
Error Classification in Action Descriptions: A Heuristic Approach

Thomas Eiter and Michael Fink and Ján Senko
Institut für Informationssysteme, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria.
Email: {eiter, fink, senko}@kr.tuwien.ac.at

Abstract

Action languages allow to formally represent and reason
about actions in a highly declarative manner. In recent work,
revision and management of conflicts for domain descriptions
in such languages wrt. semantic integrity constraints have
been considered, in particular their reconciliation. However,
merely ad hoc tests and methods have been presented to aid
the user in analyzing and correcting a flawed description. We
go beyond this and present a methodology on top of such tests
for identifying a possible error, which works in several stages.
The issue of such a methodology for action languages is novel
and has not been addressed before, but is important for build-
ing tools and engineering action descriptions in practice.

Introduction

Action languages (Gelfond & Lifschitz 1998) are a tool
to formally represent and reason about actions in a highly
declarative manner. Action domain descriptions comprise
statements about actions and their effects, and have a well-
defined meaning in terms of transition diagrams, which are
directed graphs whose nodes correspond to states and whose
edges correspond to transitions caused by occurrences and
non-occurrences of actions. This can be exploited to solve
various reasoning problems, including planning, temporal
projection, etc. and has been successfully applied in vari-
ous areas, e.g. (Grell et al. 2006; Watson & Chintabathina
2003; Zepeda et al. 2005).

Table 1 shows a formalization of the well-known Yale
Shooting (YS) in the action language C; the corresponding
transition diagram is shown in Figure 1. The agent can take
the actions load and shoot , which affect fluents loaded and
alive, where the latter is about the status of a turkey on the
scene. The statements i1 – i4 say that the fluents are inertial,
i.e., their values stay the same unless there is a reason for
change. The statements d1 – d4 state the action effects.1

Besides the action description, a set of conditions (axioms
or observations) represented in an action query language
(Gelfond & Lifschitz 1998) might provide further knowl-
edge. For example, the condition

possibly ¬alive after shoot ,¬load if loaded . (1)

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This encoding disregards False in heads of causal laws.

i1 : inertial alive. i2 : inertial ¬alive.
i3 : inertial loaded . i4 : inertial ¬loaded .

d1 : caused loaded after load .
d2 : caused ¬alive after load , shoot .
d3 : caused ¬loaded after shoot .
d4 : caused loaded after ¬loaded , shoot .

Table 1: Formalization of the Yale Shooting.

expresses that, after simply shooting when the gun is loaded,
the turkey may be dead. However, while desired, the formal-
ization in Table 1 does not fulfill it; in fact, there is no such
transition from the state s1 = {loaded , alive} by taking the
action shoot ; the formalization is flawed and must be fixed.

In (Eiter et al. 2006a), revision of an action description
D with respect to a set of conditions Q has been studied,
which can be used to reconcile D and Q by changing the
former in case of a conflict as above. To this end, a suite of
test queries has been described which the user may ask to get
useful information aboutD, in terms of states and transitions
involving violations, which might help her to get an idea
about what is wrong with D; Eiter et al. (2006b) elaborate
on this, describing an implementation. In our example, a test
T4 for underspecified fluents wrt. condition (1) would reveal
that at the state s1, the fluent value ¬alive is not (as desired)
caused by the action shoot ; in fact, the dynamic law d2 is
flawed since load should be actually loaded .

While the above works were important steps, they did not
address the crucial issue of how to use the tests in order to
single out possible errors in the description in a systematic
way. That is, a methodology to identify possible errors was
completely missing; without it, a non-expert user likely fol-
lows a time consuming trial and error strategy for repair, and
the underlying reason of error may remain opaque.

In this paper, we tackle this non-trivial problem and pro-
vide such a methodology, which comprises three subsequent
stages: forming error assumptions by analyzing the emerg-
ing conflicts; confirming the assumptions based on plausi-
bility; and localizing the error by narrowing down the part
of D in which it presumably occurs.

The methodology uses a heuristics that is based on both
analytic and empirical elements, and has been tested in a
number of experiments on different domains. An important
component is a taxonomy of error types referring to prop-
erties of actions, fluents, and domains in general, which is

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

905

{}, {load}

{load}

{load}

{shoot}

{shoot}

{}

{}

{}, {load}

¬alive

loaded

loaded

alive alive

¬loaded

¬loaded

¬alive

s1

s3

s2

s4

Figure 1: Transition diagram of the Yale Shooting.

of independent interest. The experiments showed that by us-
ing the methodology, a correct error assumption was reliably
found and the error tracked down to a small part of a larger
action description.

