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Abstract

In previous work, a general framework for specify-
ing correspondences between logic programs under the
answer-set semantics has been defined. The framework
allows to define different notions of equivalence, in-
cluding well-known notions likestrong equivalencas

well as refined ones based on h®jectionof answer
sets, where not all parts of an answer set are of rele-
vance (like, e.g., removal of auxiliary letters). In the
general case, deciding the correspondence of two pro-
grams lies on the fourth level of the polynomial hier-
archy and therefore this task can (presumably) not be
efficiently reduced to answer-set programming. In this
paper, we describe an implementation to verify program
correspondences in this general framework. The sys-
tem, called c@, relies on linear-time constructible re-
ductions toquantified propositional logizsing extant
solvers for the latter language as back-end inference en-
gines. We provide some preliminary performance eval-
uation which shed light on some crucial design issues.
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have been studied in the literature, including the recently
proposed framework by Eiter, Tompits, & Woltran (2005),
which subsumes most of the previously introduced notions.
Within this framework, correspondence between two pro-
grams, P and ), holds iff the answer sets d® U R and

Q@ U R satisfy certain criteria, for any programin a spec-
ified class, called theontext We shall focus here on cor-
respondence problems where both the context and the com-
parison between answer sets are determined in terrak of
phabets This kind of program correspondence includes, as
special instances, the well-known notionssttbng equiva-
lence(Lifschitz, Pearce, & Valverde 2001)niform equiv-
alence(Eiter & Fink 2003), its relativised variants thereof
(Woltran 2004), as well as the practicably important case
of program comparison undprojectedanswer sets. In the
last setting, not a whole answer set of a program is of in-
terest, but only its intersection on a subset of all lett#is;
includes, in particular, removal of auxiliary letters.

For illustration, consider the following two programs
which both express the selection of exactly one of the atoms
a, b. An atom can only be selected if it can be derived to-
gether with the context:

Nonmonotonic logic programs under the answer-set seman-
tics (Gelfond & Lifschitz 1991), with which we are dealing
with in this paper, represent the canonical and, due to the
availability of efficient answer-set solvers, arguably mos
widely used approach to answer-set programming (ASP).
The latter paradigm is based on the idea that problems are
encoded in terms of theories such that the solutions of a
given problem are determined by the models (“answer sets”)
of the corresponding theory. Logic programming under the
answer-set semantics has become an important host for solv- sel(a) V sel(b) < b; }.
@ng many Al proble_ms, including planning, diagnosis, and Both programs use “local” atomsyt(-) andfail, respec-
inheritance reasoning (cf. Gelfond & Leone (2002) for an ey, which are expected not to appear in the context. In
overview). . _ _order to compare the programs, we could specify an alpha-
To support engineering _tasks of AS.P solutions, an im- pet A, for the context, for instancd = {a, b}, or, more
portant issue is to determme the eq_uwalen(_:e of dn‘fergnt generally, any setl of atoms not containing the local atoms
problem encodings. To this end, various notions of equiv- out(a), out(b), and fail. On the other hand, we want to
alence between programs under the answer-set semantics:heck whether, for each addition of a context program over
A, the answer sets correspond when taking only atoms from

P = { sel(b) < b, not out(b);
sel(a) < a,not out(a);
out(a) V out(b) «— a, b; }.

Q = { fail — sel(a), not a, not fail;
fail — sel(b), not b, not fail;
sel(a) V sel(b) « a;

*This work was partially supported by the Austrian Science .
Fund (FWF) under grant P18019; the second author was also sup B = {5,61(‘1)’ sel(b)} into account. ) )
ported by the Austrian Federal Ministry of Transport, Inaien, In this paper, we report about an implementation of such
and Technology (BMVIT) and the Austrian Research Promotion correspondence problems together with some initial exper-
Agency (FFG) under grant FIT-IT-810806. imental results. The overall approach of the system, which



we call ccT (“correspondence-checking tool”), is to reduce
the problem of correspondence checking to the satisfigbilit
problem ofquantified propositional logican extension of
classical propositional logic characterised by the coolit
that its sentences, usually referred togasntified Boolean
formulas (QBFs), are permitted to contain quantifications
over atomic formulas.

The motivation to use such an approach is twofold. First,
complexity results (Eiter, Tompits, & Woltran 2005) show
that correspondence checking within this framework is hard
lying on the fourth level of the polynomial hierarchy. This
indicates that implementations of such checks cannot be re-
alised in a straightforward manner using ASP systems them-
selves. In turn, it is well known that decision problems from
the polynomial hierarchy can be efficiently represented in
terms of QBFs in such a way that determining the valid-
ity of the resultant QBFs is not computationally harder than
checking the original problem. In previous work (Tompits
& Woltran 2005), such translations from correspondence

discussion how these encodings (and thus the present sys-
tem) behave in the case the specified correspondence coin-
cides with special equivalence notions. Then, we address
some technical questions which arise when applying the en-
codings to QBF solvers which require its input to be in a
certain normal form. Finally, we present the concrete sgste
ccT and illustrate its usage. The penultimate section is de-
voted to experimental evaluation and comparisons. We con-
clude with some final remarks and pointers to future work.

