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Abstract. Answer-set programming (ASP) is a logic programming paradigm for
declarative problem solving which gained increasing importance duriatpgt
decade. However, so far hardly any tools exist supporting softwegimeers in
developing answer-set programs, and there are no standard mletjied for
handling unexpected outcomes of a program. Thus, writing answeregrams

is sometimes quite intricate, especially when large programs for real-aoplé
cations are required. In order to increase the usability of ASP, the grwelat of
appropriate debugging strategies is therefore vital. In this paper, weilteshe
systemspock, a debugging support tool for answer-set programs making use of
ASP itself. The implemented techniques maintain the declarative naturef AS
within the debugging process and are independent from the actuautatiop

of answer sets.

1 Introduction

Answer-set programmin@ASP) [1] is an important logic-programming paradigm for
declarative problem solving, based on principles of nonohamic reasoning. Any
answer-set program consists of logical rules specifyingoblpm, for which each of
the program’s answer sets is a solution. Since every ruleprbgram might signifi-
cantly influence the resulting answer sets, it is hard to fiedsburces of errors in large
programs in case of a mismatch between the program’s outplthe user’'s expecta-
tions. For example, consider the problem of inviting guésta party at the renowned
starship Enterprise. Sulu wants to give a party for his egilees, however facing the
complication that some of them would appear only if certdairecs do or do not attend
the festivity. Knowing the social preferences of potenpiatty guests, Sulu tries to get
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an overview of possible invitation scenarios by means ofvanset programming and
ends up with the following rules for a prograh;,,,, where each atom represents the
actual appearing of a potential party visitor:

o= Jim «— uhura, ry = chekov < not bones,
re = Jim «— not chekov, ry = bones «— jim,
rg = uhura < chekov, not scotty, r¢ =  scotty < not uhura.

This program has two answer sets, {zhekov, scotty} and {bones, jim, scotty}.
Sulu is quite perplexed by this result, wondering why thera scenario where only
Chekov and Scotty attend who merely have a neutral relati@ath other rather than
a friendship. On the other hand, Sulu is astonished as th@eesatisfactory possibility
such that Uhura and Jim can jointly be invited. The only walyappears to consult his
half-Vulcan half-Human friend, Spock, for advice.

In this paper, we describe a system helping developers oferset programs to
detect and locate errors in their programs. We call our sysfgock, making reference
to its ability of supporting users detecting errors basegrimciples of logic, since the
implemented techniques make use of ASP itself for debuggmsgver-set programs. In
contrast to other debugging strategies in logic progrargminir methodology works
independently of specific ASP solvers and preserves thadgitle nature of ASP.

The theoretical background for our approach was introdircgdevious work [2],
and relies on daagging techniques used by Delgrande et al. [3] for compiling or-
dered logic programs into standard ones. In our approachpgram to debug/7, is
translated into another prograffk[I1], equipped with several meta atoms, caliagls
which allow for controlling the formation of answer sets aaflect different properties
(like the applicability status of a rule, for instance). 3kway, we have the possibility
of investigating the actual answer setsIdf 7k [I] can be regarded askarnel trans-
formationthat may be extended for further debugging techniques. Octe axtension,
featured byspock, is the extrapolation of non-existing answer sets in coruim
with explanations why an interpretation is not an answeobéf.

The paper is organised as follows. Section 2 gives the nelgu@requisites about
ASP, while Section 3 reviews the theoretical backgrounduwftool. The main features
of our tool, then, are described in Section 4. The paper igladed with Section 5
containing some general remarks and a discussion abot¢deleork. An appendix
lists specific commands afpock.

