A Tool for Advanced Correspondence Checking
in Answer-Set Programming: Preliminary
Experimental Results*

Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefdtnao

Institut fir Informationssysteme 184/3, Technische @rsitat Wien,
Favoritenstrafle 9-11, A-1040 Vienna, Austria
{oetsch,seidl,tompits,stefan }@kr.tuwien.ac.at

1 Introduction

The class of nonmonotonic logic programs under the ansetesesnantics [5], with which we are dealing
with in this paper, represents the canonical and, due to \th#adhility of efficient answer-set solvers,
arguably most widely used approach to answer-set progragfAiSP). The latter is based on the idea that
problems are encoded in terms of theories such that thé@uduif a given problem are determined by the
models (“answer sets”) of the corresponding theory.

In previous work [4], a general framework for specifying mmpondences between logic programs
under the answer-set semantics has been introduced. Kénelgorrespondence of two programs is de-
termined in terms of a clagsof context programsind a comparison relatignsuch that correspondence
between two programg} and@, holds iff the answer sets df U R and@ U R satisfyp, for any program
R € C. The framework includes, as special instances, the wallknnotions ofstrong equivalencgs],
uniform equivalencg8], and the practicably important case of program comparisideiprojectedanswer
sets.

For the case of propositional disjunctive logic progranast@spondence checking in the above frame-
work under projected answer sets is surprisingly hard, NiZ-complete in general [4], i.e., lying on the
fourth level of the polynomial hierarchy. For computingkprogram correspondences, efficient reductions
to quantified propositional logibave been developed [11]. More specifically, two kinds otigtibns S|
andT [-], are introduced, wherg[-] can be seen as an explicit optimizationf]. In this paper, we report
about an implementation of these reductions, which we tefas the systeraqcheck , and about initial
experimental results.

We recall that quantified propositional logic is an extensid classical propositional logic charac-
terised by the condition that its sentences, usually refeto asquantified Boolean formula@®BFs), are
permitted to contain quantifications over atomic formulas.

The rationale to consider a reduction approach to QBFs ifotao(i) complexity results about quan-
tified propositional logic imply that decision problemsrrdhe polynomial hierarchy can be efficiently
represented in terms of QBFs, and (ii) several practicafflgient solvers for quantified propositional
logic are currently available. Indeeefjcheck uses such solvers as back-end inference engines.

2 System Description

The toolegcheck [9] implements linear-time reductions from inclusion pierhs (P, Q,P4,Cp) and
equivalence problem@&, @, P4, =g) to corresponding QBFs. It takes as input (i) two programg,Ra
and@, as well as (ii) two sets of atoms, sayand B, whereA specifies the context arfd the set of atoms
for projection on the correspondence relation. The redad$[-] or 7[-]) and the type of correspondence
problem €p, =g) are specified via command line argumenTs: -S to select the kind of reduction,
-e, -i to check for program equivalence or program inclusion.

In general the syntax to specify answer-set programedoheck corresponds to the badil V [?]
syntax. PropositiondDLV programs can be passeddgcheck and programs processible fegcheck
can be handled by DLV. As usual white-spaces are skippedglthie parsing procedure. Rules, facts, and

* This work was partially supported by the Austrian Scienced~(FWF) under grant P18019.

constrains are separated by dots. The symbaked to indicate disjunctions is expressed with a lower
casev. The symbok— is represented with the two characters. Default negatiomotis expressed with
the reserved wordot . Atoms start with a lower case character followed by an eabitnumber of lower
case characters, upper case characters, numbers or thdinendearacter. To enrich expressibility even
grounded predicates can be expressed as an atom followedidtyod atoms within parentheses. What
follows is a distinct description of how to apply the tool.