Preliminaries

Throughout the paper, we use the following notation: For an
interpretation/ (i.e., a set of atoms) and a sgf interpre-
tations, we writeS|; = {Y NI | Y € S}. For a singleton
setS = {Y'}, we writeY'|; instead ofS|;, if convenient.

Logic Programs
We are concerned witphropositional disjunctive logic pro-

checking to QBFs have been developed; moreover, they are 9r@MS(DLPs) which are finite sets of rules of form

constructible idinear time and spaceSecond, various prac-
ticably efficient solvers for quantified propositional logire
currently available (see, e.g., Le Begtal.(2005)). Hence,

a1 V-V a a1, 0y, N0t a1, ..., 0ot ay, (1)

n>m>1>0, where alla; are propositional atoms from

such tools are used as back-end inference engines in our syssome fixed universg/ and not denotes default negation.

tem to verify the correspondence problems under considera-
tion.

We note that reduction methods to QBFs have been suc-
cessfully applied already in the field of nonmonotonic rea-
soning (Eglyet al. 2000; Delgrandet al. 2004), paracon-
sistent reasoning (Besnaed al. 2005; Arieli & Denecker
2003), and planning (Rintanen 1999).

Previous systems implementing different forms of equiv-

alence, being special cases of correspondence notions in

the framework of Eiter, Tompits, & Woltran (2005), also
based on a reduction approach, are SELP (Chen, Lin, &
Li 2005) and DLPEQ (Oikarinen & Janhunen 2004). Con-
cerning SELP, here the problem of checking strong equiva-
lence is reduced to propositional logic, making use of SAT

solvers as back-end inference engines. Our system gener-

alises SELP in the sense thaflchandles a correspondence
problem which coincides with a test for strong equivalence
by the same reduction as used in SELP. The system DLPEQ,
on the other hand, is capable of comparing disjunctive logic
programs under ordinary equivalence. Here, the reducfion o
a correspondence problem results in further logic programs
such that the latter have no answer set iff the encoded prob-

If all atoms occurring in a prograr® are from a given set
A C U of atoms, we say thaP is a progranover A. The
set of all programs oved is denoted byP 4.

Following Gelfond & Lifschitz (1991), an interpretatidn
is ananswer sebf a programp iff it is a minimal model of
thereduct P!, resulting fromP by

e deleting all rules containing default negated atamsa
such that € I, and

e deleting all default negated atoms in the remaining rules.

The collection of all answer sets of a prograhis denoted
by AS(P).

In order to semantically compare programs, different no-
tions of equivalence have been introduced in the context
of the answer-set semantics. Besidedinary equivalence
between programs, which checks whether two programs
have the same answer sets, the more restrictive notions of
strong equivalenc@ ifschitz, Pearce, & Valverde 2001) and
uniform equivalencéEiter & Fink 2003) have been intro-
duced. Two programg? and(@, are strongly equivalent iff
AS(P U R) = AS(Q U R), for any programR, and they
are uniformly equivalent iffAS(P U R) = AS(Q U R), for

lem holds. Hence, this system uses answer-set solvers them-any setR of facts i.e., rules of fornu «, for some atom.

selves in order to check for equivalence.

The methodologies of both of the above systems have
in common that their range of applicability is restricted to
very special forms of program correspondences, while our
new system c€ provides a wide range of more fine-grained
equivalence notions, allowing practical comparisons ulsef
for debugging and modular programming.

The outline of the paper is as follows. We start with re-
capitulating the basic facts about logic programs under the
answer-set semantics and quantified propositional logic. |
describing how to implement correspondence problems, we
first give a detailed review of the encodings, followed by a

Also, relativised equivalence notions, taking the alphaibe
the extension sek into account, have been defined (Woltran
2004).

In abstracting from these notions, Eiter, Tompits, &
Woltran (2005) introduced a general framework for speci-
fying differing notions of program correspondence. In this
framework, one parameterises, on the one hand;dheext
i.e., the class of programs used to be added to the programs
under consideration, and, on the other hand, the relatain th
has to hold between the collection of answer sets of the ex-
tended programs. More formally, the following definition
has been introduced:



Definition 1 A correspondence framg, is a triple (U, C,
p), wherel{ is a set of atoms, called theniverse ofF, C C

Py, called thecontext of £, andp C 22" x 22,

Two programsP, () € P, are calledF-correspondingn
symbolsP ~ Q, iff, forall R € C, (AS(P U R), AS(Q U
R)) € p.

Clearly, the equivalence notions mentioned above are spe-
cial cases off-correspondence. Indeed, for any univedise
and anyA C U, strong equivalence relative t coincides
with (4, P4, =)-correspondence, and ordinary equivalence
coincides with(Z4, {0}, =)-correspondence.

Following Eiter, Tompits, & Woltran (2005), we are con-
cerned with correspondence frames of fofbh P4, Cg)
and(U,Pa,=g), whereA, B C U are sets of atoms and
Cp and=p are projections of the standard subset and set-
equality relation, respectively, defined as follows: fogan
setS, S’ of interpretationsS Cp S’ iff S|p € S'|5, and
S=pS§iff S|p =5|5.

