Updating Action Domain Descriptions*

Thomas Eitet Esra Erdeni Michael Fink® Jan Senkd

anstitute of Information Systems, Vienna University of Technology, Viéxusdria
PFaculty of Engineering and Natural Sciences, Sabanci Universitybsta Turkey

Abstract

Incorporating new information into a knowledge base is an important probeich has
been widely investigated. In this paper, we study this problem in a formalefnark for
reasoning about actions and change. In this framework, action donmaidsscribed in an
action language whose semantics is based on the notion of causality. Unlfkentiadisms
considered in the related work, this language allows straightforwardgeptation of non-
deterministic effects and indirect effects of (possibly concurrent) agtias well as state
constraints; therefore, the updates can be more general than elenm&atargents. The
expressivity of this formalism allows us to study the update of an action doneaicrig-
tion with a more general approach compared to related work. First of altowsider the
update of an action description with respect to further criteria, for instamg ensuring
that the updated description entails some observations, assertionseoalgimain prop-
erties that constitute further constraints that are not expressible in an desaoription in
general. Moreover, our framework allows us to discriminate amongst atteerupdates
of action domain descriptions and to single out a most preferable onej bas& given
preference relation possibly dependent on the specified criteria. \ifg samantic and
computational aspects of the update problem, and establish basic propettEtates as
well as a decomposition theorem that gives rise to a divide and concpieraagh to updat-
ing action descriptions under certain conditions. Furthermore, we studythputational
complexity of decision problems around computing solutions, both for therigesedting
and for two particular preference relations, viz. set-inclusion and vxigbed preference.
While deciding the existence of solutions and recognizing solutions are@G&SeAmplete
problems in general, the problems fall back into the polynomial hierarchgrumestric-
tions on the additional constraints. We finally discuss methods to compute selatioin
approximate solutions (which disregard preference). Our resultsder@/ semantic and
computational basis for developing systems that incorporate new informatmaction
domain descriptions in an action language, in the presence of additiorstiaiots.

Key words: Knowledge representation, reasoning about actions and changey, theo
change, action languages, preference-based semantics

Preprint submitted to Atrtificial Intelligence 22 July 2010

1 Introduction

As we live in a world where knowledge and information is in flupdating knowl-
edge bases is an important issue that has been widely stindieel area of knowl-
edge representation and reasoning, (see e.g. [67,12]20@Xeferences therein).
However, the problem is far from trivial and many differenetimods have been
proposed to incorporate new information, be it affirmativ@mhibitive, which are
based on different formal and philosophical underpinnirgs[67,39,57]. It ap-
pears that there is no general purpose method that would welikn all settings,
which is partly due to the fact that an update method is algenident to some
extent on the application domain.

In particular, in reasoning about actions and change, tinamycity of the world

is a part of the domain theory, and requires special attentiaupdate methods.
For various approaches to formal action theories, inclyitive prominent situation
calculus, event calculus, and action languages that echérgen the research on
non-monotonic reasoning, the problem of change has beeziystudied and dif-
ferent methods have been proposed (see [64] for backgrawhdegerences, and
Section 8.1 for a more detailed discussion).

To give a simple example, consider an agent having the foligknowledge K1y,
about a TV with remote control:

(TV1) If the power is off, pushing the power button on the TVitsithe power on.
(TV2) If the power is on, pushing the power button on the T\htuthe power off.
(TV3) The TV is on whenever the power is dn.
(TV4) The TV is off whenever the power is off.

Now assume that the agent does not know how a remote contribwe.g., she
does not know the effect of pushing the power button on thetemontrol). Sup-
pose that later she obtains the following informatiéi;-, about remote controls:

(RC1) Ifthe poweris on and the TV is off, pushing the power butia the remote
control turns the TV on.

(RC2) If the TV is on, pushing the power button on the remote robmairns the
TV off.

* This paper is a revised and significantly extended version of a preliminasyr tiaat ap-
peared inProc. 19th International Joint Conference on Atrtificial Intelligence (AIQ005)

pp. 418—-423.
Email addressesei t er @r .t uwi en. ac. at (Thomas Eiter),

esraer dem@abanci uni v. edu (Esra Erdem)ni chael @r .t uw en. ac. at
(Michael Fink),j an@xr . t uwi en. ac. at (Jan Senko).
I Note that the statement is wrong; its defectiveness is observed andegsplon update.

The task is now to incorporate this new knowledge into theenurknowledge base
Krv. Inthis particular case, this seems unproblematic, as spoply addingK ¢
to K7y the resulting stock of knowledge is consistent; in gen@@lever, it might
be inconsistent, and a major issue is how to overcome thmssistency.

We study the incorporation problem in the context of actamguages [30]. In these
formalisms, actions and change are described by “causal’l&er instance, in the
action languagé€ [32], the direct effect of the action of pushing the powerttut
on the TV, stated in (TV1), is described by the causal law

causedPowerON after PushPBry A ~PowerON, (2)

which expresses that this action, represente@tty.P By, causes the value of the
fluent PowerON to change from false to true; the indirect effect of this @actihat
is stated in (TV3) is described by the causal law

causedTvON if PowerON, (2)

which expresses that if the flueRowerON is caused to be true, then the fluent
TvON is caused to be true as well.

Action description languages are quite expressive toyehaaitdle nondeterminism,
concurrency, ramifications, qualifications, etc. The megmf an action descrip-
tion can be represented by a “transition diagram”—a dicegi@aph whose nodes
correspond to states and whose edges correspond to actiorrerwes; Figure 1
below (Section 2) shows an example. There are reasoningrsygstike CQ\Lc 2
and DLVX,? that accept domain descriptions in an action language Clike X
respectively, and support various kinds of reasoning tasks these descriptions,
including planning, prediction and postdiction in C&.c and computing different
kinds of plans in DLF.

As far as action languages are concerned, the update protdsmstudied to a re-
markably little extent. For the basic action languagésee [30]), which is far less
expressive thag, the update problem has been considered, e.g., in [44,4%). Bo
works focused on updates that consist of elementary statsngiee., essentially
facts) over time, and presented specific update methodssifag on the contents
of the knowledge base. We address the update problem fromre& geoeral per-
spective in the following ways:

e \We consider aricher language (i.e., a fragmerit)db study the update problem,
and updates are represented in terms of a set of arbitrasalclaws.

e We view the update problem from a more general perspectmme8mes, en-
suring consistency is not sufficient: we might want to ensuse that the updated
action description entails some scenarios, conditiongeoeral properties of the

2 http://ww. cs. ut exas. edu/ users/tag/ cc/
3 http://www. dbai . tuwi en. ac. at/ proj/dl v/ K

domain that cannot be expressed by causal laws. In our ufrdaework, such
further knowledge could be taken into account.

For example, for the effective use of the TV system in the alsnenario, the
following constraint might be imposed:

(C) Pushing the power button on the remote control is alwagsipte*

If Krc is simply added td<y, then (C) is not satisfied bi - U K7y : when the
power and the TV are on, pushing the power button on the reswi#ol is not
possible, since (RC2) and (TV3) contradict. The questionds tiow the agent can
updateKy by incorporatingK i relative to (C); note that (C) is not expressible
by causal laws in the action language

To represent constraints like (C), we use formulas for “qggrin action lan-
guages like in [30]; here, the formula

ALWAYS executable { PushPBr¢}. (3)

has to evaluate to true, whef@ush PBr¢} stands for the concrete action of push-
ing the power button on the remote control. Similarly, cdesithe following sce-
nario that we might want the updated action description taien

(S) Sometimes, when the power is on, pushing the power botioRV turns the
power off, and after that if we push the power button on the fi&htthe power
IS on again.

This scenario cannot be expressed by means of causal ldwes; dibwever, it can

be expressed by a formula

SOMETIMES evolves PowerON;{PushPBry };
—PowerON; { PushPBry }; PowerON .

e Sometimes, an action description can be updated in sevayal. \Wur framework
allows us to discriminate amongst alternatives and to singk a most preferable
candidate as the result, based on a given preference refaigsibly dependent on
the additional constraint formulas.

In this paper, we consider a generic framework for incorpoganew causal laws
into an existing action description, that takes into actdli@ constraint formulas
to be satisfied in the end. We thus take here the stance theatisal laws, which
have been designed by the user or the knowledge engineeio & modified,

while constraint formulas are not subject to change (thgjhtrdapture indisputable
properties of the domain); a violation of constraints migéattolerated, though, if
indicated by the user. Our main contributions can be sunaedias follows:

(1) We introduce a formal notion of aaction update problemwhich is, given
action descriptiong) and /, and a setC of constraint formulas, to determine a

4 Note the conceptual difference between (C) and (TV2): (C) expsean executability
condition, whereas (TV2) captures a causal relationship.

(possibly new) action descriptio®’ which incorporated into D. While D and

I are in (a canonical subset af) we describe conditions like (C) and scenarios
like (S) by “constraints” using formulas from attion query languagesimilar to
the one in [30]. In a more fine-grained treatmeitjs split into an unmodifiable
part,D,,, and a modifiable parf),,, while C'is split into obligatory constraints;,,
(which must hold under all circumstances) and preferenostcaints,C, (which
ideally should hold, but might be violated).

A solution to an action update problem is then defined in tesfram action de-
scription D’ that consists of and statements from» such thatC, is satisfied by
D’; as, in general, different candidat®s are possible, we use a (strigheference
relation C . over action description'sin order to discriminate amongst alternatives
and to single out a most preferable candidBteas the result. Here the subscript
¢ indicates that the preference relation is possibly depaale the set” of con-
straints. Such a preference relation can be defined in diftavays, in terms of
syntactic conditions (e.g., the set of causal laws in aroadliescription), or se-
mantic conditions (e.g., the presence or absence of pathe imansition diagram).

(2) We investigate semantic properties of action updates establish some ba-
sic properties regarding solution preference, and spémials of updates, which
serve as tests for the suitability of the notions proposeslfidithermore determine
conditions under which computing a solution to an actionaipgroblem can be
structurally decomposed, such that a divide-and-conqugroach becomes feasi-
ble. In particular, this is possible if the action descoptand the constraints can be
split into disjoint parts that interfere in a benign way, dintie preference ordering
can be gracefully decomposed along this split.

(3) We study the computational complexity of the action upgaoblem, where
we consider the generic setting (making some assumptiomst éve cost of de-
ciding whether the constraints are satisfied by an action descriptiéh) denoted
D = C, and whethetD . D’ holds givenD and D’), as well as some natural
instances. Among the latter are those where the preferetateon— is ordinary
set-inclusion and where it is weight-based relative tosfiatli constraints. Under
the assumption that testing = C and D C¢ D’ is feasible in polynomial space,
deciding the existence of some solution to an action updatielgm turns out to
be PSPACE-complete in general, and also verifying a given solutiondidate
has this complexity. However, the complexity of both proefalls back into the
polynomial hierarchy, if decidind = C andD C D’ is located there, and is
located at most one level higher up there; we recall heredbeating the consis-
tency of an action description i is intractable in general (andP-complete for
the canonical fragment of our concern). Given that thefest C'andD o D' is
polynomial, deciding solution existenceN&-complete and thus not harder than
the consistency problem, and recognizing a given solusamly mildly harder.

(4) We discuss methods for computing solutions and “pretswis” which ap-
proximate them, by disregarding solution preference. Asstdutions, we focus

® That is,¢ is irreflexive and transitive.

on set-inclusion and one particular weight-based compayias preference rela-
tions ¢, which use an oracle for pre-solutions. For pre-solutiovis,present a
method that reduces the problem into reasoning over annadéecription that is
constructed from the problem input; here, evaluating caidtformulas can be
exploited to test given candidates.

(5) Finally, we show the applicability of our algorithm bdsen the computation
of pre-solutions, and the usefulness of the theoreticaltesn the decomposability
of the update problem, in the context of the Zoo World, whighm action domain
proposed by Erik Sandewall in his Logic Modelling Workshbhe Zoo World
consists of several cages and the exterior, gates betweem #md animals of sev-
eral species, including humans, and its actions includemgowithin and between
cages, opening and closing gates, and mounting and ridingas) a description
of this domain in the action language- was given in [1].

Our results go significantly beyond previous results initieedture (see Section 8.1),
and provide a semantic and computational basis for devejogpystems that in-
corporate new information into action descriptions in aticaclanguage, in the
presence of further constraints that can be expressedrasifs to be entailed by
the updated description. Our generic framework can bentiatad to different set-
tings, which reflect different intuitions or criteria forlstion preference. It thus
provides a flexible tool for modeling action update. As a logluct, we obtain de-
composition results of action descriptions that emergenfspecial cases of action
update instances, which are interesting in their own right.

The rest of this paper is structured as follows. In the negtige, we provide pre-
liminaries about transition diagrams, action languaged,@nstraint formulas as
needed for the problem setting. After that, we define in $acdithe update prob-
lem in a generic framework and briefly introduce a syntactid a semantic in-
stance of it. In Section 4, we study some semantic propestiapdates, including
possible decompositions. After that, we turn to computetiéssues. In Section 5,
we characterize the computational complexity of problemosiad updates, and in
Section 6 we provide algorithms for computing updates. Eplamapplications in
the Zoo World are considered in Section 7. After a discusesiaelated work and
further aspects of the problem in Section 8, we conclude avitbmmary and issues
for further research.

2 Preliminaries

We describe action domains and the updates in an actionipigsecianguage, a
fragment ofC [32], by “causal laws.” Therefore, in the following, first vdescribe

6 http://www. ida.liu. sel/ext/etai/lmv

{PushPBRc} {PushPBTV} {PushPBRc}

{ @ {PushPBry, PushPBrc} &
/\

PowerON —PowerON
TvON -TvON

{PushPBTV, PushPBRc}
{PushPBTV}

Fig. 1. A transition diagram

the syntax and the semantics of the action description Egguwvhich is defined
by means of “transition systems.”

While updating an action domain description, we sometimadavike ensure that
the updated description entails some conditions or saanaviost of the time such
scenarios or conditions are not expressible in the actinguage. We describe
them as constraints using formulas from an action queryuage, like the one
in [30]. Therefore, we also describe the action query lagguae use, and define
satisfaction of a constraint by an action domain descmiptio

Finally, we give sample constraints that are useful in actipdates but cannot be
represented in the action description language. We alsosisand emphasize the
necessity of a query language in addition to the descripénguage.

2.1 Transition Diagrams

We start with a(propositional) action signaturéhat consists of a sdt of fluent
names, and a set of action names. Aiteral is an expression of the form® or

- P, whereP is a fluent name. Actionis a truth-valued function oA, denoted
by the set of action names that are mapped Thus, action names represent basic
(atomic) actions, while a (compound) action is identifiednwthe basic actions
taking place at the same time, providing an intuitive repnégtion of both, atomic
and concurrent, actions.

Definition 1 ([30]) A (propositional) transition diagraof an action signatur&€ =
(F, A) consists of a sef of statesa functionV : Fx.S — {f,t}, and a subseR C
S x 24 x S of transitions We say that/ (P, s) is thevalueof P in s. The states’
such that(s, A, s’) € R are the possibleesults of the executioof the actionA in
the states. We say thatd is executablén s if at least one such staté exists; and
that A is deterministidn s if there is at most one such.

A transition diagram can be thought of as a labeled directaphy Every state is
represented by a vertex labeled with the functior- V (P, s) from fluent names
to truth values. Every triplés, A, s') € R is represented by an edge leading frem

causedPowerON after PushPBry A = PowerON
caused—PowerON after PushPBry A PowerON
causedTvON if PowerON

caused—TvON if =PowerON

inertial PowerON,—PowerON, TvON,—~TvON

Fig. 2. An action description foK

causedTvON after PushBrc N\ PowerON AN ~TvON
caused—TvON after PushBrc N TvON

Fig. 3. Causal laws foK r¢

to s’ and labeledd. An example of a transition diagram is shown in Figure 1.

2.2 Action Description Languages
We consider the prime subset of the action description lagegti [32] that consists
of two kinds of expressions (calledwusal law$. static lawsof the form

causedL if G, (4)

where L is a literal andG is a propositional combination of fluent names, and
dynamic lawsof the form

causedL if G after H, (5)

whereL andG are as above, anll is a propositional combination of fluent names
and action names. In (4) and (5) the p&uid: can be dropped if7 is True.

An action descriptionis a set of causal laws. For instance, the knowledge base
about a TV systemD, of the agent in the previous section, can be described by
causal laws in Figure 2. An expression of the form

inertial Ly, ..., Ly (6)
stands for the causal laws

causedL; if L; after L; (1<i<k)

describing that the value of the flueitstays the same unless changed by an action.

The meaning of an action description can be represented tansition diagram.
Let D be an action description with a signatufe= (F, A). Then the transition
diagram(S, V, R) describedby D, denoted byl'(D), is defined as follows:

(i) S'isthe set of all interpretationsof F such that, for every static law (4) iR,
s satisfies7 O L,
(i) V(P,s)=s(P),
(iii) R is the set of all triplegs, A, s') such thats’ is the unique interpretation of
F which satisfies the headsof all

e static laws (4) inD for which s’ satisfieg, and
e dynamic laws (5) inD for which s’ satisfies7 ands U A satisfiesH.

The laws included itiii) above are those that aapplicableto the transition from
s to s’ caused by executing: the static causal laws make sure thds a state, and
handles the ramifications and the qualificationsipivhereas the dynamic causal
laws handle the preconditions and the direct effectd.of

Action languag€’ is based on the “principle of universal causation”, acawgdb
which every fact that obtains is caused. In the definitiornvabthe condition that’

is theonly interpretation satisfying the heads of the applicable adasvs ensures
this. For instance, the transition diagram described byattteon description for
Kry in Figure 2 is presented in Figure 1. Consider the transitionPowerON
—~TvON}, { PushPBrvy },{ PowerON, TvON }). The causal laws that are applica-
ble to this transition are

causedPowerON after PushPBpy A = PowerON
causedTvON if PowerON.

Here{ PowerON, TvON } is the only interpretation that satisfies the heads of these
causal laws, i.e{ PowerON, TvON }.

Now consider the triplé{—PowerON,—~TvON }, {}, { PowerON, TvON }). There

is only one of the two causal laws above applicable to thpdyriviz. the second.
There are two interpretations that satisfy the head of thisal law:{ PowerON,
TvON } and{—=PowerON, TvON }. In other words, no causal law provides a causal
explanation forPowerON . Therefore, this triple is not a transition.

We say that an action descriptiorcisnsistenif it can be represented by a transition
diagram with nonempty state set.

In the following, we suppose that an action descriptidrconsists of two parts:
D, (unmodifiable causal laws) and,, (modifiable causal laws). Therefore, we
sometimes denote an action descriptidmas D, U D,,.

2.3 Why Action Languages?

In this work, we consider action languages to formalizecsctiomains. There are
several reasons for this decision.

First of all, action description languages, li€eare quite expressive to easily han-
dle nondeterminism, concurrency, ramifications, defaglislifications, state con-
straints, etc. For instance, we can express that tossingnanay lead to Heads or
Tails by the causal laws

causedHeads if Heads after Toss

caused—Heads if —Heads after Toss.

Concurrency is allowed unless no qualification constraintatated or unless ex-
plicitly stated otherwise by a causal law like

causedFulse after MoveRight N\ MoveLeft.

The commonsense law of inertia is immediately expressedabgat laws of the
form (6). A direct effect of turning on the power is that thenaw is on; a ramifi-
cation of turning on the power is that TV is on. We can expres$fi s ramification
by the causal law

causedTvON if PowerON.

We can describe that a spring-loaded door is by default dlbgehe causal laws:
causedOpen if Open.

Second, there are reasoning systems, likeaGCand DLV"*, that accept domain
descriptions in an action language, l&er IC respectively, and allow various kinds
of reasoning tasks over these descriptions.

Third, there is a large amount of theoretical and applicatidented work on action
languages, including our earlier work on planning and nawimgy. On the other
hand, as discussed briefly in the introduction, the updatblpm was studied to
a remarkably little extent in the context of action langumagghis paper not only
extends our earlier work to take updates into account batfal§lls the need for a
general approach to updates in action languages.

2.4 Expressive Constraints

Once we describe an action domain, we may want check whetiseddmain de-
scription entails some observations of the world, assestabout the effects of the
execution of actions, or even some scenarios. Similarly 8], we express such

10

conditions as constraints using formulas from an actiomyglenguage, like the
one in [30]. After that, we can check whether a given actioscdption satisfies
a given constraint using reasoning systems, e.gal@q(cf. the examples in Ap-
pendix C).

Now constraint formulas are formally defined as follots.
An open constrainis either(a) a static constrainof the form
holds F, (7)
whereF' is a fluent formula, ofb) adynamic constraindf the form
necessarilyQ after A;;...; A,, (8)

where(is an open constraint and eadhis an action} or (c) any propositional
combination of open constraints. Aaxistential constraints an expression of the
form

SOMETIMES @, (9)

where(is an open constraint;@iversal constraints of the form
ALWAYS @, (10)

where() is an open constraint. Aonstraintg is a propositional combination of
existential constraints and universal constraints.

For an open constraint its maximal nesting depth of dynamic constraihis de-
fined inductively as follows. I is a static constraint, thelh= 0; if q is a dynamic
constraint of the form (8), theh = kg + 1, wherek, is the maximal nesting depth
of dynamic constraints id); if ¢ is a Boolean combination of open constraints,
thenk is a maximal element from the set of maximal nesting depthdyaofmic
constraints of its subformulas. This definition is easilyeexied to (general) con-
straints. For an existential (universal) constraint offibren (9) (resp. of the form
(10)), its maximal nesting depth of dynamic constraintg s i.e., the maximal
nesting depth of dynamic constraints@h For a propositional combination of ex-
istential and universal constraints, its maximal nestiegth of dynamic constraints
is a maximal element from the set of maximal nesting deptlgoédmic constraints
of its subformulas.

As for the semantics, Ief' = (S, V, R) be a transition diagram, with a sgtof
states, a value functioi mapping, at each state every fluentP to a truth value,

7 In action query languages, “constraints” as here etc. are callediégtighe former term
is more appealing here as satisfaction is required.

8 This amounts tdQ]A;;...; A, in dynamic logic [37]; however, we stick here to the
commonly used syntax of action queries.

11

and a sef? of transitions. Ahistoryof 7" of lengthn is a sequence
So,Al,Sl,...,Sn_l,An,Sn (11)

where eachis;, A;11, si11) (0 < i < n)isin R. We say that a statec S satisfiesan
open constrain)’ of form (7) (resp. (8)) relative t@ (denoted’’, s = '), if the in-
terpretation” — V' (P, s) satisfiesF' (resp. if, for every history, = sg, Ay, s1, . . .,
Sn—1, An, s, Of T"which is of lengthn and such that = sy, open constraing) is
satisfied at state,). For other forms of open constrainds satisfactionis defined
by the truth tables of propositional logic. Tf is described by an action descrip-
tion D, then the satisfaction relation betweemand an open constraid) can be
denoted byD, s = @ as well.

Note that, for every stateand for every fluent formulé’,
D,sEholdsF < D,s | —holds—F.

For every states, every fluent formulaF’, and every action sequeneg, ..., A,
(n>1),if
D, s = necessarily(holds F') after Ay;...; A,

then
D, s = —necessarily(—holds F') after A;;...; A,.

We say thatD satisfiesa constraint; (denotedD | ¢) if one of the following
holds:

q is an existential constraint (9) ardl s = @ for some state € S;
¢ is a universal constraint (10) arid, s = @ for every states € S;
q=—q andD [~ ¢;

q=q NgandD = ¢ andD = go; or

q=q Vg andD = q or D |= ¢.

For every open constrain},

D = SOMETIMES @ iff D = -ALWAYS —Q.
For a setC of constraints, we say thd? satisfies”' (denotedD|=C) if D satisfies
every constraint irC'. Consider, e.g., the action description presented in Figure
It does not satisfy any set of constraints containing

ALWAYS necessarily (holds = TvON) after { PushPBgc }

because this constraint is not satisfied at the gt@&e)N, PowerON }; but, it sat-
isfies the constraints:

12

ALWAYS holds PowerON = TvON, (12)

ALWAYS holds PowerON A TvON D
—necessarily(holds TvON) after { PushPBry }.

(13)

In the rest of the paper, an expression of the form
possibly @ after A;...; A,,

where(is an open constraint and eadh is an action, stands for the dynamic
constraint
—necessarily—Q) after A;;...; A,;

an expression of the form
evolvesty; A, Fi; ... F_1; Ay F,
where eaclr; is a fluent formula, and each is an action, stands for
holds F, A possibly (holds £ A possibly (holds F, A ...) after A,) after Ay;

and
executableA;;...; A,

where each; is an action, stands for
possibly True after Ay;...; A,.

We sometimes dropolds from static constraints appearing in dynamic constraints.

2.4.1 Examples

To get a better intuition about the capability of constraimie give some examples
of properties that can be expressed by them.

e EXistence of certain states, transitions, and historlésr instance, we can ex-
press the existence of states where a fornfuleolds by means of the constraint

SOMETIMES holds F.

Similarly, we can express the existence of a transition fsmme state where a
formula F’ holds to another state where a formitaholds, by the execution of
an actionA:

SOMETIMES holds F' A possibly F' after A.

In general, the existence of a history (11) such that, foheaof the history,
the interpretation? — V (P, s;) satisfies some formul&; is expressed by the

13

constraint:
SOMETIMES evolves Fy; A Fi; ... F,_1; A, F,.
For instance, the constraint

SOMETIMES evolves PowerON; { PushPBry };
—PowerON; { PushPBry }; PowerON .

describes the presence of the following history in Fig. 1:

{PowerON, TvON }, { PushPBry },
{=PowerON,—~TvON },{ PushPBrvy },{PowerON, TvON }.

¢ (Non-)executability of an actiorike in [16], executability of an action sequence
Aiq,..., A, (n > 1) at every state can be described by

ALWAYS executable A;;...; A,.
That no action is possible at a state where fornfulaolds is expressed by

SOMETIMES holds F' A /\ necessarilyFulse after A.