Considering the running example the two programs would Ipeesssed in our syntax as follows:

sel(b) :- b, not out(b).
sel(a) :- a, not out(a).
out(a) v out(b) :- a, b.

for programP and

sel(a) v sel(b) :- a.
sel(a) v sel(b) :- b.
fail :- sel(a), not a, not fail.
fail :- sel(b), not b, not fail.

for program@. We suppose that file.dl contains progran¥ and fileQ.dl contains programy.
Now we want to check ifP is equivalent ta@) w.r.t. projection on the output predicatel. We also
want to restrict the context to programs oyet b}. Therefore we need to specify a context set

(a, b)

stored in fileA and a projection set
(sel(a), sel(b))

stored in fileB. Now invocation syntax would be:
eqcheck -e P.dl Q.dl A B

By default the encodin@[-] is chosen. Notice that the order of the arguments is impbrfiast the pro-
grams, then the context set, and at last the projection sedltArnative syntax would have been:

eqcheck -e -A "(a, b)" -B "(sel(a), sel(b))" P.dl Q.dl

i.e., specifyingd andB without creating extra files for them. For the complete symaokeeqcheck with
option-h .

After invocation the resulting QBF is written to the staralautput device and can be processed further
by QBF-solvers. The output could be piped, e.g., directiiheoBDD-based non-normalform QBF-solver
boole [10]:

eqcheck -e P.dl Q.dl A B | boole

which yieldsO or 1 as answer for the correspondence problem (in our case thespandence holds and
the output isl).

If the setA (resp.B) is omitted in invocation, then the whole universe (set b¥atiables that occur in
programP or Q) is assumed for the set (resp.B). If 0 is passed instead of a filename, then the empty
set is assumed for sett (resp.B). Thus checking for strong equivalence or ordinary eqeneé (with or
without projection) as special cases of the general frameean be specified easily wigrcheck .

We develope@qcheck entirely inANSI G hence, it is highly portable. The parser for the input data
was written usind. EX andYACC The complete package in its current version consists oértfan 2000
lines of code. For further information, cf. [9].

3 Experimental Results

Our experiments were conducted to determine the behavialifferent QBF-solvers in combination with
different prenexing strategies (whenever prenexing iessary). To this end, we implemented a generator,
eqgtest , providing correspondence problems (as detailed abov&wdmanate from the proof of the
IIF -hardness of checking such problems, in order to have a ofdssnchmark problems capturing the
intrinsic complexity of correspondence checking.

The strategy to generate a test case is to (i) generate addBandom which is hard for the at most
fourth level of the polynomial hierarchy; (ii) redu@eto an inclusion problem$l = (P,Q,P4,Cp)
according to the complexity result such thiatholds iff & is valid; iii) apply eqcheck to generate a corre-
sponding QBRF out of I7; (iv) evaluateZ; (v) and check ifZ is equivalent tab.

Notice that step (iv) is used to compare the different QBRess whereas step (v) is essential to vali-
dateeqcheck . Concerning step (i) the reduction from the QBF to the cgpmnding inclusion problem
is obtained as follows:

Letd = 3XVY3Z¢ a QBF with¢ = A, C;aCNFoverV = (WUXUY UZ)andC; =
cia VeV V={t|veV}newatomsC; = ¢;,.. 5 Ci g,y v° =0, and(-w)* = v. We define P
as:

P={vVo—|lveV}U
{ve—u,t; 0 —u,u|v,uecV\W}HU
{« notv; «— notv|veV\W}U
{ve=C/v—C|veV\WW; 1<i<n}.

1

For Q we use further atom’ = {2/ | x € X}, X' = {#' | z € X} and define:

Q={vVi—|lve XUY}U
{ve—u,t; 0 —u,u|v,ue XUY}U
{—2",7"; « nota',notz' | xr € X}U
ve—adsv—25v7; 07 |veXUY,zeX}U

{' —z,notx'; ¥’ — x,nota’ |z € X}.
SetA andB are defined as:
A=B={XUXUYUY}.

For further information oreqgtest , cf. [9].

We have set up a test series comprising 1000 instances abioolproblems (465 of them evaluating
to true), where the first prograi® has 620 rules, the second progréjrhas 280 rules, using a total of
40 atoms, and the set§ B of atoms are chosen such thét= B, containing 16 atoms. After employing
eqcheck , the resulting QBFs possess, in case of translalid?00 atoms and, in case of translatibn152
atoms. The additional prenexing step (together with a tasiog of the propositional part into conjunctive
normal form) yields, in case &, QBFs with 6575 clauses over 2851 atoms and, in cage @IBFs with
6216 clauses over 2555 atoms.