A correspondence problenil, (overi{) is a quadruple
(P,Q,C,p), whereP,Q € P, and(U,C, p) is a correspon-
dence frame. We say thét holdsiff P ~¢, ¢ ,) @ holds.
For a correspondence probleh = (P,Q,C,p) overl,
we usually leaveé/ implicit, assuming that it consists of all
atoms occurring inP, @, andC. We callIl anequivalence
problemif p is given by=g, and aninclusion problenif p
is given byC g, for someB C U. Note that(P,Q,C,=p)
holds iff (P, Q,C, Cg) and(Q, P,C, Cg) jointly hold.

The next proposition summarises the complexity land-
scape within this framework (Eiter, Tompits, & Woltran
2005; Pearce, Tompits, & Woltran 2001; Woltran 2004).

Proposition 1 Given programsP and @, sets of atomst
and B, andp € {Cp, =g}, deciding whether a correspon-
dence probleniP, Q, P, p) holds is:

1. I} -complete, in general;
2. IIL’-complete, ford = 0;
3. I1¥’-complete, foB = U;
4. coNRcomplete ford = U.

While Case 1 provides the result in the general setting, for
the other cases we have the following: Case 2 amounts to
ordinary equivalence with projectigne., the answer sets of
two programs relative to a specified $ebf atoms are com-
pared. Case 3 amounts $trong equivalence relative td
and includes, as a special case, viz. for= 0, ordinary
equivalence Finally, Case 4 includestrong equivalence
(for B = U) as well as strong equivalence with projection.
TheIl{-hardness result shows that, in general, checking
the correspondence of two programs cannot (presumably)
be efficiently encoded in terms of ASP, which has its basic
reasoning tasks located at the second level of the polydomia
hierarchy (i.e., they are containedi or I1}’). However,

correspondence checking can be efficiently encoded in terms

of quantified propositional logicwhose basic concepts we
recapitulate next.

Quantified Propositional Logic

Quantified propositional logic is an extension of classical
propositional logic in which formulas are permitted to con-

tain quantifications over propositional variables. In gart
lar, this language contains, for any atgmunary operators
of form Vp and3p, calleduniversalandexistential quanti-
fiers respectively, wherép is defined as-vVp—. Formulas
of this language are also callgdantified Boolean formulas
(QBFs), and we denote them by Greek upper-case letters.

Given a QBFQp ¥, for Q € {3,V}, we call ¥ thescope
of Qp. An occurrence of an atomis freein a QBF @ if it
does not occur in the scope of a quantif@rin ®. In what
follows, we tacitly assume that every subform@a® of a
QBF contains a free occurrencewfn @, and for two dif-
ferent subformula®p @, Qq ¥ of a QBF, we require # q.
Moreover, given a finite sg? of atoms QP ¥ stands for any
QBF Qp1Qp- ... Qp, ¥ such that the variables, ..., p,
are pairwise distinct an® = {p1,...,p,}. Finally, for an
atomp (resp., a seP of atoms) and a sdtof atoms,®[p/I]
(resp..®[P/I]) denotes the QBF resulting frofnby replac-
ing each free occurrence pf(resp., eaclp € P)in ® by T
if p € I and by | otherwise.

For an interpretatiod and a QBF®, the relation! =
® is inductively defined as in classical propositional logic,
whereby universal quantifiers are evaluated as follows:

I'=vp @iff I = ¢[p/{p}andl = ¢[p/0].

A QBF @ is true under! iff I = @, otherwised is false
underi. A QBF issatisfiableff it is true under at least one
interpretation. A QBF iwalid iff it is true under any inter-
pretation. Note that alosedQBF, i.e., a QBF without free
variable occurrences, is either true under any interpogtat
or false under any interpretation.

A QBF @ is said to be imprenex normal fornfPNF) iff it
is closed and of the form

QnPn---Q1P1¢a (2)

wheren > 0, ¢ is a propositional formulaQ; € {3,V}
suchthatQ; # Q1 forl1 < i <n -1, (P,...,BR,)is

a partition of the propositional variables occurringsinand

P, # 0, for eachl < i < n. We say thatb is in prenex con-
junctive normal forr{PCNF) iff ® is of the form (2) and@ is

in conjunctive normal form. Furthermore, a QBF of form (2)
is also referred to as gm, Q,,)-QBF. Any closed QBFD is
easily transformed into an equivalent QBF in prenex normal
form such that each quantifier occurrence from the original
QBF corresponds to a quantifier occurrence in the prenex
normal form. Let us call such a QBF theenex normal form

of ®. However, there are different ways to obtain an equiv-
alent prenex QBF (cf. Eglgt al. (2004) for more details on
this issue). The following property is essential:

Proposition 2 For everyk > 0, deciding the truth of a
given(k, 3)-QBF (resp.,(k, V)-QBF) is ©F’-completdresp.,
I17-completg.

Hence, any decision proble®in - (resp.I1¥) can be
mapped in polynomial time to &, 3)-QBF (resp.,(k, V)-
QBF) ® such thatD holds iff ® is valid. In particular any
correspondence problef®, Q, P4, p), forp € {Cp, =g},
can be reduced in polynomial time td4 V)-QBF. Our im-
plemented tool, described next, relies on two such mappings
which are actually constructible Imear space and time



Computing Correspondence Problems

We now describe the system Tcwhich allows to verify

the correspondence of two programs. It relies on efficient
reductions from correspondence problems to QBFs as de-
veloped by Tompits & Woltran (2005). These encodings
are presented in the first subsection. Then, we discuss how
the encodings behave if the specified correspondence prob-
lem coincides with special forms of inclusion or equivalenc
problems, viz. those restricted cases discussed in Proposi
tion 1. Afterwards, we give details concerning the transfor
mation of the resultant QBFs into PCNF, which is necessary
because most extant QBF solvers rely on input of this form.
Finally, we give some details concerning the general syntax
and invocation of the CE tool.

