
I N F S Y S

R e s e a r c h

R e p o r t

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme

Template programs for Disjunctive

Logic Programming: an operational

semantics

Francesco Calimeri Giovambattista Ianni

INFSYS Research Report 1843-05-07

October 2005

INFSYS Research Report

INFSYS Research Report 1843-05-07, October 2005

Template programs for Disjunctive Logic

Programming: an operational semantics

Francesco Calimeri1 Giovambattista Ianni1

Abstract. Disjunctive Logic Programming is nowadays a mature formalism which has
been successfully applied to a variety of practical problems, such as information integration,
knowledge representation, planning, diagnosis, optimization and configuration. Although
current DLP systems have been extended in many directions, they still miss features which
may be helpful towards industrial applications, like the capability of quickly introducing
new predefined constructs or of dealing with modules. Indeed, in spite of the fact that a
wide literature about modular logic programming is known, code reusability has never been
considered as a critical point in Disjunctive Logic Programming. In this work we extend
the Disjunctive Logic Programming, under the stable model semantics, with the notion of
‘template’ predicates. A template predicate may be instantiated to an ordinary predicate by
means of template atoms, thus allowing to define reusable modules, to define new constructs
and aggregates without any syntactic limitation.

1Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy; e-mail: cal-
imeri@mat.unical.it, ianni@mat.unical.it.

Acknowledgements: This work has been partially supported by the FWF project Answer Set
Programming for the Semantic Web (FWF P17212-N04)

Copyright c© 2005 by the authors

INFSYS RR 1843-05-07 I

Contents

1 Introduction 1

2 Syntax of the dlpT language 3
2.1 Disjunctive Logic Programming . 3

2.1.1 dlp Syntax . 3
2.1.2 dlp Semantics . 4

2.2 dlpT . 7

3 Knowledge Representation by dlpT 8

4 Semantics of the dlpT language 12
4.1 The Explode algorithm . 12
4.2 How P s is constructed. 13
4.3 How template atoms are replaced . 14

5 Theoretical properties of dlpT 15

6 System architecture and usage 17

7 Conclusions 18

INFSYS RR 1843-05-07 1

1 Introduction

Disjunctive Logic Programming (dlp) is nowadays a generic term including many language flavors,
whose common base is the adoption of the ‘Gelfond-Lifschitz reduct’ [32] as a main tool for defining
the underlying semantics. Roughly speaking, Disjunctive Logic Programming dialects are variants
of Datalog, where models for a given program (stable models) may be multiple. Most of these
languages allow to filter out models by means of constraints or to select among different models by
means of weight constraints or similar extensions [7; 46; 45; 52; 46; 47; 43; 30].

After some pioneering work on stable model computation [6; 54], research in the field produced
several, mature, implemented systems featuring clear semantics and efficient program evaluation
[51; 5; 13; 15; 4; 49; 44; 14; 21; 19; 2; 20; 38; 41; 42; 34; 40].

dlp under the stable model semantics has recently found a number of promising applications:
several tasks in information integration and knowledge management require complex reasoning
capabilities, which are explored, for instance, in the INFOMIX and ICONS projects (funded by the
European Commission)[37; 1].

It is very likely that this new generation of dlp applications require the introduction of repetitive
pieces of standard code. Indeed, a major need of complex and huge dlp applications such as [48]
is dealing efficiently with large pieces of such a code and with complex data structures, more
sophisticated than the simple, native ASP data types.

Indeed, the non-monotonic reasoning community has continuously produced, in the past, several
extensions of nonmonotonic logic languages, aimed at improving readability and easy programming
through the introduction of new constructs, employed in order to specify classes of constraints,
search spaces, data structures, new forms of reasoning, new special predicates [9; 24; 35], such as
aggregate predicates [11].

Nonetheless, code reusability has never been considered as a priority in the Answer Set Pro-
gramming/dlp field, despite the fact that modular logic programming has been widely studied in
the general case [8; 25].

The language dlpT we propose here has two purposes. First, dlpT moves the DLP field towards
industrial applications, where code reusability is a crucial issue. Second, dlpT aims at minimizing
developing times in DLP system prototyping. DLP systems developers wishing to introduce new
constructs are enabled to fast prototype their languages, make their language features quickly
available to the scientific community, and successively concentrate on efficient (and long lasting)
implementations. To this end, it is necessary a sound specification language for new DLP constructs.
DLP itself proves to fit very well for this purpose.

The proposed framework introduces the concept of ‘template’ predicate, whose definition can
be exploited whenever needed through binding to usual predicates.

Template predicates can be seen as a way to define intensional predicates by means of a subpro-
gram, where the subprogram is generic and reusable. This eases coding and improves readability
and compactness of DLP programs:

2 INFSYS RR 1843-05-07

Example 1 The following template definition

#template max[p(1)](1)
{
exceeded(X) :- p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X).
}

introduces a generic template program, defining the predicate max, intended to compute the
maximum value over the domain of a generic unary predicate p. A template definition may be
instantiated as many times as necessary, through template atoms, like in the following sample
program

:- max[weight(*)](M), M > 100. (a)
:- max[student(Sex,$,*)](M), M >25. (b)

Template definitions may be unified with a template atom in many ways. The above program
contains two invocations: a plain invocation (a), and a compound invocation (b). The latter allows
to employ the definition of the template predicate max on a ternary predicate, discarding the second
attribute of student, and grouping by values of the first attribute.

The operational semantics of the language is defined through a suitable algorithm which is able
to produce, from a set of nonrecursive template definitions and a dlpT program, an equivalent
DLP program. There are some important theoretical questions to be addressed, such as the termi-
nation of the algorithm, and the expressiveness of the dlpT language. Indeed, we prove that it is
guaranteed that dlpT program encodings are as efficient as plain DLP encodings, since unfolded
programs are just polynomially larger with respect to the originating program.

The dlpT language has been successfully implemented and tested on top of the DLV system
[28]. Anyway, the proposed paradigm does not rely at all on DLV special features, and is easily
generalizable. In sum, benefits of the dlpT language are: improved declarativity and succinctness
of the code; code reusability and possibility to collect templates within libraries; capability to
quickly introduce new, predefined constructs; fast language prototyping.

The paper is structured as follows:

• Section 2 briefly gives syntax and semantics of DLP and syntax of the language dlpT .

• The features of dlpT are illustrated in Section 3, with the help of some examples.

• Section 4 formally introduces the semantics of dlpT .

• Theoretical properties of dlpT are discussed in Section 5.

