) denotes
(((AUB)s < (AUB)y) A (VAYB < VAYB) A
~(((AUB), < (AU BJa) A (VA9 < VAUB)).

Also note that, compared to our first encodBid/], we do not have a pendant to sub-
formulaS? here, which reduces simply @;3,1 due to the new renaming schema.

Proposition 3 ([24]).For any inclusion problendZ, the following statements are equiv-
alent: (i) II holds; (ii) S[ZI] is valid; and(iii) T[] is valid.

In what follows, let, for every equivalence probldih= (P, Q, P, =g), I[I’ and
I1"” denote the associated inclusion problef®s Q, P4, Cp) and(Q, P, P4, Cg),
respectively.

Corollary 1. Let IT be an equivalence problem. The following statements arvaqu
lent: (i) II holds;(ii) S[II'|A S[II"] is valid; and(iii) T[II'|A T[II"] is valid.

3.2 Special Cases

We now analyse how our encodings behave in certain instasfcd® equivalence
framework which are located at lower levels of the polyndrhiararchy (cf. Propo-
sition 1). We point out that the following simplificationseacorrespondingly imple-
mented within our system.

In the case oftrong equivalenc§l9], i.e., problems of formll = (P, Q, Pa,
=4) with A = U, the encodingd [1I'] and T[/I”] can be drastically simplified, since
VA =Vt = VA = (. In particular, T[IT'] is equivalent to

=3V (P A (Qua = FVa((Va < VA) A Qua A=Pua)))

Now, the composed encoding for strong equivalence, i.e. QBF T[II'] A T[II"],
amounts to a single propositional unsatisfiability testnegsing the coNP-complete-
ness complexity for checking strong equivalence [22, 28]s holds also for problems
of the form (P, Q, Py, =p) with arbitrary B. One can show that similar reductions
given by Pearcet al.[22] and Lin [20] for testing strong equivalence in terms ajpo-
sitional logic are simple variants thereof. Indeed, thehrodblogy of the tool SELP [4]
is basically mirrored in our approach, in case the paransaitéon of the given problem
corresponds to a test for strong equivalence.

Strong equivalenceelative to a setA of atoms [26], i.e., problems of forriP,
Q, Pa, =p) with B = U, also yields simplifications withi[II’] andT[II"], since
VAYB = (). In fact, T[II'] can be rewritten to

=3IV (P AV (Vs < Vi) — =PYy 1) A (Qua — FVa((Va < Vi) A Qaah
((Ag < A1) — VWAV < Vi) — =PY0)))-

When putting this QBF into prenex normal form (see below)iihs out that the result-
ing QBF amounts to &, V)-QBF, again reflecting the complexity of the encoded task.
Note that for equivalence probler®,), P4, =p) with AU B = U/ we also have that
VAYE = (). Thus, the same simplifications also apply for this specatc

The case of ordinary equivalence, i.e., considering problef formIl = (P, Q,
P4, =) with A = (), is, indeed, a special case of relativised strong equicalefts an
additional optimisation we can drop the subformula

(As < A1) = WA (V5" < Vi) — =P ,) 3)
from partT? of T[II']. This is becausél = (), and therefore
(Ag < Ay) = /\ (a4—>a1)/\ﬂ /\ (a1 —>a4)
acA acA

reduces tol' A =T, and thus tal. Hence, the validity of the implication (3) follows.
However, this does not affect the number of quantifier atttoms compared to the case
of relativised strong equivalence. Indeed, this is in agagith the 1}’ -completeness
for ordinary equivalence. Putting things together, anceoling that forA = () we have
V' = V4, the encodingl [11'] results for ordinary equivalence in

-3V (P1,1 AVV((Va < V1) = =P 1) A Q11 — 3Va((Va < V1) A Q471)))-

This encoding is related to encodings for computing ansetsnsa QBFs, as discussed
by Egly et al. [6]. Indeed, taking the two main conjuncts frohilI’], viz. ¢ = P11 A
VVa((Va < Vi) — =P 1) andy = Q11 — IVa((Va < Vi) A Qq,1), We get, for any
assignment; C Vi, thatY; is a model ofp iff Y is an answer set aP, andY; is a
model ofy only if Y is not an answer set @j.

