
spock - Detecting Errors in Logic
Programs under the Answer-Set Semantics:

System Description⋆

Martin Gebser1, Jörg Pührer2, Torsten Schaub1,
Hans Tompits2, and Stefan Woltran2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, D-14482 Potsdam, Germany
{gebser,torsten}@cs.uni-potsdam.de

2 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria

{puehrer,tompits,stefan}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) is an emerging logic-programming
paradigm, which strictly separates the description of a problem from its solutions.
Despite its semantic elegance, ASP suffers from a lack of comfort for software
developers. In particular, tools are needed which support engineers in detecting
errornous parts of their programs . Unlike in other areas of logic programming,
applying tracing techniques for debugging logic programs under the answer-set
semantics seems rather unnatural, since sticking to imperative solving algorithms
would undermine the declarative flavor of ASP.
In this system description, we present the systemspock, a debugging support
tool for answer-set programs making use of ASP itself. The implemented tech-
niques maintain the declarative nature of ASP within the debugging process and
are independent from the actual computation of answer sets.

1 General Information

Answer-set programming (ASP) [3] has become an important logic-programming
paradigm for declarative problem solving, which incorporates fundamental concepts
of non-monotonic reasoning. The non-monotonicity of answer-set programs, however,
is an aggravating factor for detecting sources of errors, since every rule of a program
might significantly influence the resulting answer sets.

The systemspock [2] supports developers of answer-set programs to detect and
locate errors in their programs, independent of specific ASPsolvers.

The theoretical background of the implemented methods was introduced in previ-
ous work [1], and exploits and extends atagging technique, as used by Delgrande et
al. [4] for compiling ordered logic programs into standard ones. In our approach, a pro-
gram to debug,Π , is translated into another program,TK[Π ], equipped with specialized
meta-atoms, calledtags, serving two purposes. Firstly, they allow for controllingand

⋆ This work was partially supported by the Austrian Science Fund (FWF) under project P18019.



manipulating the formation of answer sets ofΠ and secondly, tags occurring in the
answer sets of the translated program reflect various properties ofΠ .

In addition toTK,spock is devised to support supplementary translations for a pro-
gram to debugΠ , allowing an extrapolation of non-existing answer sets in combination
with explanations why an interpretation is not an answer setof Π .

2 System Specifics

Our debugging systemspock implements several transformations for debugging
propositional normal logic programs, involving the tagsap, bl, ok, ko, abp, abc, and
abl. The basic measure of tagging is to split up the rules of an original program, into
their heads and bodies, separating the causal relation between the satisfaction of a rule
body from the occurrence of the respective heads in an interpretation.

One task of tags is providing information about the program to debugΠ . E.g.,
there is a one-to-one correspondence between the answer sets of Π and the answer
sets ofTK[Π ], such that an answer set of the translated program contains either tag
ap(lr) or tagbl(lr), for each ruler ∈ Π , wherelr is a unique label forr, thus pro-
viding information whetherr is applicable or blocked in the related answer set ofΠ .
As an example consider programΠex = {r1 = a ← b, r2 = b ← not c, r3 =
c ← not a}, having the answer sets{a, b} and {c}. Then the answer sets of the
transformed programTK[Πex] are given by{a, b, ap(nr1

), ap(nr2
), bl(nr3

)} ∪OK and
{c, ap(nr3

), bl(nr1
), bl(nr2

)}∪OK , whereOK = {ok(nr1
), ok(nr2

), ok(nr3
)}. From

these we gain the information that, e.g., the rule labelednr1
is applicable under answer

set{a, b}, and blocked under{c}.
Apart from being used for analyzingΠ and its answer sets, tagging provides a han-

dle on the formation of answer sets ofΠ . By joining the translated program with rules
involving control tagsko(lr), andok(lr), ruler ∈ Π can selectively be deactivated.

This feature can be utilized by more advanced debugging modules, based on our
kernel transformationTK, which are not restricted to analyzing actual answer sets ofΠ .
In particularspock features program translations for investigating, why a particular
interpretationI is not an answer set of programΠ . Here, three sources of errors are
identified on the basis of Lin-Zhao Theorem [6]. Reasons forI not being an answer
set are either related to the program, its completion, or itsnon-trivial loop formulas,
respectively. According to this error classification, we distinguish between three corre-
spondingabnormality tags,abp, abc, andabl, which may occur in the answer sets of
the transformed program. The program-oriented abnormality tagabp(nr) indicates that
rule r ∈ Π is applicable but not satisfied with respect to the considered interpretation
I, the completion-oriented abnormality tagabc(a) is contained whenever atoma is in
I but all rules havinga as head are blocked. Finally, the presence of a loop-oriented
abnormality tagabl(a) indicates the possible existence of some loopΓ in Π , a ∈ Γ ,
that is unfounded with respect toI.

As the number of interpretations for a program grows exponentially in the number of
occurring atoms, we use standard optimization techniques of ASP to reduce the amount
of debugging information, focusing on answer sets of the tagged program, which in-
volve a minimum number of abnormality tags.



<file_n>

Translation

<file_1>

<file_2>
... Parser

spock

Command Line

Standard Input

Representation
Program
Internal

Arguments

Input Program

Program

Fig. 1. Data flow of program translations.

The transformations to be applied are chosen by setting callparameters. Fig. 1 il-
lustrates the typical data flow of program translations withspock. The tool is written
in Java 5.0 and published under the GNU General Public License [7]. It can be used
either withDLV [8] or with Smodels [5] (together withlparse) and is available at

http://www.kr.tuwien.ac.at/research/debug

as a jar-package including binaries and sources.

References

1. M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, andS. Woltran. Debugging ASP
programs by means of ASP. In C. Baral, G. Brewka, and J. Schlipf, editors,Proceedings of
the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07), number 4483 in Lecture Notes in Artificial Intelligence, pages 31–43. Springer,
2007.

2. M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, andS. Woltran. “That is illogical
captain!” – The debugging support tool spock for answer-setprograms: System description.
In M. De Vos and T. Schaub, editors,Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07), pages 71–85, 2007.

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

4. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in logic
programs. Theory and Practice of Logic Programming3(2) (2003) 129–187

5. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(1-2) (2002) 181–234

6. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence157(1-2) (2004) 115–137

7. Free Software Foundation Inc.: GNU General Public License - Version 2, June 1991 (1991)
http://www.gnu.org/copyleft/gpl.html

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562