• An implementation of the dlpT language on top of a suitable DLP solver is presented in
Section 6.

• Eventually, in section 7, conclusions are drawn.

INFSYS RR 1843-05-07 3

2 Syntax of the dlpT language

We provide here the syntax of dlpT . But first, we give a survey on formal syntax and semantics
of dlp.

2.1 Disjunctive Logic Programming

The flavor of dlp we will consider is basically consisting in Disjunctive Datalog enriched with
weak constraints. For further background the reader can refer to [22; 32]. In addition, in [3;
18] more comprehensive surveys on the semantics of disjunction and negation are given.

2.1.1 dlp Syntax

A (standard) term is either a variable or a constant. Usually, strings starting with uppercase letters
denote variables, while those starting with lower case letters denote constants, such as X and x ,
respectively.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity n and t1,. . . ,tn are terms,
such as edge(a,X) or p(X). A classical literal l is either an atom p (in this case, it is positive), or
a (strongly) negated atom ¬p (in this case, it is negative). A negation as failure (NAF) literal ` is
of the form l or not l , where l is a classical literal; in the former case ` is positive, and in the latter
case negative. Unless stated otherwise, by literal a NAF literal is meant.

Given a classical literal l , its complementary literal ¬l is defined as ¬p if l = p and p if l = ¬p.
A set L of literals is said to be consistent if, for every literal l ∈ L, its complementary literal is not
contained in L.

A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an ← b1, · · · , bk , not bk+1, · · · , not bm · (1)

where a1, · · · , an , b1, · · · , bm are classical literals and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 v · · · v an

is said to be the head of r , while the conjunction b1, . . . , bk , not bk+1, . . . , not bm is the body of
r . A rule without head literals (i.e. n = 0) is usually referred to as an integrity constraint. A rule
having precisely one head literal (i.e. n = 1) is called a normal rule. If the body of r is empty (i.e.
k = m = 0), r is called fact, and usually the “←” sign is omitted.

For any set L of classical literals, not L = {not l | l ∈ L} is denoted. If r is a rule of form (1),
then H (r) = {a1, . . ., an} is the set of the literals in the head and B(r)= B+(r)∪ B−(r) is the
set of the body literals, where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the negative
body) is {bk+1, . . . , bm}.

A dlp program (alternatively, disjunctive datalog program) P is a finite set of rules. A not-free
program P (i.e., such that ∀r ∈ P : B−(r) = ∅) is called positive. In positive programs negation as
failure (not) does not occur, while strong negation (¬) may be present. A v -free program P (i.e.,
such that ∀r ∈ P : |H (r)| ≤ 1) is called datalog program (or normal logic program).
A term (an atom, a rule, a program, etc.) is ground, if no variable appears in it. A ground program
is also called a propositional program.
Usually, we simply refer to programs, if we want to point out that they are not restricted to be
positive, normal or ground.

4 INFSYS RR 1843-05-07

Weak constraints. Weak constraints (see [7]) are defined as a variant of integrity constraints. In
order to differentiate clearly between them, for weak constraints the symbol ‘:∼’ is adopted instead
of ‘←’. Additionally, a weight and a priority level (or layer) inducing a partial order of the weak
constraints are specified explicitly.

Formally, a weak constraint wc is an expression of the form

:∼ b1, . . . , bk , not bk+1, . . . , not bm · [w : l]

where for m ≥ k ≥ 0, b1, . . . , bm are classical literals, while w (the weight) and l (the level, or
layer) are positive integer constants or variables. For convenience, w and/or l might be omitted
and are set to 1 in this case.

The sets B(wc), B+(wc), and B−(wc) of a weak constraint wc are defined in the same way as
for regular integrity constraints.

2.1.2 dlp Semantics

The most widely accepted semantics for dlp is the Stable Model Semantics proposed by Gelfond
and Lifschitz in 32. According to this semantics, a program may have several alternative stable
models (but possibly none), each corresponding to a possible view of the world.

The semantics provided in this section is a generalization of the original semantics proposed for
weak constraints in [7], as seen in [38].

Herbrand Universe. For any program P, let UP (the Herbrand Universe) be the set of all
constants appearing in P. In case no constant appears in P, an arbitrary constant ψ is added to
UP .

Herbrand Literal Base. For any program P, let BP be the set of all ground (classical) literals
constructible from the predicate symbols appearing in P and the constants of UP (note that, for
each atom p, BP contains also the strongly negated literal ¬p).

Ground Instantiation. For any rule r , Ground(r) denotes the set of rules obtained by applying
all possible substitutions σ from the variables in r to elements of UP . In a similar way, given a
weak constraint w, Ground(w) denotes the set of weak constraints obtained by applying all possible
substitutions σ from the variables in w to elements of UP . For any program P, Ground(P) denotes
the set GroundRules(P) ∪GroundWC (P), where

GroundRules(P) =
⋃

r∈Rules(P)

Ground(r)

and

GroundWC (P) =
⋃

w∈WC (P)

Ground(w)·

For propositional programs, P = Ground(P) holds.

INFSYS RR 1843-05-07 5

Stable Models. For every program P, we define its stable models using its ground instantiation
Ground(P) in three steps: first we define the stable models of positive disjunctive datalog pro-
grams, then we give a reduction of disjunctive datalog programs containing negation as failure to
positive ones and use it to define stable models of arbitrary disjunctive datalog programs, possibly
containing negation as failure. Finally, we specify the way how weak constraints affect the seman-
tics, defining the semantics of general programs.

An interpretation I is a set of ground classical literals, i.e. I ⊆ BP w.r.t. a program P. A
consistent interpretation I ⊆ BP is called closed under P (where P is a positive disjunctive datalog
program), if, for every r ∈ Ground(P), H (r)∩I 6= ∅ whenever B(r) ⊆ I . An interpretation I ⊆ BP
is a stable model for a positive disjunctive datalog program P, if it is minimal (under set inclusion)
among all interpretations that are closed under P.1

Example 2 The positive program

P1 = {a v¬b v c·}

has the stable models {a}, {¬b}, and {c}. Its extension

P2 = {a v¬b v c· , ← a·}

has the stable models {¬b} and {c}. Finally, the positive program

P3 = {a v¬b v c· , ← a· , ¬b ← c· , c ← ¬b·}

has the single stable model the set {¬b, c}.

The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set I ⊆ BP is the
positive ground program PI , obtained from P by

• deleting all rules r ∈ P for which B−(r) ∩ I 6= ∅ holds;

• deleting the negative body from the remaining rules.