Agc2A

e Mandatory and possible effects of actiohske in [16], mandatory effects of a
sequencel;, ..., A, (n > 1) of actions in a given context are described by

ALWAYS holds G D necessarilyF after Ay;...; A,;
and possible effects of a sequence of actions in a context by
ALWAYS holds G D possibly F after Ay;...; A,.

In these constraintd: describes the effects addthe context.

2.4.2 Constraints vs. Causal Laws

In all action languages [30], queries have been expressadanguage different
from the action description languages. As we consider caims$ as queries that
evaluate to true, it may look suggestive to merge causal fawdsconstraints into
a single set of formulas that constitute an action desonptiowever, constraints
and causal laws are conceptually different: causal lawsagi@ns that describe
action domains in generative manng(in particular, in action languagévia cau-

satior), whereas constraints express conditions (which may afeo to time steps)
that we would like to ensure about an action domain; they sleage foreliminating

unwanted models. In other words, constraints restrict dssipilities for an action
description, but they are non-constructive in the sensetbi®y do not causally

14

generate transitions. The latter however is at the heaftasfd many other action
languages: each edde, A, s') in the transition diagram is causally explained (or
“generated”), meaning that the follow up stateés uniquely described by the liter-
als in heads of the causal laws that “fire”, i.e., the causes kdnat are applicable to
(s, A, s").

For instance, if the action description consists of the @alysal law
causedG after Ay A F,

where every fluent is inertial, then the transition diagraam the edgé{F’, -G},
{A:},{F,G}),i.e.,we can get from the state= { /', -G} to the state/ = {F, G}
with the occurrence of the actidm, }. However, the transition diagram does not
have the edgé(), {A;},{F,G}). If instead of the causal law above, we consider
the constraint

ALWAYS holds F' O necessarilyG after Aq;

which is similar to the causal law, then batf¥’, =G}, { A }, {F, G}) and((), { A, },
{F,G}) would be included in the transition diagram (sin€es false wrt.s = 0,
the implication is true).

Although in some cases a constraint may be expressed by amlem causal law
(or multiple such laws), this is not always the case. Moreaee meaning of a
set of causal laws is described by a set of nodes and a set ef ¢dgt form a
transition system, where each of these edges expressesa dationship (which
generates the edge), whereas roughly speaking, the meaningonstraint is de-
scribed by a set of paths in the transition diagram withoehsa causal relation.
In other words, constraints might describe conditions attarizing subgraphs of a
transition diagram. Consequently, some constraints cdmnekpressed as causal
laws, for instance “existential constraints” like the clvamt

SOMETIMES possibly F after A,

the constraint (21), and similar constraints in Section12.Zhey can not be ex-
pressed via causal laws, as the latter are inherently waivstatements. Also “uni-
versal” constraints like

ALWAYS (possibly F' after A) A (possibly —F" after A)

(which implicitly enforce existence of causal transitipase difficult to express via
causal laws. Another aspect is that constraints allow uslkoabbout sequences of
actions, while causal laws do not.

Due to the syntactic and the semantic differences betwagsatkaws and queries,
the reasoning systems (like @Cc) based on action languages also have different
syntax for query formulas (cf. Appendix C); hence a diffeeircpractice as well.

15

For instance, in reasoning systems, queries can be useddoliereasoning tasks
(like temporal projection or planning) about a given actimmain.

Although there are some formalisms (like situation calsukis in [60], dynamic

logic as in [37], or answer set programming as in [48]) thatloa used to describe
both axioms and constraints, a distinction between fosnaito express axioms
and constraints is not unusual in other areas either. Can$mtenstance, the de-
scription of a circuit in propositional logic and the cornaiits we want to check
about this circuit that are expressed in a temporal logi¢. [0, consider on-

tologies described in ontology description language® (RDF), and constraints
described in ontology query languages (like SPARQL).

The differences between causal laws and query formulasa#fisct the computa-
tional efficiency of reasoning systems. For instance, gavédamain description and
a query, C@Lc checks whether the query is entailed by the domain deswniis
follows:

(1) it transforms the causal laws into a propositional tiidds,

(2) ittransforms the negated query into a propositionadbthé& p,

(3) it checks whether', U I'p is satisfiable;

(4) if I'p UT'p is unsatisfiable, it returns Yes;

(5) otherwise, it returns No and presents a counter exanxpiacted from a sat-
isfying interpretation fol'p, U I'p.

The transformations in the first two steps are different:dhe in 1) is based on
literal completion, whereas the one in 2) is based on a sinmpteedure (see [31]
for a detailed description). Such a difference allows oneheck the entailment of
other queries without executing the first step again. If wetdhescribed a constraint
by means of causal laws, then in general we would have toftnanghe union of
the causal laws and the constraint into a propositionalrthdor large domain de-
scriptions, like the Zoo World, such a bulk transformatioou lead to inefficient
computations.

3 Problem Description

In this section, we provide a formal description of the updabblem, and its solu-
tion, as well as a weaker form of solution, called pre-solutiThe basic problem is
a theory change problem, i.e., a problem of incorporating indormation into an
existing stock of knowledge (cf. Sections 4.2 and 8.2 forerdetailed discussions
of relations to well-known work in this area). Since we stutlg incorporation
problem in the context of an action language, we considgtesicausal laws as the
atomic entities that are subject to change (for a discussnto refine this further,
see Section 8.3). In addition to causal laws for incorporatihe new information

16

may contain constraints that characterize intended ptiegaf the change (reasons
for the distinction between causal laws and constrainte lhaen discussed in the
previous section). Concerning solutions of the problem, wead keeping the size
of the search space practically reasonable, as well asldirfigion natural analo-
gies with change operators developed in other areas ofaksdaly Al research (cf.
[67,61,57] and references therein).

Informally, we define ar\ction Description Update (ADWroblem by an action
descriptionD = D, U D,,, a setl of causal laws (a partial action description), a
setC' = C, U C, of constraints, and a preference relatiop over action descrip-
tions. HereD, and D,,, are the unmodifiable (protected) and the modifiable part
of D, respectively, and is the update that has to be incorporated. The constraints
in C, are “hard (obligatory) constraints” that have to be satisiiean acceptable
action description, while the constraintsdr are “soft (preference) constraints”
that might be accounted for by the preference relation In the latter,D = D’
expresses thdb is less preferable compared 8.

Definition 2 (Action Description Update) Given an action descriptio = D, U
D,,, a setl of causal laws (a partial action description), a sét= C, U C, of con-
straints, and a preference relatian. over action descriptions, all over the same
signature£, an action descriptiorD’ accomplishes an (action description) update
of D by I relative toC, if

(i) D’is consistent,
(i) D,uICD CDUI,
(ii)) D' = C,,
(iv) there is no consistent action descriptiéf such thatD, Ul C D" C DU,
D"k C, andD' C¢ D".?

Such aD’ is called asolutionto the ADU problem(D, I,C,). If an action
descriptionD’ satisfies (i)—(iii), then we calD’ a pre-solutiorto the ADU problem
(D, [, O, Ec).

Condition(i) expresses that an action description update, modeling antigrdo-
main, such as the TV system in Section 1, must have a stat@rdiog to Con-
dition (ii), new knowledge about the world and the invariable part ofetkisting
action description are kept, and the causal laws in the Margart are considered
to be either “correct” or “wrong”, and in the latter case siyngisposed.

Condition (iif) imposes semantical constrairtts on D’, which comprise further
knowledge about the action domain gained, e.g., from e&pee. It is important to
note thatC' can be modified later for another action description updasen(ll be
discussed below).

Y Note that soft constraints), are used implicitly in this definition, since the preference
relationC¢ is one in whichC' = C, U C), is explicitly known as parameter.

17

Finally, Condition(iv) picks the most preferred action description among the ones
for which Conditiongi)—(iii) are satisfied.

In an ADU problem, the preference relation can be describegiious ways. For
instance, it can be defined in terms of syntactic conditilikes simple set inclusion.
If we defineC to be C, then an action descriptiol is less preferable than an
action descriptiorD’” if D C D'. Alternatively, the preference relatian- can be
defined in terms of semantic conditions. For instance, ongeight is assigned to
each action description with respect to some semantic medsig., the number
of certain paths present in the transition diagram of themjetson) by a function
weight, we can take_. to be an operatokeigh: cCOmMparing the weights of the
action descriptions; then an action descriptions less preferable than an action
descriptionD’ if D <yeight D'

In the literature, two kinds of changes that incorporate mef@rmation into a
knowledge base have been identified, viz. revision (whicisaxore precise knowl-
edge about the domain) and update (which is a change of thd wer se) [66],
which should be governed by different sets of postulatexionaatic approaches
like the AGM theory [2] and the KM theory [39]. Our notion of ADhas more

of a revision flavor, but we do not govern it with AGM or KM pokites, as the
formalism does not satisfy the prerequisites; see Sect®fio8 more discussion.
However, the constraints can be adjusted if the nature of the chardgs known.

In case of a revision¢' should reasonably contain all conditions corresponding
to observations made about the domain, while other comditrmay be kept or
dropped; on the other hand, ifis a change of the world per se, then conditions
corresponding to observations might be dropped.

Eventually we remark that, in descriptive domains, like gibgl domains, one
might carry out tests and collect respective results (elas@ns) in order to find

out erroneous causal laws. In this case, the update probtardwe rather viewed
as a diagnosis problem. Note however, that such an appraageson the possibil-
ity to make observations for learning causal relationshipsontrast, our approach
is intended to also allow for normative (artificial) world®deled as action descrip-
tions (e.g., agent systems, games, protocols), where thid vgodesigned, rather
than perceived. In such domains, and likewise for physicaldg that are not ob-
servable (where one is impeded to make observations forewiateason), it is not
feasible to treat the update problem as a diagnosis problem.

3.1 Examples
The following is an example of an ADU problem with the syntaased preference
relation above.

Example 1 Let D be the action description fdtry in Figure 2,i.e.D = D,UD,,

18

{PUShPBRc}

{PushPBrv}
{3 @ {PushPBrv, PushPBrc} &
/\

PowerON —PowerON
TvON -TvON

{PushPBTV, PushPBRc}
{PushPBTV}

Fig. 4. Transition diagram described byuU I of Ex. 1.
with

D, = { causedPowerON after PushPByy A ~PowerON,
caused—PowerON after PushPBry A PowerON ,
inertial PowerON, —PowerON, TvON,-~TvON }

andD,, = {causedTvON if PowerON, caused—TvON if =PowerON }, and let
I be the set of causal laws féf . in Figure 3:

causedTvON after PushPBrc A PowerOn N —=TvON,
caused—=TvON after PushPBrc N TvON.

Furthermore, leC’ = C, contain besides constraints (3) and (13):

ALWAYS executable { PushPBgc},
ALWAYS holds PowerON N TvON D
—necessarily(holds TvON) after { PushPBrvy },

also the constraint
ALWAYS executable { PushPBry }, (14)

and take (strict) set-inclusionc) as the preference relatian.. The transition
diagram described b U I is shown in Figure 4. Here we can see that, at the state
where bothPowerON and TvON are mapped to, the actionPushPBg¢ is not
executable. Thereford) U I is not a solution to the ADU problerfD, I, C, C¢).

In fact, a solution is obtained by dropping the static law; (3., causedTvON

if PowerON, fromD U I. O

For an instance of a semantic definitiontaf;, consider the following setting based
on weights that are assigned to constraint§’dine., weighted constraints [18]).
We define the weight of an action descriptibnrelative to a se” of constraints,
and a weight functiorf : C' — R mapping each constraint i@ to a real number

19

by
weight, (D) = ZCGC,D):C f(eo).

Intuitively, the weight of an action description definedatele to the weights of
constraints encodes to what extent the(seff given preferable constraints is satis-
fied. (Note thatf can easily express a threshold function as well.) With tefend
tion, the more the highly preferred constraints are satisflee more preferred the
action description is.

Example 2 Reconsider our previous example whékgconsists of the constraint (13)
with weight 1:

ALWAYS holds PowerON A TvON D
—necessarily(holds TvON) after { PushPBrvy },

Suppose that the preference relatiop is defined in terms of a weight function
on constraints (i.elZ¢c = <Weighg). Then, the action descriptiods’ = (D U I) \
{causedTvON if PowerON} and D” = D, U I satisfy C, and thus are pre-
solutions. HoweverD"” does not satisfyC;,, which implies weight,(D") = 0,
whereasweight,(D’) = 1, and hence” C¢ D'.

For further details on comparing action descriptions by mseaf weighted con-
straints and other semantic preferences, we refer themtafs].

In the rest of the paper, we will study ADU problems at an auttievel, leaving the
preference relation undefined. For some problems, we willide more concrete
results by instantiating the preference relation: we walle— - asc (andC,, = 0,
thusC = C,) for an instance of a syntax-based relation, and we consides
<weight, @S @ representative of the semantic-based approaches.

4 Properties of Updates

In this section, we study some basic properties of solutioren ADU problem.

To this end, we first introduce a subsumption relation betwaetion descriptions,
and then show that solutions to an ADU problem fulfill someirdelsproperties

regarding special updates, provided that the prefererlaae C- obeys some
natural conditions. We then consider the structure of gmistand pre-solutions,
and establish a disjoint factorization result that allowsamposing an ADU into
smaller parts.

20

4.1 Basic Update Properties

We define subsumption of causal laws by an action descripsdollows.

Definition 3 (Subsumption) Let D be an action description over a signatufe=
(F,A). Then,

e a static law (4) overL is subsumeddy D, if for every states in T'(D), the
interpretation ofF describings satisfies7 D L;

e a dynamic law (5) oveL is subsumedy D, if for every transition(s, A, s’) in
T(D), the following holds: if the interpretation d&f U A describings and A
satisfiesH, then the interpretation dff describings’ satisfies7 O L.

A setS of causal laws isubsumedby an action descriptiom, if every law inS'is
subsumed by.

Furthermore, we build on the properties of a preferencdiogla introduced
next.

In the following, for an action descriptioh and a se€’ of constraints, let us denote
by Cp the set{c € C' | D |= c}.

Definition 4 Given a set of constraints' over a signatureC = (F, A), a prefer-
ence relatior— o over aZ is called

e monotone with respect t@/, if for any two action description® and D’ in
L, Cp C Cp impliesD £ D', andstrongly monotone with respect g, if
additionallyCp ¢ Cp impliesD’ C¢ D;

e monotone with respect td, if for any two action description® and D’ in
L, D" C D impliesD o D', and strongly monotone with respect 0, if
additionally D" C D impliesD’ C¢ D;

e non-minimizing with respect td, if for any action descriptiorD in £, D = C
impliesD 7 D’ forall D' C D, andstrongly non-minimizing with respect to
L, if additionally D |= C impliesD’ C D forall D’ C D.

We say that_ is monotoneif it is either monotone with respect t or monotone
with respect taC (or both).

Monotonicity is an intuitive potential requirement one Hiignave on a preference
relation: monotonicity with respect t@ encodes the semantically motivated prefer-
ence of satisfying preferable constraints as much as gesgibereas monotonicity
with respect tol expresses a more syntactic view of retaining as many caasal |
as possible. This is reflected in our representative prefereclations. Notice that
C Is strongly monotone with respect b (but not necessarily with respect €9,
whereaxweighg is monotone with respect 1@ if, for instance, all weights are non-

21

negative (but not necessarily with respectio

Obviously, any monotone preference relation is also nomirmgzing with respect

to £, and strong monotonicity with respect fbimplies that—. is also strongly
non-minimizing with respect t&. Intuitively, a non-minimizing preference rela-
tion with respect tol ensures that syntactically smaller (with respect to subset
inclusion) action descriptions cannot prevent an actigtdption that satisfies alll
constraints from being a solution, while the respectivergjiproperty explicitly ex-
cludes syntactically smaller action descriptions as gwigtin this case (note that
the additional condition implies the condition of non-nmnizing, and could serve

as a definition alone). This intuition motivates basic prape of solutions to an
ADU problem as follows.

Proposition 1 (Subsumption) Let (D, I,C,C<) be an ADU problem, such that
C ¢ IS non-minimizing with respect t4, D is consistent and) = C. If D sub-
sumesl, then D U [is a solution to(D, I, C,C¢). Moreover ifC¢ is strongly
non-minimizing with respect t6, thenD U I is the unique solution.

Proof. LetD = D, U D,, and letT'(D) = (S,V, R). SinceDUI = D, Ul U D,,
trivially satisfieg(ii) of our definition of update accomplishment, it remains tosgho
(i) DUT is consistent(iii) DUI = C,, and(iv) foreveryD’, D,UI C D' C DUI
andD’ = C,impliesDUI /o D'.

LetT(DUI) = (S, V', R'). In the following we prove thal’(D U I) = T'(D).

S’ = S:SinceD C DUI, we getS’ C S. FurthermoreD subsumeg and, hence,
everys € S satisfies7 O L for all static laws of form (4) ir/, i.e.,S C S".

V' = V: Follows fromS’ = S and our labeling convention for states.

R' = R: Let (s, A, s') be acandidatefor a transition relationR, of an action
description,D, if (a) s’ satisfies the heads of all static laws of form (4) inD,
for which s’ satisfiesG, and (b) s’ satisfies the heads of all dynamic laws of
form (5) in D, for which s’ satisfiesG ands U A satisfiesH. Furthermore, let’
be adetermined successof s w.r.t. A, if the set of heads of all laws applicable to
(s, A, s") uniquely determines, i.e., it contains (at least) one fluent literal for every
fluentinF. Then,(s, A, s’) € Riff itis a candidate forR ands’ is a determined
successor of with respect toA. SinceD C D U I, every candidatés, A, s') for
R’ is a candidate foRR. Moreover, thatD subsumeg implies that every candidate
(s, A, ') for Ris a candidate foR?’ as well. As(s, A, ') is neither inR nor in R/,

if s"is not a determined successorsokith respect taA it follows that R’ = R.

Given thatD is consistent and thd? = C, T'(D U I) = T'(D) proves(i) and(iii) .
As for (iv), D = C'andT’ = T impliesD U I = C. SinceC_¢ is non-minimizing
with respect taZ, it follows forall D, Ul C D' C DU I, thatD U I (/o D,
which proves(iv). Therefore,D U [is a solution to(D, I, C,C). Moreover, if

22

C ¢ Is strongly non-minimizing with respect i, thenD’ - D U I holds for all
D,UI C D' C DUI. Thisimplies thatDU[is the unique solution toD, I, C, C¢)
in this case. O

From this result, we obtain the following corollaries tedlius that the solution to
an ADU is as we would expect in some extremal cases, thatsmone to cases
that were considered for nonmonotonic logic programmingdgtgs [5,20].

Corollary 1 (Void Update) Let(D,(,C,C¢) be an ADU problem. If¢ is non-
minimizing with respect t&, D is consistent, and = C, thenD is a solution to
(D,0,C, C¢). If C¢ is strongly non-minimizing with respect fj then D is the
unique solution.

Corollary 2 (Idempotence) Let(D, D, C,) be an ADU problem, such that.
is non-minimizing with respect t6, D is consistent, and = C, thenD is the
unique solutiontdD, D, C, C¢).

Note that Void Update and Idempotence can easily be extetuledses where
I C D:given thatD is consistent and |= C, it holds thatD is a solution ifC is
non-minimizing; for strongly non-minimizing ¢, it is the unique solution.

Let us call a causal lawautological if it is subsumed by every action description
D. Informally, such a causal law has no logical content, ardhtipg with it should
not lead to any change. In fact we have the following property

Corollary 3 (Addition of Tautologies) Let(D, I,C,) be an ADU problem, such
that — ¢ is non-minimizing with respect #, D is consistent, and |= C. If I con-
sists of tautological causal laws, thénu [is a solution to(D, I, C, C¢). If Cc is
strongly non-minimizing with respect 1§ thenD U [is the unique solution.

Notice that a similar property fails for logic programmingdates as in [5,20].

Example 3 Consider an action descriptidn that has the following causal laws:

inertial LightON, —LightON,
causedLightON after SwitchLight N\ —~LightON,
caused—LightON after SwitchLight N\ LightON.

SinceD is consistent and: is strongly non-minimizing, we can state for any set
C of constraints, such thd? = C: D is the unique solution toD,), C, C) (void
update), as well as t6D, D, C, C) (idempotence), and toD, D', C, C) for any
tautological action descriptioR’ (addition of tautologies).

Considering<weighg with nonnegative weights for any constraine C' instead of
C as a preference relation (which is non-minimizing), we déhisfer that D’ is a
solution, in general however, it need not be unique. O

23

4.2 Postulates of Belief Change

In the literature, two kinds of changes have been identifigd thie incorporation

of new information, viz. revision (which adds more precismkledge about the
domain) and update (which is a change of the world per se) [3pite the nature
of change, a distinction is made whether beliefs are reptedeby a theory, i.e.,
by a logically closed set of sentences, or through a theasg flenowledge base),
i.e., a finite representation of a theory [33]. Ideally, @ters for the different kinds
of belief change are characterized by different sets ofragior postulates like the
AGM theory [2] for belief revision and the KM theory [39] foebef base update.

Fitting our approach in this context, we first observe thatmmon basic assump-
tion of the different belief change postulates is that igleae sentences from a
given logical language which is closed under the standardeanaonnectives; this
is not the case for action languages. In order to evaluatamooach in the style
of AGM, or KM respectively, it is thus necessary to interpaatl adapt respective
postulates. We note, however, that additional assumptdtise AGM theory re-
garding the underlying inference relation, that it satsséaper-classicality, modus
ponens, the deduction theorem etc. (cf. [57]), are inapple

Since an action description constitutes a finite repreientaf a theory about an
action domain, our update approach has to be classified estimgeon belief bases.
Let us briefly recall the KM postulates for belief base upddte

(Ul) KB o ¢ implieseo.

(U2) If KB implies¢, thenKB ¢ ¢ = KB.

(U3) If both KB and¢ are satisfiable, theA B x ¢ is satisfiable.

(U4) If KB, = KBy and¢; = ¢, thenKB; o ¢ = KBg ¢ ¢s.

(U5) (KB o ¢1) VAN gbg ImplleSKB o (¢1 VAN gbg)

(UB) If KB ¢ ¢; implies¢, and KB ¢ ¢ implies¢y, thenKB ¢ ¢, = KB © ¢».
(U7) If KB is complete, thefiKB o ¢1) A (KB ¢ ¢o) implies KB o (¢1 V ¢2).
(U8) (KByV KBy)o¢p=(KBod1)V (KBods).

Besides these postulates for update, Katsuno and Mendedxenéformulated the
AGM postulates for the case of belief base revision in prajesl logic:

(R1) KB ¢ implieso.

(R2) If KB A ¢ is satisfiable, thelkB x ¢ = KB A ¢.

(R3) If ¢ is satisfiable, thelk B ¢ is satisfiable.

(R4) If KBy = KBy and¢, = ¢, thenKB, ¢, = KBy % ¢.
(R5) (KB * ¢1) A ¢2 ImpIIeSKB * (¢1 VAN QZ52)

10 Hansson’s [33] postulates for contraction would, in style of Levi Iderditie rise to
revision via contraction and expansion; however, this requires thefusegation, which
we lack here.

24

(R6) If (KB *¢1) A @9 is consistent, thel B x (¢1 A ¢o) implies (KB * ¢1) A ¢a.

4.2.1 Interpretation of Postulates

As for an interpretation of these postulates in our setting,may take the sub-
sumption relation between an action description and a seawusal laws for char-
acterizing implication (and thus equivalence).

Lemma 1 (Equivalence) Let D; and D, be action descriptions over a signature
L = (F, A). Suppose that for every causal lawver £, it holds thatD; subsumes
Liff Dy subsumes ThenT'(Dy) = T'(Ds).

Proof. LetT(D;) = (S1,Vi, Ry) andT'(Ds) = (S5, V3, Ry). Towards a contra-
diction first suppose that; # S,. W.l.o.g., assume thatis a state inS; such that
s & S,. Consider an arbitrary fluer, and letF” denote-F if F is true ins, andF
otherwise. ThenD; does not subsume= causedF if Nsiy=t G N Ns(y=y —G,
whereasD, trivially subsumesg, a contradiction. Hence; = S, holds, and there-
fore alsol; = V5. Next, supposé; # Rs, and w.l.0.g. assume that, A, s') € R,
and(s, A, s') ¢ R,. Again consider an arbitrary fluedt, and letF’ denote—F if
Fis true ins’, andF' otherwise. ThenD; does not subsume

l=causedr'if A GA A\ -Gafter A H,A A -H,A

§(G)=t s/ (G)=Ff Ha€A Ho€A\A
/\ H, A /\ -H,,
(Hs)=t s(Hs)=f

whereadD, trivially subsumeg, a contradiction. ThereforB; = R, holds as well.
This proves the claim. O

Closing the language under conjunction is also no problemesan action descrip-
tion can be regarded as the conjunction of its causal lawaeMer, the meaning
of negation (and disjunction) of causal laws and action @etsons is ambiguous
and undefined. Therefore, we refrain from an interpretatigoostulates¢7) and
(U8).

Another difficulty arises from the fact that the new inforimatto be incorporated
into our action description is characterized by syntatifiead semantically differ-
ent entities, namely causal laws and constraints. Nayyiglb implies ¢ might be
understood component-wise A% subsumes the causal laws givendognd KB
satisfies the constraints given by

Given these considerations, we paraphrase the postutatelaavs:

(R1), (UL) If D'isasolutiontd D, I,C,C¢), thenD’ subsumeg andD’ = C.

25

(R2) If DU I isconsistentand® U I |= C, thenT'(D’) = T'(D) for any solution
D'of (D,I,C,C¢).

(U2) If D subsumed andD = C, thenT'(D') = T(D) for any solutionD’ of
(D, I,C, Ec).

(R3) Ifthere exists an action descriptid? such that)’ is consistent)’ subsumes
I'andD' |= C, then there exists a solution t®, 7, C, C¢).

(U3) If D is consistent, and there exists an action descripfosuch thatD’ is
consistent)’ subsumeg, andD’ = C, then(D, I, C,C() has a solution.