Finally, we discuss the case of ordinary equivalence witheation, i.e., problems
of form (P,Q, Pa,=g) with A = (). Problems of this form arHZ’-complete, and thus
we expect that our reductions can be simplified (after tamsétion to prenex form) to
(3,V)-QBFs. Indeed, the only simplification is to get rid off thédfrmula (3). We can
do this for the same reason as above, viz. sifice (). The simplifications are then as
follows (once again using the fact thidt! = V; as well asV*“? = V7).

=17 (Pl,l /\V‘/Q((‘/Q < Vl) - ﬁP271)/\
VV3B (Q?‘i‘?,l — E|V4((V4 < (B1 U VgB)) A QZ?)J)))'

Compared to the case of relativised equivalence, as desdudmove, this time we have
VAYE £ () and thus an additional quantifier alternation “survivess gimplification.
After bringing the encoding into its prenex form, we therefget a(3, ¥)-QBF, once
again reflecting the intrinsic complexity of the encodedotem.

For the encoding [], the structure of the resulting QBF always reflects the com-
plexity of the correspondence problem according to Prajposl. This does not hold
for formulas stemming fron$[-], however. In any case, our tool implements both en-
codings in order to provide interesting benchmarks for Qal#es's with respect to their
capability to find implicit optimisations for equivalent @B.

3.3 Transformations into Normal Forms

Most available QBF solvers require its input formula to ba tertain normal form, viz.
in prenex conjunctive normal form (PCNF). Hence, in ordegnmploy these solvers for
our tool, the translations described above have to be wemed by a further two-
phased normalisation step:

1. translating the given QBF into prenex normal form (PN a
2. translating the propositional part of the resulting falanin PNF into CNF.

Both steps require to address different design issues. &t felows, we describe
the fundamental problems, and then briefly provide our smistin some detail.

First, the step of prenexing is not deterministic. As diseualby Eglyet al.[7], there
are numerous so-callgmtenexing strategiesThe concrete selection of such a strategy
(also depending on the specific solver used) crucially inftes the running times (see
also our results below). In prenexing a QBF, ceridgépendenciebetween quantifiers
have to be respected when combining the quantifiers of diftesubformulas to one
linear prefix. For our encodings, these dependencies drerraimple and analogous
for both encoding$[] and T[]. First, observe, however, that both encodings have a
negation as their main connective which has to be shiftedtive formula by applying
suitable equivalence preserving transformations whiehsanilar to ones well-known

from first-order logic. In what follows, we implicitly assuarthat this step has already
been performed. This allows us to consider the quantifieedépncies cleansed with
respect to their polarities. The dependencies for the éng&d] can then be illustrated

as follows:

YW1

7 AN
I, IV

V4

Vs

Here, the left branch results from the subformsitaand the right one results from the
subformulavVs(S%(Q, 4, B) — S3(P, Q, A)).

Inspecting these quantifier dependencies, we can gitbupither together witAVs
or with V5. This yields the following two basic ways for prenexing oancedings:

T VI3(Va UVEVYAaVs; and | VYA 3VaYV4a(Vs U V).

Together with the two encodindg-] and T|-], we thus get four different alternatives
to represent an inclusion problem in terms of a prenex QBFmiledenote them by
S1[-l, Si[F)s T4[-], and T[], respectively. Our experiments below show their different
performance behaviour (relative to the employed QBF sawerthe benchmarks).
Concerning the transformation of the propositional pad pfenex QBF into CNF,
we apply a method following Tseitin [25] in which new atome;calledlabels are
introduced abbreviating subformula occurrences and whashthe property that the re-
sultant CNFs are always polynomial in the size of the inpunfda. Recall that a stan-
dard translation of a propositional formula into CNF basedlistributivity laws yields
formulas of exponential size in the worst case. Howeverntrenal form translation
into CNF using labels is not validity preserving like the drased on distributivity laws
but onlysatisfiability equivalentin the case of closed QBFs, the following result holds:

Proposition 4. Let® = Q. P, ... Q1 P19, for Q; € {3,V} andn > 0, be either an
(n,V)-QBF withn being even or arfn, 3)-QBF withn being odd. Furthermore let’
be the CNF resulting from the propositional pariof ¢ by introducing new labels fol-
lowing Tseitin [25]. Theng andQ,, P, ... Q; P,AV ¢’ are logically equivalent, where
V' are the new labels introduced by the CNF transformation.