Basic Encodings

Following Tompits & Woltran (2005), we consider two dif-
ferent reductions from inclusion problems to QBEFE] and
T[], whereT[:] can be seen as an explicit optimisation of
S[-]. Recall that equivalence problems can be decided by the
composition of two inclusion problems. Thus, a composed
encoding for equivalence problems is easily obtained via a
conjunction of two particular instantiations 8f] (or T[-]).

For our encodings, we use the following building blocks.
The idea hereby is to use sets of globally new atoms in or-
der to refer to different assignments of the atoms from the
compared programs within a single formula. More formally,
given an indexed sét of atoms, we assume (pairwise) dis-
joint copiesV; = {v; | v € V}, for every: > 1. Further-
more, we introduce the following abbreviations:

1 (Vi £Vj) o= Npev(vi = v5);

2. (V; < V) = (Vi < V;) A=(V; < Vi) and

8. (Vi=V;) = (Vi< V) A (V; < Vo).

Observe that the latter is equivalenthg ., (v; < v;).

Roughly speaking, these three “operators” allow us to
compare different subsets of atoms from a commoniset,
under subset inclusion, proper-subset inclusion, andlequa
ity, respectively. The comparison takes place withisira
gle interpretation while evaluating a formula. As an ex-
ample, considet’ = {v,w,u} and an interpretatiofi =
{v1,v2,ws}, implicitly representing setX = {v} (via the
relationI|y, = {v1}) andY = {v,w} (via the relation
I|y, = {v2,w2}). Then, we have thaf; < V;) as well as
(Vi < Va) are true undef which matches the observation
that X is indeed a proper subset &f, while (V; = V4) is
false undefr reflecting the fact thak’ # Y.

In accordance to this renaming of atoms, we use sub-
scripts as a general renaming schema for formulas and rules.
That is, for each > 1, «; expresses the result of replacing
each occurrence of an atomin « by p;, wherea« is any
formula or rule. Furthermore, for a ruteof form (1), we
defineH(r) = a1 V---Va;, BY(r) = a1 A+ Aay, and
B~ (r) = =am+y1 A -+ A —a,. We identify empty disjunc-
tions with L and empty conjunctions with. Finally, for a
programP, we define

P = /\P ((B*(ri) A B™(r;)) — H(r:)).

Formally, we have the following relation: L&t be a pro-
gram over atomd/, I an interpretation, and(,Y C V
such that, for some, j, I|y, = X; andI|y, = Y;. Then,
X E PYiff I & P, ;. Hence, we are able to characterise
models ofP (in case that = ;) as well as models of certain
reducts ofP (in case that # ).

Having defined these building blocks, we proceed with
the first encoding.

Definition 2 Let P, Q be programs ove¥V/, let A,B C V,
and letll = (P, Q, Pa, Cp) be an inclusion problem. Then,

S[H] = _‘3‘/1 (Pl.,l A Sl(P, A)/\
¥Va(S2(Q, A, B) — S*(P,Q, A))),

where
S'(P, 4) =WV (42 = A1) A (Vo < V) —=Pa1),
$?(Q,A,B):=((AUB)3 = (AU B)1) AQs,3, and
S3(P,Q,A) =3V ((Va < V3) AQus A ((As < Ap) —
YV (((As=A4) A (Vs < V1)) —=P51))).

In fact, the scope, of 3V; encodes the conditions for
deciding whether a so-callgghrtial spoiler (Eiter, Tompits,

& Woltran 2005) for the inclusion probledd exists. Such
spoilers test certain relations on the reducts of the twe pro
grams involved, in order to avoid an explicit enumeration of
all R € P4 for deciding whetheiI holds. Such a spoiler
for IT exists iffIT doesnothold. Hence, the resulting encod-
ing @ is unsatisfiable iffil holds, and thus the closed QBF
S[IT] = -3V @ is valid iff II holds.

In more concrete terms, given a correspondence prob-
lem IT and its encoding[Il] = —3V;®, the general task
of the QBF @ is to test, for an answer-set candida&feof
P, that noY with Y|z = X|p becomes an answer set of
@ under some implicitly considered extension (in fact, it is
sufficient to check only potential candidatésof the form
Y|aus = X|aug). Now, the subformuld ; A S'(P, A)
tests whethetX is such a candidate faP, with X being
represented by;. In the remaining part of the encoding,
S2(Q, A, B) returns as its models those potential candidates
Y (represented by’s) for being answer set of). These
candidates are now checked to be non-minimal and whether
there is a further model (representediy of the reduct of
@ with respect tdY” surviving an extension af), for which
X turns into an answer set of the extensiorfof

In what follows, we review a more compact encoding
which, in particular, reduces the number of universal quan-
tifications. The idea is to save on the fixed assignments, as,
e.g., inS%(Q, A, B), where we hav¢A U B); = (AU B);.
Thatis, inS?(Q, A, B), we implicitly ignore all assignments
to V3 where atoms from¥ or B have different truth values
as the corresponding assignment¥toTherefore, it makes
sense to consider only atoms frdf\ (A3 U Bs) and using
A1 U By instead ofd; U B3 in Q373.