Our work contributes to tools and methods which are
needed to bring action languages from theory to practice. To
our knowledge, a methodology for finding errors in an action
description has not been addressed before, and is novel.

Preliminaries

Action descriptions. We consider action descriptions in a
fragment of the action description language C (Giunchiglia
& Lifschitz 1998) that consists of expressions termed causal
laws which are distinguished into static laws

caused l if c, (2)

where l is a fluent literal or False, and c is a propositional
combination of fluent names; and dynamic laws of the form

caused l if c after p, (3)

where l and c are as above, and p is a propositional com-
bination of fluent names and action names (basic actions).
In causal laws the if part can be dropped if c is True.2 An
action description is a set of causal laws.

For instance, the Yale Shooting described in the introduc-
tion can be represented by the causal laws in Table 1. It also
includes laws of inertia inertial l, which we use as an abbre-
viation for the dynamic causal law caused l if l after l.

The meaning of such an action description,D, can be rep-
resented by a transition diagram, T (D)—a directed graph
whose nodes correspond to the states of the world, S(D),
and the edges to the transitions, R(D), describing action oc-
currences; Figure 1 shows an example.3

Intuitively, states are given by total interpretations of the
fluent names that satisfy all static laws. Transitions are
triples 〈s,A, s′〉, where s and s′ are states and A is an ac-
tion (i.e., a total interpretation of action names) such that s′

is the only interpretation satisfying the heads l of all appli-
cable causal laws (i.e., if s ∪A |= p and/or s′ |= c).

Conditions. We consider the problem of revising action
descriptions in the presence of conflicts between the action
description and a set of conditions (axioms or observations)
represented in an action query language (Gelfond & Lifs-
chitz 1998). For expressing these conditions, we consider

2
True (False) is the empty conjunction (resp. disjunction).

3Potential transitions may be missing because of inconsistency,
e.g., any transition with A = {load , shoot} due to d1 and d3.

possibility and necessity queries of the respective form

possibly ψ after A if φ (4)

necessarily ψ after A if φ (5)

where φ and ψ are propositional combinations of fluent
names, and A is an action.

For instance, shooting the loaded gun may lead to a state
where the turkey is dead is expressed by the possibility
query (1), whereas the fact that one cannot load and shoot
at the same time is expressed as:

necessarily False after shoot , load . (6)

Intuitively, possibility conditions are violated at states (that
satisfy φ) by missing transitions (with action A to a state s′

that satisfies ψ). Necessity queries are violated by existing
transitions (〈s,A, s′〉 such that s |= φ but s′ 6|= ψ).

In general, if there is a conflict between an action descrip-
tion and a condition, then it is difficult to formalize the pro-
cess of arriving at appealing “repairs”, which often depends
on additional knowledge or intuitions of the designer. We
aim at supporting a designer in conflict analysis by employ-
ing AD-Query4 (Eiter et al. 2006b), a tool that allows a user
to issue a number of relevant tests on an action description
in the fragment of C we consider and its associated transi-
tion diagram in the presence of conditions. The tool com-
putes answers to these tests by answer-set programming,
in particular using disjunctive logic programming (DLP)—
disjunction is actually needed due to Σp

2
-completeness of

most of the tests (Eiter et al. 2006a).

Tests. The tests a designer can issue by this tool, resem-
ble questions about a set of conditions (queries), Q, and D,
respectively T (D), as in (Eiter et al. 2006a). They focus
on dynamic aspects, i.e., S(D) is assumed to be correct and
hence static laws need not be considered. The tool allows for
partial actions (i.e, a partial interpretation of action names)
in queries. Such a query represents the set of queries ob-
tained by replacement with any compatible action (comple-
tion to a total interpretation). We assume that Q is not con-
tradictory and give an informal summary of the tests that we
use in this paper. For further details, see (Eiter et al. 2006a).

To better understand the reasons for conflicts, a designer
may want to extract information from T (D), e.g., informa-
tion about states, respectively transitions, violating a query
q in Q, or information about candidates for transitions, that
do not constitute transitions due to under-specification (i.e.,
not every fluent is causally explained):

T1: Which states of T (D) that satisfy a given formula φ,
violate q?