(R4), (U4) If T(Dy) = T(D,), T(I;) = T(L,), andC, = Cs, thenT(D}) =
T(Dj)) for any solutionsD} and D}, of (Dy,I,,Cy,C¢) and (Dy, I, Co, Ce),
respectively.

(R5), (U5) If D'"is a solution to D, I;,Cy,C¢) and D" U I, subsumes, thenD”
subsumes for some solutionD” of (D, I, U I, C; U Cy, Ce).

(R6) If D" is a solution to(D, I, C,C¢) and D’ U I, is consistent and satisfies
Cs, then D" subsumeg implies D" U I, subsumeg, for some solutionD” of
(D, I Uy, C Uy, Ec).

(U6) If D} isasolutiontq D, I,,Cy, C¢) such thatD] subsumes, andD] = Cs,
andDj, is a solution ta D, I, Cy, C) such thatD), subsumeg; and D), = (4,
thenT' (D)) = T'(D)).

Obviously, R1 and U1 hold by definition, wherea®2 holds for strongly non-
minimizing C¢. For U2, we also know from Proposition 1 that it holds iif is
consistent, in addition to a strongly non-minimiziaog:. Both conditions are nec-
essary.

ConcerningR3 and U3, they do not hold in general, unlegy, C D' C D U I.
In case of the latter they hold by definition; to wit the formet D = D, =
{causedF'}, Co=C, I = {caused—F'}, andC = (). Note that the property holds
if C =0andD, = 0.

Proposition 2 (Solution Existence)Let (D, I, C,) be an ADU problem, such
that D’ is consistent)’ |= C, and D’ subsumeg for some action descriptioh’
with signatureL. Then, there exists a solution (®, I, C,C¢) if (i) D, € D" C
DulandD'UI |=C,or (i) C=0andD, = 0.

Proof. Note that consistency @’ and thatD’ subsumeg implies that/ is consis-
tent. In Case (i) this implies thd?’ U I is consistent. Furthermor®,, C D'UT C
DUITandD' U = C hold. Hence,D' U I is a pre-solution, which proves the
existence of a solution. For (ii), observe that = () € I C D U I, and that

I = C (sinceC = (). Hence,l is a pre-solution, which proves the existence of a
solution. O

Irrelevance of SyntaxR4/U4) does not hold, even far .=c andC = (): Consider

D, = {causedF, caused—F'}, D, = {causedG, causedF' if G, caused—F'if G},
and]1 =1, = @

26

We remark, that the above counterexample is a canonicaliortbe sense that
I, = I, =) andC = (), however with inconsistenb; and D,. Note, that is
is easily modified to a counterexample whéve and D, are consistent (and, for
instance/; and/, are nonempty).

PropertyR5, U5 holds if just consistency is required’'(= ()), D’ U I, is con-
sistent, and=. is strongly non-minimizing. In general it fails as witnedday:
D = D,, = {causedF after A}, Co=C, I; = {caused—F after AN —F},
I, = {caused—F after AN F}, andC = {SOMETIMES executable A}. In
this caseD” = I, U I is the only solution of D, I U I, C, C¢) (sinceDU I, U I,
does not satisfg'). However,D"” does not subsunwmausedF’ after A, which is the
case forD’ = DU I;. The property also does not hold for strongly non-mininggzin
Cc in case ofC = (0 if D’ U I, is inconsistent: LetD = D,, = {causedF'},
Co=C, I, = {causedG}, I, = {caused—F'}. Then,D” = I, U I, which does
not subsumeausedF'.

Similarly, R6 holds if just consistency is required'(=), andC¢ is strongly non-
minimizing. In general it fails: LeD = D,, = {causedF after AN\ F'}, Co=C,
I, =0, I, = {causedF after A\ —F}, C; = {SOMETIMES —executableA},
andCsy = (. Then,D"” = I,, which subsumes= caused-F after A A F'. How-
ever,D' U I, = D U I, does not subsumk although it is consistent and trivially
satisfie,.

Proposition 3 (Unique Consequence)et (D, I;,0,C¢) and (D, [U 1,0, C¢)
be ADU problems, such that. is strongly non-minimizing wrtC. If D’ is a so-
lution to (D, I,0,C¢) and D" U I, is consistent, theD’ U I, is a solution to
(D, I U I, @7 Ec).

Proof. ObviouslyD’" U I5 is a pre-solution of D, I; U I,, (), C¢), since it is con-
sistent and trivially satisfie§' = (). Towards a contradiction assume that there is a
consistent action descriptiaR” such that D' U I,) C¢ D" andD, U I, U I, C

D" C DUI Ul,. Then, since ¢ is strongly non-minimizing wrtZ, we conclude
that(D'U L) € D".LetD; = D"\ (I, \ D’). Then,D’ C D;. FurthermorepD; is
consistent (because satisfaction of static laws is morgtand trivially satisfie§’,

i.e., Dy is apre-solutiontdD, I, (), C¢). Because ¢ is strongly non-minimizing
wrt. £, it follows from D’ € D thatD’ T D;. This contradicts the assumption
that D’ is a solution to D, I,), C¢). Therefore,D” cannot exist, i.e.D’ U I, is a
solutionto(D, I; U I5,0,C¢). O

Eventually,U6 fails to hold even for strongly non-minimizing . if just consis-
tency is required” = (): Let D = (), Co=C, I; = {causedF after A A F'},
I, = {causedF after A}, andC; = Cy = (). ThenI; subsumeg, and vice versa,

27

4.2.2 Discussion

Summing up, we observe that even in the simple setting withionodifiable laws
(D, = 0), without constraints = (), and with set inclusion as preference relation
(Ce=0Q), not all postulates are satisfied. Concerning the revisastypates, apart
from an additional consistency requirement for solutioistexce inR5, the only
postulate that completely fails is Irrelevance of Synt®&4/J4). This is intuitive,
however, given that the causal information in an action detoen depends on its
syntactical representation in terms of causal laws. Whiliermdint sets of causal
laws, i.e., knowledge bases, may represent the same toangiagram, when (the
same) new information is incorporated, this no longer n¢éet& the case.

Concerning the update postulates, in addition to the faibdre/4, postulateU2
does not hold in general. The reason is that solutions mustiiEstent, a property
which has been discussed as one of the discriminating pgrepdretween update
and revision. In this respect, our approach certainly akésd revision operator.
Moreover,U6 fails to hold even in this simple setting.

Let us turn to more sophisticated ADU problems, where moam {fstatic) con-
sistency is required for solutions, and dynamic requirdsi@eed to hold after
changing the knowledge base. Recall that in general suclireggents cannot be
expressed in terms of causal laws. (With the latter, one epresent action do-
mains that satisfy the respective requirement, which wantdunt to specify the
solution as the new information to be incorporated, howewher than express-
ing the requirement itself.) As soon as dynamic requiresiean be demanded
(C #), several postulates cease to hdk®/U3, R5/U5, andR6. For R3/U3, the
reason is that the solution space is constrained to cawsaldacurring inD U [
(which we consider a reasonable assumption for practiGigé operations in our
setting). In case oR5/U5, andR6, which are related to theupplementary AGM
postulateqi.e., AGM postulates K7 and K«8 [57]), the simple counterexamples
reveal that the main reason for this failure is due to the mamotonicity of the
action language and that it is rather independent of thel@nobefinition.

4.3 Disjoint Factorization

We next consider a structural property of solutions andgmiations, which can
be exploited for a syntactical decomposition of an ADU peob] in a divide-and-
conquer manner. Because of the involved semantics of tramsiind causation, in
general some prerequisites are needed.

Definition 5 (NOP) We say that an action descriptiab has NORif T'(D) has
either (i) a transition(s, (), s) for some state, or (ii) for every states, there exists
atransition(s, 0, s).

28

Notice that NOP is a very natural property that often applieparticular fortime-
driven domains, where passage of time cauge$, s) by inertia, usually for all
statess.

The following lemma is the key for our disjoint factorizaticesult. For any action
signature = (F, A), we denote by, the part of it which appears in any action
descriptionD.

Lemma 2 LetT(D") = (5%, V¢, R") for action descriptiond)?, i = 0, 1, such that
Lpo N Lpr = 0. LetT(D°U D) = (S, V, R). Then the following hold:

(l) S = {SoUSl ‘ So € SO,Sl c Sl},
(i) If RY # 0 and R* # (then, for(s), A%, s?) € R® and (s}, A',s]) € R,
(sdU sy, AYU AL YU s]) € R;
(iii) for (s, A,s') € R, (s N Lpo, AN Lpo,s' N Lpo) € ROand(sN Lp1, AN
EDI,S/ﬂ£D1> € Rl.

Proof. (i) is trivial. We prove(ii) and(iii) as follows.

(i) Suppose thak® # () andR! # (). Take any(s), A%, s¥) € RO and(s}, Al s}) €
R'. We show thatsjUs}, A°U A, s?Usl) € R. Suppose this is not the case. Then
one of the following two cases holds:

(1) For some dynamic law of the form (5) inD° U D*, sj U sj U A° U A! satisfies
H, ands? U s} does not satisfyi A L. W.l.0.g., suppose thatis in D°. Then, since
Lpo N Lp =0, sy U A° satisfiesH ands{ does not satisfy? A L. This implies
that(s), A%, s%) ¢ R°, which is a contradiction.

(2) sYUsd is another state (different fror} U s1) that satisfies the heads of all static
laws (4) inD® U D! for which s U s satisfies?, and of every dynamic law (5)
in DY U D', such that satisfaction df’ by sj U s} U A° U A implies thats? U s}
satisfiesG. Then, (since each causal law is i or D! but not in both, due to
Lpo N Ly = 0) it follows that, s§ satisfies the heads of all static laws (4)IiN
for which s{) satisfies, and of every dynamic law (5) iR, such that satisfaction
of H by sJ U A% implies thats! satisfiesG. This implies that(s), A°, s?) € R;.
(Symmetrically, the claim holds fap.) This is again a contradiction.

(i) Take any(s, A,s’) € R.W.l.o.g., suppose that N Lpo, AN Lpo, s N Lpo) &
RY. Then one of the following two cases holds:

(1) For some dynamic law of the form (5) inD°, s N Lpo U AN Lpo satisfiesH,
ands’ N Lpo does not satisfys A L. SinceLpo N L = (), s U A satisfiesH and
s’ does not satisfyz A L. This implies(s, A, s') ¢ R, a contradiction.

(2) s9 is another state that satisfies the heads of all static lawsifor which
s N Lpo satisfied, and of every dynamic law (5) ifv; such that satisfaction af

29

by sNLpoUANLpo implies thats’ N £ po satisfies. Considers” = sSUs' N Lp.
Due to(i) above,s” € S. Moreover, since o N L1 = (), the following holds:s”
satisfies the heads of all static laws (4) U D! for which s satisfies7, and of
every dynamic law (5) iD° U D!, such that satisfaction df by sU A implies that
s’ satisfies. This implies thats, A, s") ¢ R, which is a contradiction. O

Intuitively, this lemma describes how the transition deagrof an action description
can be composed, if the action description consists of twiasyically disjoint
parts. It can thus be exploited to decompose a given actiserigion into disjoint
parts as in our next result. For such a decomposition to bi&diain the sense that
solutions to the respective ADU subproblems can be compimsgiéld a solution
to the original ADU problem, care has to be taken with respedivo aspects:
First, an empty set of transitions shall not compromise thgr@ach, and thus has
to be avoided, in the presence of dynamic constraints (chrha 2(ii)). This can be
guaranteed by the NOP property, which will in fact be suffitier composing pre-
solutions. Second, for composing solutions the composef@i@nce relation needs
to comply with the preferences of the subproblems. Stat@a the viewpoint of
decomposition, the preference relation must be factolezab

Towards a formal treatment of these ideas, we need furtherirtelogy. We call
(L0, L£Y), whereL!= (F', A%), i = 0,1, apartitioning of a signaturef = (F, A),

if (F°,F')and(A° A') are partitioning off and A, respectively. We first define
decompositions of action descriptions and constraints.

Definition 6 (AD/Constraint Decomposition) Supposg L, £') is a partitioning

of a signature = (F, A), and letX be either an action description or a set of con-
straints overZ. Then a partitioning X°, X') of X is called adecomposition of{
with respect td £°, £1), if Lx: C L¢, fori = 0, 1. Furthermore X is decomposable
with respect tq £, £1), if such a decomposition exists.

Based on this, we next define the notion of a near-decomposifian ADU prob-
lem, which splits the action description and the constsaimiseparate parts while
disregarding preference.

Definition 7 (Near-Decomposition) Let (D, I,C, C¢) be an ADU problem with
signature£, and let(D°, DY), (I°,1"), and (C°, C") be decompositions adb, I,
andC, respectively, with respect to a partitioning®, £!) of £. Then,((D°, I°, C?),
(D', I',C")) is anear-decompositioof (D, I, C, C¢) with respect tq £°, £1).

The following theorem now formally shows that the pre-solus of an ADU prob-
lem can be obtained from those of a near-decompositionjgedithat some rami-
fying conditions hold. We say that a constratrticcurspositively(resp.negatively

in a setC of constraints, ik occurs in the scope of an even (resp. odd) number of
negations in a constraint if.

Theorem 1 (Disjointness) Given an ADU problem{D, I, C, C) with signature

30

L, let ((D° 1°,C%, (D', I',C")) be a near-decomposition with respect to a par-
titioning (LY, £') of £, and letC, be an arbitrary preference ordering for action
descriptions oveL?, i = 0, 1. Then the following holds:

(i) Let X’ be a pre-solution td D, I, C*, C¢+) such thatX® has NOP if some
dynamic constraint occurs negativelydt—¢, fori = 0,1. ThenX° U X! is
a pre-solutionta D, I, C,).

(i) Let X be apre-solutiont¢D, I,C,C¢), and let(X°, X*') be any partitioning
of X with respect to£°, £') such thatX® C D’ and X* has NOP if some
dynamic constraint occurs positively @i —¢, fori = 0, 1. Then,X® is a pre-
solution to(D?, I, C%, C), fori = 0, 1.

Proof. LetT(X°U X') = (S,V, R) and letT'(X?) = (S*, V*, R"). We first show
for any static constraint thatX°UX! s |= cif c € C7, X, s’ |= ¢, andsN L = s'.
Since for each fluent literdl in ¢, s = L impliess |= L, and since: € L C L
(i.e., ¢ contains only fluent literals fromﬁi) the claim follows. Conversely, for
any static constraint, it holds thatX*, s’ = cif c € C*, X°U X! s | ¢, and
st = s N L Again due to the fact that every fluent literAlin c is from £,
we conclude that = L impliess’ = L, which proves the claim. Therefore, we
conclude for any static constraine L C £ that there exists a statec S such
that X° U X!, s |= ciff there exists a state’ € S such thatX?, s* = c. Moreover
by the structure of (cf. Lemma 2(i)), X°U X!, s = cforall s € Siff X, s' = ¢
for all s* € S°. Hence, ifC just contains static constraints, th&f U X! satisfies
Ciff X° satisfiesC? and X! satisfiesC".

We next consider dynamic constraintsf the formnecessarilyQ after A;;...; A,

or —necessarilyQ after Ay;...; A, and show the following: (1X°U X!, s = cif

ce (0 X" s'=c,sNL = s, andX !~ has NOP ifc is negative, or) contains a
negative dynamic constraint; (), s' = cif c€ C', X'U X! s ¢, s' = sN LY,
andX'~* has NOP ifc is positive, orQ contains a positive dynamic constraint. We
proceed by induction on the nesting deptbf the constraint.

Base Casel{= 0): (1) Letc be positive and towards a contradiction consider a state
s € S,suchthatNL’ = s' and there exists a histoty= s, A1, s1,...,5,_1, Ay, Sn,
suchthas, £ Q. By Lemma Xiii), every transition of the history = s*, A;, 51N
L. sn 1 NLY A, s, N LYIs in RY. Furthermores,, (= Q impliess, N L' Q
becauser € X' and () contains only static constraints Contradiction.clfs
negative, then there exists a histoity = s', Ay, s,...,s,_;,A,, s’ such that
st # Q. Since X' has NOP there exists a sequencenof 1 states, such
thath'™* = s'".0,s17",...,5,°1,0,s, " is & history of X' ~*. By Lemma 2(ii),
h=sUs"™ A, ... A, st Usl~tis a history ofX° U X'!. Furthermores! = Q
implies s!, U s!~* £ @ becauser € X' and(contains only static constraints.
Contradiction. This proves (1) fdr = 0.

31

(2) Letc be positive and towards a contradiction consider a stateS?, such that
s’ = sN L" and there exists a history = s', Ay, s},...,s' |, A,,s', such that
st = Q. SinceX'~* has NOP, there exists a sequencerof 1 states, such that
hi=h = s 0 st L sl 0, sL 7 is a history of X177, By Lemma 2(ii), h =
s'Us ™ Ay, Ay, st Us T is ahistory ofXPUX L. Furthermores!, £ Q implies
st Usl—" £ Q because € X*and(@ contains only static constraints. Contradiction.
If ¢ is negative, then there exists a histdry= s, A, s1,...,5,-1, An, Sp, SUCH
thats, £ Q. By Lemma 2(iii), every transition of the historf’ = s', Ay, s; N
L. sn 1 NLY Ay, s, N LIS in RY. Furthermores,, (= Q impliess, N L £ Q
because € X' and(@ contains only static constraints. Contradiction. This psov
(2) fork = 0.

Induction Step: Let (1) and (2) be true for dynamic consteaof nesting depth
at mostk — 1 and consider a dynamic constrainbf nesting deptht. Then,Q
contains only static constraints and dynamic constraihtgesting depth at most
k — 1. Thus, (1) and (2) also hold fet, as follows easily by the arguments of the
base case, replacing justifications by the fact habntains only static constraints
with a respective justification th& contains only static constraints and dynamic
constraints of nesting depth at mast- 1.

So far, we have shown that (1) and (2) hold for any open canstBy the structure
of S (cf. Lemma 2(i)), we conclude for any existential or universal constraithat
X0UX! | cif c € C", X' = ¢,andX ' has NOP ifc contains a negative dynamic
constraint, as well as th&* |= cif c € C*, X° U X! |= ¢, andX'~* has NOP ifc
contains a positive dynamic constraint. Therefoté,= C* and X'~ has NOP if
C' contains a negative dynamic constraint, fa {0, 1}, impliesX° U X! = C.
Conversely, X U X! = C and X'~* has NOP ifC" contains a positive dynamic
constraint impliesX* = C*, fori € {0, 1}.

We now proceed with the proof of the theorem. Cékelet X be a pre-solution
to (D, I',C*,C¢), fori = 0, 1. Suppose that, for = 0,1, X* has NOP if some
dynamic constraint occurs negatively @4 —*. We show thatX® U X! is a pre-
solutionto(D, I, C,C¢). By Lemma (i), X°U X! is consistent, sinc&® and X!
are consistent. Furthermor®? U D! U1°u ' C X°U X! C D U follows from
DOUI’C X°C D'uUI®andD! UT' C X' C D'UT?, respectively. Eventually,
X% E CYand X! = C! implies X° U X! = C. This proves that{® U X! is a
pre-solution ta D, I, C, C¢).

Case(ii): Let X be a pre-solution téD, I, C,), and let(X°, X') be a partition-
ing of X such thatX® C D" andX! C D'. Suppose that, far= 0, 1, X* has NOP

if some dynamic constraint occurs positivelyGh—. We prove that for = 0, 1,
X'is apre-solution t¢D?, I', C*, C). SinceX is consistent, als&® and X! are
consistent. To see this, observe that w.l.o.gXfis inconsistent, then the static
laws in X are unsatisfiable, which implie¥ is unsatisfiable as well, a contradic-
tion. Moreover,D, UI C X C DU impliesD? U’ C X C DU IY and

32

DluI* C X' € D*UT'. Finally, X°U X! |= C'impliesX° = C° and X! = C'.
Thus, X° and X! are near solutions toD°, 1°, C° C¢o) and (D', I, C, C),
respectively. O

Informally, the NOP property in Theorem 1 is needed to ensia¢ the transi-
tion diagrams of pre-solutions to the sub-problems can bentined”. As already
mentioned above, this is only necessary in the presencenainig constraints.

For a full decomposition of an ADU problem, we need beyond ar mecompo-
sition also a factorization of the preference relation,alhis formally defined as
follows.

Definition 8 (Preference Factorization) Let .~ be a preference relation for ac-
tion descriptions over signaturé, and let(£°, £!) be a partitioning ofZ. A pair
(Ceo, Cen) Of preference relations ¢ for action descriptions ovef’, i = 0, 1, is

a factorization of— with respect tq £°, £'), if for any action description®, D’
over £ that are decomposable with respect(6°, £'), it holds thatD Co D’
implies that eithetD° o D'° A D' #¢1i DY or D" o D° A D' Cen D'

Note that preference by strict subset inclusiog&C) is always factorizable (e.g.,
taking C as the preference relations of the factorization). We astark that if the
set of constraint§’ is decomposable with respect t6°, £'), then the constraint
weight preference<yeignt is factorizable, provided that weights are nonnegative
(for instance, taking the same weights for the factorizgtio

A full decomposition of an ADU problem is then as follows.

Definition 9 (ADU Decomposition) A decompositionof a given ADU problem
(D, I,C, C¢) with respect to a partitioning£", £') of its signaturel is a pair
(DY, I°,C° Co), (DY, I, CY, Cen)) such that((D°, 1°,C°), (DY, I, CY)) is a
near-decomposition @D, I, C, C) and (C o, Con) is a factorization of— .

The following result, which is the main result of this seatir@garding solutions of
an ADU problem, is then easily obtained from Theorem 1.

Theorem 2 Let ((D°, I°,C° Ceo), (DY, I, CY, 1)) be a decomposition of an
ADU problem(D, I, C, C¢) with respect to a partitioning£°, £') of its signature
L. Suppose that either (i) no dynamic constraint occurg’iror (i) no dynamic
constraint occurs irC. If X* is a solution to(D?, I*, C*, C¢:) for ¢ = 0, 1, where
in case (i) X! has NOP, thetX° U X is a solution to(D, I, C, C¢). Furthermore,
in case (i) every solution toD, I, C, C) can be represented in this form.

Item (i) states that we can fully decompose an ADU into two componantsthat
all solutions can be obtained by a simple combination of thiet®ns of the in-
dividual components. However, this works in general onlglisence of dynamic
constraints (combining the transition graphs of the coneptsis then unproblem-

33

atic). Item(ii) accounts for possible dynamic constraints in one compoménth
are unproblematic as long as solutions of the other have MORever, not all
solutions can be composed from solutions of the componergsneral.

Example 4 Consider the ADU problentD U D', I, C, C), with D, I, andC' as
in Example 1, andD’ as in Example 3. Sinc&® = D U I \ {causedTvON

if PowerON}isasolutiontd D, I,C, C) (cf. Example 1) X' = D'’is (the unique)
solution to(D’, (), 0,) (cf. Example 3), and>’ has NOP (which is easily verified),
by Theorem Zii) X° U X! = (DUD'UI) \ {causedTvONif PowerON} is a
solutionto(DU D', I,C, C). O

Example 5 Consider the ADU problertD U D', I, C, <Weigh5), with D, I, C, and
weight, as in Example 2, anf)’ as in Example 3. Agaik*UX' = (DU D' UT)\
{causedTvONif PowerON }isasolutiontq DU D’ I,C, <Weigh5), asX? = DU
I'\{causedTvONif PowerON }isasolutiontd D, I, C, <weignt) (cf. Example 2),
and asX! = D’ is (the unique) solution tdD’, (), 0, <weight,)- By Theorem 1,
D, U D" U I is a different pre-solution to this ADU problem sinég, U [is a
pre-solution ta D, I, C, <Weigh5). Moreover, setting the weight of constraint (13)

ALWAYS holds PowerON A TvON D
—necessarily(holds TvON) after { PushPBry }

to 0 (which amounts to assigning the preferred constraifdsmit care’ status), it
would be another solution. O

Theorem 1 provides a basis for decomposing an ADU into smaldJs that can
be solved in a divide-and-conquer manferand Theorem 2 shows some possible
exploitation. These results can be integrated into algarst for computing solu-
tions, which we consider in Section 6 below; their effeatiess is demonstrated
on a practical example in Section 7.2. Finally, note thatofior exemplary prefer-
ence relations” and <weigry, With non-negative weights, the benign properties of
monotonicity and non-minimization with respect4o carry over to their standard
factorizations (given by restricting the relation to théevant domain) and can be
recursively exploited.

5 Complexity Analysis

In this section, we investigate the computational compjeaf relevant tasks for
solving an ADU problem, including to decide whether a solngxists and whether
a given action description is a solution. The complexity luéde tasks strongly

1 For similar and stronger results in classical propositional logic see [54].

34

DEC,& D¢ D' | solution existence| solution checking

in PSPACE PSPACE PSPACE
in AP (i > 1)) 4 ur
in P NP D?

Table 1

Complexity of deciding solution existence and solution checking, dependirigeocom-
plexity of the relevant subproblems (completeness results; hardnesddriiced prefer-
ence relatiorn—c).

depends on the complexity of deciding whether a given aatestription satisfies
a set of (obligatory) constraints (i.€), = C,), and whether an action description is
preferred over another action description under the givefepence relation (i.e.,
DrCe D).

We first consider the worst-case complexity of the above roeatl subproblems as
a parameter and derive upper bounds (in terms of membeeshifis) for deciding
whether an ADU problem has a solution, and for checking wdresim action de-
scription is a solution to an ADU problem in a generic setthg then ‘instantiate’
this generic setting by considering different classedricted sets) of constraints
which yield different complexities for decidin® = C,, and by studying concrete
preference relations for which the complexity of deciding- D’ differs. In par-
ticular, we provide completeness results for the syntareéerencec (for which
decidingD =, D’ is polynomial) and for the semantic preferencgeign; (for
which decidingD =, D’ ranges up t@>SPACE) for the various classes of con-
straints considered. Note that the class of admitted caingtris the main source
of complexity in most concrete settings, in particular witatidingD Co D’
reduces to deciding constraint fulfillment.