A stable model of a program P is a set I ⊆ BP such that I is a stable model of Ground(P)I .

Example 3 Given the general program P4:

a v¬b ← c·
¬b ← not a, not c·
a v c ← not ¬b·

1Note that we only consider consistent stable models, while in [32] also the inconsistent set of all possible literals
can be a valid stable models.

6 INFSYS RR 1843-05-07

and the interpretation I = {¬b}, the reduct PI
4 is {a v¬b ← c· , ¬b·}. It is easy to see that I is a

stable model of PI
4 , and for this reason it is also a stable model of P4.

Now consider the interpretation J = {a}. The reduct PJ
4 is {a v¬b ← c· , a v c·} and it can be

easily verified that J is a stable model of PJ
4 , so it is also stable model of P4.

If, on the other hand, we take K = {c}, the reduct PK
4 is equal to PJ

4 , but K is not stable
model of PK

4 : for the rule r : a v¬b ← c, B(r) ⊆ K holds, but H (r) ∩K 6= ∅ does not. Indeed, it
can be verified that I and J are the only stable models of P4.

Given a ground program P with a set of weak constraints WC (P), we are interested in the
stable models of Rules(P) which minimize the sum of weights of the violated (unsatisfied) weak
constraints in the highest priority level2, and among them those which minimize the sum of weights
of the violated weak constraints in the next lower level, etc. Formally, this is expressed by an
objective function H P(A) for P and a stable model A as follows, using an auxiliary function fP
which maps leveled weights to weights without levels:

fP(1) = 1,
fP(n) = fP(n − 1) · |WC (P)| · wPmax + 1, n > 1,

HP(A) =
∑lPmax

i=1(fP(i) ·∑w∈NP
i (A) weight(w)),

where wP
max and lPmax denote the maximum weight and maximum level over the weak constraints

in P, respectively; N P
i (A) denotes the set of the weak constraints in level i that are violated by

A, and weight(w) denotes the weight of the weak constraint w . Note that |WC (P)| · wP
max + 1 is

greater than the sum of all weights in the program, and therefore guaranteed to be greater than
the sum of weights of any single level.

Intuitively, the function fP handles priority levels. It guarantees that the violation of a single
constraint of priority level i is more “expensive” then the violation of all weak constraints of the
lower levels (i.e., all levels < i).

For a program P (possibly with weak constraints), a set A is an (optimal) stable model of P if
and only if (1) A is a stable model of Rules(P) and (2) H P(A) is minimal over all the stable models
of Rules(P).

Example 4 Consider the following program Pwc , which contains three weak constraints:

a v b·
b v c·
d v¬d ← a, c·
:∼ b · [1 : 2]
:∼ a,¬d · [4 : 1]
:∼ c, d · [3 : 1]

Rules(Pwc) admits three stable models: A1 = {a, c, d}, A2 = {a, c,¬d}, and A3 = {b}. We
have: H Pwc (A1) = 3, H Pwc (A2) = 4, H Pwc (A3) = 13.

Thus, the unique (optimal) stable model is {a, c, d} with weight 3 in level 1 and weight 0 in
level 2.

2Higher values for weights and priority levels mark weak constraints of higher importance. E.g., the most important
constraints are those having the highest weight among those with the highest priority level.

INFSYS RR 1843-05-07 7

2.2 dlpT

A dlpT program is a dlp program where (possibly negated) template atoms may appear in rules
and constraints. Definition of template atoms is next provided.

Definition 2.1 A template definition D consists of:

- a template header,

#template nD [f1(b1) , · · · , fn(bn)](bn+1)

where b1, . . . , bn+1 are (nonnegative) integer values, and f1, . . . , fn are predicate names (formal
predicates, from now on). nD is called template name;

- an associated dlpT subprogram enclosed in curly braces; nD may be used within the sub-
program as predicate of arity bn+1, whereas the predicates fi , . . . , fn are intended to be of
arity bi , . . . , bn , respectively. At least a rule having nD within its head must appear in the
subprogram.

Example 5 Beside the one introduced in Example 1, another valid template definition is the
following:

#template subset[p(1)](1)
{
subset(X) v -subset(X) :- p(X).
}

Intuitively, this defines a subset of the predicate ‘p’; such a subset is non-deterministically
chosen by means of disjunction.

Definition 2.2 A template atom t is of the form:

nt [p1(X1) , . . . , pn(Xn)](A)

where p1, . . . , pn are predicate names (namely, actual predicates), and nt is a template name.
Xi , . . . ,Xn are lists of special terms (referred in the following as special lists of terms), where A is
a list of standard terms.

A special term is either a standard term, or a dollar (‘$’) symbol (from now on, projection term)
or a star (‘*’) symbol (from now on, parameter term).

p1(Xi), . . . , pn(Xn) are called special atoms. A is called output list.
Given a template atom t , let D(t) be the corresponding template definition having the same

template name. It is assumed there is a unique definition for each template name.

Example 6 Some template atoms are

max[company($,State,*)](Income).
subset[node(*)](X).

8 INFSYS RR 1843-05-07

Template atoms may “instantiate” template definitions as many times as necessary.

Example 7 The following short piece of program contains multiple instantiation of the ‘max’
template, whose definition has been introduced in Example 1:

:- max[weight(*)](M), M > 100.
:- max[student(Sex,$,*)](M), M > 25.

Looking at Example 6 and Example 7, we can get some intuitions on (‘$’ and ‘*’ symbols).
Basically, projection terms (‘$’ symbols) are intended to indicate which attributes, among those
belonging to an actual predicate, have to be ignored. A standard term (a constant or a variable)
within an actual atom indicates a ‘group-by’ attribute, whereas parameter terms (‘*’ symbols)
indicate which attributes have to be considered as parameters.

Thus, the intuitive meaning of the first template atom of example 6 is to compute the companies
with the maximum value of the ‘income’ attribute (the third attribute of the company predicate),
grouped by the ‘state’ attribute (the second one), ignoring the first attribute. The computed values
of Income are returned through the output list.

Example 8 Given a database by means of facts like

emp companyA("Jones",30000,35,"Accounting").
[...]

emp companyB("Miller",34000,29,"Marketing").

the following single-rule program

emp companyAB(Name) :- intersection[emp companyA](*,$,$,$), emp companyB(*,$,$,$)](Name).

computes the employees working for both company A and company B. It exploits the template
‘intersection’, defined in Section 3, and again shows how ‘$’ and ‘*’ symbols can be used. The last
three attributes (name, salary, department) are thus ignored, by meaning of ‘$’ symbols, while the
first (name) is intended as parameter, by meaning of ‘*’ symbol.