T2: Given formulas ψ and φ, which transitions 〈s,A, s′〉 of
T (D) such that s satisfies φ and s′ satisfies ψ, violate q?

T3: Given a literal L, for every state s of T (D) such that
s satisfies φ, is there some under-specified transition candi-
date tc = 〈s,A, s′〉 for D such that s′ satisfies ψ ∧L and L
is under-specified relative to tc?

4www.kr.tuwien.ac.at/research/ad-query

906

D Domain Properties X Action Executability

D.1 Concurrency X.1 Concurrency

D.2 Event-driven X.2 Precondition

D.3 Time-driven X.3 Unconditional NC

X.4 Conditional NC

X.5 General

F Fluent Properties E Action Effects

F.1 Inertia E.1 Deterministic

F.2 Persistency E.2 Non-deterministic

Table 2: Classification of errors.

T4: Which transition candidates tc = 〈s,A, s′〉 for D such
that s satisfies φ and s′ satisfies ψ are under-specified?

Example 1 Test T1 reveals for the Yale Shooting in Table 1,
that the condition (1) is violated at state s1. A further test T4
exhibits that the transition 〈s1, {shoot ,¬load}, s4〉 is under-
specified with ¬alive as underspecified fluent. 2

Our aim is to provide a methodology of applying these
tests in order to reveal possible causes of conflicts, i.e., to
classify an error in order to assist the designer localizing it.

Error Heuristics
We propose a heuristic methodology that supports the de-
signer of an action description in conflict analysis and error
classification. It comprises three tasks at subsequent stages:

Error Assessment: Conflicts between an action descrip-
tion and corresponding conditions that are not satisfied
(observations) are analyzed, yielding an assumption about
the type of the present error.

Assumption Confirmation: An assumption on the error
type is checked for plausibility and confirmed or rejected.

Error Localization: The set of causal laws that is respon-
sible for an error of particular type is narrowed down.

Note that these tasks might be carried out iteratively.
Starting with the most likely error assumption obtained dur-
ing error assessment, one might first check whether it is con-
firmed. If this is not the case, one may return to error assess-
ment in order to obtain the next plausible error assumption
and proceed with its confirmation. A designer may also skip
the error assessment step, if she already suspects that a par-
ticular type of error is present due to her knowledge about
the semantic meaning of the violated conditions.

In this paper, we focus on settings with a single error in
an action description. We do this for both ground and non-
ground action descriptions; for the latter, this amounts to
multiple correlated errors at the ground level.

Error Types

By an error, we understand a causal law in the action de-
scription that does not fulfill its intended meaning which ex-
hibits itself in the violation of some condition(s). Accord-
ing to a law’s purpose, this may affect different aspects of
the domain description serving as top-level error categories.
They are further divided into the error types in Table 2.

Some errors may lead to a violation of general properties
of the represented action domain, like whether basic actions

may be executed concurrently or not (D.1). In some do-
mains, state transitions may occur only if some basic action
takes place, i.e., transitions with the ’empty action’ A = ∅
(all action names are assigned false) are not allowed. We call
such domains event-driven (D.2) as opposed to time-driven
domains (D.3), which allow for transitions by ∅.

Sometimes an error causes a dynamic fluent property to
be broken. A well-known important such property is inertia
(F.1). In addition, we consider truth-value persistency, i.e.,
a fluent does not change its value anymore.

A next error category concerns action executability (X.5).
It is refined into cases where, while concurrency is generally
allowed, a particular action is not concurrently executable
with another one (X.1); and where the preconditions for ex-
ecution are violated (X.2). They are further specialized into
the case of a non-concurrent (NC) basic action that should
be unconditionally executable (X.3), respectively a condi-
tionally executable non-concurrent basic action (X.4).

Finally, the (direct or indirect) effects of certain actions
may be unintended. Special cases are if the action effect is
deterministic (E.1) or non-deterministic (E.2).

Stage 1: Error Assessment

In this section, our goal is to identify an assumption on the
type of error present in a given action description A that
violates a given set of conditions Q (axioms expressed as
queries). We first focus on the case of a single violated con-
dition and later extend the heuristics towards determining
prioritized error assumptions in case of multiple violations.

The main problem is to match an arbitrary violated con-
dition to a type of error. In other words, we assume an unin-
formed user, who has no (or not enough) knowledge about
the semantic properties expressed by the conditions (sup-
pose she is not the designer of the action description) in or-
der to come up with an assumption of the type of error.