2 Background

A (normal) logic program(over an alphabet) is a finite set of rules of the form
a<+by,...,bp,not cy,...,not cy, ()

wherea andb;,c; € A are atoms, fod < i < m, 0 < j < n. A literal is an atoma
or its negationnot a. For a ruler as in (1), lethead(r) = a be theheadof r and
body(r) = {b1,...,bm,not c1,...,not c,} the bodyof r. Furthermore, we define
body™ (r) = {by,...,bm} andbody (r) = {ci,...,c,}. The set of atoms occurring



in a program/7 is denoted byAt(IT). For collecting rules sharing the same head
we usedef (a,IT) = {r € II | head(r) = a}. For uniformity, we assume that any
integrity constraint— body(r) is expressed as a rule — body(r), not w, wherew

is a globally new atom. Moreover, we allow nested expressimiform not not a,
wherea is some atom, in the body of rules. Such rules are identified mormal rules
in which not not a is replaced bynot a*, wherea* is a globally new atom, together
with an additional rules* < not a. We also take advantage of (singulahpice rules
of form {a} < body(r) [4], which are an abbreviation far < body(r), not not a.

A program] is positiveif body™ (r) = ), for all » € II. By Cn(II), we denote the
smallest model of a positive prograim.

The definition of an answer set is as follows. Tieeluct 77X, of a programil
relative to a sefX of atoms is the positive prografihead(r) «— body™ (r) | r € II,
body~ (r) N X = (}. Then,X is ananswer sebf I7 iff Cn(I1¥X) = X. The set of all
answer sets of a prograhi is denoted byAS (7).

An alternative characterisation of answer sets is provigethe Lin-Zhao Theo-
rem [5], qualifying answer sets as models of tdwenpletionof a program in the sense
of Clark [6] and thdoop formulasof the program. We make use of this perspective on
the answer-set semantics to identify sources of errors \eRegapolating non-existing
answer sets as described in the following section.

3 Tag-Based Debugging Methodology

Our approach relies on thagging techniqueas used by Delgrande et al. [3]. In what
follows, we sketch the theoretical principles underlying systenspock. For a more
detailed discussion, we refer to Brain et al. [2].

The basic idea of tagging is to decompose the rules of a pmodfaover A into
several other rules, in order to gain control over their igapility and for analysing
their mutual interferences. To be able to refer to individutes, we use a bijectiom,
assigning each rule over A a unique name,.. We call a pairn,. : r, comprising a
ruler and its names,., alabeled rule and a set of labeled ruledabeled programThe
semantics of a labeled prograim is given by the semantics of the ordinary program
{r | n, : r € IT'}. In view of this straightforward correspondence betweegmms
(resp., rules) and labeled programs (resp., labeled ruesyill usually not distinguish
between them in the sequel.

For decomposing the rules of a program, so-calgtare introduced, which are
new, pairwise distinct propositional atoms, givendp(n,.), bl(n,.), ok(n,.), ok(n,.),
ko(n,), aby(n,), ab.(a), andab;(a), for eachr € II anda € At(II). Intuitively,
ap(n,) andbl(n,) indicate whether some ruleis currently applicable or blocked,
respectively, whilek(n,.), ok(n,.), andko(n,.) are used to include or exclude particular
rules from a debugging request. Furthermore, dbaormalitytagsab,(n,), ab.(a),
andab;(a) inform the user what went wrong in case no answer set for tbgram
under consideration exists. We explain their particulactioning in detail below.

In a first transformation step, thernel transformationZy, rewrites a given pro-
gram,II, such that, for every € I, ap(n,.) (resp.,bl(n,.)) is contained in an answer
set of 7 [IT] whenever- can be applied (resp., is blocked). Apart from tags, the answ



sets ofll and7k[II] are preserved. Formall§fkx maps a logic prograni/ over.A into
another prograrfik[I1] over an extended alphahdt™ in the following way: for every
r € II,b € body™ (r), andc € body ™~ (r), T[II] contains

head(r) < ap(n,), not ko(n,), (2)
ap(ny) — ok(n.), body(r), ®3)
bl(n,) < ok(n,), not b, 4)
bl(n,.) < ok(n,), not not c, (5)
ok(n,.) « not ok(n,.). (6)

Intuitively, everyr € IT is splitinto Rules (2) and (3), separating the head and thg bo
of r, thereby decoupling the applicability of indicated by the tagp(n,.), from the
conclusionkead(r) of r. Rules (4) and (5) derive tagsd(n,) wheneven- is blocked.
The tagok(n,.), along withok(n,.), provides a handle for switching“on or off”.