3 Knowledge Representation by dlpT

In this section we show by examples the main advantages of template programming. Examples
point out the provision of a succinct, elegant and easy-to-use way for quickly introducing new
constructs through the dlpT language.

INFSYS RR 1843-05-07 9

Aggregates. Aggregate predicates [50], allow to represent properties over sets of elements. Ag-
gregates or similar special predicates have been already studied and implemented in several DLP
solvers [17; 53]: the next example shows how to fast prototype aggregate semantics without taking
into account of the efficiency of a built-in implementation. Here we take advantage of the template
predicate max, defined in Example 1. The next template predicate defines a general program to
count distinct values of a predicate p, given an order relation succ defined on the domain of p. We
assume the domain of integers is bounded to some finite value.

#template count[p(1),succ(2)](1)
{
partialCount(0,0).
partialCount(I,V) :- not p(Y), I=Y+1,

partialCount(Y,V).
partialCount(I,V2) :- p(Y), I=Y+1,

partialCount(Y,V), succ(V,V2).
partialCount(I,V2) :- p(Y),I=Y+1,

partialCount(Y,V), max[succ(*,$)](V2).
count(M) :- max[partialCount($,*)](M).
}

The above template definition is conceived in order to count, in a iterative-like way, values of
the p predicate through the partialCount predicate. A ground atom partialCount(i , a) means that
at the stage i , the constant a has been counted up. The predicate count takes the value which has
been counted at the highest (i.e. the last) stage value. The above program is somehow involved and
shows how difficult could be to simulate aggregate constructs in Disjunctive Logic Programming.
Anyway, the use of templates allows to write it once, and reuse it as many times as necessary.

It is worth noting how max is employed over the binary predicate partialCount, instead of an
unary one. Indeed, the ‘$’ and ‘*’ symbols are employed to project out the first argument of
partialCount. The last rule is equivalent to the piece of code:

partialCount’(X) :- partialCount(_,X).
count(M) :- max[partialCount’(*)](M).

Definition of ad hoc search spaces. Template definitions can be employed to introduce and
reuse constructs defining the most common search spaces. This improves declarativity of DLP
programs to a larger extent. The next two examples show how to define a predicate subset and
a predicate permutation, ranging, respectively, over subsets and permutations of the domain of a
given predicate p. Such kind of constructs enriching plain Datalog languages have been proposed,
for instance, in [36; 10].

10 INFSYS RR 1843-05-07

#template subset[p(1)](1)
{
subset(X) v -subset(X) :- p(X).
}

#template permutation[p(1)](2).
{
permutation(X,N) v npermutation(X,N) :- p(X),
#int(N), count[p(*),>(*,*)](N1), N<=N1.

:- permutation(X,A),permutation(Z,A), Z <> X.
:- permutation(X,A),permutation(X,B), A <> B.
covered(X) :- permutation(X,A).
:- p(X), not covered(X).
}

The explanation of the subset template predicate (already appeared in Example 5 is quite
straightforward. As for the permutation definition, a ground atom permutation(x , i) tells that the
element x (taken from the domain of p), is in position i within the currently guessed permutation.
The rest of the template subprogram forces permutations properties to be met.

Next we show how count and subset can be exploited to succinctly encode the k-clique problem
[31], i.e., given a graph G (represented by predicates node and edge), find if there exists a complete
subgraph containing at least k nodes (we consider here the 5-clique problem):

in_clique(X) :- subset[node(*)](X).
:- count[in_clique(*),>(*,*)](K), K < 5.
:- in_clique(X),in_clique(Y), X <> Y,
not edge(X,Y).

The first rule of this example guesses a clique from a subset of nodes. The first constraint forces
a candidate clique to be at least of 5 nodes, while the last forces a candidate clique to be strongly
connected. The permutation template can be employed, for instance, to encode the Hamiltonian
Path problem: given a graph G , find a path visiting each node of G exactly once:

path(X,N) :- permutation[node(*)](X,N).
:- path(X,M), path(Y,N), not edge(X,Y),
M = N+1.

The following any template may be employed in order to (non-deterministically) select exactly
one value from the domain of a predicate p. It is built on top of the subset predicate.

INFSYS RR 1843-05-07 11

#template any[p(1)](1)
{
any (X) :- subset[p(*)](X).
:- any(X), any(Y), X <> Y.
:- p(X), not any(X).
}

Handling of complex data structures. dlpT can be fruitfully employed to introduce opera-
tions over complex data structures, such as sets, dates, trees, etc.

Sets: Extending Datalog with Set programming is another matter of interest for the DLP field.
This topic has been already discussed (e.g. in [39; 35]), proposing some formalisms aiming at
introducing a suitable semantics with sets. It is fairly quick to introduce set primitives using dlpT ;
a set S is modeled through the domain of a given unary predicate s. Intuitive constructs like
intersection, union, or symmetricdifference, can be modeled as follows.

#template intersection[a(1),b(1)](1).
{
intersection (X) :- a(X),b(X).
}

#template union[a(1),b(1)](1).
{
union(X) :- a(X).
union(X) :- b(X).
}

#template symmetricdifference[a(1),b(1)](1)
{
symmetricdifference(X) :- union[a(*),b(*)](X),

not intersection[a(*),b(*)](X).
}

Dates: managing time and date data types is another important issue in engineering applications
of dlp. For instance, in [33], it is very important to reason on compound records containing date
values. The following template shows how to compare dates represented through a ternary relation
〈day, month, year〉.

#template before[date1(3),date2(3)](6)
{
before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D1,M1,Y1), Y<Y1.
before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D1,M1,Y1), Y==Y1, M<M1.
before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D,M1,Y1), Y==Y1,M==M1,D<D1.
}

12 INFSYS RR 1843-05-07

4 Semantics of the dlpT language

The semantics of the dlpT language is given through a suitable ‘‘explosion’’ algorithm. It is given a
dlpT program P . The aim of the Explode algorithm, introduced next, is to remove template atoms
from P . Each template atom t is replaced with a standard atom, referring to a fresh intensional
predicate pt . The subprogram dt , defining the predicate pt , is computed taking into account of
the template definition Def (t) associated to t . Actually, many template atoms may be grouped
and associated to the same subprogram. The concept of atom signature, introduced next, helps in
finding groups of equivalent template atoms. The final output of the algorithm is a dlp program
P ′. Stable models of the originating program P are constructed, by definition, from stable models
of P ′. Throughout this section, we will refer to Example 1 as running example. By little abuse
of notation, a ∈ P (resp. a ∈ r) means that the atom a appears in the program P (the rule r ,
respectively).