We proceed by an analysis of the broken conditions. To
this end, we identify conditions of four types:

C1: Conditions necessarily False after . . .

C2: Conditions possibly True after . . .

C3: Conditions necessarily ψ after . . .

C4: Conditions possibly ψ after . . .

In a first step, we need to know which conditions are vi-
olated. Hence, the user runs the test T1 for each possibility
query in Q and test T2 for each necessity query in Q.

Violations of C4 conditions may be trivial (if no successor
state exists) or non-trivial. To distinguish, we consider in ad-
dition the violations of the corresponding C2 condition, i.e.,
the condition where the head ψ is replaced with True. Thus,
only the non-trivial violations of the original conditions will
be taken into account as violations of a C4 condition.

The output of these tests is a list of violated conditions and
the list of states and transitions violating these queries. This
information is used to pinpoint a most likely error assump-
tion as follows. We start with a single violated condition.

Violation of a condition by a transition 〈s, ∅, s′〉, i.e., with
an empty action, that is legal. In this case, the error is usu-
ally w.r.t. some general fluent property (F). In case of a vi-
olated possibility query, the user may run test T4 to find out

907

whether the query failed due to underspecification. In this
case, the error is most likely wrt. inertia (F.1) concerning the
underspecified fluent reported by test T4. In case of no or
multiple underspecified fluents, further domain knowledge
is needed for a more detailed assumption.

Justification: In a time-driven domain, we can first focus
on transitions 〈s, ∅, s′〉. If such a transition violates a condi-
tion, we can eliminate action executability and action effects
as possible culprits, and what remains are errors with respect
to dynamic fluent properties such as, e.g., inertia.

Violation of a C1 condition. There usually is an error with
respect to action executability (X). More specifically, it ei-
ther concerns concurrency (X.1) if there is just an action
condition in the after-part of the condition, otherwise it con-
cerns (non-) executability preconditions (X.2).

Justification: A condition of this type specifies that for
particular states, there should not be a transition by certain
actions. If this is violated, an action is executable while the
condition requires its non-executability.

Violation of a C2 condition. The error is most likely
wrt. action executability (X). If the condition is on a basic
action with no fluents in the after-part, then it concerns an
unconditional non-concurrent action (X.3). In case of fluents
in the after-part, it is wrt. a conditional non-concurrent ac-
tion (X.4); in the general case, the action is not basic (X.5).

Justification: Dual to a C1 condition, a C2 condition re-
quests that in each state satisfying the precondition, a transi-
tion by the respective action exists. Hence, in case of failure
certain actions are not executable, while they should be so.

Violation of a C3 or C4 condition. The error is with respect
to action effects (E). If the violated condition is a necessity
query, then the error concerns a deterministic action effect
(E.1), otherwise the effect need not be deterministic and is
classified as non-deterministic action effect (E.2).

Justification: A violation of a C3 respectively C4 condi-
tion occurs if a transition exists that satisfies the given pre-
conditions, but leads to a state where ψ is false, respectively
if no transition satisfying the preconditions to a state exists
where ψ is true. Hence, C3 and C4 encode an expected ac-
tion effect which is not observed in case of violation.

Example 2 In our running example, to determine whether
the violation of (1) is trivial, we check for violations of the
query with ¬alive replaced with True. This query does not
fail, however, since there is a compatible transition to s2.
Hence, we observe a C4 violation and assume an error with
a (potentially) non-deterministic action effect (E.2). 2

Heuristics for multiple violations. In reality, even a sin-
gle error in the action description usually leads to violation
of multiple conditions. In this case, we suggest a heuristic
ranking of the error assumptions to identify the most likely
culprit, which has been singled out in extensive experiments.

1. Errors assumptions due to a violation of any condition
w.r.t. the empty action. They are most frequently correct,
and ranked top since violations involving A = ∅ can not
be fixed by repairing violations by non-empty actions.

2. Error assumptions due to violations of C3 and C4 condi-
tions. They correspond to action effect errors (E). If a sin-
gle error manifests itself by violations of both action ef-
fects (E) and action executability (X), an error assumption
wrt. the former is ranked higher, for the following reason.
An error concerning executability may mean that at some
states, there is no compatible successor state. This cannot
cause action effect violations as described by necessity
queries, since they deal with existing transitions only. In
case of an error wrt. action effects, however, some transi-
tions may need to be removed since they cause inconsis-
tency (which in turn may cause executability violations).