This calls for a more subtle renaming schema for pro-
grams, however. LeY be a set of indexed atoms, and let
r be arule. Them;Y, results fromr by replacing each atom
z in 7 by z;, providingz; € V, and byz,, otherwise. For a



programP, we define

Pz)fj,k = /\ ((B+(7°Zk

reP

) A B_(T,Kk)) — H(TX/@))-

Moreover, for everyi > 1, every sefl” of atoms, and every
setC, VC = (V' \ O);.

Definition 3 Let P, Q be programs ovel/ and A, B C V.
Furthermore, letl = (P, Q, P4, Cg) be aninclusion prob-
lem andV = V4 U VA UVAYE UV, U VA Then,

T = 31 (Pl,1 ATYHP, A, V)A
VB QY — THP.Q,A,V))),

where
THP,AY): vV2A((V2A < V') —» -~Py;,;) and
T3(P,Q, A, V) :=3Vy((Va < ((AUB)1 U V5"WB))A
QY51 A ((A4 < Ap) —
YA (V< V) — ﬁPle,zx)))-
Note that the subformuld, < ((AUB); U V5'VYB) in
T3(P,Q, A, V) denotes
(((AUB)4 < (AUB)) A (V9B < VAUB)IA
(AU B < (AU B)) A (VY2 < VAUE)),
Also note that, compared to our first encodB{gl], we do

not have a pendant to subforma here, which reduces
simply toQ},’_’&1 due to the new renaming schema.

Proposition 3 (Tompits & Woltran 2005) For any inclu-
sion problemIl, the following statements are equivalent:
(i) IT holds; (i) S[II] is valid; and(iii) T[II] is valid.

In what follows, let, for every equivalence probldin=

(P, Q, Pa, =), II" andIl” denote the associated inclusion
problems(P, Q, Pa, Cp) and (Q, P, P4, Cp), respec-
tively.

Corollary 1 For any equivalence problei, the following
statements are equivalen() IT holds; (i) S[IT']|A S[IT"] is
valid; and (jii) T[II']A T[IT”] is valid.

Special Cases

We now analyse how our encodings behave in certain in-
stances of the equivalence framework which are located at

lower levels of the polynomial hierarchy (cf. Proposition 1
We point out that the following simplifications are corre-
spondingly implemented within our system.

In the case oftrong equivalencélLifschitz, Pearce, &
Valverde 2001), i.e., problems of forth= (P, Q, P4, =4)
with A = U, the encodingd [I'] and T[II"”] can be drasti-
cally simplified, sincé/;* = VA = VA = (). In particular,
T[IT'] is equivalent to

-3V (Pl,l AQ11 — IVa((Va < Vi) AQun A ﬁP4,1))>-

Now, the composed encoding for strong equivalence, i.e., th
QBF T[IT'] A T[II”], amounts to a single propositional un-
satisfiability test, witnessing the coNP-completeness-com
plexity for checking strong equivalence (Pearce, Tomgits,

Woltran 2001; Lin 2002). This holds also for problems of
the form (P, Q, Py, =p) with arbitrary B. One can show
that similar reductions (Pearce, Tompits, & Woltran 2001;
Lin 2002) for testing strong equivalence in terms of proposi
tional logic are simple variants thereof. Indeed, the meétho
ology of the tool SELP (Chen, Lin, & Li 2005) is basically
mirrored in our approach, in case the parameterisatioreof th
given problem corresponds to a test for strong equivalence.

Strong equivalenceelativeto a setA of atoms (Woltran
2004), i.e., problems of forrtP, Q, Pa,=p) with B = U,
also yields simplifications withinl'[II'] and T[II”], since
VAYE = (). In fact, T[IT'] can be rewritten to

=% (P1’1 /\VVQA((‘@A < VlA) - _'P2}51,1)/\
(Qr1 — IVa((Va < Vi) AQuaA
(A1 < A) = WAV < Vi) — =P ).

When putting this QBF into prenex normal form (see be-
low), it turns out that the resulting QBF amounts t(2av)-
QBF, again reflecting the complexity of the encoded task.
Notice that for equivalence probleni®, @, Pa,=p) with
AU B = U, we also have that;*“? = (). Thus, the same
simplifications also apply for thls special case.

The case of ordinary equivalence, i.e., considering prob-
lems of formIl = (P,Q, P4, =) with A = 0, is, indeed, a
special case of relativised strong equivalence. As an addi-
tional optimisation we can drop the subformula

(Ag < Ay) — VYV (( 3

from partT? of T[IT']. This is becausd = (), and therefore

A (s = a) A= A\ (o= as)

acA acA

<Vit) = -PY,)

(A4 < Al) =

reduces tol A =T, and thus tolL. Hence, the validity of
the implication (3) follows. However, this does not affect
the number of quantifier alternations compared to the case
of relativised strong equivalence. Indeed, this is in adcor
with the Il -completeness for ordinary equivalence. Putting
things together, and observing that fbr= () we havel* =

V4, the encoding [IT'] results for ordinary equivalence in

AV (Pra AWV ((Va < Vi) = =P )
(@11 — IVa((Va<W1) A Q4,1)))-

This encoding is related to encodings for computing answer
sets via QBFs, as discussed by Egtyal. (2000). Indeed,

taking the two main conjuncts frof[Il'], viz.
P171 /\V‘/g((‘/g <V1)—>ﬁP271)and (4)
Q11— IVa(Va < Vi) AQa), (%)

we get, for any assignmeiy C V7, thatY; is a model of
(4) iff Y is an answer set dP, andY; is a model of (5) only
if Y is not an answer set @J.