Definition 4.1 Given a template atom t , the corresponding template signature s(t) is obtained
from t by replacing each standard term with a conventional (mute variable) ‘ ’ symbol. Let
Def (s(t)) be the template definition associated to the signature s(t); Given a dlpT program
P , let At(P) be the set of template atoms occurring in P . Let Sig(At(P)) be the set of signatures
{s(t) : t ∈ At(P)}.

For instance, max[p(*,S,$)](M) and max[p(*,a, $)](H) have the same signature, namely
max[p(*, _,$)](_).

4.1 The Explode algorithm

The Explode algorithm (E in the following) is sketched in Figure 4.1. It is given a dlpTprogram
P and a set of template definitions T . The output of E is a dlp program P ′. E takes advantage of
a stack of signatures S , which contains the set of signatures to be processed; S is initially filled up
with each template signature occurring within P .

The purpose of the main loop of E is to iteratively apply the U (Unfold) operation to P , until
S is empty. Given a signature s, the U operation generates from the template definition Def (s) a
dlpT program P s which defines a fresh predicate ts , where t is the template name of s. Then, P s

is appended to P ; furthermore, each template atom a ∈ P , such that a has signature s, is replaced
with a suitable atom as(X′). It is important pointing out that, if P s contains template atoms, the
unfolding operation updates S with new template signatures.

We show next how P s is constructed and template atoms are removed.
Let the header of Def (s) be

#template t [f1(b1) , . . . , fn(bn)](bn+1)

Let s be of the form

t [p1(X1) , . . . , pn(Xn)](Xn+1)

Given a special list X of terms, let X[j] denote the j th term of X; let fr(X) be a list of |X| fresh
variables FX,1, . . . ,FX,|X|; let st(X), pr(X) and pa(X) be the sublist of (respectively) standard,
projection and parameter terms within X. Given two lists A and B, let A&B be the list obtained
appending B to A.

INFSYS RR 1843-05-07 13

Explode(Input: adlpT program P ,a set of
template definitions T .

Outputs: an updated version of P ′

of P in dlp form.
Data Structures: a queue S)

begin
put each s ∈ Sig(At(P)) in S ;
P ′ = P ;
while (S is not empty) do begin

extract a template signature s from S ;

//Start of the U (Unfold) operation;
construct P s (see Subsection 4.2),

then set P = P ∪ Ps ;
put all the s ′ ∈ Sig(At(P s)) in S ;

for each template atom a ∈ P
if a has signature s

construct the standard atom
as(X′) (see Subsection 4.3);

replace a with as(X′) in P ;
//End of the U operation;

end;
end.

Figure 1: The Explode (E) Algorithm

4.2 How P s is constructed.

The program P s is built in two steps. On the first step, P s is enriched with a set of rules, intended
in order to deal with projection variables.

For each pi ∈ s, we introduce a predicate ps
i and we enrich P s with the auxiliary rule ps

i (X′
i) ←

pi(X′′
i), where:
- X′′

i is built from Xi substituting pr(Xi) with fr(pr(Xi)), substituting pa(Xi) with fr(pa(Xi)),
and substituting st(Xi) with fr(st(Xi));

- X′
i is set to fr(st(Xi))&fr(pa(Xi)).

For instance, given the signature
s2 = max [student(,$, ∗)]()

and the example template definition given in Example 1, let L be the list 〈_,$,*〉; it is introduced
the rule:

students2(Fst(L),1,Fpa(L),1) : −student(Fst(L),1,Fpr(L),1,Fpa(L),1)·

Note that projection variables are filtered out from students . In the second step, for each rule
r belonging to D(s), we create an updated version r ′ to be put in P s , where each atom a ∈ r is
modified this way:

14 INFSYS RR 1843-05-07

- if a is fi(Y) where fi is a formal predicate, it is substituted with the atom ps
i (Y′). Y′ is set to

fr(st(Xi))&Y;
- if a is a either a standard (included atoms having t as predicate name) or a special atom

(in this latter case a occurs within a template atom) p(Y), it is substituted with an atom ps(Y′),
where

Yvect ′ = fr(st(X1))& . . . &fr(st(Xn))&Y·
Example 9 For instance, consider the rule

max (X) ← p(X),not exceeded(X)·
from Example 1, and the signature

s2 = max[student(_,$,*)](_);
let L be the special list 〈 , $, ∗〉; according to the steps introduced above, this rule is translated

to

max s2(FL,1,X) ←students2(FL,1,X),not exceeded s2(FL,1,X)·

4.3 How template atoms are replaced

Consider3 a template atom in the form
t [p1(X1) , . . . , pn(Xn)](Xn+1)·

It is substituted with
ts(X′)

where
X′ = st(X1)& . . .&st(Xn)&Y.

Example 10 The complete output of E on the constraint

← max [student(, $, ∗)](M),M > 25·

coupled with the template definition of max given in Example 1 is:

students2(S1,P1) ← student(S1, ,P1) ·
exceeded s2(FL,1,X) ← students2(FL,1,X), students2(FL,1,Y),Y > X ·

max s2(FL,1,X) ← students2(FL,1,X),not exceeded s2(FL,1,X) ·
← max s2(Sex ,M),M > 25·

We are now able to give the formal semantics of dlpT . It is important highlighting that stable
models of a dlpT program are, by definition, constructed in terms of stable models of an equivalent
dlp program.

Definition 4.2 Given a dlpT program P , and a set of template definitions T , let P ′ the output of
the Explode algorithm on input 〈P ,T 〉. Let H (P) be the Herbrand base of P ′ restricted to those
atoms having predicate name appearing in P . Given a stable model m ∈ M (P ′), then we define
H (P) ∩m as a stable model of P .

Note that the Herbrand base of a dlpT program is defined in terms of the Herbrand base of a dlp
program which is not the output of E .

3Depending on the form of D(s), some template atom might not to be allowed, since some atom with same
predicate name but with mismatched arities could be generated.

INFSYS RR 1843-05-07 15

Figure 2: Architecture of the dlpT compiler

5 Theoretical properties of dlpT

The explosion algorithm replaces template atoms from a dlpT program P , producing a dlp pro-
gram P ′. It is very important to investigate about two theoretical issues:

- Finding whether and when E terminates; in general, we observe that E might not terminate,
for instance, in case of recursive template definitions. Anyway, we prove that it can be decided in
polynomial time whether E terminates on a given input.