The progranik[II] plays the role of a basic module for various debugging regues
Extension modules may add new rules, using tagds..), ok(n,.), andko(n,.) for ma-
nipulating the applicability of a rule, in order to analyse the behaviour &t

Example 1.Reconsider the prografi;,,, from the introduction, having the answer sets
{chekov, scotty} and{bones, jim, scotty}. The answer sets &k[II;,,] are

X1 = {chekov, scotty, ap(ny, ), ap(nr), bl(ny, ), bl(n,), bl(n.,), bl(n..)} U OK,
and
Xy = {bones, jim, scotty, ap(nr, ), ap(nr5 ), ap(ny ), bl(ny, ), bl(n.,), bl(n,, ) JUOK,

where OK = {ok(n,,), ok(n,,),ok(n.,),ok(n,,),ok(n,,),ok(n.,)}. The presence
of ap(n,,) In X; indicates that rule, is applicable with respect t&;, and hence
chekov € X but bones ¢ X, while bl(n,,) € X; indicates that; is blocked with
respect taX;. This is becausecotty € X;. O

As stated above, the tagged kernel progf&{YI] can be used as a basic submod-
ule for more enhanced programs, facilitating debuggingiests. One such extension
scenario is the extrapolation of non-existing answer deagpoogramiI over.A. Using
further translations of the original program, we may inigegge why an interpretation
is not an answer set dff. An answer setX ™, of the transformed program offers in-
formation about the interpretatioi = X N A of IT in form of the three abnormal-
ity tags,ab,(n.), ab.(a), andab;(a). Their presence signals why is not an answer
set, by detecting problems originating from the prograsicimpletion, and its non-
trivial loop formulas, respectively. For the detectionlnése three problem sources, we
have the corresponding program translati@ps7c, and7;, which are used together
with the kernel tagging of the respective program, yieldamgoverall transformation
Tex[I1, X] = T[T U Tp[II] U Tc[II, X| U T [X], whereX C At(II).

The program-oriented abnormality tay, (n,) indicates that rule is applicable
but not satisfied with respect t&, i.e., body™ (r) C X, body™ (r) N X = §, but



head(r) ¢ X. The respective translatidfy[11] over A™ is given by the set of all rules

ko(n,.) « , 7)
{head(r)} — ap(n;), 8)
ab,(n,) < ap(n,), not head(r), 9)

for » € II. By adding the facts of form (7), the rules of form (2) are ldded. Their
purpose, deriving the consequences of the original rideuv fulfilled by the rules of
form (8). However, the head atom of an original rules not necessarily derived, even
whenr is applicable. Whenever an applicable rule is not appliedjle of form (9)
provides the program-oriented abnormality tég (7, ).

Example 2.Consider prograndl, = { n, : chekov < not bones }. The empty set is

not an answer set dff,,, sincer is applicable with respect bbut chekov ¢ . This is

reflected byZe.[I1,,, At(II,)] in that it possesses an answer &et containing abnor-

mality tagab,(n,) and X+ N At(11,) = 0. O
The completion-oriented abnormality tab.(a) is included inX ™ wheneveru is

in the considered interpretation but all rules havings head are blocked. The logic

program7c[I1, X] over A, for X C At(II), is given by the set of all rules

{a} < bl(n,,),...,bl(n.,), (10)
ab.(a) < bl(n,,),...,bl(n.,),aq, (11)

fora € X, where{ry,...,r} = def(a,IT).

The rules of form (10) allow an atom € At(II) to be derived even if all rules
r € def(a, IT) are blocked. Whenever this happens, a rule of form (11) pesvitie
completion-oriented abnormality tad.(a).