Note that ford as in the above proposition, we have tifagt = 3. Hence, in
this caseQ, P, ...Q: 3V ¢’ is the desired PCNF, equivalent §&g used as input
for QBF solvers requiring PCNF format for evaluatitgin order to transform a QBF
U =Q,P,...Q1P Py whichis an(n,V)-QBF withn being odd or arin, 3)-QBF with
n being even, we just apply the above propositio®taP, . . . Q; P, —, whereQ; = 3
if Q; = VY andQ, = V otherwise, which is equivalent te. That is, in order to evalu-
ate¥ by means of a QBF solver requiring PCNF input, we com@é, ... Q, P,
and “reverse” the output. This is accommodated in ¢hat either the original corre-
spondence problem or the complementary problem is encotledever an input yields
a QBF likevw.

100,00 100,00 St

90,00 90,00
80,00 80,00
70,00 70,00
60,00 60,00
50,00 50,00
40,00 40,00 51
30,00 30,00
20,00 20,00
10,00 10,00 Ty

0,00 0,00
qube-bj semprop skizzo gpro qube-bj semprop skizzo gero

Fig. 1. Running times (in seconds) for true (left chart) and false (right ciestances subdivided
by solvers and encodings.

For the entire normal-form transformation, one can use tiantifier-shifting tool
gst [27]. It accepts arbitrary QBFs inool e format (see below) as input and returns
an equivalent PCNF QBF igdimacsformat, which is nowadays a de-facto standard
for PCNF-QBF solvers. The togst implements 14 different strategies (among them
1 and | we use here) to obtain a PCNF and uses the mentioned strymrserving
normal-form transformation for the transformation to CNF.

3.4 The Implemented Tool

The system c€ implements the reductions from inclusion problef#s @, P4, Cg)
and equivalence probleni®, @, P4, =g) to corresponding QBFs, together with the
potential simplifications discussed above. It takes astitypoi programs P and@, and
two sets of atomsA and B, where A specifies the alphabet of the context aBdhe
set of atoms for projection on the correspondence relalibe.reduction§[-] or T[])
and the type of correspondence problengi(or =g) are specified via command-line
arguments: S, - T to select the kind of reduction, and , - e to check for inclusion or
equivalence between the two programs.

In general, the syntax to specify the programs if @orresponds to the badit V
syntax® PropositionalDLV programs can be passed toTcand programs processible
for ccT can be handled bipLV.

We developed ct entirely in ANSI G hence, it is highly portable. The parser for
the input data was written using=X and YACC The complete package in its current
version consists of more than 2000 lines of code. Furtha@rimétion about c€ and
how to use it, as well as information about the benchmarlabelan be found at

http://ww. kr.tuw en. ac. at/research/ccT/.

4 Experimental Results

Our experiments were conducted to determine the behavidifferent QBF solvers in
combination with the encodings.] and T[] for inclusion checking, or, if the employed

8 Seeht t p: / / www. dl vsyst em com for more information aboubLV.

$1T1S $1T1S
100.00 |- 7 7 1 S S

80.00 - q

60.00 - q

|
i

seconds

40.00 - q

20.00 H l B
- -1 TTSlT

0.00 ' ' L

qube-bj semprop skizzo qpro

s ST
100.00 |- 2 Tt St i

80.00 F S, i

60.00 T, 4

seconds

40.00 - Sy -
T

T
20.00 4
Ty é
. Tis
3 @

= =
1

qube-bj semprop skizzo qpro

1 1

Fig. 2. Whisker-box plots corresponding to Figure 1 for true (upper chad)false (lower chart)
instances.

QBF solver requires the input in prenex form, wih(-], S, [-], T1[:], andT [-]. To this
end, we implemented a generator of inclusion problems waichnate from the proof
of the IT{ -hardness of inclusion checking [10], and thus provides itis benchmark
problems capturing the intrinsic complexity of this task.

The strategy to generate such instances is as follows:

1. generate &1,)-QBF ¢ in PCNF by random;
2. reduceb to a probleml7 = (P, Q, P4, Cp) such thatlT holds iff & is valid;
3. apply cdI to derive the corresponding encodiigor I1.

wo00 - s S T S Hazazazoins #

B3

1000

seconds
]

o

- qpro —+—
[I -7 qube-bj -4
semprop ---K---
skizzo --->--
DLPEQ --B--
0.01 L . .
10 12 14 16 18 20 22 24

Fig. 3. Comparing c@ against DLPEQ subdivided by solvers.