- Establishing whether dlpT programs are encoded as efficiently as dlp programs. In particular,
we are able to prove that P ′ is polynomially larger than P . Thus dlpT keeps the same expressive
power as dlp. This way, we are guaranteed that dlpT program encodings are as efficient as plain
dlp encodings, since unfolded programs are always reasonably larger with respect to the originating
program.

Definition 5.1 It is given a dlpT program P , and a set of template definitions T . The dependency
graph GT ,P = 〈V ,E 〉 of T and P is a graph encoding dependencies between template atoms and
template definitions. Each template definition t ∈ T will be represented by a corresponding node
vt of V . V contains a node vP associated to P as well. E will contain a direct edge (vt , vt ′) if
the template t contains a template atom referring to the template t ′ inside its subprogram (as for
the node referred to P , we consider the whole program P). Let GT ,P (u) ⊆ GT ,P be the subgraph
containing nodes and arcs of GT ,P reachable from u.

Lemma 1 It is given a dlpT program P , and a set of template definitions T . Let vP the node of
GT ,P corresponding to P . If GT ,P (vP) is acyclic then E terminates whenever applied to P and T .

Proof. We assume GT ,P (vP) = 〈N ,E 〉 is acyclic. we can state a partial ordering À between its
nodes, such that for each v , v ′ ∈ N , v À v ′ iff either (v , v ′) ∈ E or there is a v ′′ such that v À v ′′

and v ′′ À v .
We can build a total ordering Â by extending À in a way that, whenever neither v À v ′ nor

v À v ′ holds, it is chosen appropriately whether v Â v ′ or v ′ Â v holds. This can be done, for
instance, by performing an in-depth visit of GT ,P (vP) and taking the resulting order of visit.

Let level(v) be defined as follows:

• level(v) = 0 if there is no v ′ such that v ′ Â v ;

• for i > 0, level(v) = i if i is the maximum value such that there is a v ′ such that level(v ′) =
i − 1 and v Â v ′.

Note that level(v) > level(v ′) iff v Â v ′.
Given a queue S of signatures, let level(S) be maxDef (s)|s∈S level(vDef (s)).

16 INFSYS RR 1843-05-07

We will assume S is managed as a priority queue such that an element s ∈ S having better
value of level(vDef (s)) is extracted first4.

Note that E has a main loop where at each iteration a signature s is popped from S , whereas a
new set of signatures S ′ is put in S . A new signature s ′ ∈ S ′ can be put on S iff Def (s) Â Def (s ′).
This means that level(S) is non-increasing from one iteration to another.

level(S) can stay unchanged from one iteration i to the next iteration i +1 only if there is some
s ′ such that Def (s) = Def (s ′) still in S at the beginning of iteration i +1. But, in this case, during
iteration i + 1, the cardinality of the set {s ′ s.t.Def (s) = Def (s ′)} is decreased by 1, since a new
signature referring to the same template definition (and having same level) will be extracted from
S .

Thus, there exists an iteration j , such that the difference j − i has a maximum value bounded
by |{s ′ s.t.Def (s) = Def (s ′)}|, where s is the signature extracted at iteration i .

E will terminate once level(S) is 0 and S is emptied up. 2

Theorem 11 It is given a dlpT program P , and a set of template definitions T . It can be decided
in polynomial time whether E terminates when P and T are taken as input.

Proof. We observe that GT ,P can be built in polynomial time. By Lemma 1 we can show that
E terminates if GT ,P (uP) is acyclic. Vice versa E does not terminate if we assume there is a cycle
in GT ,P (uP).

In order to show this, assume there is a cycle C = {ut0 , ut1 , . . . , utk , ut0}, with k ≥ 0 in
GT ,P (uP) = 〈N ,E 〉.

Since any node of N is reachable from uP , we can assume that E either loops infinitely or does
not terminate until some node ut such that (ut , ut0) ∈ E is reached, i.e. until E does not enters C
or a similar cycle. This means that E will extract, during some iteration j , a signature s, such that
Def (s) = t , from S , and then at least one s ′ such that Def (s ′) = t0 and s ′ ∈ Sig(At(P s)) is added
to S .

We can prove that starting from the iteration j there is no iteration j ′ > j such that S = ∅ at
its beginning. j ′ can exist only if at the iteration j ′− 1 a remaining signature slast is extracted and
nothing else is added to S . Define SC as the set of signatures such that Def (s) ∈ {t0, . . . , tk}, that
is, SC is the set of signatures corresponding to nodes appearing in C . slast cannot be member of
SC , because, in this case, an slast will generate new signatures to be added in S . However, once C
is reached, S will always contain, at the beginning of any iteration j ′ > j , at least one element of
SC . Indeed, it cannot be avoided that once an element s ′ ∈ SC is extracted, new elements of SC

are inserted during the iteration j ′. 2

Definition 5.2 A set of template definitions T is said nonrecursive if for any dlpT program P ,
the subgraph GT ,P (vP) is acyclic.

It is useful to deal with nonrecursive sets of template definitions, since they may be safely
employed with any program. Checking whether a set of template definitions is nonrecursive is
quite easy.

4Although this assumption can be relaxed, we prefer to introduce it in order to keep the line of reasoning of this
proof clearer.

INFSYS RR 1843-05-07 17

Proposition 1 A set of template definitions T is nonrecursive iff GT ,∅ is acyclic.

Proposition 2 Given a dlpT program P and a nonrecursive set of template definitions T , the
number of arcs of GT ,P (uP) is bounded by the overall size of T and P , i.e., it is O(|T |+ |P |).

Theorem 12 Given a dlpT program P and a nonrecursive set of template definitions T , the
output P ′ of E on input 〈P ,T 〉 is polynomially larger than P and T .

Proof. We first observe that each execution of U adds to P a number of rules (or constraints)
whose overall size is clearly bounded by the size of T (see Figure 4.1). According to Lemma 1, if
T is nonrecursive, the number of U operations carried out by E is bounded by the maximum level
l (bounded by the number of nodes of GT ,P (uP), and thus by the size of T) which can be assigned
to a node of GT ,P (uP), times the number of different template atoms that occur in P and T . Thus,
the size of P ′ is O(|T |2(|T |+ |P |)). 2

In [16] it’s proved that plain dlp programs (under the brave reasoning semantics) entirely
capture the complexity class ΣP

2 . This bounds the expressive power of dlpT , too. Indeed, as
previously shown, dlpT programs may allow to express more succinct encodings of problems,
w.r.t. dlp; but, despite this, the expressive power is not increased, accordingly to the following
Corollary.