Example 3.Consider programil, = {n, : uhura < chekov }. The interpretation
X = {uhura} is not an answer set dfl., since the only rule derivinghura is not
applicable. Accordingly, there is an answer &et of 7g,[I1., At(II..)] containing ab-
normality tagab,(uhura) and X+ N At(II.) = X. O

Finally, the presence of a loop-oriented abnormalityaiaga) in X+ indicates that
the occurrence of atommight recursively depend anitself and, therefore, violate the
minimality criterion for answer sets. The correspondirmslation?; [ X] over A™, for
X C At(II), is given by the following set of rules, for eaahe X:

{ab;(a)} < not ab.(a), (12)
a < ab;(a). (13)
The rules of form (12) allow to add a loop-oriented abnortgatigab; (a) fora € X,
providing a is supported. The rules of form (13) ensure thdt actually contained
in XT.
Example 4.Consider progranil;, consisting of

Ny, :jim < bones and mn,, : bones « jim.

The interpretationX = {bones, jim} is a classical model off; but does not satisfy
the loop formulas of ;. So, every answer séf ™ of 7g,[I1;, At(II;)] such thatX + N
At(II;) = X includes one of the abnormality tagls; (bones) or ab;(jim). O



Table 1. Labeled program syntax sfpock.

program := (*.)*rule((".)*rule)*( )"

rule := (rulelabel...:"...)? (head...". " |
head...':-"...body..."." |'t-"...body...".")

head := atom

body := literal(*,” ... literal)”

literal := atom | ‘not’...atom

atom :=symb (‘("...term(‘, "...term)*...*)")?

term := variable | symb

rulelabel := (‘a’ — ‘'z’ [‘A' —‘Z' |'0’ —‘9')*
variable := (‘A —‘Z')('a’ — ‘2" |'A —Z |'0" =9 | ‘)"
symb = (a -z’ ['0 —‘9)(a — ‘2 |'A —Z |0 -9 | )"
= ()N (L)
=)
4 System

Our debugging systermpock implements the program translations described in the
previous section. It is a command-line oriented tool, paysind translating its input,
which is taken from standard input and text files. The progiamvritten in Java 5.0
and published under the GNU General Public License [7]. iit loa used either with
DLV [8] or with Snodel s [4] (together withl par se) and is publicly available at

http://ww. kr.tuw en. ac. at/resear ch/ debug

as a jar-package including binaries and sources.

4.1 Usage
Generallyspock is executed by a shell command of the form
java -jar spock.jar { OPTION | FILENAME }*,

assuming ava is the execution command for the Java virtual machine. If leadime
is given,spock expects input from the operation system’s standard inputstfof
important options is given in Appendix A.

4.2 System Input

The input primarily consists of the logic programs which tarbe debugged. Addition-
ally, spock also accepts debugging statements, and various solveifispeput. The
accepted program syntax is closely related to the core EgegioDLV andSnodel s.
Here, we restrict ourselves to labeled normal logic progratheitspock accepts also
programs with a richer syntax like disjunctive logic pragsa The basic input language
of spock is depicted in Table 1 using regular expressions.
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Fig. 1. Data flow of answer-set computation for labeled normal programs.

Rule labeling is introduced as a device to explicitly reecértain rules. As stated in
Table 1, arule may have its label omitted. For a previouslghmled rulespock auto-
matically assigns the label according to the line numberin which it appears in the
program. Note that duplicate rule labels will produce a wagrmessage. If the input
is spread over multiple input files, their contents will beeimally joined as if it were
only one file. Additional content read from standard inpuewlusing the- -’ flag is
also appended to any input from files.

Since labeled rules cannot be read by conventional ASP rsplypock offers
an interface tdLV andSnodel s providing answer-set computation for labeled pro-
grams, described next.

4.3 Answer-Set Computation for Labeled Normal Programs

In order to perform answer-set computation for labeled mos,DLV or Snodel s
(the latter in combination with its groundepar se) must be found in the command
search path of the used system.