3. Error assumptions due to violations of C2 conditions.
They indicate an error wrt. action executability, which is
the most likely in absence of assumptions at rank 1 and 2.

4. Error assumptions due to violations of C1 conditions.
These conditions encode non-executability for some ac-
tions. They are ranked last due to empirical evidence. The
respective error assumptions were seldom appropriate.

Example 3 Consider another representation of the Yale
Shooting, where the causal laws d2 and d3 in Table 1 are
replaced by the respective laws

d′
2

: caused ¬alive after shoot , loaded
d′
3

: caused ¬loaded after ¬shoot

Then, not only the C1 condition (6) fails (e.g., 〈s1, {load ,
shoot}, s3〉 is a valid transition), but also the query

possibly loaded after ¬shoot ,¬load if loaded . (7)

The latter is a failure with respect to the empty action and
is ranked higher. Therefore, we assume an error wrt. a gen-
eral fluent property (F). Although the query does not fail due
to underspecification, by inspection of the condition, even
if we are not a domain expert, we might suspect an error
wrt. inertia (F.1) concerning the fluent loaded . 2

Stage 2: Assumption Confirmation

Once the designer has an assumption about the type of
the error present in the action description—obtained by her
knowledge about the domain, or by the heuristics from the
previous section, etc—she may next confirm the plausibility
of this assumption. For each type of error identified above
(see Table 2), we provide a heuristics for that in terms of
a recipe, given by certain tests on the action description to-
gether with corresponding input. The heuristics is summa-
rized in Table 3 with the following notation for inputs: L is
a fluent literal, A and B (partial) actions, Ai a basic action,
and c, ci a conjunction of fluent literals.

An assumption is confirmed, if the corresponding tests
produce some output (witnesses, i.e, states or transitions,
providing further details) for the given inputs.

Example 4 In order to confirm the error assumption in Ex-
ample 2, we provide the action A = {shoot ,¬load}, the
precondition c1 = loaded , and the effect c2 = ¬alive un-
der suspicion as inputs and run test T1 with the query for
error type E.2 from Table 3. Since the output is non-empty
(cf. Example 1), the assumption is confirmed.

In Example 3, we get confirmation (two violating transi-
tions) with the receipe for F.1 and input L = loaded . 2

908

Type Inputs Recipe

D.1 None T2: necessarily False after Ai, Aj
∗

D.2 None T2: necessarily False after A∅
†

D.3 None T1: possibly True after A∅

F.1 L T2: necessarily L after A∅ if L

F.2 L T2: necessarily L if L

X.1 A, B T2: necessarily False after A, B

X.2 A, c T2: necessarily False after A if c

X.3 Ai T1: possibly True after AAi

‡

X.4 Ai, c1 ∨ · · · ∨ ck T1: possibly True after AAi
if cj

⋆

X.5 A, c T1: possibly True after A if c

E.1 A, c1, c2 T2: necessarily c2 after A if c1

E.2 A, c1, c2 T1: possibly c2 after A if c1

∗
1 ≤ i < j ≤ n † A∅ = ¬A1, . . . ,¬An

⋆
1 ≤ j ≤ k

‡ AAi
= ¬A1, . . . ,¬Ai−1,¬Ai+1, . . . ,¬An

Table 3: Heuristics for error confirmation.

Stage 3: Error Localization

There are several possibilities for how to proceed with local-
ization, and in general it will not be possible to pinpoint an
error to a specific causal law, let alone suggesting a partic-
ular repair; cf. (Eiter et al. 2006a) for an automatic repair
method and discussion. We developed a heuristics for prun-
ing the search space which is based on empirical studies. For
space reasons, we just summarize the general ideas.

We assume that the error is in the head or body of a causal
law, and maintain two sets H and B of causal laws whose
heads, respectively bodies, might contain the error which
causes a condition to fail. Initially, both sets contain all
causal laws of the action description.

We then consider the output of the violated condition (of
highest rank), i.e., violating transitions in case of a necessity
query and violating states together with the action condition
of the query in case of a possibility query: (a) We keep laws
that fire wrt. all these situations and in B additionally laws
that fire in none of them. (b) In case of a possibility query,
we check for underspecification (test T4) to further reduce
B. (c) Finally, we take the error type into account to shrink
B further in some cases; e.g., respecting that deterministic
action effects (E.1) are mostly encoded as direct effects, etc.