Corollary 1 dlpT has the same expressive power as dlp.

Proof. The result is straightforward. Theorem 12 showed as unfolded dlp programs produced
as the output of E are polynomially larger than the input programs. In addition, dlpT semantics is
defined in terms of the equivalent, unfolded, dlp program. Thus, dlpT has the same expressiveness
properties as dlp. 2

6 System architecture and usage

The dlpT language has been implemented on top of the dlv system [27; 28; 29]. The current
version of the language is available through the dlpT Web page [12]. The overall architecture of
the system is shown in Figure 2.

The dlpT system work-flow can be described as follows.
A dlpT program is sent to a dlpT pre-parser, which performs syntactic checks (included non-

recursivity checks), and builds an internal representation of the dlpT program. The dlpT Inflater
performs the Explode Algorithm and produces an equivalent dlv program P ′; P ′ is piped towards
the dlv system. The models M (P ′) of P ′, computed by dlv, are then converted in a readable
format through the Post-parser module; the Post-parser filters out from M (P ′) informations about
internally generated predicates and rules.

The system introduces also some useful features in order to ease programming. For instance,
the possibility to define some predicates as ‘global’, just specifying them in the template definition.

#template nD [f1(b1) , · · · , fn(bn)](bn+1)
GLOBAL g1 , · · · , gm

18 INFSYS RR 1843-05-07

where g1, · · ·, gm is a list of predicate symbols defined as global. This introduces the notion of
scope. The notion is similar to traditional imperative languages, such as C++, where it is possible
to mask global variables. Intuitively, the meaning of the local predicates results from the rules
defined within the template body, while the meaning of the global predicates results from the rules
belonging to the general program. We refer to function scope in the former case, and program
scope in the latter.

Example 13 In this template definition, node is a global predicate, while coloring is local, and
arc is an argument.

#template coloring[arc(2)](2) GLOBAL node
{
coloring(Country, red) v
coloring(Country, green) v
coloring(Country, blue) :- node(Country).

:- arc(Country1, Country2),
coloring(Country1, CommonColor),
coloring(Country2, CommonColor).

}

7 Conclusions

In this paper we have addressed some lacks of dlp, namely code reusability and modularity. We
have presented the dlpT language, an extension of DLP allowing to define template predicates.

The proposed language is very promising; the future work will have as objectives:

• introducing a clearer model theoretic semantic and prove its equivalence with the current
operational semantics;

• generalizing template semantics in order to allow safe and meaningful forms of recursion
between template definitions;

• introducing new forms of template atoms in order to improve reusability of the same template
definition in different contexts;

• prove the formal equivalence of dlt sub-programs with semantics for aggregate constructs
such as in [11];

• extending the template definition language using standard languages such as C++, such as in
[26];

• consider program equivalence results [23] in order to optimize the size of unfolded programs.

The dlpT system prototype is available at
http://dlt.gibbi.com.

INFSYS RR 1843-05-07 19

References

[1] ICONS homepage, since 2001. http://www.icons.rodan.pl/.

[2] C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for Non-Monotonic Reasoning. In
T. Eiter, W. Faber, and M. Truszczyński, editors, Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria, September 2001,
Proceedings, number 2173 in Lecture Notes in AI (LNAI), pages 406–410. Springer Verlag,
September 2001.

[3] K. Apt and N. Bol. Logic Programming and Negation: A Survey. Journal of Logic Program-
ming, 19/20:9–71, 1994.

[4] C. Aravindan, J. Dix, and I. Niemelä. DisLoP: A Research Project on Disjunctive Logic Pro-
gramming. AI Communications – The European Journal on Artificial Intelligence, 10(3/4):151–
165, 1997.

[5] Y. Babovich. Cmodels homepage, since 2002. http://www.cs.utexas.edu/users/tag/cmodels.html.

[6] C. Bell, A. Nerode, R. T. Ng, and V. Subrahmanian. Mixed Integer Programming Methods
for Computing Nonmonotonic Deductive Databases. Journal of the ACM, 41:1178–1215, 1994.

[7] F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog by Constraints. IEEE
Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.

[8] M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journal of Logic
Programming, 19/20:443–502, 1994.

[9] M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An Executable Specification
Language for Solving all Problems in NP. In G. Gupta, editor, Proceedings of the 1st Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’99), number 1551
in Lecture Notes in Computer Science, pages 16–30. Springer, 1999.

[10] M. Cadoli and A. Schaerf. Compiling Problem Specifications into SAT. In ESOP, pages
387–401, 2001.

[11] F. Calimeri, W. Faber, N. Leone, and S. Perri. Declarative and Computational Properties of
Logic Programs with Aggregates. In Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05), pages 406–411, Aug. 2005.

[12] F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. C. Santoro. The DLPT homepage,
since 2003. http://dlpt.gibbi.com/.

[13] W. Chen and D. S. Warren. Computation of Stable Models and Its Integration with Logical
Query Processing. IEEE Transactions on Knowledge and Data Engineering, 8(5):742–757,
1996.

[14] P. Cholewiński, V. W. Marek, A. Mikitiuk, and M. Truszczyński. Computing with Default
Logic. Artificial Intelligence, 112(2–3):105–147, 1999.

20 INFSYS RR 1843-05-07

[15] P. Cholewiński, V. W. Marek, and M. Truszczyński. Default Reasoning System DeReS. In
Proceedings of International Conference on Principles of Knowledge Representation and Rea-
soning (KR ’96), pages 518–528, Cambridge, Massachusetts, USA, 1996. Morgan Kaufmann
Publishers.

[16] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys, 33(3):374–425, 2001.

[17] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in Disjunctive
Logic Programming: Semantics, Complexity, and Implementation in DLV. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI) 2003, pages 847–852,
Acapulco, Mexico, Aug. 2003. Morgan Kaufmann Publishers.

[18] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An Overview.
In Logic, Action and Information. Proceedings of the Konstanz Colloquium in Logic and
Information (LogIn’92), pages 241–329. DeGruyter, 1995.

[19] D. East and M. Truszczyński. dcs: An Implementation of DATALOG with Constraints. In
C. Baral and M. Truszczyński, editors, Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning (NMR’2000), Breckenridge, Colorado, USA, April 2000.

[20] D. East and M. Truszczyński. Propositional Satisfiability in Answer-set Programming. In
Proceedings of Joint German/Austrian Conference on Artificial Intelligence, KI’2001, pages
138–153. Springer Verlag, LNAI 2174, 2001.

