
A Tool for Advanced Correspondence Checking
in Answer-Set Programming: Preliminary

Experimental Results⋆

Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,seidl,tompits,stefan }@kr.tuwien.ac.at

1 Introduction

The class of nonmonotonic logic programs under the answer-set semantics [5], with which we are dealing
with in this paper, represents the canonical and, due to the availability of efficient answer-set solvers,
arguably most widely used approach to answer-set programming (ASP). The latter is based on the idea that
problems are encoded in terms of theories such that the solutions of a given problem are determined by the
models (“answer sets”) of the corresponding theory.

In previous work [4], a general framework for specifying correspondences between logic programs
under the answer-set semantics has been introduced. Hereby, the correspondence of two programs is de-
termined in terms of a classC of context programsand a comparison relationρ such that correspondence
between two programs,P andQ, holds iff the answer sets ofP ∪R andQ ∪R satisfyρ, for any program
R ∈ C. The framework includes, as special instances, the well-known notions ofstrong equivalence[8],
uniform equivalence[3], and the practicably important case of program comparison underprojectedanswer
sets.

For the case of propositional disjunctive logic programs, correspondence checking in the above frame-
work under projected answer sets is surprisingly hard, viz.ΠP

4
-complete in general [4], i.e., lying on the

fourth level of the polynomial hierarchy. For computing such program correspondences, efficient reductions
to quantified propositional logichave been developed [11]. More specifically, two kinds of reductions,S[·]
andT [·], are introduced, whereT [·] can be seen as an explicit optimization ofS[·]. In this paper, we report
about an implementation of these reductions, which we referto as the systemeqcheck , and about initial
experimental results.

We recall that quantified propositional logic is an extension of classical propositional logic charac-
terised by the condition that its sentences, usually referred to asquantified Boolean formulas(QBFs), are
permitted to contain quantifications over atomic formulas.

The rationale to consider a reduction approach to QBFs is twofold: (i) complexity results about quan-
tified propositional logic imply that decision problems from the polynomial hierarchy can be efficiently
represented in terms of QBFs, and (ii) several practicably efficient solvers for quantified propositional
logic are currently available. Indeed,eqcheck uses such solvers as back-end inference engines.

2 System Description

The tooleqcheck [9] implements linear-time reductions from inclusion problems(P,Q,PA,⊆B) and
equivalence problems(P,Q,PA,=B) to corresponding QBFs. It takes as input (i) two programs, say P
andQ, as well as (ii) two sets of atoms, sayA andB, whereA specifies the context andB the set of atoms
for projection on the correspondence relation. The reduction (S[·] or T [·]) and the type of correspondence
problem (⊆B, =B) are specified via command line arguments:-T, -S to select the kind of reduction,
-e, -i to check for program equivalence or program inclusion.

In general the syntax to specify answer-set programs foreqcheck corresponds to the basicDLV [?]
syntax. PropositionalDLVprograms can be passed toeqcheck and programs processible foreqcheck
can be handled by DLV. As usual white-spaces are skipped during the parsing procedure. Rules, facts, and

⋆ This work was partially supported by the Austrian Science Fund (FWF) under grant P18019.

constrains are separated by dots. The symbol∨ used to indicate disjunctions is expressed with a lower
casev . The symbol← is represented with the two characters:- . Default negationnotis expressed with
the reserved wordnot . Atoms start with a lower case character followed by an arbitrary number of lower
case characters, upper case characters, numbers or the underline character. To enrich expressibility even
grounded predicates can be expressed as an atom followed by alist of atoms within parentheses. What
follows is a distinct description of how to apply the tool.