Finally, we discuss the case of ordinary equivalence with
projection, i.e., problems of forfP, Q, P4, =p) with A =
(. Problems of this form arélf-complete, and thus we
expect our system (after transformation to prenex form) to



yield (3,V)-QBFs. Here, the only simplification is to get rid
off the subformula (3). We can do this for the same reason,
viz. sinceA = (), as above. The simplifications are then as
follows (once again using the fact thé* = 15, as well as
‘/BAUB — ‘/33):

-3V (Pl,l /\V‘/g((‘/g < Vl) — ﬁPgJ)/\
YV (QF51 — Va((Va < (B1UVE)) AQY354)))-

Compared to the case of relativised equivalence, as dis-
cussed above, this time we halg'“? # () and thus an
additional quantifier alternation “survives” the simpliic
tion. After bringing the encoding into its prenex form, we
therefore ge(3, ¥)-QBFs, once again reflecting the intrinsic
complexity of the encoded problem.

For the encodind [-], the structure of the resulting QBF
always reflects the complexity of the correspondence prob-
lem according to Proposition 1. This does not hold for for-
mulas stemming fron$[], however. In any case, our tool
implements both encodings in order to provide interesting
benchmarks for QBF solvers with respect to their capability
to find implicit optimisations for equivalent QBFs.

Transformations into Normal Forms

Most available QBF solvers require its input formula to be
in a certain normal form, viz. in prenex conjunctive normal
form (PCNF). Hence, in order to employ these solvers for
our tool, the translations described above have to be trans-
formed by a further two-phased normalisation step:

1. translation of the QBF into prenex normal form (PNF);

2. translation of the propositional part of the formula infPN
into CNF.

Both steps require to address different design issues.
what follows, we describe the fundamental problems, an
then briefly provide our solutions in some detail.

First, the step of prenexing is not deterministic. As shown
by Egly et al. (2004), there are numerous so-calfgenex-
ing strategiesThe concrete selection of such a strategy (also
depending on the concrete solver used) crucially influences
the running times (see also our results below). In prenex-
ing a QBF, certairdependenciebetween quantifiers have
to be respected, when combining the quantifiers of different
subformulas to one linear prefix. For our encodings, these
dependencies are rather simple and analogous for both en-
codingsS[-] andT[-]. First, observe, however, that both en-
codings have a negation as their main connective which has
to be shifted into the formula by applying the usual equiva-
lence preserving transformations as known from first-order
logic. In what follows, we implicitly assume that this step
has already been performed. This allows us to consider the
guantifier dependencies cleansed with respect to their-pola
ities. The dependencies for the encodiig can then be
illustrated as follows:

In
d

v

1 N

Vs Vs

vV,

Vs

Here, the left branch results from the subform@aand the
right one results from the subformwid’;(S%(Q, A, B) —
S*(P,Q, A)).

Inspecting these quantifier dependencies, we can group
3V, either together withdVs or with 3V5. This yields the
following two basic ways for prenexing our encodings:

1: VYV 3(Ve U V3)VV,3Vs; and | VA 3VaYY3(Vs U 14R).

Together with the two encodings:] and T[-], we thus get
four different alternatives to represent an inclusion peob
in terms of a prenex QBF; we will denote them By][-],
Si[], T1+[-], andT [-], respectively. Our experiments below
show their different performance behaviour (relative te th
employed QBF solver and the benchmarks).

Concerning the transformation of the propositional part
of a prenex QBF into CNF, we use a method following
Tseitin (1968) in which new atoms are introduced abbreviat-
ing subformula occurrences and which has the property that
the resultant CNFs are always polynomial in the size of the
input formula. Recall that a standard translation of a propo
sitional formula into CNF based on distributivity laws ydsl
formulas of exponential size in the worst case. However, the
normal form translation into CNF using labels is not valid-
ity preserving like the one based on distributivity laws but
only satisfiability equivalent In the case of closed QBFs,
the following result holds:

Proposition4 Let® = Q, P, ...Q1 P ¢, for Q; € {3,V}
andn > 0, be either an(n, ¥)-QBF with n being even or
an (n, 3)-QBF withn being odd. Furthermore let’ be the
CNF resulting from the propositional patt of ® by intro-
ducing new labels following Tseiti(1968. Then,® and
Q. P, ... Q. PAV ¢ are logically equivalent, wher& are
the new labels introduced by the CNF transformation.

