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Abstract. The systenccT is a tool for testing correspondence between logic
programs under the answer-set semantics with respect to diffefered notions

of program correspondence. The underlying methodologycaf is to reduce a
given correspondence problem to the satisfiability problem of quantifigglop
sitional logic and to employ extant solvers for the latter language as batk-e
inference engines. In a previous versiorcefT, the system was designed to test
correspondence between programs basedlativised strong equivalence under
answer-set projectianSuch a setting generalises the standard notion of strong
equivalence by taking the alphabet of the context programs as wek asdfec-
tion of the compared answer sets to a set of designated output atomscatmac
This paper outlines a newly added component ofl for testing similarly pa-
rameterised correspondence problems basadifiaorm equivalence

1 General Information

An important issue in software development is to determihether two encodings of a
given problem are equivalent, i.e., whether they yield #Hraeresult on a given problem
instance. Depending on the context of problem represenstdifferent definitions of
“equivalence” are useful and desirable. The system [1] (short for “correspondence-
checking tool”) is devised as a checker for a broad rangeftafrdnt such comparison
relations defined betweadtisjunctive logic program¢DLPs)under the answer-set se-
mantics[2]. In a previous version ofc T, the system was designed to test correspon-
dence between logic programs basedeativised strong equivalence under answer-
set projection Such a setting generalises the standard notion of stromgadegnce [3]
by taking the alphabet of the context programs as well as thjgion of the com-
pared answer sets to a set of designated output atoms irdorgdd]. The latter feature
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reflects the common use of local (hidden) variables which beaysed in submodules
but which are ignored in the final computation.

In this paper, we outline a newly added componert®f for testing similarly pa-
rameterised correspondence problems but generalisiifigrm equivalencg¢5]—that
is, we deal with a component afc T for testingrelativised uniform equivalence un-
der answer-set projectiohis notion, recently introduced in previous work [6],és$
restrained, along with a slightly lower complexity than stsong pendant. However,
in general, it is still outside a feasible means to be conmpiite answer-set solvers
(provided that the polynomial hierarchy does not collap¥e), like relativised strong
equivalence with projection, it can be efficiently reducedhe satisfiability problem
of quantified propositional logic, an extension of classprapositional logic charac-
terised by the condition that its sentences, generallynedeto asquantified Boolean
formulas(QBFs), are permitted to contain quantifications over atofoimulas. The
architecture oftc T takes advantage of this and uses existing solvers for digghti
propositional logic as back-end reasoning engines.

2 System Specifics

The equivalence notions under consideration are definedréamd disjunctive logic
programs with default negation under the answer-set sécsd@i. Let AS(P) be the
collection of the answer sets of a progrdt Two programs,P and @, arestrongly
equivalentff, for any programR, AS(PUR) = AS(QU R); they areuniformly equiv-
alentiff, for any setF of facts,AS(PUF) = AS(QU F). While strong equivalence is
relevant for program optimisation and modular programniingeneral [7—9], uniform
equivalence is useful in the context of hierarchically stuwed program components,
where lower-layered components provide input for higlageted ones. In abstracting
from strong and uniform equivalence, Eiral. [4] introduced the notion of aorre-
spondence problenvhich allows to specify (i) @ontexti.e., a class of programs used
to be added to the programs under consideration, and (iijeflagion that has to hold
between the answer sets of the extended programs. The tofan@al realisation of
relativised uniform equivalence with projection is asdalk [6]: Consider a quadruple
II = (P,Q,24,0p), whereP, ( are programs4, B are sets of atoms, € {C, =},
andS op S’ standsfo{INB|I €S} e {JNB|JeS'}. Then,II holdsiff, for
eachF € 24, AS(PU F) ®p AS(Q U F). Furthermore/T is called apropositional
query equivalence proble(®QEP) if© g is given by=pg, and apropositional query
inclusion problem(PQIP) if © is given byC . Note that(P, Q,24,=5) holds iff
(P,Q,24,Cp)and(Q, P,24, Cp) jointly hold.

For illustration, consider the programs

P ={sad V happy «—; sappy — sad, happy; confused — sappy},
Q = {sad < not happy; happy < not sad; confused — sad, happy},

which express some knowledge about the “moods” of a persbarew’ uses an aux-
iliary atom sappy. The programs can be seen as queries over a propositioadlacat
which consists of facts from, e.g{ happy, sad}. For the output, it would be natural
to consider the common intensional atawnfused. We thus considefl = (P, Q,
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Fig. 1. Overall architecture ofc T.

24 =p) as a suitable PQEP, specifying= {happy, sad} andB = {confused}. Itis
a straightforward matter to check thdt defined in this way, holds.

As pointed out in Section 1, the overall approacttofT is to reduce PQEPs and
PQIPs to the satisfiability problem of quantified proposiiblogic and to use extant
solvers for the latter language [10] as back-end inferengines for evaluating the re-
sulting formulas. The reductions required for this apphoae described by Oetsett
al. [6] but cc T employs additional optimisations [11]. We note that qu&dipropo-
sitional logic is an extension of classical propositioradit in which sentences are
permitted to contain quantifications over atomic formultis. standard custom to refer
to the formulas of this language gsantified Boolean formula®QBFs).

The overall architecture afc T is depicted in Figure 1. The system takes as input
two programsP and@, and two sets of atomg} and B. Command-line options select
between two kinds of reductions, a direct one or an optimiseg and whether the pro-
grams are compared as a PQIP or a PQEP. Detailed invocatitexsyan be requested
with option- h. The syntax of the programs is the baBlcV syntax® Sincecc T does
not output QBFs in a specific normal form, for using solverguigng normal-form
QBFs, the additional normaliseist [12] is employed. Finallycc T is developed en-
tirely in ANSI C; hence, it is highly portable. The parser fbe input data was written
using LEX and YACC. Further information abotit T is available at

http://ww. kr.tuw en. ac. at/research/ccT/.

Experimental evaluations using different QBF solvers eported in a companion pa-
per [11].
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