5.1 Generic Upper Bounds

Our main result on generic upper bounds, which however alssdhe general
picture of more precise complexity characterizations,uisimarized in Table 1.
Recall thatPSPACE is the class of decision problems that can be decided by a
(deterministic) Turing machine using space at most polyiabm the length of the
input. PSPACE contains the so-callggblynomial hierarchya sequence of classes
defined asAy = % = 11’ = P, and fori > 0, by AL, = P, 20, =
NP>, andIl%,, = coNP™'. Finally, D” is the class of decision problems whose
yesinstances are characterized by the “conjunction” ofNadh problem and an
independentoNP problem. The prototypical such problem is SAT-UNSAT, whose
yesinstances are paird’, G) of propositional formulas such thét is satisfiable
andG is unsatisfiable; this problem is also complete fdt. For a background in
complexity theory, we refer to [53].

35

Informally, the results show that modulo the cost of deadihe satisfaction of

constraints and preference, the complexity of solutioistexice and checking in-
creases at most by one level in the polynomial hierarchyclvia due to the expo-

nential search space for a solution respectively a bettatigo candidate, which

might be nondeterministically guessed. Since the sear@besgan be traversed in
polynomial space, there is no increase in complexity in thstrgeneral case.

We next formally establish Table 1. Given an ADU problém, I, C,), let
Ccheck denote the class of problems of decidibg = C, foranyD, Ul C D' C

D U I. Similarly, let Pcheck denote the class of problems of deciding whether
Dy Ce D, holds, for action description®, U I C D; € DU I and: € {1,2}.

Theorem 3 Deciding whether a given ADU problef®, I, C', C) has a solution
(or a pre-solution) is (i) iNPSPACE if Ccheck is in PSPACE, (ii) in X if Ccheck

isin A andi > 1, (iii) in NP if Ccheck is in P.

Given an ADU probleniD, I, C,) together with an action descriptiod’, de-

ciding whetherD' is a solution for it is (a) iINPSPACE if Ccheck andPcheck are

in PSPACE, (b) inTI? if Ccheck andPcheck are in A” andi > 1, (c) in D if

Ccheck andPcheck are inP.

Proof. LetD = D,UD,,. In order to decide wheth¢D, I, C, C) has a solution,
we can guess a pre-solutid such thatD, U1 € D’ C D, U I, along with a
states for D’ (to witness consistency), and chebk = C, in polynomial spacé),
otherwise in polynomial timéii) , respectively with the help of 87 ,-oracle. This
proves(i), (i), and(iii) .

As for deciding whether a giveb”’ is a solution, let us consider the complementary
problem. We can nondeterministically gug3$ together with a state” and pro-
ceed as follows. We check in polynomial time whethgrul & D', orD’ & DUI.
We also check whethdp’ is inconsistenta) in polynomial space, respectivelly)
with a single call to atNP-oracle. Deciding whethed’ |~ C,, can be done in poly-
nomial space in Cas@), and in polynomial time with &7 ,-oracle in Casgb).
Furthermore, we check in polynomial time whethey U7 ¢ D” C D U I and

if D" is consistent (whethet is state ofD”). Two further checks decide whether
D" = C,andD’ Cs D" (a)in PSPACE, and(b) in polynomial time with the help
ofaX? -oracle. Thus, the complementary problertasin PSPACE, respectively
(b)in X7, proving(a) and(b).

For (c) we nondeterministically guess a statef D’ which we use to check con-
sistency in polynomial time. Also we decide, U C D" C D, U I in polyno-
mial time. An independentbNP-check excludes more preferred pre-solutions, i.e.,
the complementary problem of guessifg together with a state” and checking
D,ul c D" C DU I, consistency (whethet’ is state ofD"), D" = C,, and

D' C¢ D" in polynomial time. This proveB?”-membership fofc). O

Before we turn our attention to ‘instantiating’ this genemault for ADU prob-

36

lems with different classes (restricted sets) of constsaamd concrete preference
relations, which will yield precise complexity characiations in terms of com-
pleteness results, we remark that to ease exposition, rethainder of this section
proofs are sketched, summarizing the main arguments arsractions, while full
proofs are given in Appendix A.

5.2 Constraint Fulfillment

As outlined in the beginning of this section, one of the tw@arant subtasks in
solving ADU problems is checking whether a set of constsaisitsatisfied by an
action description. This subtask has a major influence ondhplexity of finding
solutions of an ADU problem. Therefore, besides considgeaiitrary constraints,
we also investigate restricted classes of constraintsattigolar, when the maximal
nesting depth of dynamic constraints is fixed by an intégand when no dynamic
constraints occur at all.

Theorem 4 Given an action descriptio® and a setC' of constraints, deciding
D = C'is (i) PSPACE-complete in general, (i}, ;-complete ifi is the maximal
nesting depth of dynamic constraintsdh and (iii) PﬂIP-compIete ifC' does not
involve dynamic constraints.

HerePhVP means polynomial-time with a single parallel evaluatiorcalls to an
NP oracle. Similarly fori > 1, ©F is the class of problems that can be decided in
polynomial time with parallel calls to 87 ; oracle (alternatively, this class is often
characterized by allowin@(log n) many oracle calls) [65].

Proof. Concernindi) the result has been shown in [18]. Membership in Gage
follows from the fact that checking the truth of a negatedversal constraint of
the form—ALWAYS @, where(is a conjunction of clauses over static constraints
of the formholds F' or —holds F', is in NP. Hence, the complementary task, i.e.,
checking the truth of a positive universal constraiitWAYS (@), is incoNP. Thus,

D = cis decided in polynomial time with a single parallel evaioatof n NP-
oracle calls, given that is the number of universal constraintsdnSimilarly, one
proves in Casgii) by induction on the nesting depth that D |~ ¢ is decided in
polynomial time with paralleE;, ,-oracle calls.

As for hardness, the problem {ii) is reduced to the foIIowingjﬂlp-hard deci-
sion version oMaximum CNF Satisfiability40]: Given a Boolean formuld’ in
conjunctive normal form (CNFand an integefk, decide whether the maximum
number of clauses i that can be simultaneously satisfied by an interpretation
is 0 mod k. Consider a 3-CNF formula of the forw_, L, V L;» V L, 3, where
Lij;1<i<mn,1<j <3, isaliteral over atoms(= {X;,...,X,,}, and the

37

following action descriptiorD;:

causedC; if L;;, causedC;if L;», causedC; if L;s, _
1<:<n

CausedﬂC’i if _|Li71 A _|Li72 N _\Li73,

causedr;, if ¢y, caused—Fy, if =Cy,

causedr; if -Cy, caused—Fif Cy,

causedr; ; if C; A Fi_q -1, _ o
2<1<n,1<73<

caused—F; ; if ~C; A Fy_qj_1,

causedF; ; if -C; A Fi_y j, 2<i<n 0<j<i
<1<n,0<)<

caused-F;; if CiANFi_y;

ThenD; = ¢ iff the maximum number of clauses i that can be simultaneously
satisfied by an interpretation @smod k, wherecy, is the following constraint:

ALWAYS holds F,, oV

SOMETIMES holds F,, , A ALWAYS (=holds F}, ;11 A ... A=holds F,, ,,)V
SOMETIMES holds F, ;; A ALWAYS (=holds F}, 41 A ... A —holds F}, ,,).

For hardness in Cag@), considern Quantified Boolean Formulas (QBF$) =
QX Qo XL - QXL BN 1 < I <m,whereQ; = Jif i = 1 mod 2 andQ; =V
otherwise, X * andXJl., 1 <i,7 <nandl < k,l < m, are pairwise disjunct sets
of propositional variables if # j or k # [. andE' is Boolean formula over atoms
in X! = Xt U---U X!, such that if®, is false thend;,, ..., ®,, are false, too.
Deciding whether the maximum index1 < o < m, such thatd, is true, is odd
is ©F ,-hard [65]. The problem of deciding |= ¢ for a constraint: with nesting

depthk of dynamic constraints is reduced to this problem, as fadlow

Letn = k+2,1 <[< m,and let the action descriptidn, consist of the following
statements:

causedF! if F! after A; 1, ,
2<i<n,F eX!

caused—F! if ~F} after A;_;,

causedF after A;_; A F, , , o
2<i<n,1<j<ni#jF}eX!

caused—F] after A;_y A —F},

38

Consider the constraint:

V2 (SOMETIMES f2+1 A ALWAYS = f242) v g™ if m is odd

V22 (SOMETIMES f241 A ALWAYS - f2+2) otherwise,
where

g™ = SOMETIMES ™, and
f'=piNpi(...(pn_1 N p,_1holds E' after {A,_,})...) after {A,;},

where N = necessarily and wherep; = = if i is even ang; is void otherwise,
for1 < i < n— 1. Then, the maximum index such thatd, is true, is odd iff
D2): Co. O

5.3 Solution Existence

Equipped with these precise complexity characterizatiddsheck for ADU prob-
lems of some classes of constraints, we aim to characteralg the complexity
of the solution finding tasks for these classes of consgant particular prefer-
ence relations. Notice that checking whether a solutiostexs independent of the
concrete preference relation and its computation. Thidsléathe following result.

Theorem 5 Deciding whether a given ADU problef®, I, C',) has a solution
(or a pre-solution) is ()PSPACE-complete in general, (iiE1, ;-complete, ift is
the maximal nesting depth of dynamic constraint&’jn (i) >'-complete, ifC,
does not involve dynamic constraints, and (i\f)-complete ifC, = ().

Proof. Membership follows from Theorems 3 and 4, and Hardness i Ghas
follows from Theorem 4. For hardness in Cqs, letn = k& + 2 and letd =
Q. X, -+ Q,X, E be a QBF, wherg);, = 3if i = Omod2 and@; = V
otherwise. Consider

D, = D;U{causedy; after A, ; AY;, caused—Y; after A; 1 A=Y, |2 <i<n},

whereD; is the action description from the proof of Theorem 4 wWita 1, D,, =
{causedY;,caused-Y; | Y; € Y}, I = 0, C = C, U C, with C, = 0, and
C, = {c,}, where

co = ALWAYS py Npi (... (pn—1 N pn—1 holdsE after {A,_1})...) after {A;},

and whereN = necessarily andp;, = — if 7 is odd and void otherwise, fdr <
i < n — 1. Then, there exists a solution to the action descriptioratgp@roblem
(D, UD,,, I,C Cc)iff ®istrue.

39

For (iii) let ® = dY' VX E and consider the action description update problem
(D,UD,,,I,C,C¢), whereD,, = 0, D,, = {causedY;, caused-Y; | ¥; € Y},

I =0,andC = C, = {ALWAYS holds E}. Again, the action description update
problem(D, U D,,, I, C,C¢) has a solution iffd is true.

Finally, for (iv), let £ be a Boolean formula over atomiSand let us defind,, =
{causedY; if —=F, caused—Y; if -E}, D,, = {causedY;, caused—Y; | Y; € Y},
I =0,andC = (. Then,(D,UD,,, I,C,C¢) has asolution iffF is satisfiable. O

This result can be instantiated with any preference relaia yields completeness
results for deciding the existence of a solution. When irt&ged with our syntactic
preference_, a remarkable consequence is the following. Deciding warethu 7

is a solution to an ADU problerfiD, I, C, C) has the same complexity as deciding
D E C,ingeneral. Deciding the existence of an arbitrary soluigastightly harder
than decidingD = C, for restricted settings of constraints @). Intuitively, the
additional computational effort accounts for the searca sblution candidate.

5.4 Solution Checking

We finally turn our attention to the recognition of solutipmdere we provide re-
spective results for the syntactic prefereacand the semantic preferenc:a,eighg.
Again the problem turns out to B&SPACE-complete in general. Similarly as be-
fore, for C in restricted constraint settings testing arbitrary solutandidates has
higher complexity than testin U I, which intuitively accounts for the additional
maximality criterion to be checked for a solution.

Theorem 6 Given an ADU problen{D, I, C, C) and an action descriptiorD’,
deciding whetheD’ is a solution for it is (i)PSPACE-complete for general con-
straints in C,, (ii) I}, ;-complete if% is the maximal nesting depth of dynamic
constraints inC,, (i) I1}-complete ifC, does not involve dynamic constraints,
and (iv)D”-complete ifC, = 0.

Proof. Membership follows from Theorem 3, observing that for ameg action
descriptionsD’ and D", decidingD’ C D" can be done in polynomial time, i.e.,
thatPcheck is in P for C.

Hardness in Casg) follows from Theorem 4. Fofii) letn = k£ + 2 and let® =
VY QX - Q,X, E be a QBF, wher&);, = Jif ¢ = 1mod2 and@; = V
otherwise. Consider

D, = DyU{causedY; after A;_; AY;, caused—Y; after A; 1 A—Y; |2 <i <n},
whereD; is the action description from the proof of Theorem 4 wWita 1, D,, =

{causedY;,caused—Y; | Y; € Y}, I = (), andC = C, = {ALWAYS [V g},

40

where

f=piNpi(...(pp1 Np,_1holds E after {4, 1})...) after {A;},
9=/, .,, SOMETIMES holds Y; A SOMETIMES holds -,

whereN = necessarily p; = —if 7 is odd and void otherwise, fdr<i: <n — 1,
andp,, — 1 = —if nis odd and void otherwise. TheR,, is a solution to the action
description update problef®, U D,,, I, C, C) iff ® is true.

For (iii) let ® = VY 34X E and consider the action description update problem
(D, U D,,,I,C,C), whereD, = 0, D,, = {causedY;, caused-Y; | Y; € Y},

I =0,andC = C, = {ALWAYS —holds E V g}, with g as before. The ADU
problem(D, U D,,, I,C, C) hasD, = () as a solution iffb is true.

Finally (iv), let £; and E,; be Boolean formulas over atoriis andY;, respectively.
ConsiderD, = {caused—F, causedF if =E,}, D,, = {causedF if —FEs}, I =
), andC = (. Then,(D, U D,,,I,C, C) has solutionD, iff E, is satisfiable and
FEs is unsatisfiable. O

We next consider solution checking for the semantic preimgweigmq. Note that
while Pcheck is polynomial forC, this is no longer the case f@rweighg. However,
intuitively whenever the complexity dfcheck does not outweigh the complexity
of Ccheck, i.e., when we do not allow for more complex constraintgjnthan in

C,, then we stay within the same upper bounds asfoProviding also matching
lower bounds yields the following result, which differsfindhe previous one only

if C' = (). The intuitive reason is that for the syntactic prefererise m this case a
maximality check is needed to recognize a solution, whigesttmantic preference
is indifferent forC' = (), which means that basically a consistency check is sufficien
and that every pre-solution also is a solution.

Theorem 7 Given an ADU probleniD, I, C, <Weighg) and an action description
D', deciding whetheD’ is a solution for it is (i)PSPACE-complete for general
constraints inC, (ii) II;, ;-complete ifk is the maximal nesting depth of dynamic
constraints inC, (i) I1Y'-complete ifC' does not involve dynamic constraints, and
(iv) NP-complete ifC' = 0.

Proof. Membership for(i), (ii), and(iii) follows easily from Theorems 3 and 4.
For (iv), i.e.C = (), Pcheck is trivial for <weight, » hence we can decide whethef
is a solution essentially by checking consistency.

Hardness in Cas@) follows from Theorem 4. Fofii) letn = k + 2 and consider
®, D,, Dy, I, andC, from the proof of Theorem @ii). Additionally, letC, =
{ALWAYS holds Y;, ALWAYS holds —Y; | ¥; € Y’} and consider a weight of 1
for eache € C,. Then,D, is a solution to D,, U D,,,, I, C, U C,, <Weigh5) iffitis a
solution to(D, U D,,,, I, C,, C).

41

For (iii) consider®, D, I, andC, from the proof of Theorem §ii). Again, let
C, = {ALWAYS holds Y;, ALWAYS holds —Y; | ¥; € Y} with weight 1 for each
c € C,. Then, for the same reason as abadvg s a solution to D, U D,,,, I, C, U
Cy, <Weighg) iff it is a solution to(D, U D,,, I, C,, C).

Finally (iv), let E be a Boolean formula over atoriisand consider the ADU prob-
lem given byD, = {causedY; if —=F, caused-Y; if =E}, D,, = 0, I = (), and
C' = (. Then,D, is a solution to D, U D,,,, I, C, <Weigh5) iff I'is satisfiable. O

Hence, even recognizing solutions is quite hard. Howegeggnizing pre-solutions
is easier for restricted sets of constrairity, (,-complete if the maximal nesting
depth of dynamic constraints 11 is k, PﬁTP-compIete ifC' has no dynamic con-
straints, andNP-complete ifC' = (). This follows easily from Theorem 4.

6 Computing Solutions

Equipped with a clear picture of the computational cost imteof complexity for
the relevant (sub-)tasks of solving an ADU problem, we nom to the issue of
computing solutions using dedicated, deterministic aligors.

6.1 General Algorithms

With an oracle for pre-solutions, in case of the syntactfgnence_, we can incre-
mentally compute a solution to an ADU probléi, 7, C, C) whereD = D,UD,,,

in polynomial time using the algorithm in Figure 5. By virtueTheorems 5 and

6, this algorithm is worst case optimal, even when the ngstepthk of dynamic
constraints is restricted, since computing a solution s¢feel power of &, , ora-

cle. If the existence test for a pre-solution(éf, U D,,,, I, C, C) in Step 1 or Step 2

in fact returns some pre-solutidi’, then we can replace the respective assignment
to D' by the assignment®’ := D" andD,, := D,,, \ D".

We remark that for semantic preferences, Iﬂgeeigmz, such a deterministic polyno-
mial time procedure for computing solutions, using an adol computing near
solutions, does not work in general. However, in certairesa oracle for pre-
solutions can be used effectively in a similar way. For ins&g whenever the con-
straints inC), can be strictly ordered according to their (non-negativeiphts, such
that no subset of constraints that are before a constramthe ordering can sum
up to a higher weight than Then, in a procedure similar tod&UTION, one can
iterate through the set of constraidtsonce, using the oracle to determine whether
pre-solutions exist to the slightly modified problem wheeetain constraints from
C, are added t@’, in order to determine the set of constraints frofpsatisfied by

42

Algorithm SOLUTION-
Input: an ADU problem(D, I, C, C)
Output: some solution ofD, I, C, C), if one exists.
Step 1 if(D, U D,,, I,C, C) has a pre-solution
then D’ := D,, elsehalt;// no solution exists
Step 2 whileD,,, # () do
choose soméc D,,;
D, := D'"U{l}; Dy, :== Dy, \ {{};
if (D, U D,,,I,C,C) has a pre-solutiothen D" := D" U {¢};
endwhile;
Step 3 outputD’. O

Fig. 5. Algorithm to compute some solution preferred by set-inclusion

an optimal solution. Once this set is known, any pre-safutibthe problem where
these constraints are addedtq is a solution to the original problem.

For the general case @:fweighg with nonnegative weights, for instance, a branch
and bound algorithm can be devised from AlgorithmL8TION that uses an or-
acle for pre-solutions to compute an initial solution caladé and, throughout the
computation, better candidates as usual in the style of yimaa algorithm.

For other preferences, algorithms will have to be developed that similarly ex-
ploit the structure ofZ to prune the search space effectively—lf is monotone
with respect to the underlying signature, we may adapt Aflgwr SOLUTION sim-
ilarly as for <weight, {0 @ branch and bound algorithm that aims at enumerating
pre-solutions (for which e.g. techniques as in [13] are wi¥@ind cuts branches in
the search tree if no better pre-solutions compared to thrermily most preferred
ones,Dy,...,D,,, can be found in them; more precisely, any branch for a (par-
tial) pre-solutionD can be cut such thad U {¢4,...,¢,,} C¢c D; for someD;.
Note that every solution preferred undeg. is also preferred under set-inclusion,
and we can adapt in the same way the variant of Algorithon&1oN that ex-
ploits pre-solutions returned by the oracle. This schemg lbesfurther refined, as
usual, by exploiting properties like solution dominanca @ach possible solution
D' suchthatD C D' C {/4,...,¢,}, one of the solution®; is preferred); further
investigation remains for future work.

6.2 Pre-Solutions

Pre-solutions to a given ADU problem may be nondetermuadiiff computed as in
the membership part of Theorem 5, or may be obtained from a @B&ding us-
ing a QBF solver. We present here a different computation aggtivhich builds on
update descriptions and “update fluent sets.” Roughly, raliae to consider vary-
ing update descriptions, in this method the problem is céadpnto a single action
description, called thepdate descriptionin which special update fluents govern

43

the inclusion and exclusion of causal laws. Determining @ohaiie then amounts to
determine an appropriate update fluent set, which is secadlgtdefined and may
be computed by constraint satisfaction and state set gemeedgorithms.

Definition 10 LetD = D, U D,,, be an action description with signatut&, A).
Theupdate descriptiof/ (D) is the action description obtained from as follows:

(1) Extend(F, A) by a setH of £ = |D,,| new fluents (calledipdate fluenfs
Hy, ... Hy;
(2) label each static law (4) i, with a fluentH; € H:

causedL if G N\ H;, (15)
and each dynamic law (5) i,,, with a fluentH; € H:
causedL if G after H A\ H;, (16)

such that no two laws are labeled by the same fluént
(3) for eachH,; labeling a law, add the dynamic law:

inertial H;, ~H,. (17)

We next define update fluent sets. To this end, we define, givantaon description
D, U D,, and a set of constraints on the same signature, a partitioniff, SV
of the state sefV of the update descriptionl = U(D) of D, U D,, having the
setH of update fluents, as follows. For any two states ¢ SU let s =g s iff
sNH =5 NH,and letSy, = {s' € SV | s =g s}. Given a constraint and
states € SY, we say that holds ats wirt. S&S, if in case(i) c is existential (9),
E.s' |= Q holds at some’ € S ,; (i) cis universal (10)FE, s' |= Q holds at all
s € Sﬁs; (i) cis a Boolean combination of existential and universal cansts
¢;, the combination evaluates to true if eagthas the value at wrt. Si; .. Then,
Sg = {s € SY | cholds ats wrt. Sig ,, for all ¢ € C'}. Furthermore, in the rest of
this section, we identify states with the sets of fluents Wiaice true at that state.

Definition 11 Anupdate (fluent) sdbr U relative toC' is a setM C H such that
(i) s N H = M for somes € SV, and (ii) Sy , € SE.

With the notions above, we can compute a pre-solution to ab pfbblem(D, I,
C,C¢), whereD = D, U D,,, with the algorithm RE-SoLuTION shown in Fig-
ure 6. The key to its correctness is the following propositio

Proposition 4 Let (D, I,C,C¢) be an ADU problem, witth = D, U D,,. LetU
be the update descriptioné? U I = D, U I U D,,, and letiV denote a subset of
D,, containing laws labeled by the elemeMsC H in U. ThenD' = D, UIUW
is a pre-solution td D, I, C, C¢) iff M is an update set fol/ relative toC,,.

44

Algorithm PRE-SOLUTION(D, I,C, C¢)

Input: an ADU problem(D, I,C,C¢)

Output: some pre-solution ¢D, I, C, C¢), if one exists.
Step 1 if DU I is consistentand® U [|= C, then outputD U I and halt;
Step 2 construct the update descriptibhof DU =D, U U D,,;
Step 3 ifsome update fluent s&d for U relative toC', exists

then take an arbitrary sucMI elsehalt;// no pre-solution exists

Step 4 identify the setl’ of causal laws inD,, labeled by the elements &
Step 5 outputD, UW U I.

Fig. 6. Algorithm to compute some pre-solution

The proof of this correspondence result, which is techhjigaVvolving, is given in
Appendix B. It follows the intuition that by considering andgte set forD U I rel-
ative toC, and ‘adding’ the corresponding labeled laws (which by carsion are
from D,,) to D, UI, one ends up with an action descriptibhthat satisfie€’,. The
essential argument is by showing that for any staté D', s U M is a state of/,
and due to Conditiofii) of Definition 11 it is a state irﬁgo, which in turn implies
thats € Sgo’, i.e., thatD’ = C, . Moreover, Conditior(i) of Definition 11 guaran-
tees thatD’ is consistent. Vice versa, to every pre-solution corredp@n update
setM, given by the labels of the modifiable laws included in the gokition.

From Proposition 4, the correctness of algorithREFPSOLUTION is then easily
established.

Theorem 8 Let (D, I, C,C¢) be an ADU problem, withh = D, U D,,. Then
Algorithm PRE-SOLUTION outputs some pre-solution @D, I, C,) if and only
if some pre-solution ofD, I, C, C¢) exists.

We observe that for as the preference orderimg., the algorithm can be easily
adapted to find solutions instead of near solutions: to thds & Step 3 we take a
maximal one. We also note that Step 1 is not necessary as fiagr@scomputation
of any pre-solution is concerned. However, in the view of Apidblem solving it
may be worthwhile to particularly returf U I first, if it is a pre-solution, since it
constitutes the case whefean be incorporated without modificationfb This is
in particular relevant for preference relatiang that are non-minimizing, as then
in fact a solution is output.

Example 6 Consider an ADU problentD, I,C,C¢) given by D, I, andC' as
presented in Example 1. Note thatu I (= C' (as explained in Example 1). We
obtain the following update descriptiéhof D, U I U D,,, which containsgD,, U I
and the laws:

causedTvON if PowerON A Hj,
caused—TvON if =PowerON N Hs,
inertial H;, —H, (1<i<?2).