Considering the running example the two programs would be expressed in our syntax as follows:

sel(b) :- b, not out(b).
sel(a) :- a, not out(a).
out(a) v out(b) :- a, b.

for programP and

sel(a) v sel(b) :- a.
sel(a) v sel(b) :- b.
fail :- sel(a), not a, not fail.
fail :- sel(b), not b, not fail.

for programQ. We suppose that fileP.dl contains programP and fileQ.dl contains programQ.
Now we want to check ifP is equivalent toQ w.r.t. projection on the output predicatesel. We also

want to restrict the context to programs over{a, b}. Therefore we need to specify a context set

(a, b)

stored in fileA and a projection set

(sel(a), sel(b))

stored in fileB. Now invocation syntax would be:

eqcheck -e P.dl Q.dl A B

By default the encodingT [·] is chosen. Notice that the order of the arguments is important: first the pro-
grams, then the context set, and at last the projection set. An alternative syntax would have been:

eqcheck -e -A "(a, b)" -B "(sel(a), sel(b))" P.dl Q.dl

,i.e., specifyingA andB without creating extra files for them. For the complete syntax invokeeqcheck with
option-h .

After invocation the resulting QBF is written to the standard output device and can be processed further
by QBF-solvers. The output could be piped, e.g., directly tothe BDD-based non-normalform QBF-solver
boole [10]:

eqcheck -e P.dl Q.dl A B | boole

which yields0 or 1 as answer for the correspondence problem (in our case the correspondence holds and
the output is1).

If the setA (resp.B) is omitted in invocation, then the whole universe (set of all variables that occur in
programP or Q) is assumed for the setA (resp.B). If 0 is passed instead of a filename, then the empty
set is assumed for setA (resp.B). Thus checking for strong equivalence or ordinary equivalence (with or
without projection) as special cases of the general framework can be specified easily witheqcheck .

We developedeqcheck entirely inANSI C; hence, it is highly portable. The parser for the input data
was written usingLEX andYACC. The complete package in its current version consists of more than 2000
lines of code. For further information, cf. [9].

3 Experimental Results

Our experiments were conducted to determine the behaviour of different QBF-solvers in combination with
different prenexing strategies (whenever prenexing is necessary). To this end, we implemented a generator,
eqtest , providing correspondence problems (as detailed above) which emanate from the proof of the
ΠP

4
-hardness of checking such problems, in order to have a classof benchmark problems capturing the

intrinsic complexity of correspondence checking.
The strategy to generate a test case is to (i) generate a QBFΦ by random which is hard for the at most

fourth level of the polynomial hierarchy; (ii) reduceΦ to an inclusion problemsΠ = (P,Q,PA,⊆B)
according to the complexity result such thatΠ holds iff Φ is valid; iii) apply eqcheck to generate a corre-
sponding QBFΨ out ofΠ ; (iv) evaluateΨ ; (v) and check ifΨ is equivalent toΦ.

Notice that step (iv) is used to compare the different QBF-solvers whereas step (v) is essential to vali-
dateeqcheck . Concerning step (ii) the reduction from the QBF to the corresponding inclusion problem
is obtained as follows:

Let Φ = ∃X∀Y ∃Zφ a QBF withφ =
∧n

i=1
Ci a CNF overV = (W ∪ X ∪ Y ∪ Z) andCi =

ci,1 ∨ · · · ∨ ci,ki
; V̄ = {v̄ | v ∈ V } new atoms;C∗

i = c∗i,1, . . . , c
∗

i,ki
, v∗ = v̄, and(¬v)∗ = v. We define P

as:

P = {v ∨ v̄ ←| v ∈ V } ∪

{v ← u, ū; v̄ ← u, ū | v, u ∈ V \W} ∪

{← not v; ← not v̄ | v ∈ V \W} ∪

{v ← C∗

i ; v̄ ← C∗

i | v ∈ V \W ; 1 ≤ i ≤ n}.

ForQ we use further atomsX ′ = {x′ | x ∈ X}, X̄ ′ = {x̄′ | x ∈ X} and define:

Q = {v ∨ v̄ ←| v ∈ X ∪ Y } ∪

{v ← u, ū; v̄ ← u, ū | v, u ∈ X ∪ Y } ∪

{← x′, x̄′; ← not x′,not x̄′ | x ∈ X} ∪

{v ← x′; v̄ ← x′; v ← x̄′; v̄ ← x̄′ | v ∈ X ∪ Y, x ∈ X} ∪

{x′ ← x̄,not x̄′; x̄′ ← x,not x′ | x ∈ X}.