[21] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI’00), July 30 – August 3, 2000, Austin, Texas USA, pages 417–
422. AAAI Press / MIT Press, 2000.

[22] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV Sys-
tem. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic
Publishers, 2000.

[23] T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under uniform
and strong equivalence. In V. Lifschitz and I. Niemelä, editors, Proceedings of the Seventh
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-7),
number 2923 in Lecture Notes in AI (LNAI), pages 87–99, Fort Lauderdale, Florida, USA,
Jan. 2004. Springer.

[24] T. Eiter, G. Gottlob, and N. Leone. Abduction from Logic Programs: Semantics and Com-
plexity. Theoretical Computer Science, 189(1–2):129–177, December 1997.

[25] T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers.
In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-97), number 1265 in LNCS,
pages 290–309. Springer, 1997.

INFSYS RR 1843-05-07 21

[26] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In International Joint
Conference on Artificial Intelligence (IJCAI) 2005, pages 90–96, Edinburgh, UK, Aug. 2005.

[27] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization Techniques for
Nonmonotonic Reasoning. In INAP Organizing Committee, editor, Proceedings of the 7th
International Workshop on Deductive Databases and Logic Programming (DDLP’99), pages
135–139. Prolog Association of Japan, September 1999.

[28] W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for Answer Set Pro-
gramming. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI) 2001, pages 635–640, Seattle, WA, USA, Aug. 2001. Morgan Kaufmann
Publishers.

[29] W. Faber and G. Pfeifer. DLV homepage, since 1996. http://www.dlvsystem.com/.

[30] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. Journal of the Theory
and Practice of Logic Programming, 5(1–2):45–74, 2005.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[32] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9:365–385, 1991.

[33] G. Ianni, G. Ielpa, A. Pietramala, and M. C. Santoro. Answer Set Programming with Tem-
plates. In M. de Vos and A. Provetti, editors, Proceedings ASP03 - Answer Set Programming:
Advances in Theory and Implementation, pages 239–252, Messina, Italy, Sept. 2003. Online
at http://CEUR-WS.org/Vol-78/.

[34] T. Janhunen and I. Niemelä. Gnt - a solver for disjunctive logic programs. In V. Lifschitz and
I. Niemelä, editors, Proceedings of the Seventh International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR-7), number 2923 in Lecture Notes in AI (LNAI), pages
331–335, Fort Lauderdale, Florida, USA, Jan. 2004. Springer.

[35] G. M. Kuper. Logic programming with sets. Journal of Computer and System Sciences,
41(1):44–64, 1990.

[36] E. Laenens, D. Saccà, and D. Vermeir. Extending Logic Programming. In SIGMOD Confer-
ence, pages 184–193, 1990.

[37] N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, M. Fink, G. Greco, G. Ianni, E. KaÃlka,
D. Lembo, M. Lenzerini, V. Lio, B. Nowicki, M. Ruzzi, W. Staniszkis, and G. Terracina.
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), pages 915–917, Baltimore, Maryland, USA, June 2005. ACM Press.

[38] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic, 2005. To appear. Available via http://www.arxiv.org/ps/cs.AI/0211004.

22 INFSYS RR 1843-05-07

[39] N. Leone and P. Rullo. Ordered Logic Programming with Sets. Journal of Logic and Compu-
tation, 3(6), December 1993.

[40] Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. In C. Baral, G. Greco,
N. Leone, and G. Terracina, editors, Proceedings of the 8th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR’05), LNCS, pages 447–451. Springer,
Sept. 2005.

[41] Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-
tight Programs. In V. Lifschitz and I. Niemelä, editors, Proceedings of the 7th International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7), LNCS, pages
346–350. Springer, Jan. 2004.

[42] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[43] V. W. Marek and J. B. Remmel. On Logic Programs with Cardinality Constraints. In S. Ben-
ferhat and E. Giunchiglia, editors, Proceedings of the 9th International Workshop on Non-
Monotonic Reasoning (NMR’2002), pages 219–228, Toulouse, France, April 2002.

[44] N. McCain and H. Turner. Satisfiability Planning with Causal Theories. In A. G. Cohn,
L. Schubert, and S. C. Shapiro, editors, Proceedings Sixth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’98), pages 212–223. Morgan Kaufmann
Publishers, 1998.

[45] I. Niemelä. Logic Programming with Stable Model Semantics as Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.

[46] I. Niemelä, P. Simons, and T. Soininen. Stable Model Semantics of Weight Constraint Rules. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), number 1730 in Lecture
Notes in AI (LNAI), pages 107–116, El Paso, Texas, USA, December 1999. Springer Verlag.

[47] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A System for Answer Set Programming.
In C. Baral and M. Truszczyński, editors, Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning (NMR’2000), Breckenridge, Colorado, USA, April 2000.

[48] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog Decision
Support System for the Space Shuttle. In I. Ramakrishnan, editor, Practical Aspects of Declar-
ative Languages, Third International Symposium (PADL 2001), number 1990 in Lecture Notes
in Computer Science, pages 169–183. Springer, 2001.

[49] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System for Efficiently
Computing Well-Founded Semantics. In J. Dix, U. Furbach, and A. Nerode, editors, Proceed-
ings of the 4th International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’97), number 1265 in Lecture Notes in AI (LNAI), pages 2–17, Dagstuhl, Germany,
July 1997. Springer Verlag.

[50] K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases. Journal of Computer
and System Sciences, 54(1):79–97, Feb. 1997.

INFSYS RR 1843-05-07 23

[51] D. Seipel and H. Thöne. DisLog – A System for Reasoning in Disjunctive Deductive Data-
bases. In A. Olivé, editor, Proceedings International Workshop on the Deductive Approach
to Information Systems and Databases (DAISD’94), pages 325–343. Universitat Politecnica de
Catalunya (UPC), 1994.

[52] P. Simons. Extending the Stable Model Semantics with More Expressive Rules. In M. Gelfond,
N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’99), number 1730 in Lecture Notes in
AI (LNAI), pages 305–316, El Paso, Texas, USA, December 1999. Springer Verlag.

[53] P. Simons. Extending and Implementing the Stable Model Semantics. PhD thesis, Helsinki
University of Technology, Finland, 2000.

[54] V. Subrahmanian, D. Nau, and C. Vago. WFS + Branch and Bound = Stable Models. IEEE
Transactions on Knowledge and Data Engineering, 7(3):362–377, June 1995.