45

According to the transition diagram describedbywe have that actioRushPBg¢
is not executable, i.e., constraint (HLWAYS executable { PushPBgc} is Vi-
olated at any state O {PowerON, TvON, H,}. Moreover, at any state DO
{PowerON, TvON } such thatH, ¢ s, constraint (13):

ALWAYS holds PowerON N TvON D
—necessarily(holds TvON) after { PushPBry }

is not satisfied due to missing causationfdfvON . At every state of/, however,
constraint (14)ALWAYS executable { PushPBry } is satisfied. We thus obtain

SY. = {s € SY | s satisfiesH, vV = H,},

and, for instance} PowerON, TvON , Hy} € S&. Therefore{ H,} is an update set
for U relative toC, and obviously itis the only one. Hence, if we add the law lette
by H, to D,UI, or equivalently remove the lasaused TvON if PowerON, which

is labeled byH,, from D U I, we obtain a pre-solution to the problem (cf. also
Example 1). O

Example 7 Consider a slight variant of the previous Example 6, where this dy-
namic laws inD (except for the inertia laws) are modifiable, and with théolelng
causal laws added tb,,,:

causedTvON after PushPBry A = PowerON,

caused—TvON after PushPBry A PowerON.
The transition diagram described byU I is the same as in Figure 4, and thus for
the same reasons as mentioned in Example 4,7 [~ C. The update description

U of D,UIUD,, consists ofD, U I, the labeled laws as presented in Example 6,
and the following causal laws:

causedPowerON after PushPBpy A ~PowerON A Hs,
caused—PowerON after PushPBry A PowerON N Hy,
causedTvON after PushPBry A = PowerON A Hs,
caused—TvON after PushPBry N\ PowerON A Hg,
inertial H;, —H; (3<i<6).
Constraint (3): ALWAYS executable { PushPBg¢} is still violated according to
the transition diagram described by since the actioush PBg is not executable

whenevers O { PowerON, TvON, H,}. Let us consider the remaining statesf
U, i.e., only those such thdf; ¢ s. We first observe that a violation of constraint

46

(23):
ALWAYS holds PowerON A TvON D
—necessarily(holds TvON) after { PushPBry }

is witnessed by any such state where { PowerON, TvON }, Hg ¢ s, and either
H, ¢ sor Hy ¢ s (or both), since there is no causation fef’vON when ex-
ecuting PushPBry . Finally, constraint (14)ALWAYS executable { PushPBry }
does not hold at any such statevhere the power and the TV are off, i.e.n
{PowerON, TvON } = (), if {H,, Hs} C s andHs ¢ s. More formally,

SY. = {s € SY | s satisfiesH, VV (~Hg A (—Hy V =H,)) V (~Hs A Hy A H3)}.

Two update sets fol/ relative toC' are{Hs, Hy, Hs, Hg} and{H,, Hs, Hy, Hg}.
(That they actually constitute update sets is witnessgd,\®/{ Hs, H,, Hs, Hs} €

SY and{H,, Hs, H,, Hg} € SY, respectively.) We may choose either one and, by
adding the corresponding causal lawgipu I, we get a pre-solution to the prob-
lem. Note however, that in case©f.=C, for instance, none of the pre-solutions is
a solution, as removingausedTvON if PowerON is sufficient. This is reflected
by the (maximal) update sét,, H;, Hy, Hs, Hg}. O

Algorithm PRE-SOLUTION can be run in polynomial space, and is thus within the
worst case optimal bounds. Indeed, the update descriptidar D and C' can

be easily computed in polynomial time, and after the coasist and constraint
fulfillment check in Step 1, the bulk of the work is with Stepi%., to com-
pute an update séfl. Here, we can resort to different methods. If the full state
set SY of U would be explicitly given, then Step 3 is clearly feasiblepioly-
nomial time. Otherwise, we can use an algorithm that enuree#’, and for
each states generated take N H as candidate update skt for which condi-
tion (ii) Sfy, € SE is tested using constraint satisfaction; a brief outlin@ss
follows. Let Fy = Apg,em Hi N Amerm —Hi; intuitively, F; holds at a state’

iff s’ belongs toSy .. Then, for each existential constrainbf form (9), define

¢, = SOMETIMES holds F; A Q, and for each universal constrainbf form
(10), definec;, = ALWAYS holds F; O (. For a Boolean combinationof exis-
tential and universal constraints, we defigas the constraint obtained by rewriting
each occurrence of an existential or universal constraimntescribed above. Then
St.. € Sg is equivalent tdJ = ¢, for each constraintin C.

Thus, one can build algorithms to compute pre-solutionsi@@U on top of basic
reasoning services for action descriptions that geneedseos states and allow for
checking the satisfaction of constraints (as supportedie gD-Constraint [21],
under some limitations), which are applied to the updaterifetson U (D). Com-
pared to a simple search over the pre-solution candidatesich thatD, U I C

D" C DU I and testing whetheD’ = C,, this approach has some attractive
advantages. One is that we may compile the transition diagfd/ (D) into an ef-
ficient representation (e.g., into binary decision diaggémat are customary in effi-

a7

cient processing of transition-based formalisms), antbperstate generation and
check constraint fulfillment over this single represewotatirather than to consider
reasoning over varying transition diagrams, which may ltavesiderable manage-
ment cost (setting up data structures anew, etc.) at letisbwtifurther precaution
and effort.

Furthermore, the update description is a useful basisdmated Markovian (history-
less) updates under lazy evaluation, and more generaligdtizing non-Markovian
semantics of sequences of updates. ., I, in analogy to update programs in the
context of logic programming updates [5,20]. In the Markawvtcase, the result of
updating an action descriptiab is obtained by incorporating thi, i = 1, ...,k
one after the other int®. The update descriptioti (D) may be generalized to
capture such iterative updates rather easily, by usingsiar@ped copies of action
descriptions that are suitably linked, and modifying thefprence ordering - ap-
propriately into a prioritized version. In the non-Markaricase, linkage and pref-
erence ordering can be tailored to realize particular wgstmantics. Investigating
this is left for further work.

7 Examples: Updating the Zoo World into a Circus

The Zoo World is an action domain proposed by Erik Sandewadls Logic Mod-
elling Workshop. It consists of several cages and the extegates between them,
and animals of several species, including humans. Actionkis domain include
moving within and between cages, opening and closing gatesmounting and
riding animals. This domain was described in the actionuaiggC+ in [1].

We present two examples for updating the action descritidine Zoo World inC
(derived from the one in [1]) such that we obtain a descriptay a Circus. The first
example illustrates the applicability of our method for garting pre-solutions; the
second example illustrates the usefulness of the decorbitibstheorem.

7.1 Singing and Mounting in the Circus

Suppose that we would like to update the action descriptitmsaZzoo World inC in
such a way to obtain a description for a Circus by taking intmaat the following
new information: a human can sing; and when he does, he becbappy if he
is also mounted on an animal. We also want to ensure the fmigpwondition:
different from the Zoo World, in a Circus, the humans are etgubto mount on
each other, who further can mount on a large animal.

First, we transform the description of [1] into the actiondaageC; the modified

48

Fig. 7. The landscape of the little zoo of [1]: positions 1-4 are inside the; gausitions
5-8 are outside the cage, the dashed lines denote the gate.

description is available in Appendix C.

Next, we describe the new informatidrby the following causal laws. Suppose that
h ranges over constants denoting humans,@amna ranges over constants denoting
animals in the zoo:

causedHappy(h) if True after Sing(h) A Mounted(h, anml).

Note that bothh and anml are schematic variables; so the above expression stands
for a set of “ground” causal laws.

Next, we identify the causal laws,,, that could be modified. The modifications we
desire are about the mounting action in particular, s®lgiconsist of the following
causal laws. Suppose thath1 range over constants denoting humansp! ranges
over constants denoting animals in the zoo, ama@nges over positions in the zoo.

e If a human tries to mount an animal that doesn’t change posithounting is
successful:

causedMounted(h, anml) if Pos(anml, p) after Pos(anml, p)A (18)
Mount(h, anml).

e A human cannot attempt to mount a human who is mounted:
causedFulse if True after Mount(h,h1) A Mounted(h1, anml). (19)
e A human cannot be mounted on a human who is mounted:
causedFualse if Mounted(h,h1) A Mounted(hl,anml). (20)

We assume that our little Circus has two humans (a small boyedd®art and an
adult named Homer) and an elephant (Jumbo). We assume th@irous has the
same landscape as the little Zoo as in [1]: there is a cage fewit positions inside;
outside the cage are four positions as well (Figure 7).

We can express the desired conditions (or scenarios) ifititesCircus by con-
straints. For instance, consider the following scenaribiae steps: Initially, Jumbo

49

and Bart are at different positions in the cage, and Homert&deithe cage; Homer
is not happy. It should be possible at some point that first elamounts on Jumbo
and next Bart mounts on Homer, so that in the end Homer is mdwntelumbo,
Bart is mounted on Homer, and Homer is happy. Suppose alsduhdio does not
change its location during the whole scenario. We can dasthis scenario by the
following constraintC":

SOMETIMES
Vi <5 0>4 holds Pos(Bart, 1) A Pos(Homer, I') A Pos(Jumbo,1") A
—Happy(Homer) \
(possibly Mounted(Bart, Homer) A Mounted(Homer, Jumbo)A
Happy(Homer) after Mount(Homer, Jumbo); Mount(Bart, Homer) V
possibly Mounted(Bart, Homer) A Mounted(Homer, Jumbo)A
Happy(Homer) after True; Mount(Homer, Jumbo); Mount(Bart, Homer)) A\
V<5 €volvesPos(Jumbo, I"); True; Pos(Jumbo,l"); True; Pos(Jumbo,1");
True; Pos(Jumbo,1"); True; Pos(Jumbo,l"); True; Pos(Jumbo,l"); True;

Pos(Jumbo,l"); True; Pos(Jumbo, ")
(21)
We can present this constraint to @ as (as in Figure C.7 of Appendix C); and
CCaLc finds out that this scenario is not possible within the Zoo [d/or

Let us find a pre-solutio®’ to the ADU problem(D, I, C, C), by applying Algo-
rithm 6. For that, first we construct the update descriptioof the Zoo World:

(1) we introduce update fluents as auxiliary fluents of thiewahg three forms
Auzl(h, anml, p), Auz2(h, hi, anml), and Auz8(h, h1, anml).
(2) we add new causal laws to make them inertial

inertial Auxi (h, anml, p), Auz2(h, hi, anml), Auz3(h, h1, anml)
inertial =Auz1 (h, anml, p), ~Auz2(h, h1, anml), = Auz3(h, h1, anml)

(3) we replace the causal laws (18)—(20) with the followiagisal laws respec-

50

tively

causedMounted(h, anml) if Pos(anml, p) after Pos(anml, p)A\
Mount(h, anml) A\ Auzl(h, anml, p)

causedFulse if True after Mount(h,h1) N Mounted(h1, anml)N
Auz2(h, h1, anml)

causedFalse if Mounted(h,h1) A Mounted(h1, anml)A
Auz3(h, h1, anml)

After that, we can check whether the scenario representdtiebgonstraint (21)

is possible if we keep all the causal laws, except for tholseléa by Auz2(Bart,
Homer, Jumbo) and Auzx3(Bart, Homer, Jumbo). For that, we just need to mod-

ify the CCALC constraint above by adding several lines, as shown in Figu8ef
Appendix C. Then, C&Lc finds a possible execution of this scenario as presented
in Figure C.9 of Appendix C. It suggests dropping frddy, the causal laws

causedFulse if True after Mount(Bart, Homer) A Mounted(Homer, Jumbo)
causedFulse if Mounted(Bart, Homer) A Mounted(Homer, Jumbo)

to update the Zoo World description into a little Circus.

7.2 Exchanging Hats in the Circus

Consider a world, which involves monkeys and dogs among athienals, where
only monkeys can wear hats. We can obtai descriptionD° of such a world,
from theC+ description of missionaries and cannibals exchanging[B@jsit can
be presented to CALC as in Figure D.1 (Appendix D).

Now consider a variation of the Zoo World described in Secfiol, which in-
volves also monkeys and dogs, where only monkeys can wearHas variation
of the Zoo World can be described by the union of the Zoo Wodslcdiption D!
discussed in Section 7.1 (Figures C.1-C.6, Appendix C) and ekerigption D"
mentioned above.

Suppose that we would like to update the action descripfi8ru D! of this ex-
tended Zoo World, to obtain a description of a Circus whereombt humans can
mount on each other who further can mount on a large animalalba animals
can exchange hats with each other. Assume that the modifiablé! of D! is
the same as in Section 7.1, and the modifiable paf®fhfof DY consists of the

51

following causal laws:

causedFulse if Owner(ha, anml)

whereha ranges over hats, anchm/ ranges over animals except monkeys.

We assume that our little Circus has the same landscape aguneF7; and it
contains two humans (a small boy Bart and an adult Homer),egprhaht (Jumbo),
a dog (Snoopy), three monkeys (a small monkey Abu and twe largnkeys), and
two hats. In this little Circus, in addition to the desired ditions (or scenarios)
presented in Section 7.1 by the €&t of constraints (21), we also consider the
following scenario: initially, Snoopy and Abu are wearirgi$y they exchange hats
at least once. We can express this condition by the contsti@in

SOMETIMES
(evolvesQuwner(hal, Abu) A Owner(ha2, Snoopy); exchange(hal, ha2); True V
evolvesQuner(hal, Abu) A Owner(ha2, Snoopy); True; True;
exchange(hal , ha2); True V
evolvesOwner(hal, Abu) A Owner(ha2, Snoopy); True; True;

True; True; True; exchange(hal, ha2); True).

wherehal andha2 range over hats. This constraint can be presented toL.C@s
in Figure D.2 (Appendix D).

Here, we can updat®® U D! relative toC° U C'. On the other hand, since
(D°,0,C%), (D, 0,Ch)) is a near-decomposition 60° U D', C°UC*, ©), by
Theorem 1, we can updafe’ and D' separately, in parallel. Considering the com-
putation time CQ@Lc takes to verify given constraints, the latter approachdake
much less time. With the former approach, Q€ verifies constraint€? U C*
with respect to a propositional theory of size 20450 atonas328430 clauses (ob-
tained from the update description Bf U D') in about 9 minutes (including the
grounding and completion time). With the latter approacBACc verifiesC? with
respect to a propositional theory of size 164 atoms and i6ek (obtained from
the update description dP°) in less than a second (including the grounding and
completion time); and it verifie§€'! with respect to a propositional theory of size
5462 atoms and 60567 clauses (obtained from the updatdmtestof D!) in less
than 30 seconds (including the grounding and completioa)}tim

52

8 Discussion

8.1 Related Work

Updating and revising knowledge bases has been studieaisexdty in the context
of both databases and Al, with different approaches, anadiiows representation
frameworks, see e.g. [67,34,57] and references thereerdlation of this problem
to reasoning about actions has been identified earlier §863, since the effects
of executing an action in a given situation can be modeleteashange of a theory
representing the current state by a formula representagdtion effects. However,
compared to reasoning in action languages, such an appleras the action un-
der consideration and its effects rather implicit. Therefeve restrict our attention
to those works that either treat the notion of an action expfiin the language, or
that are otherwise more closely related to our work.

Sakama and Inoue’s work [61] is similar to our work in thatl§castudies update
problems in a nonmonotonic framework (yet in logic programgh and consid-
ers the same criterion of minimal change. It deals with tlkiads of updates to a
knowledge basé®: theory update of) by some new informatioi, inconsistency
removal fromD, and view update oD = D, U D,,, by some new informatiof. In
the context of reasoning about actions and change, theds &inupdates are ex-
pressible as ADU problem®, 1,0, ©), (D, 0,0, c),and(D,UD,,UI),0,0, C).
Sakama and Inoue show in [61] that checking for solutionterise iSNP-hard for
each problem; this complies with Theorenily . An important difference to [61]
is that in an ADU problentD, I, C, C), the constraint&’ may not be directly ex-
pressed irD. Moreover, the semantics of an action descripiidm C is a transition
diagram, and only captured Iayl answer sets of a logic program corresponding to
D by known transformations.

Li and Pereira [44] and Liberatore [47] study, like we do,dheupdate problems
in the context of reasoning about actions and change, basad action language
(but languaged instead of”). New information,/, contains facts describing obser-
vations over time (e.g., the actidtushPBrc occurs at time stamp 0). The action
languageC we use is more expressive thahin that it accommodates nondeter-
minism and concurrency, and the changes in the world are migtdue to direct
effects of actions. To formulate temporal observationsgareextend our constraint
language by formulas of the shapes

E occurs att;, (22)
P holds att;, (23)

where E is an action namep is a fluent name, ant is a time stamp; a state
satisfies a constraint (22) resp. (23) if, for some histofy) €uch that = sy, F is

53

in A; 1 resp.s; satisfiesP.

Our notion of consistency of an action descriptibn(in essence, the existence
of a state) is different from that of Zhang in [68]. They déseraction domains
in propositional dynamic logic, and require for consistetite existence of some
model of an action description. Different from the settiregey conflicting action
effects may prevent any model. With the extension of our traimg language dis-
cussed above, other forms of consistency studied in [68]beaachieved in our
framework, by describing possible scenarios or formulasoastraints.

Some of the related work mentioned above, like [6,49,3,8Tly action descrip-
tion updates in connection with the problem of elaboratmerance. The goal is
to answer the following question: how can an action deSongbe updated to tol-
erate new elaborations on the action domain? [37] studeesipldlate problem in
the context of dynamic logic [35]. Here action domains apresented in a simpli-
fied version of dynamic logic. An action domain descripti@msists of static laws
(e.g.,Up — Light, which expresses that “if the switch is up then the light i§on
effect laws for actions (e.g5Up — [Toggle] Up, which expresses that “when-
ever the switch is down, after toggling it, the room is lit ypand executability
laws for actions (e.gBroken — (Toggle) T, which expresses that “toggle can
not be executed if the switch is broken”). To handle the frgreblem and the
ramification problem, a consequence relation is built (inedarianguage) over the
action description. Note that the action description laggpC does not require
such a meta-language to be able to handle these problentssIfotmal frame-
work for reasoning about actions and change, the authosamnrevising beliefs
about states of the world (as in, e.g., [38,62]), as well assiregy beliefs about
the action laws. They update action descriptions with resjpesome elaborations
(described also by causal laws), by modifying the causas lamthe action de-
scription by first “contraction” and then “expansion”. Iretend, the antecedents of
some causal laws in the action description are strengtheitkdespect to the new
elaborations. Consider the example above; during a blackweiagent toggles the
switch when it is down, and the room is still dark. A respeztaboration is de-
scribed by a causal law, likBlackout — [Toggle] Light, which is to be contracted
from the action description. The action description is riediby this elaboration,
by first contracting the effect laws (e.g:Up — [Toggle] Up) and then expand-
ing the theory with the weakened laws (e gl/p A = Blackout — [Toggle] Up).
The idea behind modifying a theory with an elaboration of fibben ¢ — [a]y

in this way, is to ensure two conditions wherdoes not hold: first: still has the
effecty; and second has no effect except on those literals that are consequences
of —¢). The semantics of such syntactic operations are given mst@f changes
(e.g., addition/removal of edges) in the transition diagr&lote that [37] modifies
causal laws to tolerate elaborations, whereas we add nesalcaws (which may
be obtained from some observations, or which may describe slaborations)
to the original description and furthermore we drop a minis&t of causal laws
from the original theory so that given constraints (whichyndascribe some de-

54

sired/preferred conditions on the domain) are satisfiechbyupdated description.
In other words, [37] is less suitable for the incorporatiémew information com-
pared to our approach. For instance in the example giveregletaborating wrt. the
effect lawBlackout — [ReplaceFuse] Blackout will not serve the intended purpose
to incorporate the effects of replacing a broken fuse, whileur approach we sim-
ply update with the causal lasaused—Blackout after ReplaceFuse N Blackout
for this purpose.

Another related work that studies action description ugslaor elaboration tol-
erance, is [3]. The authors introduce an action descrigoguage, called Evolp
Action Programs (EAPSs), built upon the update languageEMil This language
can be used to represent action domains, as well as theitagodiae to some elab-
orations. An action domain description consists of staties (e.g.,Light < Up),
dynamic rules (e.ggffect(Light — Up) <« Toggle, ~ Up which expresses that, if
at some step the switch is down and the switch is toggled at stethen Light —
Up becomes true at stept 1), inertial declarations (e.ginertial(Light)), and ini-
tialize declarations (e.gipitialize(Light) which stands fotight < prev(Light)
where prev(F) is a new atom introduced for describing the value of fluEnh
the previous state) introduced for representing inert@eNhat in the action lan-
guageC, there is no need to introduce new atoms to be able to hanel&ame
problem. An elaboration is encoded as a separate actiomipkst D, and then
“asserted” to the main description, using theert construct of Evolp. The seman-
tics of an EAP (and thus thessert construct) is given by means of stable models
[29]. Adding assert(D) to the initial description is different from adding: like
our approach it ensures static consistency of the resudtatigpn description (if
the update itself is consistent); preference is impliaiflyen by set inclusion, i.e.,
maximal consistent subsets of the initial laws are retaidgwther similarity to
our work is that updates that consist of static/dynamicsaee described in the
same language as the action description. AdditionallyJahguage of [3] allows
to specify changes of rules, as a part of an update (usingsestaconstruct). For
instance, consider addingsert(Light — Up) < Toggle to an action description.
Then, when the switch is toggled, the ruléyht < Up remains inertially true un-
til its truth is possibly deleted afterwards. However, afam rather cumbersome
language extensions for handling the frame problem, EAR®tprovide a means
to specify certain dynamic requirements that an update nfighe to satisfy (in
particular universal properties quantifying over all gt which is a main feature
of our approach. For instance, in the setting of ExampleahstatingD and/ into

a respective EAP would represent an update equivalent tadtien description
DU I, i.e., one that does not satisfy the constrafitSince the constraints cannot
be expressed in the language, additional analysis is needeentify an updatd’
(different from I), which would enforce the required behaviour when asseded
the initial action descriptiom.

The works by Lifschitz [49] and by Balduccini and Gelfond [@Easimilar to [3]
in that they also modify action descriptions with respechéw elaborations, by

95

means of adding causal laws, in the sense of additive elabotalerance [52,55].
Lifschitz describes in [49] an action domain in langud@gsuch that every causal
law is defeasible (by means of an abnormality predicatejofimulate some other
variations of the domain, the agent can just add new causal lsome of which
“disable” some existing causal laws. In [6], the authoreegtan action descrip-
tion, encoded as a logic program, with “consistency restgrules, so that when
the action description and given observations are incaitsipathese rules can be
“applied” to get some consistent answer set. This, howeverpre geared towards
handling exceptions (no causal laws are modified). The agbes provide tools
for the user to enact updates (by defeating causal lawsecagply by applying
consistency restoring rules), but different from our apyig no particular modifi-
cations are characterized from first principles as “intefid®lutions of an update
problem, which remains with the user. While adding abnornyaliedicates [49]
is a simple technique that does not support preference reamist [6] (which is
more geared towards diagnosis) requires to anticipateoafliple updates in order
to encode a priori solutions for potential inconsisteneiis subsequent updates
into the initial domain description at design time; the saupgdor preferences on
consistency restoring rules is limited, e.g., cardindb&ged preferences are diffi-
cult to represent. Furthermore, as the result of updatirgcéion description is not
an action description, adjustments for iterated updaeseacessary.

Concerning results on the computational complexity, Eitet @ottlob [23] study
a number of syntax-based as well as model-based knowledgeréasion opera-
tors and provide precise complexity characterizationgHerproblem of checking
whether a given formula is derivable from a revised (updakedwledge base by
reducing the problem to the evaluation of counterfactudéyzig [36] improved
these complexity bounds for restricted settings under Wfts Possible Models
Approach. Liberatore [46] considers further approachedétief update from the
literature, derived corresponding complexity resultsl extended them to the prob-
lem of iterated update. Baral and Zhang [7] considers the &ty of model
checking for knowledge update. As for traditional belietiate, the relation to rea-
soning about actions consists in regarding the effects atan as an update to the
current state. However, motivated by sensing actions thaiod change the world,
Baral and Zhang distinguish knowledge updates as belieftapd@here changes
not only correspond to alterations of the real world but nfag be affect an agent’s
knowledge about the world. They give a model theoretic astotiknowledge up-
dates based on modal logics, show that the complexity of hubekeking is on the
second layer of the polynomial hierarchy, and identify taate subclasses.

More closely related to our work are investigations conicerrthe complexity of
reasoning about actions in an action language. For theraleiiguageA, Libera-
tore [45] establishes, for instand€P-completeness of consistency checking and
coNP-completeness for entailment, which essentially amowntiécking whether

D = ALWAYS necessarily (holds F') after Ay;...; A,, for a given action de-
scription D, a fluentF’, and a sequence of actiods; . . .; A,, in our setting. Lang

56

et al.[42] investigated the computational complexity of the pesgion problem for
simple causal action theories which constitute a specisd o causal theories in
different languages, in particular capturing the fragn@rdaction languag€ that
we considered. Besides the progression problem, the coityptdéxother reason-
ing tasks, including executability and determinism, isradded in this framework
which is further extended to so-called generalized acti@oties. We remark that,
like for progression, several of these results can be obdais special cases of de-
ciding D |= c¢ for particular constraints in our setting. Moreover, to the best of
our knowledge, the complexity of deciding constraint futfiént has not been ad-
dressed so far (apart from tiR&PACE result for the general case for the constraint
language we considered, which has been proven in [18])|daeahe problem of
updating action descriptions in the presence of consgraint

8.2 Nature of Change

As stated in the problem description, our approach is iredng also allow for
designed (normative) worlds that are represented by mdaaxdion descriptions,
where changes thus are considered to be updates ratherethsioms. However,
as already briefly mentioned in Section 3, our notion of actipdate has more
of a belief revision than a belief update flavor. This viewupgorted by a deeper
analysis of change in connection with reasoning about est@md change [41,58].
Lang [41] describes a scope for revision and for update, anddtices that, as
pointed out by [27,28], the scope can not be simply decidash®sther the theory is
about static vs. dynamic worlds. Then, as also pointed o{i®y. 4], Lang relates
revision and update by means of backward-forward reaspmngarticular, by
means of action progression. According to [41], belief s@n is to correct some
initial beliefs about the past/present/future state ofwbed by some observations
about the past/present state of the world. On the other heehidf update by some
formulaa corresponds to progressing the theory by a specific feedipaelaction
that will make « true with respect to a given update operator; herdoes not
describe observations. In this framework, Lang says thatapproach is closer
to a revision process than to an update; however, since quoagh changes the
transition diagram of an action description, it is meanimgd consider it as an
update process as well.