Example 5 Continuing Example 2, in Step (a) all laws that
fire wrt. s1 and the after part of condition (1) constituteH =
{i1, i3, d3}, whileB contains all laws. Step (b) reducesB to
laws incompatible with the underspecified transition having
¬alive in the head, i.e., B = {i2, d2}. Realizing that the
inertia laws are as intended, one ends up with the dynamic
laws d3, d2; one of them (d2) contains indeed the error.

As for Example 3, Step (a), considering the violations of
(7), yields H = {i3, d

′
3
} and B = {i3, i4, d1, d

′
2
, d′

3
, d4}.

Step (b) will reduce B to {i3, d
′
3
} since the condition does

not fail due to underspecification. Hence, we end up with
two culprits, one of which is easily identified as correct. 2

Experimental Results

We used the following four action domains for experiments:

Error assumption Yale Gofish Blocks Shell

Total 6 (7) 7 (9) 6 (7) 7

Expected & correct 4 6 (7) 4 (5) 5

Unexpected & correct 2 1 1 1

Incorrect 0 (1) 0 (1) 0 0

No error 0 0 1 1

Table 4: Classification results.

Yale: The well-known Yale Shooting Problem, as a deter-
ministic, non-concurrent domain.

Gofish: A postal service domain including quality control
features (mail tracking, customer notifications etc), with
non-concurrent but sometimes non-deterministic actions.

Blocks: The well-known Blocks World with three blocks
and concurrent but deterministic move actions.

Shell: A representation of the so-called Shell Game (three
shells and a pea, aka Thimblerig, the old army game) with
an action for swapping the position of two shells and a
non-deterministic concurrent action cheat .

For all but Yale we considered also non-ground (parameter-
ized) versions; the domain sizes are listed in Table 5. Note
that all domains are time-driven; however, detecting the vi-
olation of event-drivenness is simple and easily fixed, so we
did not consider it relevant for experiments.

In total, we made 53 experiments, of which 30 were on
ground domains and 23 on non-ground domains. In each ex-
periment, one causal law was blindly (by third party) mod-
ified in the domain to introduce a (not random but typical)
error, and then we used our methodology to classify errors.
To check for robustness, also some cases (7) were included
that violated the general assumptions, e.g., an error in a static
law or deletion of a law; in four cases, the change turned out
to be immaterial, as the action diagram did not change.

A successful run through all stages of the process re-
quired, depending on the specific localization procedure, 5
tests on average, if the initial error assumption was con-
firmed, and one further test otherwise.

Error Classification. In most cases, the error assumption
according to the heuristics was correct, however in some ex-
amples the result was unexpected. By unexpected we mean
an error assumption different from the error assumption that
had been expected (by third party) when the error was in-
troduced, but was also correct. For instance, considering the
error introduced in Example 3, cf. law d′

3
, without taking the

failing conditions into account, one would rather expect an
error wrt. action executability (E). Hence the confirmed er-
ror assumption F.1 is unexpected, although correct since, as
we have seen, the inertia of loaded is broken.

Taking only those examples into account, where none of
the general assumptions were broken and the modification
was not immaterial, we got correct and expected error as-
sumptions in 34 out of 42 examples, approx. 81%. In the
remaining examples, the determined error assumptions were
also correct yet unexpected (∼19%), see Table 4. The rate
of success depends of course on the domain representation,

909

causal laws # fluents+actions |B ∪ H|
Yale 8 2+2 3.666 (46%)

Gofish 86 6+7 5.143 (6.0%)

ground 184 46+35 6.714 (3.6%)

Blocks 9 3+2 5.6 (62%)

ground 236 25+13 55 (23%)

Shell 19 3+2 5.333 (28%)

ground 521 6+17 20.5 (3.9%)

Table 5: Localization results.

i.e., the domain description and conditions at hand. Error de-
tection and classification is more effective if functionalities
(e.g., action effect, executability, etc.) are clearly separated
and expressed by dedicated dynamic laws and conditions.
In small and/or simple domains, such as the Yale Shooting,
most laws serve multiple purposes, and unexpected error as-
sumptions were encountered more often.