The prenexing step in normal form transformation is not @feinistic process. Although certain de-
pendencies have to be respected, when combining the qaestifidifferent subformulas to one linear pre-
fix, the arrangements can be done in different manners. @enfar example the formuléw (3xVy3z¢ A
Jav). Then there are two ways to construct the prefix without chranthe truth value of the formula:
YwIzrdaVy3dz andVwIzrVy3zda. Obviously with the growth of the formula size, the numbepogsible
arrangements increases. For a more detailed discussibisdigsue see [2]. This indeterminism has severe
consequences: the impact of the chosen shifting strategam@&normous impact on the running time of
the solvers (again see [2]). The structure of the formulag.wo the quantifiers in our benchmark set is
very similar to the formula’s structure in the example ab&iace this structure is very simple, only two
different prenexing strategies can be applig® @ndDOWN).

100,00
a0,00
&0,00

70,00 - as(uF)
60,00 EWT(UF)
50,00 EE(DOWN)
40 00 OT(DOWN)
' ms

=T

30,00
20,00
10,00

0,00 ==

qube-bj semprop skizzo gpro

Fig. 1. Results for true problem instances subdivided by solversp@ingsS,7, and shifting strategie@OWN, UP.

100,00 (=
Q0,00
80,00
70,00 mE(UP)
60,00 mT(UP)
50,00 WS(DOWN)

OT(DOWH)

ms

at

40,00
30,00
20,00
10,00
0,00 =

qube-bj sem prop skizzo gqpro

Fig. 2. Results for false problem instances subdivided by solegrspdingsS, 7, and shifting strategie@OWN, UP.

We compared four QBF-solvers, vigube [6], semprop [7], skizzo [1], andqpro . The former
three require input in prenex form (thus, we test them usoth btrategie® OWN andUP), andgpro is
a new solver, currently under development at our departmdmith admits arbitrary QBFs as input.

Our results are depicted in Figures 1 and 2, referring to the &nd false instances of our series,
respectively. The y-axis shows the (arithmetically) agereunning time in seconds for each solver (with
respect to the chosen translation and prenexing stratéggyet a time-out of 100 seconds.

As expected, for all solvers, the more compact encodingas evaluated faster than the QBFs stem-
ming from S. The performance of the normal-form solveysbe , semprop , andskizzo is highly
dependent on the shifting strategy. For our testB&WN dominatedJP. Moreover, analysing the results
for gpro, compared to the other solvers, there is an indication treantirmal-form approach of QBF
evaluation is not particularly appropriate for finding siifipations in formulas, which is an interesting
issue for future work.

References

1. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFsProc. CADE-052005.

U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Geaning Different Prenexing Strategies for Quantified

Boolean Formulas. IRroc. SAT-03. Selected Revised Papeotume 2919 o NCS pages 214-228, 2004.

3. T. Eiter and M. Fink. Uniform Equivalence of Logic Progmmnder the Stable Model Semantics. Rroc.
ICLP-03 number 2916 in LNCS, pages 224-238, 2003.

4. T. Eiter, H. Tompits, and S. Woltran. On Solution Corraggences in Answer Set Programming.Froc. [JCAI-
05, pages 97-102, 2005.

5. M. Gelfond and V. Lifschitz. Classical Negation in LogicoBrams and Disjunctive Databasééew Generation
Computing 9:365-385, 1991.

6. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjungpfor Quantified Boolean Logic Satisfiabilitjrtifi-
cial Intelligence 145:99-120, 2003.

7. R. Letz. Lemma and Model Caching in Decision ProceduresQfoantified Boolean Formulas. IRroc.
TABLEAUX 2002volume 2381 oL NCS pages 160-175, 2002.

8. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Eqleva Logic ProgramsACM Transactions on Computa-
tional Logig 2(4):526-541, 2001.

n

9. J. Oetsch. eqcheck homepabép://www.kr.tuwien.ac.at/research/eq/

10. boole homepagéttp://www.cs.cmu.edu/"modelcheck/bdd.html .

11. H. Tompits and S. Woltran. Towards Implementations fdvanced Equivalence Checking in Answer-Set Pro-
gramming. InProc. ICLP-05 volume 3668 oL.NCS pages 189-203, 2005.