Internally,spock transforms the parsed input progrdiminto a solver-compatible
representation before forwarding it to the externally edlanswer-set solver. The re-
sulting set of answer sets|S(IT), is then parsed and stored for further processing.
When using flag-'0’, spock outputsAS(IT). Command line arguments for exter-
nally called systems can be forwarded using the flagd varg’, ‘-1 parg’, and
‘- smar g’ (see also Appendix A). Fig. 1 illustrates the typical dataflof answer-set
computation withspock.

Example 5.Consider input filef i | €5, containing our example prograff;,,,,:

rl: jim:- uhura.
r2 : jim:- not chekov.
r3 : uhura :- chekov, not scotty.
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Fig. 2. Data flow of program translations.

r4 : chekov :- not bones.
r5 : bones :- jim
ré : scotty :- not uhura.

The answer sets for this program can be computed Wingby the command:
java -jar spock.jar -x -o fileb.

Flag - x’ calls DLV externally on the input program andd’ triggers the output of
its answer sets. Note that the call yields the output of theesponding answer sets in
lexicographic order:

{bones, jim scotty}
{chekov, scotty}.

The same result can be achieved ustngdel s andl par se in a similar manner:

java -jar spock.jar -xsm-o fileb. O

4.4 Kernel Translation

The kernel translatiofi [ /7] over A™ of a logic programiT over.A can be obtained by
the call

java -jar spock.jar -k FILElL FILE2 ...,

where the fileF| LE1, FI LE2, ..., contain a representation &f. As visualised in
Fig. 2,spock first creates an internal representation for the input @nogoefore com-
puting and returning its translation.

Example 6.For filef i | e5 from Example 5, when executing the command
java -jar spock.jar -k fileb,

spock returns the translated prografR[1;,.):



jim:- ap(rl), not ko(r1l).

ap(rl) :- ok(r1), uhura.

bl (r1) :- ok(rl), not uhura.
ok(rl) :- not -ok(rl).

jim:- ap(r2), not ko(r2).

ap(r2) :- ok(r2), not chekov.

bl (r2) :- ok(r2), not not chekov.
ok(r2) :- not -ok(r2).

uhura :- ap(r3), not ko(r3).

ap(r3) :- ok(r3), chekov, not scotty.
bl (r3) :- ok(r3), not chekov.
bl (r3) :- ok(r3), not not scotty.

ok(r3) :- not -ok(r3).

chekov :- ap(r4), not ko(r4).
ap(r4) :- ok(rd4), not bones.
bl (r4) :- ok(r4), not not bones.
ok(r4) :- not -ok(r4).

bones :- ap(r5), not ko(rb).
ap(r5) :- ok(r5), jim

bl (r5) :- ok(r5), not jim
ok(r5) :- not -ok(rb).

scotty :- ap(r6), not ko(r6).
ap(r6) :- ok(r6), not uhura.

bl (r6) :- ok(r6), not not uhura.
ok(r6) :- not -ok(r6).
.- falsu

When solving this program, we obtain the answer sétand X, (cf. Example 1). ¢

4.5 Translations for Extrapolating Answer Sets

Translations for the extrapolation of non-existing anse&ts of a prograni/ can be
invoked analogously to the kernel transformation. Howgwere, the consideration may
be restricted to the generation of extrapolation tagging sabset of /. This way, the
developer can focus the search for errors on a subprograeddta flow is still the one
depicted in Fig. 2.

The flags * expo’, ‘- exco’, and ‘- ex| 0’ activate the extrapolation translations
7Tp, Tc, and 7L, respectively. Instead of using all three flags simultasgoisetting
‘- ex’ produces the union of these program translations. In daegstrict the genera-
tion of an extrapolation tagging to a subprograniffthe names of the considered rules
must be explicitly stated in a comma-separated list folimyihe - exr ul es’ flag.
Since programs translated Vi@, 7¢, and?, involve Snodel s-specific choice rules,
we need to set the sni flag to activateSnodel s syntax. Otherwisespock will
produce disjunctive rules, simulating the respective ahoiles.