However, update and revision behave for our problem tealiginot much differ-
ent: while informally, revision operators aim at selectmgdels of the new infor-
mation that are closest to the models of the knowledge badally, update oper-
ators change each model of the knowledge base locally glmsuitively captured
by the axiomU8 of the KM postulates). As each action descriptidrhas a unique
associated model given (D), the two methods yield the same result. The main
difference remaining is the behavior on inconsistent actiescriptions. Revision
with consistent information must make an inconsistent Kedge base consistent

57

(as done in our approach), while update must preserve irstensy. Clearly, our
method can be easily adapted to this behavior, and thus smhoywdate flavor.

The AGM and KM postulates [2,39] are based on several assongptihat do not
hold for the action language One requirement which is not met is that of an un-
derlying formal language which is governed by a logic, kéhjch is closed under
Boolean connectives. Other requirements, including slgssicality, modus po-
nens, and the deduction theorem, essentially restrictrtodlisms with an under-
lying monotonic logic (an explicit restriction for instamam Hansson’s work [33]).
However, the action languagkis is nonmonotonic. For instance,if consists of
the single law
causedP if P

whereP is the single fluent, then the transition diagram describyeB I’ (D), has
two statess; = {P}, s, = {—P}, and two transitiongs;, 0, s;) and (s, 0, s1).
Thus the causal lawausedP after () is satisfied byT'(D) (equivalently,D =
ALWAYS necessarily holds P after (), and can be seen a semantic consequence
of D. However, if we add

caused—-P if =P

to D, thenT'(D) has additional transitions i, 0, so) and (ss, 0, s2)) and D -
ALWAYS necessarily holds P after); thuscausedP after () is no longer a se-
mantic consequence. The AGM framework, and similarly the #Mnework, is
not suitable for non-monotonic settings, as discussed,fergron-monotonic logic
programming in [20] and for defeasible logic in [9]. This Hasen confirmed by
our study of KM-style properties in Section 4, where nonntongity turned out
to be the reason for several properties to fail. Thus gomgraur action description
updates with the AGM or KM postulates is not meaningful; artditively the same
is true for postulates for contraction developed in moniateattings. We refrained
from a formal investigation in this direction due to anotheasison however: action
languageC is not closed under complement, more precisely it is neitiefined
nor clear what the complement of an action language shouyldrbd®w it is repre-
sented. As a consequence, it does not constitute a logic alvdkmown identities,
like the Levi Identity used in classical belief change sefsi to relate contraction,
expansion, and revision, cannot be applied.

By the counterexamples for KM postulates given in Sectiont 4J50 becomes
clear that the same results are obtained for less gendeahative definitions. For
instance, one may consider an initial action descripfignand a set of constraints
(o, as the initial knowledge to be modified by new informatiomjetr consists of

a set of causal law®;, and a set of constraints;, which are considered to hold
for sure in a solution. Preference is given to solutions kleap a maximal sets of
the original laws and constraints (wrt. set inclusion),tsti@t the resulting action
description is consistent and satisfies—in addition to afistraints inC;—also

all constraints fronCy that are kept. Note that in our setting, this is amounts to a

58

particular case wher® = D,, = Dy, C, = C;, C, = Cy, and is defined by
D' o D"iff D' C D", D’Cp - Dgp, and one of the inclusions is strict, where
D¢, = {c € C, | D [= ¢}, for any action descriptiod). Note that all counterex-
amples stated in Section 4 are also counterexamples fosdfiisg. We further
remark that the other properties (except for those thatimeeirongly minimiz-
ing C¢, which is not the case for the above preference relatior),imparticular
results on computational complexity, hold for this par@cisetting as well.

An AGM- respectively KM-style theory for non-monotonic lieg with significant
attention is, to our knowledge, still missing. We note tg8][for instance, con-
siders the incorporation of belief change into the fluentwals, geared by an ax-
iomatic treatment of belief revision and update satisfytimg AGM and KM pos-
tulates, respectively. However, the underlying logic isn@ionic and only static
knowledge is subject to change, and preference is based ankang of states.
Another notable work is [26], which considers the revisidmadional preference
orderings that underly certain (nonmonotonic) consegeieperators. However, in
order to avoid shortcomings concerning the general priesipf success and min-
imality of change, which are impossible to adhere in gerfereahe nonmonotonic
setting, restrictions are imposed concerning the knovddagses and the condi-
tionals (akin to laws in our setting) admissible for revisi®ore closely related to
our setting is a very recent approach to belief revision faveer-set programs [15]
with an operator that satisfies the majority of the AGM paates. This is achieved
by building on a strong underlying notion of equivalence-¢atied strong equiv-
alence, using a respective monotonic formal characterizatioaredwer-set pro-
grams called SE-models, and by applying well-known tealesgfrom classical
belief revision. Applying similar methods to action lange& in order to come up
with a theory-revision operator is an interesting subjectffiture work. Work by
Turner [63] on SE-models for causal theories may serve aarangt point. How-
ever, several issues are not immediate and need furtheideoason. For instance,
a direct application of Turner's SE-models to laws’imns achieved for static laws
only, while it is the dynamic laws which we are mainly intdéegsin for revision.
Hence, the concept of SE-model has to be adapted apprdypridtde that any
revision operator, respectively update operator, obththes way is characterized
by semantic structures which is orthogonal to our aims i dhniicle. It is not clear
how the resulting semantic structures could be syntattiogbresented (something
which could be achieved due to a characterization of SE-tsaléerms of answer-
set programs in [15]). Even if a suitable representation lbpms of causal laws is
developed, it is not likely that the resulting action degsiton after the change is
reminiscent of the original description (see also disamssin [17] and comments
on this work in the following subsection).

59

8.3 Repair of Action Descriptions

We can sometimes improve solutions (and pre-solutions) &l problem(D, I,
C, C¢) by considering a slightly different version of the probléie may take the
view that a causal law is not completely wrong, and for ins¢éaholds in certain
contexts. Suppose thatis a dynamic law of the form:

causedl’ after A’ A G/,

where L' is a literal, G’ is a propositional combination of fluents, ard is an
action. We can obtain an action descriptibn from D, which describes the same
transition diagram a®, by replacing each dynamic law (5) in,,, with:

causedl if I after H A G/,
causedL if F after H N =G".

We then have that for each pre-solutiéi to (D, I,C,) there exists some
pre-solutionD* to (D*,I,C,C¢) which containsD’ as a subset (in particular,
for subset preference, each solution ta D, I,C, C) gives rise to some solu-
tion of (D* I, C, C)); with an (ad-hoc) adaptation of the solution preferencge

to ¢, the solutions of(D, I,C,C¢) can then be recovered from the ones of
(D*,1,C,¢). Therefore, such a replacement method can be useful torgreve
“complete removal” of some laws from the given action destevn. Furthermore,
solutions of(D?, I, C, C¢,) which do not correspond to solutions of the original
problem(D, I, C, C) can be viewed as approximations of solutions for the latter.
They might be of particular interest if the original probl&@s no solution.

Similar methods are also useful for repairing an action wletson, e.g., if some
dynamic laws (5) in the action description have missing idas in H. In this
case, we need to replace such causal laws by some modifiethsta(s) from a
candidate space. Our current framework can be generalizéus direction by
changing the candidate solution space for a solutiofrom D, C D' C D, Ul to

a set of action descriptionsnd(D, ') such thatD,, U I C D’ holds for eachD’ €
cand (D, I); if a modifiable causal law; in D gives rise to alternative candidate
replacementsand(¢;, I), thencand(D,I) = {U~, D; | D; € cand(¢;,I)} should
hold, whereD = {¢,,...,¢,}.

We note that as for repairing action descriptions, [17] ta@oglightly different,

semantics-oriented view for resolving conflicts betweermaetion description and
a set of constraints, in the context of action langu@g€onflicts are characterized
by means of states and transitions in the transition diagiesoribed by the given
action description that violate some given constraint® gbal is to resolve each
conflict by modifying the action description, but not ne@egg by deleting some

causal laws. However, the repair of a single conflict mighadi@eved by numerous

60

alternative changes to the action description, such tleatdindidate solution space
is very large; furthermore, the repairs of individual cast8liinterfere with each
other, and might introduce other conflicts. This led the axglof [17] to propose
support for the user in terms of reasoning services on anradescription given
constraints, which provide explanations for certain dises, rather than an auto-
mated repair; a respective tool and methodology for its @igagorrect editorial
errors in the knowledge representation process (e.g., mstpr omitted formula
parts) are described in [21,22]. An interesting issue fothker work is to analyze
under which conditions such repairs can be obtained as@aotubf an ADU prob-
lem in a generalized framework as outlined above.

9 Conclusion

In this paper, we have considered the problem of updatingctanadescription
with some new information in the framework of action langesgwhere knowl-
edge about the domain in terms of observations and othetraants is respected.
To this end, we have introduced a formal notion of action dp8on update which,
given an action descriptiof, the new information’ (as a set of statements) and
some desired constrain€s (expressed as formulas in an action query language),
singles out a solution to the update problem, based on arprefe relatiorc ¢
over action descriptions.

We then studied semantical and computational propertiestodn updates in this
framework, where we presented among other results decatigposesults and
complexity characterizations of basic decision probless®aiated with computing
solutions, viz. deciding solution existence and solutierognition. We considered
in the complexity analysis generic settings as well as @agr instances, paying
attention to different classes of constraints and prefexealations. Furthermore,
we presented some algorithms for computing solutions aaesplutions (which
approximate solutions), and we discussed our work in théegoof the literature.

Several issues remain for further work. Our computatioaallts provide a basis
for the realization of concrete implementations to incogbe updates into action
descriptions in the action languagebased on top of existing reasoning systems
like the causal calculator [51] or AD-Constraint [21], whistan important need for
deploying such systems to applications. However, for prakctoncerns, efficient
domain-tailored algorithms will need to be developed.

In connection with this, meaningful fragments of low (padynial) complexity are
of interest; related to this is the study of language fragsémat correspond to
simpler (less expressive) action languages, sucA as B (see [30]). However,
several of the intractability results that we establishecehnvolved rather simple
action descriptions, which suggests that polynomial cexipl will have to be

61

achieved by pragmatic constraints rather than logicalroicgiral conditions. On
the other hand, also richer, more expressive action laregjagch as the language
C with disjunctive causal laws may be studied, the actionuaiggC+ [43], or the
action languagéC [19] (into which the language considered here maps nayrall
may be studied.

Further issues are to consider richer forms of constragngs,(by generalized action
guery languages), and to extend the current computatitundy $o further notions
of preference relations. For example, to syntax-base@&mete using cardinality,
lexicographic ordering, or formula ranking, possibly wihority levels on top
[8,11], or to semantic-based preference that uses otheghtvassignments like
those in [18] (which are computable in polynomial space)refgrence based on
state- and transition-rankings, inspired by approactgsreconditional reasoning
(see [24]).

Another issue are multiple updates. The update descriptibat we presented
here provide a useful basis for a realization of Markoviaistéy-less) updates
I, I, ..., I, of an action description under lazy evaluation, and may led usm-
ilar as update programs in the context of logic program wxif$,20], also to
realize non-Markovian semantics of a sequence of updasesaation description.
However, this remains to be explored in further investmati

Finally, in regard with connection with AGM and KM theory, gialates and prop-
erties that are tailored to theories of action in a non-mamigtsetting would be
interesting.

Acknowledgments

We would like to thank the anonymous referees for their contsjevhich helped
improve this paper considerably.

This work was supported by the Austrian Science Fund (FWFhitgPd.6536-
NO4, the European Commission IST programme grants FET-20004 WASP
and IST-2001-33123 CologNeT, and by the Vienna Science ackinbéogy Fund
(WWTF) grant ICT08-020.

References

[1] V. Akman, S. T. Erdogan, J. Lee, V. Lifschitz, and H. Turner. pResenting the
zoo world and the traffic world in the language of the causal calculadatificial
Intelligence 153(1-2):105-140, 2004.

62

[2] C. Alchourton, P. Girdenfors, and D. Makinson. On the logic of theory change: Partial
meet contraction and revision functionslournal of Symbolic Logic50:510-530,
1985.

[3] J.J.Alferes, F. Banti, and A. Brogi. From logic programs updatestmn description
updates. InProc. CLIMA V (revised selected and invited papemlume 3487 of
Lecture Notes in Computer Scienpages 52—77. Springer, 2004.

[4] J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolvingiogrograms. In
Proc. JELIA-02 pages 50-61, 2002.

[5] J.J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, anc TPrzymusinski.
Dynamic updates of non-monotonic knowledge badesrnal of Logic Programming
45(1-3):43-70, 2000.

[6] M. Balduccini and M. Gelfond. Logic programs with consistencytwgnag rules. In
International Symposium on Logical Formalization of CommonsensedReay, AAAI
2003 Spring Symposium Seripages 9-18, 2003.

[7] C. Baral and Y. Zzhang. Knowledge updates: Semantics and complesstes.
Artificial Intelligence 164(1-2):209-243, 2005.

[8] S.Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Pradeorisistency management
and prioritized syntax-based entailment.Aroc. IJCAI-93 pages 640-647, 1993.

[9] D. Billington, G. Antoniou, G. Governatori, and M. J. Maher. Revisimpmonotonic
theories: The case of defeasible logic. Rnoc. German National Conference on
Artificial Intelligence (KI)-99 pages 101-112, 1999.

[10] C. Boutilier. A unified model of qualitative belief change: A dynamicgstems
perspectiveArtificial Intelligence 98(1-2):281-316, 1998.

[11] C. Cayrol, M.-C. Lagasquie-Schiex, and T. Schiex. Nonmonotmasoning: From
complexity to algorithms.Annals of Mathematics and Artificial Intelligenc22(3-
4):207-236, 1998.

[12] J. Chomicki, R. van der Meyden, and G. Saakegics for Emerging Applications of
Databases Springer-Verlag, 2003.

[13] R. Dechter and A. Itai. Finding all solutions if you can find one. Techl Report
ICS-TR-92-61, University of California at Riverside, September2199

[14] A. del Val and Y. Shoham. A unified view of belief revision and uggdalournal of
Logic and Computationd(5):797-810, 1994.

[15] J. P. Delgrande, T. Schaub, H. Tompits, and S. Woltran. Mergigig frograms under
answer set semantics. In P. M. Hill and D. S. Warren, edit@sP, volume 5649 of
Lecture Notes in Computer Scienpages 160-174. Springer, 2009.

[16] T. Eiter, E. Erdem, M. Fink, and J. Senko. Updating action domaigrgem®ns. In
Proc. IJCAI-05 pages 418-423, 2005.

[17] T. Eiter, E. Erdem, M. Fink, and J. Senko. Resolving conflicts in adadiescriptions.
In Proc. ECAI-06 pages 424-433, 2006.

63

[18] T. Eiter, E. Erdem, M. Fink, and J. Senko. Comparing action deszng based on
semantic preferenceAnnals of Mathematics and Artificial Intelligendg(3-4):273—
304, 2007.

[19] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logiogramming
approach to knowledge-state planning: Semantics and compl&xiyl Transactions
on Computational Logic5(2):206—263, 2004.

[20] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of tpdaquences
based on causal rejectiofheory and Practice of Logic Programmiy2y6):721-777,
2002.

[21] T. Eiter, M. Fink, and J. Senko. A tool for answering queries ciioa descriptions. In
Proc. JELIA-06 number 4160 oEecture Notes in Computer Scienpages 473-476.
Springer, 2006.

[22] T. Eiter, M. Fink, and J. Senko. Error classification in action desons: A heuristic
approach. IrProc. AAAI-08 pages 905-910. AAAI Press, 2008.

[23] T. Eiter and G. Gottlob. On the complexity of propositional knowledggelavision,
updates, and counterfactuakstificial Intelligence 57(2-3):227-270, 1992.

[24] T. Eiter and T. Lukasiewicz. Default reasoning from conditionabwledge bases:
Complexity and tractable caseaittificial Intelligence 124(2):169-241, 2000.

[25] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, edi@andbook
of Theoretical Computer Science, Volume B: Formal Models and Ses{Bliqpages
995-1072. Elsevier, 1990.

[26] M. Freund. On the revision of preferences and rational infegmocessedAtrtificial
Intelligence 152(1):105-137, 2004.

[27] N. Friedman and J. Y. Halpern. Belief revision: A critigdeurnal of Logic, Language
and Information 8(4):401-420, 1999.

[28] N. Friedman and J. Y. Halpern. Modeling belief in dynamic systems |b&tevision
and updateJournal of Artificial Intelligence Research0:117-167, 1999.

[29] M. Gelfond and V. Lifschitz. The stable model semantics for logic paogning. In
Proc. International Conference and Symposium on Logic Programih@igP/SLP)
pages 1070-1080, 1988.

[30] M. Gelfond and V. Lifschitz. Action languageglectronic Transactions on Artificial
Intelligence 3:195-210, 1998.

[31] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. iioonotonic causal
theories.Atrtificial Intelligence 153(1-2):49-104, 2004.

[32] E. Giunchiglia and V. Lifschitz. An action language based on caesplanation:
Preliminary report. IrProc. AAAI-98 pages 623—-630, 1998.

[33] S. O. Hansson. Knowledge-level analysis of belief base opestidArtificial
Intelligence 82(1-2):215-235, 1996.

64

[34] S. O. Hansson. A Textbook of Belief Dynamics: Theory Change and Database
Updating (Applied Logic)Kluwer, 1999.

[35] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. Handbook of Philosophical
Logic, pages 497-604. MIT Press, 1984.

[36] A. Herzig. The PMA revisited. IfProc. KR-96 pages 40-50, 1996.

[37] A. Herzig, L. Perrussel, and I. J. Varzinczak. Elaborating dondscriptions. In
Proc. ECAI-06 pages 397-401, 2006.

[38] Y. Jin and M. Thielscher. Representing beliefs in the fluent calcuiuRroc. ECAI-04
pages 823-827, 2004.

[39] H. Katsuno and A. O. Mendelzon. On the difference betweentimgla knowledge
base and revising it. IRroc. KR-91 pages 387-394, 1991.

[40] M. Krentel. The complexity of optimization problemslournal of Computer and
System Sciencge36:490-509, 1988.

[41] J. Lang. Belief update revisited. Proc. IJCAI-07 pages 2517-2522, 2007.

[42] J. Lang, F. Lin, and P. Marquis. Causal theories of action: A adatfpnal core. In
Proc. IJCAI-03 pages 1073-1078, 2003.

[43] J. Lee and V. Lifschitz. Describing additive fluents in action langu@g. InProc.
IJCAI-03 pages 1079-1084, 2003.

[44] R. Li and L. M. Pereira. What is believed is what is explained (somesjmi@ Proc.
AAAI-96 pages 550-555, 1996.

[45] P. Liberatore. The complexity of the languadeElectronic Transactions on Artificial
Intelligence 1:13-38, 1997.

[46] P. Liberatore. The complexity of belief updatértificial Intelligence 119(1-2):141—
190, 2000.

[47] P. Liberatore. A framework for belief update. Rroc. JELIA-0Q pages 361-375,
2000.

[48] V. Lifschitz. Answer Set Planning. In D. D. Schreye, editBrpceedings of the
16th International Conference on Logic Programming (ICLP’983ges 23-37, Las
Cruces, New Mexico, USA, Nov. 1999. The MIT Press.

[49] V. Lifschitz. Missionaries and cannibals in the causal calculatorPrioc. KR-00
pages 85-96, 2000.

[50] V. Lifschitz and W. Ren. Irrelevant actions in plan generation (exéel abstract). In
Proc. Ninth Ibero-American Workshops on Atrtificial Intelligence (IRSBRA 2004)
pages 71-78, 2004.

[51] N. McCain and H. Turner. Satisfiability planning with causal theolie®roc. KR-98
pages 212-223. Morgan Kaufmann, 1998.

65

[52] J. McCarthy. Elaboration tolerance. IRroc. 1998 Symposium on Logical
Formalizations of Commonsense Reasoning (CommonSense 98),-9]ath998,
London pages 198-216, 1998. Availablevatw. i da. | i u. se/ ext/etai/nj/
fcs-98/ 198/ paper. ps (accessed Jun 3, 2010).

[53] C. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[54] R. Parikh. Beliefs, belief revision, and splitting languagksirnal of Logic, Language
and Information 2:266—-278, 1999.

[55] A. ParmarFormalizing Elaboration TolerancéDissertation, Department of Computer
Science, Stanford University, August 2003.

[56] P. Peppas.Belief Change and Reasoning about Action — An Axiomatic Approach
to Modelling Dynamic Worlds and the Connection to the Logic of Theory Ghang
Dissertation, Basser Department of Computer Science, University ofegy993.

[57] P. Peppas. Belief revision. In F. van Harmelen, V. Lifschitz, andP@&ter, editors,
Handbook of Logic in Artificial Intelligence and Logic Programmifapter 8, pages
317-360. Elsevier, 2008.

[58] P. Peppas, A. C. Nayak, M. Pagnucco, N. Y. Foo, R. B. H. Kvemd M. Prokopenko.
Revision vs. update: Taking a closer look.Rroc. ECAI-96 pages 95-99, 1996.

[59] A. S. Rao and N. Y. Foo. Minimal change and maximal coherenceasistfor belief
revision and reasoning about actions.Pioc. IJCAI-89 pages 966—-971, 1989.

[60] R. Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical SystemdMIT Press, 2001.

[61] C. Sakama and K. Inoue. An abductive framework for computingntedge base
updates.Theory and Practice of Logic Programming(6):671-713, 2003.

[62] S. Shapiro, M. Pagnucco, Y. Lesmnce, and H. J. Levesque. Iterated belief change in
the situation calculus. IRroc. KR-0Q pages 527-538, 2000.

[63] H. Turner. Strong equivalence for causal theories. In V.dhifiz and |. Nieméd,
editors,LPNMR volume 2923 of_ecture Notes in Computer Scienpages 289-301.
Springer, 2004.

[64] F. van Harmelen, V. Lifschitz, and B. PorterHandbook of Logic in Atrtificial
Intelligence and Logic Programmindglsevier, 2008.

[65] K. Wagner. Bounded query classeSIAM Journal on Computingl9(5):833—-846,
1990.

[66] M. Winslett. Reasoning about actions using a possible models apprdadroc.
AAAI-88 pages 89-93, 1988.

[67] M. Winslett. Updating Logical Database<Cambridge University Press, 1990.

[68] D. Zhang, S. Chopra, and N. Foo. Consistency of action degoig In Proc.
PRICAI-02 pages 70-79, 2002.

66

Electronic Appendix
A Proofs for Section 5

Theorem 4 Given an action descriptio® and a setC' of constraints, deciding
D [= C'is (i) PSPACE-complete in general, (ip;, ;-complete ift is the maximal
nesting depth of dynamic constraintsdh and (iii) Pj""-complete ifC' does not
involve dynamic constraints.

Proof. Concernindi) the result has been shown in [18]. We proceed with the proof
of (i) and(iii) .

MembershipW.l.o.g. C' contains a single constraint Let us conside(iii) first.
Then,c is a conjunction of clauses over universal constraints@felowing form:
ALWAYS @ or —ALWAYS (), where(is a conjunction of clauses over static
constraints of the forrholds F' or —holds F'. Checking truth of a negated universal
(sub-)constraint of this form is ilNP. To do so, we nondeterministically guess a
possible state of D and verify in polynomial time that is a state ofD (satisfies
all static laws ofD) and thats does not satisfy) (there is a clause iy such that
none of its static constraints is satisfiedsatHence, the complementary task, i.e.,
checking the truth of a positive universal constraiitWAYS (), is incoNP. Thus,
we can decidé [= ¢ in polynomial time with a single parallel evaluationofNP-
oracle calls, given that is the number of universal constraintsdnThis proves
P)"-membership.

For (ii), the constraint is a conjunction of clauses over universal constraints@f th
form ALWAYS @ or —-ALWAYS @, where() is a conjunction of clauses over static
constraints as above and over dynamic constraints of time fogcessarilyQ;_;
after A;;...; A, or -necessarilyQ,_, after A;;...;A,, whereQ),_, is a basic
constraint of nesting depth— 1. Let ¢; — ¢4 denote constraints of the form =
ALWAYS @, co = “ALWAYS @, c5 = ALWAYS —(Q, andc,; = “ALWAYS —Q),
respectively. We show by induction that deciding whetbel= ¢ is in ©}, ;.

Base casek(= 0): For staticQ, by (iii) decidingD E ¢, is in P‘I‘VP, for1 <

1 < 4. Hence, let) = necessarilyQ,_, after Ay;...; A, be a dynamic con-
straint. DecidingD = ¢, is in NP since the complementary probleb |= ¢, is
in coNP. The latter problem is decided by nondeterministicallysgireg a history
h = so, A1, 81,...,8.-1, An, s, Of lengthn and checking in polynomial time that
his a history ofD, i.e., thats; (0 < i < n) is a state ofD and that(s;, A; .1, Si+1)

(0 < i < n)isin R. FurthermoreD, s,, = —Q_1 can be checked in polynomial
time since(),_; is a propositional combination of static constraints, essing
D £ ¢;. DecidingD = c3 is in I1} and the complementary problem = ¢,
is in X2, To wit, in order to disproveD = c;, guess a state and—as outlined
above—use th&/P-oracle to verify that for all histories of lengthn emanating

67

from s (sp = s)itholds thatD, s,, = Qx_1. This establishe®, s [~ - and hence,
D £ 3. Putting all together, in order to decide |= ¢, an oracle fo2%’ problems
is sufficient to decide the truth of any universal constraint Thus,D |= ¢ can be
checked in polynomial time with a polynomial number of pllal? -oracle calls
and therefore is i®1".

Induction step: Let the nesting depth of dynamic constsaetc > 0, and assume
that decidingD = Qy_; is in ©f,, for any subconstraint of nesting depth- 1.
Then, as easily seen by the arguments for the base case dbowe,/ can be
decided by means of8;’, ,-oracle for any universal constrait € c. Thus, again
by parallel evaluation) | cisin ©f, .

Hardness|In order to proveiii) we reduce the problem to the followi@P-hard
decision version oMaximum CNF SatisfiabilityGiven a Boolean formuld’ in
conjunctive normal form (CNFand an integefk, decide whether the maximum
number of clauses i’ that can be simultaneously satisfied by an interpretation is
0 mod k.