Note that for® as in the above proposition, we have that

1 = 3. Hence, inthis cas®),, P, ... QP 3V ¢’ is the de-
sired PCNF, equivalent t@, used as input for QBF solvers
requiring PCNF format for evaluating. In order to trans-
form a QBFU = Q,P,...Q1P¢ which is an(n,V)-
QBF withn being odd or arfn, 3)-QBF withn being even,
we just apply the above proposition @, P, ... Q1 P,
whereQ; = 3if Q; = V andQ; = V otherwise, which
is equivalent to—~W¥. That is, in order to evaluat& by
means of a QBF solver requiring PCNF input, we compute

Q.P,...Q: P~ and “reverse” the output. This is ac-
commodated in c€ that either the original correspondence
problem or the complementary problem is encoded when-
ever an input yields a QBF liké.

For the entire normal-form transformation, one can use
the quantifier-shifting toodjst (Zolda 2004). It accepts ar-
bitrary QBFs inboole format (see below) as input and re-
turns an equivalent PCNF QBF gdimacsformat, which is
nowadays a de-facto standard for PCNF-QBF solvers. The
tool gst implements 14 different strategies (among them
1 and | we use here) to obtain a PCNF and uses the men-
tioned structure-preserving normal-form transformafimn
the transformation to CNF.



The Implemented Tool

The system c€ implements the reductions from inclu-
sion problems(P,Q,P4,Cp) and equivalence problems
(P,Q,Pa,=p) to corresponding QBFs, together with the
potential simplifications discussed above. It takes astinpu
two programs,P and(@, and two sets of atoms) and B,
where A specifies the alphabet of the context abdhe set

of atoms for projection on the correspondence relation. The
reduction §[-] or T[-]) and the type of correspondence prob-
lem (C g or =p) are specified via command-line arguments:
-S, -T to select the kind of reduction; and , -e to check

for inclusion or equivalence between the two programs.

In general, the syntax to specify the programs im cor-
responds to the basiBLV syntax! PropositionaDLV pro-
grams can be passed tolcand programs processible for
ccT can be handled b®LV. Considering the example from
the introduction, the two programs would be expressed as:

P: sel(b) :- b, not out(b).
sel(a) :- a, not out(a).
out(a) v out(b) :- a, b.

Q: fail :- sel(a), not a, not fail.

fail :- sel(b), not b, not fail.
sel(a) v sel(b) :- a.
sel(a) v sel(b) :- b.

We suppose that file.dl contains the code for program
P and, accordingly, fil€.dl contains the code fap. If we
want to check whetheP is equivalent ta) with respect to
the projection to the output predicatel(-), and restricting
the context to programs ovéu, b}, then we need to specify

o the context set, stored in a file, sAycontaining the string
“(a, b) ", and

e the projection set, also stored in a file, dycontaining
the string (sel(a), sel(b)) ”

The invocation syntax for CC is as follows:
ccT -e Pdl Qdl A B

By default, the encoding@[] is chosen. Note that the order
of the arguments is important: first, the programsand @
appear, then the context sét and at last the projection set
B. An alternative call of c¢ for our example would be

ccT -e -A "(a,b)" -B "(sel(a),sel(b))"

P.dl Q.
specifying setsA and B directly from the command line.
After invocation, the resulting QBF is written to the stardia
output device and can be processed further by QBF solvers.

The output can be piped, e.g., directly to the BDD-based
QBF solverboole 2 by means of the command

ccT -e P.dl Q.dl A B | boole
which yields0 or 1 as answer for the correspondence prob-

lem (in our case, the correspondence holds and the output

1Seehttp://www.dlvsystem.com/ for more informa-

tion aboutDLV.
2This solver is available ahttp://www.cs.cmu.edu/
“modelcheck/bdd.html

is 1). To employ further QBF solvers, the output has to be
processed according to their input syntax.

If the setA (resp.,B) is omitted in invocation, then each
variable occurring inP or Q is assumed to be id (resp.,
B); if“ 0" is passed instead of a filename, then the empty set
is assumed for set (resp.,B). Thus, checking for strong
equivalence betweeR and( is done by

ccT -e P.dl Q.dl | boole
while ordinary equivalence (with projection ovB) by
ccT -e P.dl Q.dl 0 B | boole

We developed cE entirely inANSI G hence, it is highly
portable. The parser for the input data was written using
LEX and YACC The complete package in its current ver-
sion consists of more than 2000 lines of code. For further
information about c€ and the benchmarks below, see

http://www.kr.tuwien.ac.at/research/eq/

Experimental Results

Our experiments were conducted to determine the behaviour
of different QBF solvers in combination with the encodings
S[] andT[] for inclusion checking, or, if the employed QBF
solver requires the input in prenex form, wish[-], S,[],
T+¢[], andT[-]. To this end, we implemented a genera-
tor of inclusion problems which emanate from the proof of
the I}’ -hardness of inclusion checking (Eiter, Tompits, &
Woltran 2005), and thus provides us with benchmark prob-
lems capturing the intrinsic complexity of this task.

The strategy to generate such instances is as follows:

1. generate ¥, V)-QBF ® in PCNF by random;

2. reduced to an inclusion problenil = (P,Q,P4,Cg)
such thatl holds iff ¢ is valid,;

3. apply cdl to derive the corresponding encodifrgor I1.

Incidentally, this procedure also yields a simple method
for verifying the correctness of the overall implementatio
by simply checking whethe¥ is equivalent tod. We use
here a parameterisation for the generation of random QBFs
such that the benchmark set yields a nearly 50% distribu-
tion between the true and false instances. Therefore, the se
is neither over- nor underconstrained and thus presumably
located in a hard region, having easy-hard-easy patterns in
mind.