Example 7.Consider input fild i | e7:



rl: jim:- not chekov.
r2: bones :- not jim
r3: chekov :- not bones.

Since Bones would definitely attend if Jim did, the programseemed to err when
specifyingr 2. By calling

java -jar spock.jar -ex -exrules=rl,r2 -smfile7,

we get the extrapolation tagging of the subprogram congjsif the rules labeled1
andr 2, where we expect an error:

ko(r1l).

{iinm :- ap(ri).

ab_p(r1) :- ap(rl), not jim
ko(r?2).

{bones} :- ap(r2).
ab p(r2) :- ap(r2), not bones.
{bones} :- bl (r2).

ab_c(bones) :- bl(r2), bones.
{chekov}.

ab_c(chekov) :- chekov.

{jiinm :- bl(rl).

ab c(jim :- bl(r1), jim

{ab_l (bones)} :- not ab_c(bones).
bones :- ab_| (bones).

{ab_I (chekov)} :- not ab_c(chekov).
chekov :- ab_I| (chekov).

{ab_I(jim} :- not ab c(jim.
jim:- ab l(jim.

Since the extrapolation taggings make only sense in cotipmavith the kernel
tagging, we usually also use thek’ flag to output both translations at once. In order
to compute the answer sets of the obtained program, it caipbd from the output of
spock into another instantiation of it:

java -jar spock.jar -k -ex -exrules=rl1,r2 -smfile7 |
java -jar spock.jar -xsm-o.
The output of this operation yields nine answer sets; amoegtare the following:
Ay = {ab.(bones), ab.(chekov), ab.(jim), bl(n,, ), bl(n,), bl(n.,),
bones, chekov, jim} U S,
As = {ab.(bones), ab;(jim), ap(n;, ), bl(n.,), bl(n.,), bones, jim} U S,
As = {ab.(bones),ap(n,), bl(n,), bl(n.,), bones, jim} U S,

where
S = {ko(ny, ), ko(n, ), ok(ny, ), 0k(1ny, ), k(1) }.



The conclusions drawn from these answer sets depend on tisédeoed interpreta-
tion. For example, the abnormality tags ih provide an explanation whybones,
chekov, jim} is not an answer set, because all rules havings, chekov, or jim in
their heads are blocked.

Interpretationsd, and Az provide information whyl = {bones, jim} is not an
answer set. Note that, is a superset ofl3 and contains the additional abnormality
tagab;(jim). This is a consequence of the definition of translatfpr{and the choice
rule used therein). The existence4f makes the information irl; obsolete, since the
occurrence of aton¥m in I is not (positively) depending on itself.

In this debugging situatiord; delivers the most relevant information for the pro-
grammer since, firstly, he or she expects Bones and Jim torbpatible party guests,
and, secondlyAs contains only one abnormality tagh.(bones), focusing the source
of error to the question why Bones is not coming. From tha&t gtogrammer can iden-
tify the erroneous rule2 of fi | e7. O

In order to reduce the amount of debugging information imagtated program, one
can make use of standard ASP optimisation techniques, Suomanise statementa
Snmodel s or weak constraintsn DLV. The idea is to take only answer sets with a
minimum number of abnormality tags into consideration.

By using the flags-‘mi nab’, ‘- mi nabp’, ‘- m nabc’, or ‘- m nabl ’, spock
produces weak constraints for minimising all abnormalétys, all program-oriented
abnormality tags, all completion-oriented abnormalitysteor all loop-oriented abnor-
mality tags, respectively.