W.Lo.g., letF’ be a 3-CNF formula of the form;_, L;1 V L; 2 V L; 3, whereL, ;,
1<i<n,1<j<3,isaliteral overatom¥ = {X;,..., X,,}. ForX; € X, by
=L we denote-X; if L = X, andX; if L = —X;. Consider the action description
D, consisting of:

causedC; if L;;, causedC;if L;,, causedC;if L;s3,

Caused_\CZ‘ if _\Li71 A _‘Li,2 A _\Liyg,

causedr; ; if C, caused—F ; if =Ch,

CausedFLO if _|Cl, Caused_'Fl’Q if Cl,

causedF; ; if C; A Fy_1 ;_1,
S 2<i<n, 1<j<i
caused—F; ; if =C; A Fi_q -1,

causedF; ; if =C; A F;_4 ;, : o
2<:<n, 0< 5 <1
caused—F;; if C;ANFi_y;

Observe thatD, contains only static laws. A state, consistent withD, corre-
sponds to an arbitrary total interpretation &ntogether with a total interpretation
on fluentsC;, 1 < i < n, such that’; is true ats iff the interpretation onX satis-
fies clause”;. The latter is enforced by the firgt laws in D;. The remaining laws
cause a total interpretation on fluedts;, 1 < j <1 < n, such that; ; is true ats
iff the interpretation onX satisfiesj clauses amongC, ..., C;}.

68

Now consider the following constraint:

ALWAYS holds F}, oV

SOMETIMES holds F,, , A ALWAYS (=holds F,, s+1 A ... A =holds F,, ,,)V
SOMETIMES holds F), ;x A ALWAYS (=holds F,, 41 A ... A =holds F,, ,,),

wherel = |n/k|.

We show that the maximum number of clause<Firthat can be simultaneously
satisfied by an interpretation @smod k iff D; = ¢.

Only-If: Suppose that the maximum numbeof clauses inF' that can be simul-
taneously satisfied by an interpretatiodisiod k. Considero = 0 first. Then, no
clause off" is satisfiable. By constructiot; ; holds forl < i < n at every state
of D;. In particular,F}, o holds at every state, and therefddeWAYS holds £, ; is
satisfied byD,, i.e., D; |= ¢x. Now leto > 0. W.l.o.g.0 = ak for somel < a <.
Then, by constructiort), ; is false foro < j < n at every states of D,. There-
fore, D, = ALWAYS (=holds F,, 4x11 A ... A=holds £, ,,). Also by construction,
F, ., is true at a state corresponding to an assignment that maeedrthe simultane-
ously satisfied clauses. This impliés = SOMETIMES holds F,, ... Observing
that, together, these two constraints constitute a cobjoing,, we conclude that

D1 }: Ck.

If: SupposeD; = ¢, and assumé); = ALWAYS holds £, , first. Then, by con-
struction no clause if' is satisfiable, Hence the maximum numbef clauses ir¥’
that can be simultaneously satisfied by an interpretatiorarsd thus = 0 mod .
Now let any other conjunct af, be satisfied by, i.e., for somd < a < [it holds
thatD; = SOMETIMES holds F,, ., andD; = ALWAYS (=holds F,, sx+1A. . .A
—holds F,, ,,). Then, there is a stateat which F,, ,; is true. By construction, this
means thatk clauses off’ can simultaneously be satisfied. Moreovgy,; is false

at every states of Dy if j > ak. Again by construction, this implies thatk is
the maximum number of clauses ithat can be simultaneously satisfied. Since
ak = 0 mod k this proves the claim.

For hardness in Cagq@), considerm quantified Boolean formulas of ford, =
QX Qo XL - QXL B 1 <1 <m,whereQ; = Jif i =1 mod 2 andQ; =V
otherwise X and X!, 1 < i,j < nandl < k,I < m, are pairwise disjunct sets
of propositional variables if # j or k # [. andE' is Boolean formula over atoms
in X! = Xt U-.. U X!, such that if®, is false thend;,, ..., ®,, are false, too.
Deciding whether the maximum index1 < o < m, such thatb, is true, is odd is
OF ,-hard.

69

We reduce the problem of decidirng |~ ¢ for a constraint with nesting depttk
of dynamic constraints to this problem, as follows.

Letn = k+2,1 <[< m,and letD, be the action description consisting of the
statements:

causedr] if I} after A; 4,
2<i<n,FeX!
caused—F! if ~F} after A;_;,

causedF] after A;,_; A F}, , , o
2<i<n,1<j<n,i#jFleX
caused—F] after A;_; A —F,

Observe that a stateof D, corresponds to an arbitrary consistent total interpreta-
tionoverX'U---UX™. Note also thats, { 4;}, ') (1 <i < n—1)is atransition

in the transition diagram described B iff all fluents are interpreted identically
except those oveK} , U--- U X,.

Consider the constraint:

VD2 (SOMETIMES f2+1 A ALWAYS = f242) v g™ if m is odd
Cpo =

VA2 (SOMETIMES f2041 A ALWAYS - f242) otherwise,
where

g™ = SOMETIMES ™, and
f'!=piNpi(...(pn_1 Np,_1 holds E! after {A,,_,})...) after {A},

where N = necessarily and wherep; = = if i is even ang; is void otherwise,
forl <i<n-—1.

We first prove that, is true iff there exists a stateof D,, such thatD,, s |= f'.

For the only-if direction supposg, is true. We show by a recursive argument that
if a states, coincides with a satisfying truth assignmentdgron X! thenD,, s, =

f'. Assume thas,_ is a state ofD, that coincides with a satisfying truth assign-
ment for®, on X! U --- U X! ;. We show thatDs, s,, 5 = p,_1 N p,_; holds E!
after {4, _1}. 1f n — 1is odd thenQ,, = V. Thus, any assignment oxi’, will turn

the assignment oX! U --- U X! | given bys,,_, into a satisfying assignment for
E'. Thus, every transition byA,,_;} from s,,_, will lead to a states,,_; that satis-
fies E'. This provesDs, s,,_» = necessarily holdst! after A, if n—1is odd. So
letn — 1 be even. Ther),, = 3. In this case, there exists an assignmenkdrhat,

70

together with the assignment off U - -- U X! | given bys,,_», is a satisfying as-
signment forE!. Thus, there is a transition Hy4,,_; } from s,,_, to a states,,_; that
satisfiest!. Therefore,Ds, s,,_» = —necessarily-holds E' after A,_, if n —1is
even. In any casd)s, s, _» = p,_1 N holds p,_, E' after {4,,_1}. Applying this
argument recursively proves the claim that if a stgteoincides with a satisfying
truth assignment fob, on X!, thenD,, s, |= f!, and thus, that there exists a state
of D, such thatD,, s = f°.

For the if-direction lets be a state ofD,, such thatD,,s | f'. We establish
the truth of®, recursively as follows. Leb = s, Ay, 81,...,8,-34,_2,5,_2 be a
history of D,. We show that,,_» is a state of), that coincides with a truth assign-
mentonX!uU---U X! |, suchthat), E'is true. Ifn — 1 is odd, thenDs, s,,_» =
necessarily holdsE! after A, 1, sinceD,, s |= f'. Thus, any assignment ox!
will turn the assignment o' U---U X! | given bys,,_, into a satisfying assign-
ment forE'. If n—1is even, therD,, s,,_, = —necessarily-holds E' after A,_;,
since Dy, s |= f'. Therefore, there exists an assignment’dnthat will turn the
assignment oiX! U --- U X! | given bys,,_, into a satisfying assignment fér".
Hence, in any cas@, E' is true. Applying this argument recursively proves the
claim thatD,, s = f! implies the truth of®;.

We now show that the maximum indexsuch thaid, is true, is odd iff Dy = c,.

Only-If: Let the maximum index such thatp, is true be odd. Consider any state
of D, such thatDs,, s = f°. If o = m this provesD; |= ¢,. So leto < m. Then ad-
ditionally D, s [~ f°*1, for every state’ of D,. Hence,D, = SOMETIMES f°
andD, = ALWAYS —f°*t! i.e., forl = (o — 1)/2 Dy = SOMETIMES f2+1 A
ALWAYS —f2+2 This provesD, = c,.

If: AssumeD; |~ ¢,. If mis odd andD, = ¢™, Thenm is the maximum index
such thatb, is true, and is odd. This proves the claim. So consider the remaining
cases, i.e.,thereisanindef <! < (m—3)/2if misoddand) <[< (m—2)/2,
otherwise), such thad, = SOMETIMES f%+1 A ALWAYS —f2+2, Then, there

is a states of D, such thatf?+! is satisfied, whereag**2 is not satisfied at any
states’ of D,. Leto = 21 + 1. We conclude thad, is true andd, ; is false. Thus,

o is the maximum index such that, is true, and it is odd. This proves the claim
and therefor®?’, ;-hardness, i.eQ}, ;-hardness. O

Theorem 5 Deciding whether a given ADU problef®, 7, C, C) has a solution
(or a pre-solution) is (i)PSPACE-complete in general, (iiE; ;-complete, ift is
the maximal nesting depth of dynamic constraint€jn (i) X2'-complete, ifC,
does not involve dynamic constraints, and (i{f)-complete ifC, = (.

Proof.
MembershipFollows from Theorems 3 and 4.

Hardness Hardness in Cas@) follows from Theorem 4. Fofii) letn = k + 2

71

and letd = 3Y Q1 X, --- Q,X,, F be a QBF, wheré); = 3if : = 0 mod 2 and
Q); = V otherwise. Consider

D, = D;U{causedy; after A;_; AY;, caused—Y; after A; 1 A=Y, |2 <i<n},

whereD, is the action description from the proof of Theorem 4 with 1, D,,, =
{causedY;,caused-Y; | V; € Y}, I = 0, C = C, U C, with C, = 0, and
C, = {c,}, where

co = ALWAYS pi Npi (... (pn_1 N p,_1holdsE after {A, 1})...) after {A;},

and whereN = necessarily andp;, = — if 7 is odd and void otherwise, fdr <
i < n — 1. We show that there exists a solution to the action desonpipdate
problem(D, U D,,, I,C,C¢) iff ®istrue.

For the only-if direction, letb, € D' C D, U D,, be a solution. TherD' is
consistent and states 6f coincide with some interpretation dhand an arbitrary
interpretation onXy, ..., X,,. By the same arguments as in the hardness proof of
Theorem 4ii), the fact thatD’ = C, witnesses the truth cb.

For the if-direction letb be true. Consider a satisfying truth assignmentgret
D! be the set of static causal laws fraiy, compliant with this assignment, and
let D' = D, U D.. . Then,D'’is consistent and, € D' C D, U D,,. Moreover,
by the same arguments as in the hardness proof of Theofém A’ = C,. This
proves thatD’ is a pre-solution, and hence the existence of a solution.

For (iii) let ® = dY' VX E and consider the action description update problem
(D, U D,,,I,C,C¢), whereD,, = 0, D,, = {causedY;, caused—Y; | Y; € Y},

I =0,andC = C, = {ALWAYS holds E}. We prove that the action description
update problentD, U D,,,, I, C, C¢) has a solution iffp is true.

For the only-if direction, letD, C D’ C D,, be a solution. The’ is consistent
and states op)’ coincide with some interpretation an and an arbitrary interpre-
tation onX. SinceD’ |~ C,, FE is true at every such state, witnessing that any truth
assignment onX turns the joint assignment on both, and X, into a satisfying
assignment for. This proves the truth ob.

For the if-direction letd be true. Consider a satisfying truth assignmen¥gmand
let D’ be the set of static causal laws frof), compliant with this assignment.
Then, D’ is consistent and, € D’ C D,,. Moreover, sinced is true, any truth
assignment onX turns the joint assignment on both, and X, into a satisfying
assignment fo2. Therefore £ holds at all states ab’, witnessingD’ = C,. This
proves thatD’ is a pre-solution, and hence the existence of a solution.

Finally. for (iv), let E be a Boolean formula over atomisand let us defind,, =

{causedY; if —=F, caused—Y; if -E}, D,, = {causedY;, caused—Y; | Y; € Y},
I =0,andC = (). Then,(D, U D,,, I,C,C¢) has a solution iff£’ is satisfiable.

72

For the only-if direction, letb, € D' € D, U D,, be a solution. TherD' is
consistent and states Bf coincide with some interpretation ah SinceD,, C D',
Eis true at every such state. This proves the satisfiability .of

For the if-direction let be satisfiable. Consider a satisfying truth assignment,on
and letD! be the set of static causal laws frdny, compliant with this assignment.
Then,D’ = D, U D) is consistent and, € D’ C D, U D,,. MoreoverD’ =

C, trivially. This proves thatD’ is a pre-solution, and hence the existence of a
solution. O

Theorem 6 Given an ADU problen{D, I, C, C) and an action descriptiord’,
deciding whetheD’ is a solution for it is (i)PSPACE-complete for general con-
straints in C,, (i) II}, ;-complete ifk is the maximal nesting depth of dynamic
constraints inC,, (i) I1-complete ifC, does not involve dynamic constraints,
and (iv) D-complete ifC,, = 0.

Proof.

Membership Follows from Theorem 3, observing that for any given actom
scriptionsD’ and D", decidingD’ € D” can be done in polynomial time, i.e., that
Pcheck isin P for C.

Hardness Hardness in Casg@) follows from Theorem 4. Fofii) letn = k + 2
and letd = VY QX --- Q,X, F be a QBF, wheré); = 3if : = 1 mod 2 and
@; = V otherwise. Consider

D, = D;U{causedy; after A, ; AY;, caused—Y; after A; 1 A=Y, |2 <i<n},

whereD, is the action description from the proof of Theorem 4 with 1, D,,, =
{causedY;,caused-Y; | V; € Y}, I = (), andC = C, = {ALWAYS [V g},
where

f=piNpi(...(pn_1 Np,_1holds E after {A,_1})...) after {A;},
9=/\, .,, SOMETIMES holds ¥; A SOMETIMES holds -V},

whereN = necessarily p; = —if 7 is odd and void otherwise, fdr<i <n — 1,
andp, — 1 = —if nis odd and void otherwise. We show that, is a solution to
the action description update problém, U D,,,, I, C, C) iff ® is true.

Obviously,D,, is consistent and C D,,. Additionally, states ofD,, consist of arbi-
trary truth assignments 6 and X, ..., X,,. Therefore,D,, satisfiesy, and hence
D, & C,. This proves thaD, is a pre-solution. We show that it is a maximum
pre-solution iffd is true.

For the only-if direction, towards a contradiction assuime ¢ is false. Then-®
is true. Observe that® is a QBF of the form considered in the hardness proof
of Theorem Kii) with £ negated. Applying the arguments of this proof, we obtain

73

that there existsa sét, ¢ D' C D,UD,,, suchthatD’ is consistentand’, s = f
for every states of D’ (Note thatp,_; accounts for the negation @f). Therefore
D' = C,, and thusD' is a pre-solution. This contradicts the maximality/of.

For the if-direction, towards a contradiction assume fhais not maximal. Then,
all states of a maximum solution coincide on at least onegassent to some
Y; € Y, and therefore it does not satisfy Consequentlyf is satisfied at all
states of a maximum solution. Applying the arguments of thelhess proof of
Theorem ii), we conclude that:® is true, a contradiction.

For (iii) let ® = VY 34X E and consider the action description update problem
(D, U D,,,I,C,C), whereD, = 0, D,, = {causedY;, caused-Y; | Y; € Y},

I =0,andC = C, = {ALWAYS -holds E V g}, with g as before. We prove that
the action description update problém, U D,,, I, C, C) hasD, = () as a solution

iff @ is true.

Obviously,D,, is consistent and C D,. Additionally, states ofD,, consist of arbi-
trary truth assignments # and X . Therefore D, satisfieg;, and hencé,, = C,.
This proves thab), is a pre-solution. We show that it is a maximum pre-solution
iff ® is true.

For the only-if direction, towards a contradiction assurhat tb is false. Then
- is true. Observe that® is a QBF of the form considered in the hardness
proof of Theorem Kiii) with £ negated. Applying the arguments of this proof,
we obtain that there exists a sBt, ¢ D’ C D,,, such thatD’ is consistent and
D’ = ALWAYS —holds E, i.e., D' = C,. Therefore,D’ is a pre-solution, which
contradicts the maximality ab,,.

For the if-direction, towards a contradiction assume fhais not maximal. Then,
all states of a maximum solution coincide on at least onggyaesent to somé&’; €

Y, and therefore it does not satisfy Consequently, a maximum solution must
satisfy ALWAYS —holds E . Applying the arguments of the hardness proof of
Theorem Hiii) , we conclude that® is true, a contradiction.

Finally (iv), let £; and E, be Boolean formulas over atoriis andY;, respectively.
ConsiderD,, = {caused—F, causedF' if =E,}, D,, = {causedF if ~E,}, I =
), andC = (). Then,(D, U D,,,I,C, C) has solutionD,, iff E; is satisfiable and
E, is unsatisfiable.

Obviously,! € D,, andD, = C,. Therefore,D, is a solution iff it is consistent
and maximal, i.e., no supersetbf, is consistent. We show that this two conditions
hold iff £, is satisfiable andr, is unsatisfiable.

For the only-if direction, assume that, is consistent and maximal. Thdr is
satisfiable witnessed by the truth assignmenftof any state ofD,,. Furthermore,
D, U D,, is inconsistent (otherwise it would be a solution, sincevially satisfies

74

C,), which implies thatF, is unsatisfiable.

For the if-direction, letF; be satisfiable and, be unsatisfiable. Then any satisfy-
ing assignment to fluents i, together with assigning falsity t6' and any truth
assignment to fluents froir}, yields a state oD,, witnessing its consistency. More-
over, D, U D,, is inconsistent due to the unsatisfiability ©f, which implies that
D, is maximal. This prove®”-hardness. O

Theorem 7 Given an ADU problemiD, I, C, <Weighg) and an action description
D', deciding whetheD’ is a solution for it is (i)PSPACE-complete for general
constraints inC, (ii) II;, ;-complete ifk is the maximal nesting depth of dynamic
constraints inC, (i) I1Y'-complete ifC' does not involve dynamic constraints, and
(iv) NP-complete ifC' = 0.

Proof.

Membership For (i), (ii), and(iii) membership follows from Theorems 3 and 4.
Note that in order to decid®, <weight, D2 for any action description®; and D,
suchthatb, UT C D; C DU fori € {1,2}, and a set of weighted constraints
C,, we decideD; = c, for everyc € C, (i.e., polynomially many), and sum up
the corresponding weights in polynomial time. Thushif = ¢ can be decided in
polynomial space, respectively in polynomial time with tiedp of aX” ;-oracle,
thenPcheck is in PSPACE, respectively inA”, for <weight, - For(iv), i.e.C = 0,
Pcheck is trivial for <weight, In this case we can decide whetHh#ris a solution by
guessing a stateand checking that it is a state bf in polynomial time (witnessing
consistency) and additionally checking U/ C D’ andD’ C DU in polynomial
time. This provesNP-membership fofiv).

HardnessHardness in Cad@ follows easily from Theorem 4. Fdii) letn = k+2
and conside®, D,,, D,,, I, andC, from the proof of Theorem @i). Additionally,

let C, = {ALWAYS holds Y;,ALWAYS holds —Y; | Y¥; € Y} and consider
a weight of 1 for eaclr € C,. Then, D, <weigh, D' for everyD, C D' C
D,uU D, sincewez’ghtq(Du) = 0, whereas all states d?’ coincide on at least
one assignment to somé € Y, thus making at least one of the constraints in
C, true, i.e.,weight (D) > 1. Therefore,D, is a solution to(D,, U D,,, I, C, U

Cy, <Weigh5) iff it is a solution to(D, U D,,, I, C,, C), which provesﬂkig-hardness
(cf. Theorem {ii)).

For (iii) consider®, D, I, andC, from the proof of Theorem ii). Again, let
C, = {ALWAYS holds Y;, ALWAYS holds —Y; | ¥; € Y} with weight 1 for
eachc € C,. Then, for the same reason as abng,<W6igh5 D' for everyD, C
D' C D, U D,,. Therefore,D,, is a solution toD,, U D,,, I,C, U C,,, <Weight]) iff
it is a solution to(D, U D,,,, I, C,, C), provingIl¥-hardness.

Finally (iv), let £’ be a Boolean formula over atorii’sand consider the ADU prob-
lem given byD, = {causedY; if —=F, caused-Y; if ~E}, D,, = 0, I = 0, and

75

C = . Then,D, is a solution ta D, U D,,,, I, C, <Weigh5) iff £is satisfiable.

For the only-if direction, letD,, be a solution. Thed, is consistent, states @?,
coincide with some interpretation on, and £ is true at every such state. This
proves the satisfiability of.

For the if-direction letE' be satisfiable. A satisfying truth assignmentns a
state ofD,, i.e., D,, is consistent. Moreovel), Ul C D, C DU I andD, | C,
trivially. And sinceD, U I = D, = D U I, we conclude thab,, is a solution. O

B Proofs for Section 6

Prior to the proof of Proposition 4, we establish the follogriemma which pin-
points the relation between states and transitions of aatepdescriptio/ and
any action descriptio®’ obtained by an (arbitrary) selection of modifiable laws.

Lemma3 LetD = D, U D,, be an action description, and |€?/, be a subset
of D,,. Let (S, V, R) be the transition diagram described By = D, U D/,. Let
U = U(D) be the update description @f, with a setH of update fluents, and let
(SY, VY, RY) be the transition diagram described by LetM be the subset dfl
labeling the laws inD;,. Then the following hold:

(i) s\He Siff se SYandsNH = M,
(i) (s, A, s)in RV iff s =g s, and
(i) (s\H,A,s'\H) € Riff (s,A,s') € RV ands N H = M.

Proof.

(i) For the only-if direction consider any statec S. By the definition of a
transition diagram described by an action descriptionef@ry static law (4)
in D', s satisfies& D L.

Case 1Take any static law (4) i/, that does not contain any; € H. By
the definition of an update description, this static law i$inas well. Then,
sinces satisfies7 O L, s U M satisfies7 O L.

Case 2Take any static law (15) itV such thatd; € M. By the definition
of an update description, there is a corresponding stati¢4in D!, . Then,
sinces satisfiess O L, s U M satisfiess A H; D L.

Case 3Take any static law (15) ity such thatH; ¢ M. Sinces U M does
not satisfyG' A H;, s U M satisfiesz A H; O L.

By the definition of an update descriptioli, does not contain any other
static laws. Therefore, from these three cases, it follhwasstU M is a state
in SY.

For the if-direction consider any statén SV, such thats " H = M. By

76

(i)
(iii)

the definition of a transition diagram described by an actiescription, for
every static law (4) irUU, s satisfies5 O L.

Case 1.Take any static law (4) irD,,. By the definition of an update de-
scription it is also inJ, and it does not contain any elementtdf Therefore,
s \ H satisfiesz O L.

Case 2Take any static law (4) iD;,. By the definition of an update de-
scription, for every static law (4) i®! , there is a static law (15) ifi. Since,
for every corresponding static law (15)0h s satisfiess A H; O L, and since
by assumptiorf{; is in s, s \ H satisfies7 O L.

From these two cases, it follows that, for every static lapigdD’, s \ H
satisfies7 O L. Thus,s \ Hisin S.

Since no element dfl appears in the head of any causal law/irxcept for
the inertia laws (17), we conclude that A, s') in RV iff s =g 5.

For the only-if direction consider angs, A, s’) in R. By the definition of
a transition diagram described by an action descriptiongf@ry dynamic
law (5) in D', s" satisfiesL if the law is applicable tds, A4, s') (i.e.,s U A
satisfiesH ands’ satisfies). Due to(i), boths U M ands’ U M are inSY.

Case 1Consider any dynamic law (5) iti, that does not contain anfy; €
H. Suppose that itis applicable teuM, A, s’ UM). Then, since nd{; € H
occurs in this law, it is applicable i@, A, s’) as well. By the definition of an
update description, this law is ify,. Since(s, A, s’) is in R, s’ satisfiesL.
Thens’ U M satisfiesl.

Case 2Consider any dynamic law (16) i, that is not of the form (17),
where H; labels a dynamic law (5) id,,, i.e., H; € M. Suppose that it is
applicable to{s U M, A, s’ U M). That is,s U M U A satisfiesH A H; and
s’ UM satisfies . SinceH does not contain an¥; € H, s U A satisfiesH,;
sinceG does not contain an¥f; € H, s’ satisfiess. Then, the corresponding
dynamic law (5) inD;, is applicable to(s, A, s'). Since(s, A, s') isin R, &'
satisfiesL. Then,s’ U M satisfiesL.

Case 3.Consider any dynamic law (17) i&i. By (ii) we conclude that
(s, A, s')in RV iff s =g s'. Hences U M satisfiesH, iff s’ U M satisfiesH,.
Therefore, this law is applicable tes UM, A, ' UM) iff L = H; andH, is
in M, or L = —H; andH; ¢ M. ConsequentlyM is the only interpretation
on H satisfying the heads of the applicable inertia laws.

By the definition of an update descriptioli, does not contain any other
dynamic laws applicable to: U M, A, s" U M).

So far we have shown thatg) for every (s, A, s') in R, s’ U M satisfies
the heads of every dynamic law inthat is applicable tgs UM, A, ' U M).
Moreover, we can observe thd) for each dynamic law irD’ applicable to
(s, A, '), there is a corresponding law inhapplicable to(s UM, A, s UM),
and that(c) except for the inertia laws (17}J/ does not contain any other
dynamic laws applicable to: UM, A, s" U M).

Since we know that’ is the only interpretation satisfying the heads of all
dynamic laws inD’ applicable ta(s, A, s}, it follows from (a)-c) and Case 3
above, that’ UM is the only interpretation satisfying the heads of all dyiam

e

laws inU applicable to(s UM, A, s" U M). Therefore{s UM, A,s" UM) is
in RY.