Incidentally, this procedure also yields a simple methadéoifying the correctness
of the overall implementation by simply checking whetlies equivalent tab. We use
here a parameterisation for the generation of random QBétsthat the benchmark set
yields a nearly 50% distribution between the true and faistances. Therefore, the set
is neither over- nor underconstrained and thus presumabatéd in a hard region.

We have set up a test series comprising 1000 instances akionl problems gen-
erated that way (465 of them evaluating to true). The firstjam P has 620 rules, and
the second prograrf has 280 rules, using a total of 40 atoms. The setnd B of
atoms are chosen to contain 16 atoms. After employing, tee resulting QBFs pos-
sess, in case of translati&t], 200 atoms and, in case of translatibf], 152 atoms.
The additional prenexing step (together with the transhatif the propositional part
into CNF) yields, in case d[-], QBFs with 6575 clauses over 2851 atoms and, in case
of T[], QBFs with 6216 clauses over 2555 atoms.

We compared four state-of-the-art QBF solveyabe- bj [15], senpr op [18],
ski zzo [2], andgpr o [8]. The former three require QBFs in PCNF as input (thus, we
tested them using encodin§s[-], S;[-], T1[:], andT [-]), while gpr o admits arbitrary
QBFs as input (we tested it with the non-prenex encodiigandT[-]).

The (arithmetically) average running times are depicteéfigure 1. They-axis
shows the running time (time-out was 100 seconds) for eallerswith respect to
the chosen translation and prenexing strategy. As expefdeall solvers, the more
compact encodings of form[-] were evaluated faster than the QBFs stemming from
encodings of forng[-]. The performance of the prenex-form solvgrse- bj , sem
pr op, andski zzo is highly dependent on the chosen prenexing strategy. Hervev
the shifting strategy dominates strategy. A more thorough analysis of the data with
respect to their distribution is given in Figure 2. By meafisvhbisker-box plots, we
depict, for each measuring point, median (horizontal limgde the box), 25%- and
75%-quantile (lower and upper border of the boxes, resgagji and the 5%- and
95%-quantile (lower and upper horizontal bar at the end efurtical lines, the so-

calledwhiskers respectively). Due to the chosen time-out of 100 secohésyhisker-
box plots are slightly distorted near the 100 seconds border

For the special case of ordinary equivalence, we companedpproach against the
system DLPEQ [21] which is based on a reduction to disjurdtigic programs, using
gnt [16] as underlying answer-set solver. The benchmarks rehandomly generated
(2, 3)-QBFs using Model A [14]. Each QBF is reduced to a program siatthe latter
possesses an answer set iff the original QBF is valid [9].idlba of the benchmarks is
to compare each such program with one in which one randordygteel rule is dropped,
simulating a “sloppy” programmer, in terms of ordinary e@lénce.

The average running times are shown in Figure 3. The numhbgrvariables in
the original QBF varies from 10 to 24, and, for each100 such program compar-
isons are generated for which the portion of cases wher@aquoce holds is between
40% and 50% (for details about the benchmarks, cf. [21]).[HdPEQ, we considered
the slightly faster two-phased mode only. We set a time-6u26 seconds. For ¢,
we compared the same back-end solvers as above, using egdddi Recall that,
for ordinary equivalence, dcprovides(2, ¥)-QBFs; thus, we can refrain from the dis-
tinction between prenexing strategies. The dedicated .Bfproach turns out to be
faster, but, interestingly, among the tested QBF solgps,0 is the most competitive
one, while the PCNF-QBF solvers perform bad even for smathimces. Moreover, the
entire QBF approach behaves worse on true instances, cedhjzefalse ones.

5 Conclusion

In this paper, we discussed an implementation for advancegrgm comparison in
answer-set programming via encodings into quantified psitpoal logic. This ap-
proach was motivated by the high computational complexity bas to face for corre-
spondence checking, making a direct realisation via ASE teesiccomplish. Since cur-
rently practicably efficient solvers for quantified propmsial logic are available, they
can be employed as back-end inference engines to verifyoifiespondence problems
under consideration using the proposed encodings. Moreginee such problems are
one of the few natural ones lying above the second level opttgnomial hierarchy,
yet still part of the polynomial hierarchy, we believe thatr @ncodings also provide
valuable benchmarks for evaluating QBF solvers, for whingre is currently a lack of
structured problems with more than one quantifier alteona(f. [17]).

References

1. O. Arieli and M. Denecker. Reducing Preferential Paraconsifteasoning to Classical
Entailment.Journal of Logic and Computatioi3(4):557-580, 2003.

2. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs.Pinc. CADE’05 volume
3632 ofLNCS pages 369-376. Springer, 2005.

3. P.Besnard, T. Schaub, H. Tompits, and S. Woltran. Represeranagdhsistent Reasoning
via Quantified Propositional Logic. Imconsistency Tolerancgolume 3300 o NCS pages
84-118. Springer, 2005.

4. Y.Chen, F. Lin, and L. Li. SELP - A System for Studying Strong Egléwnce Between Logic
Programs. IrProc. LPNMR’05 volume 3552 of NAI, pages 442—446. Springer, 2005.

[

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Compubtihgi@ns to Belief
Change Scenariodournal of Logic and Computatioi4(6):801-826, 2004.

. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced ReempTasks using
Quantified Boolean Formulas. Proc. AAAI'OQ pages 417-422. AAAI Press, 2000.

. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing &t Prenex-
ing Strategies for Quantified Boolean FormulasPhoc. SAT'03. Selected Revised Papers
volume 2919 oLNCS pages 214-228. Springer, 2004.

. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenexidn Proc. ECAI'06
2006.

. T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive LogagRrmming:

Propositional Case.Annals of Mathematics and Artificial Intelligenc&5(3/4):289-323,

1995.

T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondenc&sswer Set Program-

ming. InProc. IJCAI'05 pages 97-102, 2005.

T. Eiter and M. Fink. Uniform Equivalence of Logic Programs unithe Stable Model

Semantics. IProc. ICLP’03 volume 2916 o£ NCS pages 224-238. Springer, 2003.

M. Gelfond and N. Leone. Logic Programming and Knowledge &apntation - The A-

Prolog PerspectiveéArtificial Intelligence 138(1-2):3-38, 2002.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programd &isjunctive

DatabasesNew Generation Computing:365-385, 1991.

I. Gent and T. Walsh. Beyond NP: The QSAT Phase TransitiorRrdn. AAAI'99 pages

648—-653. AAAI Press, 1999.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping foaified Boolean Logic

Satisfiability. Artificial Intelligence 145:99-120, 2003.

T. Janhunen, |. Niemil D. Seipel, and P. Simons. Unfolding Partiality and Disjunctions

Stable Model Semantic®\CM Transactions on Computational Logi®(1):1-37, 2006.

D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The 8d&BF Solvers Compar-

ative Evaluation. IrProc. SAT'04. Revised Selected Paperume 3542 oLNCS pages

376-392. Springer, 2005.

R. Letz. Lemma and Model Caching in Decision Procedures font{jigal Boolean Formu-

las. InProc. TABLEAUX'02volume 2381 oL NCS pages 160-175. Springer, 2002.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalengicd®rogramsACM Trans-

actions on Computational Logi€(4):526-541, 2001.

F. Lin. Reducing Strong Equivalence of Logic Programs to Entailinedlassical Proposi-

tional Logic. InProc. KR'02 pages 170-176. Morgan Kaufmann, 2002.

E. Oikarinen and T. Janhunen. Verifying the Equivalence of LBgigrams in the Disjunc-

tive Case. IrProc. LPNMR'04 volume 2923 oL NCS pages 180-193. Springer, 2004.

D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibriumgid.and Logic Pro-

grams with Nested Expressions. Pnoc. EPIA'0], volume 2258 oL.NCS pages 306-320.

Springer, 2001.

J. Rintanen. Constructing Conditional Plans by a Theorem Praarrnal of Artificial

Intelligence Resear¢ti0:323-352, 1999.

H. Tompits and S. Woltran. Towards Implementations for AdvancpdvElence Checking

in Answer-Set Programming. IRroc. ICLP’05 volume 3668 ofLNCS pages 189-203.

Springer, 2005.

G. S. Tseitin. On the Complexity of Derivation in Propositional Calcullrs Studies in

Constructive Mathematics and Mathematical Logic, Parpages 234—259, 1968.

S. Woltran. Characterizations for Relativized Notions of EquivaéncAnswer Set Pro-

gramming. InProc. JELIA’04 volume 3229 of NCS pages 161-173. Springer, 2004.

M. Zolda.Comparing Different Prenexing Strategies for Quantified Boolean ForenMas-

ter's Thesis, Technische UniveiitwWien, Institut éir Informationssysteme, 2004.

n