Example 8.Let us reconsider the program,,, from the introduction and recall that
Sulu wanted to know why there is no chance for Uhura and Jirttéo@the same party.
For this purpose, we add the two constraints

«— not uhura and <« not jim

to I1,,, in order to investigate only scenarios including Uhura andaks guests. Note
that this restriction could also be achieved by usingabsignedstatement of the de-
bugging language presented in our companion work [2], wisigiartly implemented in
spock but not further discussed here. The modified program isdtoréle f i | e8:

ri: jim:- uhura.

r2 : jim:- not chekov.

r3 : uhura :- chekov, not scotty.
r4 : chekov :- not bones.

r5: bones :- jim

ré : scotty :- not uhura.

cl : :- not uhura.

c2: :- not jim

The following call returns extrapolation answer sets withinimum number of abnor-
mality tags:



java -jar spock.jar -k -ex
-exrules=rl,r2,r3,r4,r5r6 -mnab file8 |
java -jar spock.jar -x -as.

Note that we do not use thesni flag since weak constraints for minimisation require
the use ofDLV as external solver. In the present case, choice rules awdatad by
head disjunctions, introducing new auxiliary atoms. Theyfdtered out automatically,
in the second invocation afpock, giving the following answer sets as output:

{ab_c(chekov), ap(r1), ap(r3), ap(r5), bl(cl),
bl (c2), bl(r2), bl(r4), bl(r6), bones, chekov, jim
ko(r1), ko(r2), ko(r3), ko(r4), ko(r5), ko(r6),
ok(cl), ok(c2), ok(r1), ok(r2), ok(r3), ok(r4),
ok(r5), ok(r6), uhura}

{ab_c(uhura), ap(rl), ap(r2), ap(r5), bl(cl), bl(c2),
bl (r3), bl(r4), bl(r6), bones, jim ko(r1), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(cl), ok(c2),
ok(rl), ok(r2), ok(r3), ok(rd4), ok(r5), ok(r6),
uhur a}

{ab_p(r5), ap(rl), ap(r3), ap(r4), ap(r5), bl(cl),
bl (c2), bl(r2), bl(r6), chekov, jim ko(rl), ko(r2),
ko(r3), ko(rd), ko(r5), ko(r6), ok(cl), ok(c2),
ok(rl), ok(r2), ok(r3), ok(r4), ok(r5), ok(re6),
uhur a}

The atomab_c( chekov) in the first answer set, corresponding to interpretation
{bones, chekov, jim, uhura}, identifieschekov as not being supported by any applica-
ble rule. The only rule with headhekov, r4, would requirebones not to be in the in-
terpretation in order to be applicable. Analogoualy, c( uhur a) signals thathura
lacks support when considering interpretatidanes, jim, uhura}.

The tagab_p(r5) in the third answer set indicates the applicability of thieru
labeledr 5 with respect to interpretatiofichekov, jim, uhura} and hence Bones’ in-
compatible party participation. Clearly, there is no siolutfor this problem instance
that is satisfactory for everybody, given that Jim and Utalrauld jointly come and
that the respective social preferences are all respectegever, the last answer set
indicates an obvious solution for Sulu’s diplomatic conflidz. not inviting Bones. ¢

All three answer sets in Example 8 give us a potential hamledsolving our
problem, each of them involving a minimum number of abnoitiesl However, they
are not of the same quality in terms of a real-life solution. 18solving problems in the
context of ASP still depends in large part on knowledge aboaitiomain.

5 Discussion and Related Work

In this paper, we gave an overview absytock, a prototype implementation of a de-
bugging support tool for answer-set programs. The impléetemethodology is based



on theoretical results presented in a companion paper [R}elies on a tagging tech-
nique similar to one used for compiling ordered logic progsdnto standard ones [3].

