spock - Detecting Errors in Logic
Programs under the Answer-Set Semantics:
System Descriptiort

Martin Gebsel, Jorg Puhrer, Torsten Schaul
Hans Tompit$, and Stefan Woltrah

1 Institut fur Informatik, Universitat Potsdam,
August-Bebel-Stralle 89, D-14482 Potsdam, Germany
{gebser, torsten}@s. uni - pot sdam de
2 Institut fiir Informationssysteme, Technische Univéitsivien,
FavoritenstrafRe 9-11, A—1040 Vienna, Austria
{puehrer, tonpits, stefan}@r.tuw en. ac. at

Abstract. Answer-set programming (ASP) is an emerging logic-prognémg
paradigm, which strictly separates the description of aler from its solutions.
Despite its semantic elegance, ASP suffers from a lack offaxdrfor software
developers. In particular, tools are needed which suppwaineers in detecting
errornous parts of their programs . Unlike in other area®gicl programming,
applying tracing techniques for debugging logic programdeun the answer-set
semantics seems rather unnatural, since sticking to irtipesolving algorithms
would undermine the declarative flavor of ASP.

In this system description, we present the syssmock, a debugging support
tool for answer-set programs making use of ASP itself. Thelémented tech-
nigues maintain the declarative nature of ASP within theudging process and
are independent from the actual computation of answer sets.

1 General Information

Answer-set programming (ASP) [3] has become an important logic-programming
paradigm for declarative problem solving, which incorpgesafundamental concepts
of non-monotonic reasoning. The hon-monotonicity of arrsget programs, however,
is an aggravating factor for detecting sources of erromgesevery rule of a program
might significantly influence the resulting answer sets.

The systenspock [2] supports developers of answer-set programs to detett an
locate errors in their programs, independent of specific 8&ers.

The theoretical background of the implemented methods mtagduced in previ-
ous work [1], and exploits and extenddagging technique, as used by Delgrande et
al. [4] for compiling ordered logic programs into standares. In our approach, a pro-
gram to debugl/, is translated into another prograf| /7], equipped with specialized
meta-atoms, callethgs, serving two purposes. Firstly, they allow for controlliagd

* This work was partially supported by the Austrian Scienced=gFWF) under project P18019.



manipulating the formation of answer sets l@fand secondly, tags occurring in the
answer sets of the translated program reflect various piiepef /1.

In addition toZx, spock is devised to support supplementary translations for a pro-
gram to debud1, allowing an extrapolation of non-existing answer setimbination
with explanations why an interpretation is not an answeobéf.

2 System Specifics

Our debugging systenspock implements several transformations for debugging
propositional normal logic programs, involving the tags bl, ok, ko, ab,, ab., and
ab;. The basic measure of tagging is to split up the rules of agiral program, into
their heads and bodies, separating the causal relatiorebatthe satisfaction of a rule
body from the occurrence of the respective heads in an irgion.

One task of tags is providing information about the prograndé¢bugil. E.g.,
there is a one-to-one correspondence between the answeofgdétand the answer
sets of7k[[I], such that an answer set of the translated program contdlires ¢éag
ap(l,) or tagbl(l,), for each ruler € II, wherel, is a unique label for, thus pro-
viding information whether is applicable or blocked in the related answer setlof
As an example consider prograff, = {r1 = a « b, 1o = b « not ¢, r3 =
¢ < not a}, having the answer sets:, b} and {c}. Then the answer sets of the
transformed prograrfix [I1.,] are given by{a, b, ap(n., ), ap(n, ), bl(n.,)} U OK and
{¢,ap(n.,), bl(n,, ), bl(n.,)} U OK , whereOK = {ok(n,, ), ok(n,,),ok(n.,)}. From
these we gain the information that, e.g., the rule labeleds applicable under answer
set{a, b}, and blocked undefc}.

Apart from being used for analyzing and its answer sets, tagging provides a han-
dle on the formation of answer sets bt By joining the translated program with rules
involving control tagso(l,.), andok(l,), ruler € II can selectively be deactivated.

This feature can be utilized by more advanced debugging fesdhased on our
kernel transformatiofix, which are not restricted to analyzing actual answer sefs.of
In particularspock features program translations for investigating, why dipalar
interpretation/ is not an answer set of prograhi. Here, three sources of errors are
identified on the basis of Lin-Zhao Theorem [6]. ReasonsIfoot being an answer
set are either related to the program, its completion, ondts-trivial loop formulas,
respectively. According to this error classification, wstiiguish between three corre-
spondingabnormality tags,ab,, ab., andab;, which may occur in the answer sets of
the transformed program. The program-oriented abnomrtalifab,,(»,) indicates that
ruler € I is applicable but not satisfied with respect to the consitlererpretation
I, the completion-oriented abnormality tab.(a) is contained whenever atoanis in
I but all rules having: as head are blocked. Finally, the presence of a loop-odente
abnormality tagab; (a) indicates the possible existence of some ldom I7,a € T,
that is unfounded with respect fo

As the number of interpretations for a program grows expbtakiyin the number of
occurring atoms, we use standard optimization technigfiaSP to reduce the amount
of debugging information, focusing on answer sets of thgedgprogram, which in-
volve a minimum number of abnormality tags.



Command Line
Arguments

spock

Internal

Program

— .
Program Translation

—+| Parser .
Representation

Fig. 1. Data flow of program translations.

The transformations to be applied are chosen by settingpaadimeters. Fig. 1 il-
lustrates the typical data flow of program translations wiptock . The tool is written
in Java 5.0 and published under the GNU General Public Le¢rs It can be used
either withDLV [8] or with Snodel s [5] (together withl par se) and is available at

http://ww. kr.tuw en. ac. at/ resear ch/ debug

as a jar-package including binaries and sources.

References

1. M. Brain, M. Gebser, J. Pihrer, T. Schaub, H. Tompits, &ntoltran. Debugging ASP
programs by means of ASP. In C. Baral, G. Brewka, and J. Scklilitors,Proceedings of
the 9th International Conference on Logic Programming and Nonmonaotonic Reasoning (LP-
NMR'07), number 4483 in Lecture Notes in Artificial Intelligencegea 31-43. Springer,
2007.

2. M. Brain, M. Gebser, J. Puhrer, T. Schaub, H. Tompits, &n@oltran. “That is illogical
captain!” — The debugging support tool spock for answepsegrams: System description.
In M. De Vos and T. Schaub, editof@roceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA'07), pages 71-85, 2007.

3. Baral, C.: Knowledge Representation, Reasoning andabaale Problem Solving. Cam-
bridge University Press (2003)

4. Delgrande, J., Schaub, T., Tompits, H.: A framework fompding preferences in logic
programs. Theory and Practice of Logic Programn8(i) (2003) 129-187

5. Simons, P., Niemela, |., Soininen, T.: Extending andlé@mgnting the stable model seman-
tics. Artificial Intelligencel3§1-2) (2002) 181-234

6. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logiogsam by SAT solvers.
Artificial Intelligence157(1-2) (2004) 115-137

7. Free Software Foundation Inc.: GNU General Public Lieerigersion 2, June 1991 (1991)
http://www.gnu.org/copyleft/gpl.html

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACMsBetions on Computational
Logic 7(3) (2006) 499-562