SetA andB are defined as:

A = B = {X ∪ X̄ ∪ Y ∪ Ȳ }.

For further information oneqtest , cf. [9].
We have set up a test series comprising 1000 instances of inclusion problems (465 of them evaluating

to true), where the first programP has 620 rules, the second programQ has 280 rules, using a total of
40 atoms, and the setsA, B of atoms are chosen such thatA = B, containing 16 atoms. After employing
eqcheck , the resulting QBFs possess, in case of translationS, 200 atoms and, in case of translationT , 152
atoms. The additional prenexing step (together with a translation of the propositional part into conjunctive
normal form) yields, in case ofS, QBFs with 6575 clauses over 2851 atoms and, in case ofT , QBFs with
6216 clauses over 2555 atoms.

The prenexing step in normal form transformation is not a deterministic process. Although certain de-
pendencies have to be respected, when combining the quantifiers of different subformulas to one linear pre-
fix, the arrangements can be done in different manners. Consider for example the formula∀w(∃x∀y∃zφ ∧
∃aψ). Then there are two ways to construct the prefix without changing the truth value of the formula:
∀w∃x∃a∀y∃z and∀w∃x∀y∃z∃a. Obviously with the growth of the formula size, the number ofpossible
arrangements increases. For a more detailed discussion of this issue see [2]. This indeterminism has severe
consequences: the impact of the chosen shifting strategy has an enormous impact on the running time of
the solvers (again see [2]). The structure of the formulas w.r.t. to the quantifiers in our benchmark set is
very similar to the formula’s structure in the example above. Since this structure is very simple, only two
different prenexing strategies can be applied (UP andDOWN).

Fig. 1. Results for true problem instances subdivided by solvers, encodingsS ,T , and shifting strategiesDOWN, UP.

Fig. 2. Results for false problem instances subdivided by solvers,encodingsS ,T , and shifting strategiesDOWN, UP.

We compared four QBF-solvers, viz.qube [6], semprop [7], skizzo [1], andqpro . The former
three require input in prenex form (thus, we test them using both strategiesDOWN andUP), andqpro is
a new solver, currently under development at our department, which admits arbitrary QBFs as input.

Our results are depicted in Figures 1 and 2, referring to the true and false instances of our series,
respectively. The y-axis shows the (arithmetically) average running time in seconds for each solver (with
respect to the chosen translation and prenexing strategy).We set a time-out of 100 seconds.

As expected, for all solvers, the more compact encodingT was evaluated faster than the QBFs stem-
ming from S. The performance of the normal-form solversqube , semprop , andskizzo is highly
dependent on the shifting strategy. For our test set,DOWN dominatesUP. Moreover, analysing the results
for qpro, compared to the other solvers, there is an indication that the normal-form approach of QBF
evaluation is not particularly appropriate for finding simplifications in formulas, which is an interesting
issue for future work.

References

1. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In Proc. CADE-05, 2005.
2. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenexing Strategies for Quantified

Boolean Formulas. InProc. SAT-03. Selected Revised Papers, volume 2919 ofLNCS, pages 214–228, 2004.
3. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model Semantics. InProc.

ICLP-03, number 2916 in LNCS, pages 224–238, 2003.
4. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Programming. InProc. IJCAI-

05, pages 97–102, 2005.
5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.New Generation

Computing, 9:365–385, 1991.
6. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic Satisfiability.Artifi-

cial Intelligence, 145:99–120, 2003.
7. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas. InProc.

TABLEAUX 2002, volume 2381 ofLNCS, pages 160–175, 2002.
8. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Transactions on Computa-

tional Logic, 2(4):526–541, 2001.

9. J. Oetsch. eqcheck homepage.http://www.kr.tuwien.ac.at/research/eq/ .
10. boole homepage.http://www.cs.cmu.edu/˜modelcheck/bdd.html .
11. H. Tompits and S. Woltran. Towards Implementations for Advanced Equivalence Checking in Answer-Set Pro-

gramming. InProc. ICLP-05, volume 3668 ofLNCS, pages 189–203, 2005.