With spock, programs to debug are translated into other programsngariswer
sets that offer debugging-relevant information about thgimal programs. After an
initial kernel transformation, we get insight into the apability of rules with respect
to individual answer sets. In a further stegpock outputs translations for extrapo-
lating putative, yet non-existing answer sets. In this @pgibn scenario, the system
allows to identify explanations why interpretations are aoswer sets. Herspock
distinguishes between abnormalities due to missing oresptoms, or atoms whose
presence in the interpretation is self-caused. In ordezdtrict the amount of informa-
tion returned to the programmer, standard ASP optimisadohniques can be used to
focus on interpretations with a minimal number of abnortiedi Future work includes
the integration of further aspects of the translation apgncas well as the design of a
graphical user interface to ease the applicability of tHfedint featurespock pro-
vides.

Implementations of related techniques inclsaalebug [9], a prototype debugger
focusing on odd-cycle-free inconsistent programs. Foggms without odd cycles,
inconsistency can always be linked to conflicting integdonstraints. The system is
designed to find minimal sets of constraints, restoring ist&rscy when removed from
the program. In most real-world applications, odd cyclestargs, so, on the one hand,
smdebug technically catches many of the common programming erfnsthe other
hand, actual error recovery is often related to normal ridege constraints, used for
restricting the solution space, are more likely to be seioalhy correct.

Brain and De Vos [10] present the systéBEAS (Interactive_@velopment and
Evaluation Tool for_Aswer-Set 8mantics), implementing two query algorithms, an-
swering the questions why a sgtis in some answer set and why a sefS is not in
any answer set. Both algorithms are procedural and sindléné¢ ones used in ASP
solvers, suggesting that an approach using a programereformation would be
more practical.

Pontelli and Son [11] developed a preliminary implementatfior their adoption
of so-calledjustifications[12—14] to the problem of debugging answer-set programs.
The system is embedded &8P — PROLOG [15] and returns visual output in form of
justifications, which are graphs explaining why an atom ianranswer set.

Appendix A Selected Argument Options ofspock

-- If a filename is givenspock does not read from standard input, un-
less this flag is set.

-p Outputs the given program with rule labels.
-C Outputs the given program without rule labels.
-X RunsDLV on the given program.

-Xsm RunsSnodel s on the given program.

-n=NR Computes maximallyvR many answer sets.



-sm Formats various output iBnodel s syntax, otherwis®LV syntax is

used.

-0 Outputs all computed or read answer sets.

-as Displays all computed or read answer sets in a GUI frame.

-k Outputs the kernel taggirt@k /1] of a given progrand?.

- ex Outputs the extrapolation taggiff@« [/, At(1I)] of a given program
II (like - expo - exco -exl o; see next).

- expo Outputs the program-oriented extrapolation tagdip/Z] of a given
programi].

- exco Outputs the completion-oriented extrapolation tagdiay7, A¢(11)]
of a given progranii.

-exlo Outputs the loop-oriented extrapolation taggihgA¢ (7)) of a given
programi].

-exrul es=r, s, ... Restricts extrapolation tagging generation to rules labejex ...

-m nab Outputs weak constraints to minimise abnormality tags (like the ones
described next).

- m nabp Outputs weak constraints to minimise program-oriented abnormality
tags.

-m nabc Outputs weak constraints to minimise completion-oriented abnormal-
ity tags.

- m nabl Outputs weak constraints to minimise loop-oriented abnormality tags.

- koal | Outputs atonko( n,:) for every ruler in the given program.

- has Outputs the number of computed or read answer sets.

-cig Outputs the given program, grounded byar se, having each
ground atom replaced by a constant (Constant Intelligent Grounding;
CIG). Using flag- ca, spock provides a table of these constants to-
gether with the corresponding atoms.

-ca Outputs a table of constant aliases from a CIG, together with the
ground atoms they represent. This list can be used in another invo-
cation ofspock using flag- ocr to re-translate the answer sets of a
CIG.

-ocr Outputs all computed or read answer sets of a CIG, having the constant
aliases substituted by the corresponding ground atoms, provided that
a list of constant aliases was read.

-dlvarg ARG Adds an argument for external callsf V.

-l parg ARG Adds an argument for external callsigbar se.

-smarg ARG Adds an argument for external calls®fodel s.
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