The reduction from the generated QBFto the corre-
sponding inclusion problem is obtained as follows: Con-
sider® of form YW3XVY3Z¢, wherep = A, C;is a
formula in CNF over atom¥ = (W U X UY U Z) with
Ci=¢1V---Vei. Now, letV = {v | v € V} be a set
of new atoms, and defin€; = ¢;,,...,¢j,,v* = v, and
(—v)* = v. We generate

P={vVvo—|veV}lU
{ve—u,u; 0 —u,u|v,uecV\W}HU
{<— notwv; «— notv |ve V\IW}U
{ve=CfHv—CflveV\IV; 1<i<n}

For program? we use further atom&’ = {2’ | z € X},
X' ={%' | z € X} and generate:

bl
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Figure 1: Results for true (left chart) and false (right ¢haroblem instances subdivided by solvers and encodings.

Q={vVi—lve XUY}U
{ve—u,u; v —u,u|v,ue XUY U
{—2',7; «— notx’,notz |z € X}U
{ve—a'; 02
v, 0T |veXUY,ze X}U
{2/ — Z,not7'; ¥ «— x,notz’ |z € X}.
Finally, setsA andB are defined as:
A=B={XUXUYuYl
It can be shown thab is valid iff (P, Q, P4, Cg) holds.

Each QBF is reduced to a program following Eiter & Got-
tlob (1995), such that the latter possesses an answer set iff
the original QBF is valid. The idea of the benchmarks is to
compare each such program with one in which one randomly
selected rule is dropped, simulating a “sloppy” programmer
in terms of ordinary equivalence.

Average running times are shown in Table 1. The num-
bern of variables in the original QBF varies from 10 to 24,
and, for eac, 100 such program comparisons are gener-
ated for which the portion of cases where equivalence holds
is between 40% and 50% (for details about the benchmarks,
cf. Oikarinen & Janhunen (2004)). We set a time-out of 120
seconds, and both the one-phased mode (DLPEQ1) as well

We have set up a test series comprising 1000 instances of &S the two-phased mode (DLPEQ2) of DLPEQ were tested.

inclusion problems generated that way (465 of them evaluat-
ing to true), where the first programhas 620 rules, the sec-
ond program@ has 280 rules, using a total of 40 atoms, and
the setsA and B of atoms are chosen to contain 16 atoms.
After employing cd’, the resulting QBFs possess, in case
of translatiorS[-], 200 atoms and, in case of translatibp],

152 atoms. The additional prenexing step (together with the
translation of the propositional part into CNF) yields, ase

of S[-], QBFs with 6575 clauses over 2851 atoms and, in case
of T[-], QBFs with 6216 clauses over 2555 atoms.

We compared four different state-of-the-art QBF solvers,
namely qube-bj  (Giunchiglia, Narizzano, & Tacchella
2003),semprop (Letz 2002),skizzo (Benedetti 2005),
andgpro (Egly, Seidl, & Woltran 2006). The former three
require QBFs in PCNF as input (thus, we tested them using
encodingsS1[], S;[-], T[], andT [-]), while gpro admits
arbitrary QBFs as input (we tested it with the non-prenex en-
codingsS[-] andT[-]). Our results are depicted in Figure 1.
The y-axis shows the (arithmetically) average running time
in seconds (time-out was 100 seconds) for each solver (with
respect to the chosen translation and prenexing strategy).

As expected, for all solvers, the more compact encodings
of form T[] were evaluated faster than the QBFs stemming
from encodings of forn8[-]. The performance of the prenex-
form solversqube-bj , semprop , andskizzo is highly
dependent on the prenexing strategy, amminates.

For the special case of ordinary equivalence, we com-
pared our approach against the system DLPEQ (Oikarinen
& Janhunen 2004) which is based on a reduction to disjunc-
tive logic programs, usingnt (Janhuneret al. 2006) as
answer-set solver. The benchmarks rely on randomly gen-
erated(2, 3)-QBFs using Model A (Gent & Walsh 1999).

For ccT, we compared the same back-end solvers as above,
using encodingT[-]. Recall that for ordinary equivalence
cCT provides(2, V)-QBFs, thus we can resign on the distinc-
tion between prenexing strategies. The dedicated DLPEQ
approach turns out to be faster, but, interestingly, among
the tested QBF solvergpro is the most competitive one,
while the PCNF-QBF solvers perform bad even for small in-
stances. This result is encouraging as regards furthet-deve
opment of the non-normal form approach of QBF solvers.

Conclusion

In this paper, we discussed an implementation for advanced
program comparison in answer-set programming via encod-
ings into quantified propositional logic. This approach was
motivated by the high computational complexity we have to
face for correspondence checking, making a direct realisa-
tion via ASP hard to accomplish. Since currently practigabl
efficient solvers for quantified propositional logic areigva
able, they can be employed as back-end inference engines
to verify the correspondence problems under consideration
using the proposed encodings. Moreover, since such prob-
lems are one of the few natural ones lying above the second
level of the polynomial hierarchy, yet still part of the pely
nomial hierarchy, we believe that our encodings also pmvid
valuable benchmarks for evaluating QBF solvers, for which
there is currently a lack of structured problems with more
than one quantifier alternation (cf., Le Begtal. (2005)).
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