Also note that we did not observe differences between the
ground and non-ground versions, except for one case where,
however, the general assumptions were broken as well. An
error was introduced in the AD-query specific typing infor-
mation for variables in the background knowledge, which is
needed for grounding, and could not be equally introduced
to the non-ground domain description. Eventually, we re-
mark that even in the seven cases where general assumptions
were broken we just got two wrong classifications, while five
cases yielded an unexpected but correct error assumption

Localization. The results are summarized in Table 5. It
shows the absolute and relative numbers of laws (wrt. the
total number of laws in the domain) that remained as possi-
ble culprits in the sets B and H . The figures are averaged
over all test domains which did not violate the general as-
sumptions on the error.

In general, localization reduced the search space signifi-
cantly and never missed the erroneous law. For ground do-
main descriptions it was significantly more effective unless
the domain was very small (Yale). In most cases, it reduced
to a set of laws which can be easily checked manually for
the error. For space reasons, we omit a detailed discussion
on differences in the non-ground setting. Intuitively, the cri-
terion of a law firing wrt. all violating (ground) situations is
less applicable (and would have to be considered wrt. para-
metric representations of relevant situations). In cases where
the general assumptions were broken, localization failed.

We observed a remarkable difference in the success rate
of localization depending on the type of condition used (ac-
cording to Table 5). In case of possibility queries, we often
ended up with just one or two laws. This was mainly due to
localization steps which are based on underspecified transi-
tion candidates, and thus only apply to possibility queries.
For necessity queries, localization was less effective; for C1
conditions, sometimes no law was pruned. This intuitively
explains the deviation for the Blocks domain, which was the
only domain with C1 violations ranked highest.

Related Work and Conclusion
We have presented a methodology, based on heuristics, to
form and test assumptions about possible errors in an action

description according to an error taxonomy. Different from
this is a model-based approach, which incorporates error as-
sumptions formally into reasoning about the action domain
description. Here, Balduccini and Gelfond (2003) and Baral
et al. (2000) considered diagnostic reasoning for domains in
an action language. Their concern, however, was to explain
unexpected behavior rather than to debug a domain descrip-
tion itself, relying on a model of abnormality in it (which
is not needed in our approach, and moreover, error-prone it-
self). Simply suspending causal laws that are assumed to be
wrong for restoring consistency does not work, as action de-
scriptions are non-monotonic theories. On the other hand, a
naive approach to consider all possible repairs for an error
quickly becomes infeasible due to a huge search space (as in
parametric domains like Gofish, Blocks, and Shell).

As for future work, (Eiter et al. 2006a) described further
tests that refer to the necessity or possibility of fixing an
error by modifying or keeping specific dynamic laws. Such
tests can be incorporated into our methodology. Another
issue is extending our methodology to multiple uncorrelated
errors, which is not obvious, and respecting static laws.

An interesting issue concerns testing of parametric action
domains, in which causal laws are stated generically for a
sort of objects, and the actual set of objects is a parameter
(e.g., the blocks in a blocks world). A small set of objects is
usually sufficient to assess soundness of an action descrip-
tion wrt. a given set of queries; techniques to determine such
small test sets would be useful.

Acknowledgments This work was supported by the Aus-
trian Science Fund (FWF) under grant P16536-N04.

References
Balduccini, M., and Gelfond, M. 2003. Diagnostic reason-
ing with A-prolog. TPLP 3(4-5):425–461.

Baral, C.; McIlraith, S. A.; and Son, T. C. 2000. Formu-
lating diagnostic problem solving using an action language
with narratives and sensing. In Proc. KR ’00, 311–322.

Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2006a. Re-
solving conflicts in action descriptions. In Proc. ECAI
2006, 367–371. IOS Press.

Eiter, T.; Fink, M.; and Senko, J. 2006b. A tool for answer-
ing queries on action descriptions. In Proc. JELIA 2006,
LNCS 4160, 473–476. Springer.

Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Trans. Artificial Intelligence 3(16):195–210.

Giunchiglia, E., and Lifschitz, V. 1998. An action language
based on causal explanation: Preliminary report. In Proc.
AAAI-98, 623–630. AAAI Press.

Grell, S.; Schaub, T.; and Selbig, J. 2006. Modelling bi-
ological networks by action languages via answer set pro-
gramming. In Proc. ICLP 2006, LNCS 4079, 285–299.

Watson, R., and Chintabathina, S. 2003. Modeling hybrid
systems in action languages. In Proc. ASP 2003, 356-370.

Zepeda, C.; Osorio, M.; and Sol, D. 2005. Modeling evac-
uation planning using A-prolog. In CONIELECOMP, 292–
297. IEEE Computer Society.

910

	AAAI-08
	Contents
	Index
	www.aaai.org