For the if-direction consider anf, A, s') in RV, such thasnH = s'NH =
M. Due to(i) above,s\ H ands’\ H are inS. By the definition of a transition
diagram described by an action description, for every dyadaw (5) in U,

s’ satisfiesL if the law is applicable tds, A, s’) (i.e., s U A satisfiesH ands’
satisfiess).

Consider any dynamic law (5) i’. Suppose that it is applicable te \
H, A s\ H). Thatis,(s \ H) U A satisfiesH ands’ \ H satisfies5.

Case 1.This law is in D,. SinceG and H do not contain any element
of H, s U A satisfiesH ands’ satisfiedz, and thus the law (5) is applicable to
(s, A, s') as well. By the definition of an update description, this lawlso
in U. Since(s, A, s') is in RY, s’ satisfiesL. Since does not contain any
element ofH, s’ \ H satisfiesL.

Case 2This law is inD,, . Sinces contains every elemeiif; of H labeling
a dynamic law inD; , s U A satisfiesH A H;. By the definition of an update
description, there is a corresponding law (16)inwhich is applicable to
(s, A, s). Since(s, A, §') isin RY, s’ satisfies.. SinceL does not contain any
element ofH, s’ \ H satisfiesL.

So far we have shown thafg) for every (s, 4,s') in RY, s’ \ H satisfies
the heads of every dynamic law ¥ that is applicable tds \ H, A, s’ \ H).
Moreover, we can observe th@t) for each dynamic law i/ applicable to
(s, A, s"), except for the inertia laws (17), there is a correspondimgih D’
applicable to(s \ H, A, s’ \ H), and that(c) D’ does not contain any other
dynamic laws applicable t&: \ H, A, 5" \ H).

Since we know that’ is the only interpretation satisfying the heads of
all dynamic laws inU applicable to(s, A, s}, it follows from (a)<(c) that
s"\ H is the only interpretation satisfying the heads of all dyi@laws in D’
applicable to(s \ H, A, s' \ H). Therefore(s \ H, A,s' \H) isinR. O

Proposition 4 Let(D, I,C,C¢) be an ADU problem, witth = D, U D,,. LetU
be the update descriptioné? U I = D, U I U D,,, and letiV denote a subset of
D,, containing laws labeled by the elemeMsC H in U. ThenD' = D, UIUW
is a pre-solution td D, I, C, C¢) iff M is an update set fot/ relative toC,,.

Proof. Let(D,I,C,C¢) be an ADU problem, withD = D, U D,,. Let U be

the update descripton dd Ul = D, U I U D,,, with a setH of update flu-
ents, describing the transition diagraff = (SY, VY RY). Let W be a subset
of D,, containing laws labeled byl C H in U. LetT = (S,V, R) be the transi-
tion diagram described by’ = D, U I U W. We show thatD’ is a pre-solution
to (D, I,C,C¢) iff M is an update set fdy relative toC,.

For the if-direction suppose thMl is an update set fav relative toC',. We show
that D’ is a pre-solution td D, I, C,) the definition of a solution hold.

78

(i) Sinces N H = M for some state € SV, and due to Lemma @), S is not
empty. Therefore]' is consistent.
(i) It follows from the definition ofD’ thatD, Ul C D' C DU I.
(iii) For any state in S, observe that by Lemma(®, s UM isin SY.
We show for any static or dynamic constraindnd any state in S, that
U, sUM = cimpliesD’, s |= c. Towards a contradiction assurfiesUM | ¢
and D', s [~ ¢, and consider a static constrainfirst. Since no element dfl
appears im, and the constraint is statig, M = ¢ follows. However, this con-
tradicts the assumption. So lebe a dynamic constraint artda history (11)
in 7" such thatsy = s andD’, s,, [~ (). We continue by induction on the nest-
ing depthk of c. If £ = 0, then(is a static constraint and, since no element
of H appears i, it follows thats,, U M [~ Q). Moreover, by Lemma 8ii) ,

hU:80UM7A0,81UM,...,Sn_lLJM,An,SnUM

is a history inT"Y. Thus, we conclud€, s UM }£ ¢, a contradiction. So let us
assume the claim holds for dynamic constraints with maximesting depth
k —1, and consider a dynamic constraint of nesting dépthhen,() contains
only static constraints and dynamic constraints of nesteygh at most — 1.
By hypothesis)’, s, - Q impliesU, s, UM F Q. Furthermore, again by
Lemma 3(iii) , the historyhV corresponding ta is a history in7V. Thus, we
concludelU, s UM £~ ¢, a contradiction. This provds, s UM = ¢ implies
D' s = cforall sin S, and any static or dynamic constraintand thus also
for any open constraint

We continue considering existential and universal comgsa. We show
that if ¢ holds ats U M wrt. S , 1, thenD’ |= c. For an existentially quan-
tified open constrain®), the claim follows from the fact that, by definition, if
c holds ats U M wrt. S , i, Somes’ € SY exists such thal/, s’ = @ and
s’ =g s. By Lemma 3(i), we conclude that’ \ H is a state ofD’. Moreover,
from U, s’ = @ and the fact thaf) is open, it follows thatD’, s' \ H = @,
and hencé)’ |= c. So letc be a universally quantified open constrajhtand
towards a contradiction, assume thiait = c. Then, there exists a stateof
D’ such thatD’, s’ [~ Q. Note that by Lemma 8) s’ UM € SY. Moreover,
since(is open we conclude that s’ UM [~ @ (otherwiseD’; s’ = @ fol-
lows which is in contradiction with our assumption). Howeveé s' UM = @)
contradicts that holds ats U M wrt. Sg , ;. Therefore, ifc holds ats UM
wrt. S . thenD’ |= ¢ for every existential and universal constrainthe
same follows for any Boolean combination of existential antversal con-
straints. This proves that if holds ats U M wrt. S , ., thenD’ = ¢, for
any constraint.

Finally, we show thaD)’ |= C,. Consider an arbitrary € S (which exists,
since by(i) D' is consistent). Then, due to Conditi¢i) for update fluent sets,
s UM € Sg . This means by definition thatholds ats wrt. Si , for every
¢ € C,. As we have shown above, this impliés = ¢ for all ¢ € C,. This
provesD’ = C,.

79

For the only-if direction letD’ be a pre-solution téD, I, C,). We show thaiM
is an update set fdv relative toC,, i.e.,(i) s " H = M for somes € SY, and(ii)

U
SH,S

C S¢,.

(i) SinceD’is consistent there exists a state S. Furthermore, by Lemma(@®)

(ii)

we conclude that U M € SY, for any such state.

We first show for any static or dynamic constrairand any state in .S, that
D' s |= cimpliesU,s UM [c. Towards a contradiction assumg, s = ¢
andU, s UM [~ ¢, and consider a static constrainfirst. Since no element
of H appears irc, and the constraint is statig, [~ ¢ follows. However, this
contradicts the assumptidi, s |= c. So letc be a dynamic constraint and’

a history (11) inTV such thats, = s UM andU, s,, = Q. We continue by
induction on the nesting depkiof c. If £ = 0, then() is a static constraint and,
since no element dfl appears i, it follows thats,, \ H }= Q. Furthermore,
by Lemma 3(ii), s; =g so for 1 < i < n. Therefore, by Lemma @ii),

h:SO\H,Ao,Sl\H,...,Snfl\I‘LAn,Sn\H

is a history inT. Thus, we concludé’; s [~ ¢, a contradiction. So let us
assume the claim holds for dynamic constraints with maximesting depth
k — 1, and consider a dynamic constraint of nesting dépthhen,() contains
only static constraints and dynamic constraints of nesteygh at most — 1.
By hypothesis[J, s,, = @ impliesD’ s, \ H [~ Q. Furthermore, again by
Lemma 3(ii) and (iii), the historyh corresponding t&V is a history inT.
Thus, we concludé’, s |~ ¢, a contradiction. This prove®’, s = ¢ implies
U,s UM E cforall sin S, and any static or dynamic constraintand thus
also for any open constraint

We continue considering existential and universal comgBa. Let s be
any state inSY such thats " H = M. We show thatD’ |= ¢ implies that
¢ holds ats wrt. Sﬁjs. For an existentially quantified open constraintthe
claim follows from the fact that then there exists a stdtec S, such that
D' s = Q. By Lemma 3(i) s’ UM is a state inSY, and since is open, it
follows thatU, s UM =). Moreovers’ UM =g s, and henceg holds at
s wrt. Sﬁ’s by definition. So let be a universally quantified open constraint
@, and towards a contradiction, assume thabes not hold at wrt. S ..
Then there exists’ € Sf ,, such thall, s’ [~ Q. By Lemma 3(i) s\ M is a
state ofD’, and since&) is open,D’, s [~ @ follows. However, this contradicts
D' |= c. Therefore, ifD’ |= ¢, thenc holds ats wrt. S , for every existential
and universal constraimt the same follows for any Boolean combination of
existential and universal constraints. This proves fhat= ¢ implies thatc
holds ats wrt. Sfj ..

Therefore, given thab’ is a pre-solution and hend?’ |~ C,, we conclude
thatSi, € S¢,. O

80

C The Zoo Worldin C

The Zoo World was described in the action langu&ge and presented in the
language of C@Lc in [1], in five parts: animalszZoo- ani mal s), movement
(zoo- novenent), actions £oo- act i ons), landscapezoo- | andscape), as
well as their unionZ00). We have transformed the first three components@hto
(in the language of C&Lc as well)'? as shown in Figures C.1-C.6, by replacing
the non-Boolean fluents of the forpos (Ani mal) = Posi ti on with Boolean
fluentspos(Ani mal , Posi ti on), and by adding several causal laws to make
sure that they express the same fluént:

constraint [\/P | pos(ANM, P)].
caused -pos(ANM., P) if pos(ANM., P1) & P\=Pl.

The first three forms of causal laws in Figure C.6 constitueéentlodifiable parD,,,
of this description. The sample constraint given in Secfidncan be represented
by the CQ\LC query given in Figure C.7.

D Exchanging Hats in the Circus

Consider a Circus world including monkeys and dogs, where prdpkeys can
exchange hats with each other. We can obtaihdescription of this world, from
theC+ description of missionaries and cannibals exchanging[B@jsand present
itto CCALC as in Figure D.1.

Now consider a variation of the Zoo World described in Sec#id, which involves
also monkeys and dogs, where only monkeys can exchangerhatszariation of
the Zoo World can be described by the union of the Zoo Worlcdigson D*
discussed in Section 7.1 (Figures C.1-C.6) and the desgriptianentioned above
(Figure D.1).

Suppose that we would like to update the action descripfru D! of this ex-
tended Zoo World, to obtain a description of a Circus whereombt humans can
mount on each other who further can mount on a large animalalbo animals
can exchange hats with each other. Assume that the modifiablé>! of D! is
the same as in Section 7.1, and the modifiable paib%fof D° consists of the
last causal law in Figure D.1. The sample constraint giveSention 7.2 can be
represented by the GCc query in Figure D.2.

2The input language of CA.c is explained at its manual dittp://wwv. cs.
ut exas. edu/ user s/ t ag/ cc/ , with further examples.

131n CCaLc an expression of the formonst r ai nt Gis called a constraint; it is short-
hand for the causal lasausedFulse if =G.

81

:- sorts
ani mal >> human;

speci es.
:- variables
ANM_, ANML1 :: ani nal
H, H1 :: human;
SP .. species.
.- Objects
% One of the species is human (I mw)
hunmanSpeci es .. species.
;- constants

% Each ani mal bel ongs to exactly one of a nunber of species. (Imw)
% Menbership of an animal in a species does not change over tinme (I nmw

sp(ani mal) .. speci es;
% Sone species are |large, sone are not. (Il nw)
| ar geSpeci es(speci es) .. bool ean;
% Each animal has a position at each point in time. (Inm)
pos(ani nal , posi tion) .. inertial Fluent;
% Bool ean properties of animals (|nmn)
adul t (ani mal) .. bool ean;
nount ed(human, ani mal) ;. inertial Fluent.

constraint [\/P | pos(ANM, P)].
caused -pos(ANM., P) if pos(ANM., P1) & P\=Pl.

default | argeSpeci es(SP).
default adult (ANM).

% Hurmans are a species call ed humanSpeci es
caused sp(H) =humanSpeci es.
constrai nt sp(ANM.) =hurmanSpeci es ->> [\/H | ANM.=H].

.- macros
% Adul t nenbers of |arge species are large animals (I mw)
| arge(#1) -> adult(#1) & | argeSpecies(sp(#1)).

% There is at | east one human-species aninmal in each scenario
% (I nw)
constraint [\/H| true].

% Two | arge ani mals can not occupy the sanme position,
% except if one of themrides on the other (I mw)
constrai nt pos(ANM., P) & pos(ANML1, P) & large(ANM.) & | arge(ANM_1)
->> [\/H | (HANML & nounted(H ANML1)) ++
(H=ANML1 & mounted(H, ANML))] where ANML@ANM.1.

Fig. C.1. The Zoo World: Animals
82

.- constants
accessi bl e(position, position) .. sdFl uent.

caused accessi bl e(P, P1)
i f neighbor(P,P1l) & -[\/G | sides(P,P1,G & -opened(Q§].
default -accessible(P, Pl).

%In one unit of tine, an aninmal can nove to one of the posi-
% tions accessible fromits present one, or stay in the posi-
% tion where it is. Mves to non-accessible positions are
% never possible (I mw)
constraint -pos(ANM, P1)

after pos(ANM., P) & -(P=Pl ++ accessible(P,P1)).

% A concurrent nove where aninmal A noves into a position at the
% sane tine as aninmal B noves out of it, is only possible if
% at least one of A and Bis a small animal. (Im
% Exceptions for (failed) nount actions and certain occurrences
% of throwdFf -- when thrown human ends up where another |arge
% animl was (see the first two propositions in ' %80 ACTI ONS %84)
constraint -(pos(ANM, P) & -pos(ANM_1, P))

after -pos(ANM, P) & pos(ANM.1, P)

& large(ANM.) & large(ANML1) unl ess ab(ANWM).

% Two | arge ani mal s cannot pass through a gate at the sanme tine
% (neither in the sanme direction nor opposite directions) (Imy
constraint -(pos(ANM., P1) & pos(ANM.1, P1))
after pos(ANM., P) & pos(ANM.1, P) & sides(P,P1, G
& large(ANM.) & | arge(ANML1) where ANVL@ANM_L.
constraint -(pos(ANM, P) & pos(ANM.1, P1))
after pos(ANM., P1) & pos(ANM.1, P) & sides(P,Pl, QG
& large(ANM.) & |l arge(ANML1) where ANML@ANM_1.

% While a gate is closing, an ani nal cannot pass through it
constraint -opened(G ->> -pos(ANW, P1)
after pos(ANM,, P) & sides(P,P1,G & opened(Q .

Fig. C.2. The Zoo World: Movement

83

;- vari abl es
A Al .. exogenousActi on.

.- constants
nove(ani mal , posi tion),
open(human, gat e) ,
cl ose(hunan, gat e) ,
nmount (human, ani mal),
get O f (human, ani mal , posi tion),
t hr owO f (ani mal , human) .. exogenousActi on.

.- macros
% Action #1 is executed by animal #2
doneBy(#1, #2) ->
([\/P | #l==nove(#2,P)] ++
[\/G | #l==o0pen(#2, G ++ #l==close(#2,G] ++
[\/ANML | #l==nount (#2, ANM.)] ++
[\/ANML \/ P | #l==getOf(#2, ANM_, P)] ++
[\/H| #l=throwOf(#2,H1]).

% A failed nount is not subject to the usual, rather strict,
% novenent restriction on large aninals
nmount (H, ANML) causes ab(H).

%If the position a large human is thrown into was previously

% occupi ed by another |arge aninmal, the usual novenment restriction
% doesn't apply

t hrowOf f (ANM_, H) causes ab(H).

% Every aninmal can execute only one action at a tine
nonexecutable A & Al if doneBy(A, ANML1) & doneBy(Al, ANM.1)
wher e A@<AL.

Fig. C.3. The Zoo World: Actions, Part 1

84

% Direct effect of npbve action
move(ANML, P) causes pos(ANM,, P).

% An animal can’t nove to the position where it is now
nonexecut abl e nove(ANM., P) & pos(ANM, P).

% A human riding an ani nal cannot performthe nove action (I nw
nonexecut abl e nove(H, P) if nounted(H ANM.).

% Ef fect of opening a gate
open(H, G causes opened(Q.

% A human cannot open a gate if he is not |ocated at a position
% to the side of the gate (I mw)
nonexecut abl e open(H, §

if pos(H P) & sidel(G\=P & side2(G\=P.

% A human cannot open a gate if he is nounted on an ani nmal
nonexecut abl e open(H, G if nounted(H ANM.).

% A human cannot open a gate if it is already opened
nonexecut abl e open(H, G if opened(Q.

% Effect of closing a gate
cl ose(H, G causes -opened(GQ.

% A human cannot close a gate if he is not |located at a position
% to the side of the gate (I nw)
nonexecut abl e cl ose(H, G

if pos(H P) & sidel(Q\=P & side2(Q\=P.

% A human cannot close a gate if he is mounted on an ani nal
nonexecutabl e close(H G if nounted(H ANW).

% A human cannot close a gate if it is already closed
nonexecut able close(H G if -opened(GQ.

% When a hurman rides an animal, his position is the same as the
% aninmal’'s position while the animal noves (I mw)
caused pos(H, P) if nounted(H ANML) & pos(ANM., P).

Fig. C.4. The Zoo World: Actions, Part 2

85

%If a human tries to nount an aninal that doesn’t change position,
% nmounting is successful

caused mounted(H, ANML) if pos(ANW, P)
after pos(ANM., P) & nount (H, ANM.).

% A human cannot attenpt to nount a human who i s nounted
nonexecut abl e nount (H, H1) if nounted(HL, ANM.).

% A human cannot be npunted on a human who is nounted
caused false if nounted(H Hl) & mounted(HLl, ANM.).

% The action fails if the aninmal changes position, and in this
% case the result of the action is that the human ends up in
% the position where the animal was (I mw)
caused pos(H, P) if -pos(ANW, P)

after pos(ANM,, P) & nount (H, ANM.).

% A human al ready nmounted on some ani mal cannot attenpt to nount
nonexecut abl e mount (H, ANML) i f nount ed(H, ANML1) .

% A human can only be mounted on a | arge ani mal
constrai nt nmounted(H, ANML) ->> | arge(ANM.) .

% A human cannot attenpt to nount a small aninmal (1M
nonexecut abl e nmount (H, ANML) if -1large(ANM).

% A | arge hunman cannot be nounted on a hunan
constraint nounted(H, Hl) ->> -large(H).

% A | arge human cannot attenpt to nount a human
nonexecutabl e nount (H, HL) if large(H).

% An ani mal can be nounted by at nost one human at a tine
constraint -(nmounted(H, ANML) & nounted(HL, ANML)) where H@xHL.

% A human cannot attenpt to nount an ani nal al ready nounted by
% a human
nonexecut abl e nount (H, ANM.) if nounted(Hl, ANM.).

% A human cannot attenpt to nmount an aninmal if the human is
% al ready nounted by a human
nonexecut abl e nount (H, ANML) i f nounted(HL, H).

Fig. C.5. The Zoo World: Actions, Part 3

86

% The getOff action is successful provided that the ani mal does
% not nmove at the sane tine. It fails if the aninmal noves, and
% in this case the rider stays on the animal (I mw)
caused pos(H P) if pos(ANW, P1)

after pos(ANM,, P1) & get OFf (H, ANM., P).

caused -nounted(H, ANML) if pos(ANW, P1)
after pos(ANM,, P1) & getOif (H ANM, P).

% The action cannot be perfornmed by a human not riding an ani mal

% (1 mw)
nonexecut abl e get Of f (H, ANM., P) if -nounted(H, ANM.) .

% A human cannot attenpt to getOf to a position that is not
% accessible fromthe current position
nonexecutabl e get O f (H, ANM., P) if -accessible(Pl,P) & pos(ANV., P1).

% The throwOf action results in the human no | onger riding the
% animal and ending in a position adjacent to the animal’s
% present position. It is nondetermnistic since the rider may

% end up in any position adjacent to the aninal’s present position.

throwOr f (ANM_, H may cause pos(H, P).
t hrowOf f (ANML, H) causes - nmount ed(H, ANM.) .

%If the resultant position is occupied by another |arge ani nal

% then the human will result in riding that animal instead

% (1 nmw)

caused mounted(H, ANML1) if pos(H P) & pos(ANM.1, P) & | arge(ANML1)
after throwd f (ANML, H where H =ANM_1.

% The action cannot be perfornmed by an animal not ridden by a
% human (1 nw)
nonexecut abl e throwO f (ANML, H) if -nounted(H, ANM.) .

% The actions getOf and throwOrf cannot be executed
% concurrently

nonexecut abl e get O f (H, ANML, P) & t hrowOF f (ANM., H) .
Fig. C.6. The Zoo World: Actions, Part 4

87

(1w

;- query

| abel :: 10;

maxstep :: 3;

% suppose that initially the gate is closed,

% Junbo and Bart are at different positions in the cage,

% and Honer is outside the cage.

0: -opened(gateAO,

[\/P\/P1 \/P2 | pos(bart,P), pos(junbo,P2), P<5, P2<5, P=\=p2,
pos(honer, Pl), P1>4];

% at some tinme T, Homer nmounts on Junbo and next Bart nounts on Honer;

% afterwards, Honer is nopunted on Junmbo and Bart is npbunted on Honer.

[\/T | T+l<maxstep && (T: nount(homer,junbo)) && (T+1: nount(bart, homer))
&% (T+2: mounted(bart, horrer)) && (T+2: nounted(honer, junbo))];

% al so Junbo does not change its position in the cage.

[\/P3 | P3<5 && [/\T1l | Tl=<maxstep ->> (T1l: pos(junbo,P3))]].

Fig. C.7. The sample constraint given in Section 7.1 for updating the Zota\ivito a little
Circus, expressed as a query in QC.

i- query
| abel :: 10;
maxstep :: 3;
% suppose that initially the gate is closed,
% Junbo and Bart are at different positions in the cage,
% and Honmer is outside the cage.
0: -opened(gateAO,

[\/P\/P1 \/P2 | pos(bart,P), pos(junbo,P2), P<5, P2<5, P=\=P2,

pos(honer, P1), Pl1>4];
% at some time T, Honmer nmounts on Junbo and next Bart nounts on Honer
% afterwards, Honer is nounted on Junbo and Bart is nounted on Homer.
[\/T | T+l<maxstep && (T: nount (homer,junbo)) && (T+1: nount(bart, homer))
&& (T+2: nounted(bart, homer)) && (T+2: rnount ed(homrer, junbo))];
% al so Junbo does not change its position in the cage.
[\/P3 | P3<5 && [/\T1 | Tl=<maxstep ->> (T1l: pos(junbo, P3))]];
% suppose that in the update description of the Zoo Wrld,
% the causal |aws | abeled by aux2(bart, honer, junbo)
% and aux3(bart, honer, junbo) are del eted:
(T2=<maxstep ->>
([/\H2 /\P /NANML | (T2: aux1l(H2, ANM, P))] &&
[/\H/\HL /\ANML | (H\= bart &% Hl \= honmer && ANML \ = junbo) ->>
((T2: aux2(H HL, ANM.)) && (T2: aux3(H HL, ANM)))]).

Fig. C.8. The constraint of Figure C.7 modified by adding further constras described
in Section 7.1.

88

0: pos(honer, 7) pos(bart, 3) pos(junbo, 4) happy(bart)
-aux2(bart, homer, junbo) -aux3(bart, homer, junbo)

ACTI ONS: nove(bart, 4) open(honer, gateAO

1: opened(gateAO) pos(honer, 7) pos(bart, 4) pos(junbo, 4)
happy(bart) -aux2(bart, honer, junbo) -aux3(bart, honer, jumnbo)

ACTI ONS: nount (homer, junbo) nount(bart, homer)

2: opened(gateAO pos(honmer, 4) pos(bart, 7) pos(junbo, 4)
mount ed(hormer, junbo) happy(bart) -aux2(bart, homer, junbo)
-aux3(bart, honmer, junbo)

ACTIONS: nount (bart, honer) sing(honer)

3: opened(gateAO pos(honer, 4) pos(bart, 4) pos(junbo, 4)
mount ed(hormer, junmbo) nounted(bart, honmer) happy(honer) happy(bart)
-aux2(bart, homer, junbo) -aux3(bart, homer, junbo)

Fig. C.9. A possible scenario which shows that the constraint of FiguresGaisfied by
the Zoo World (i.e., the Zoo World can be updated into a little Circus) if we remawe th
causal laws labeled bgux2(bart, honer, junbo) andaux3(bart, honer,

j unbo) .

89

:- sorts

speci es;
ani mal >> (nonkey; dog);
hat .
:- variables
D . dog;
ANML, ANML1 :: ani mal
SP .. species;
HA, HA1 ;. hat;
MO, MOL .. nonkey.
.- Objects
dogSpeci es .. species;
nonkeySpeci es .. species.
;- constants
sp(ani mal) .. species;
exchange(hat, hat) :: exogenousActi on;
owner (hat, ani mal),
aux4(hat,aninmal) :: inertial Fluent.

caused sp(D)=dogSpeci es.
constraint sp(ANM.) =dogSpecies ->> [\/D | ANM.=D].

caused sp(MO =nponkeySpeci es.
constrai nt sp(ANM.) =npbnkeySpecies ->> [\/MO | ANM.=M] .

caused -owner (HA, ANML1) if owner (HA, ANML) & ANML\ =ANML1.
caused -owner (HAL, ANM.) if owner (HA, ANM.) & HA\ =HA1l

exchange(HA HA1l) causes owner (HA, ANML1) & owner (HAL, ANM.)
i f owner (HAL, ANML1) & owner (HA, ANM) .
nonexecut abl e exchange(HA, HA) .

caused fal se if owner(HA ANM.) && sp(ANM)\ =nonkeySpeci es.

Fig. D.1. Monkeys exchanging hats.

i- query
| abel ::el0;
maxstep :: 1;
[\/HAL \/HA2 \/ T4 | HAL\=HA2 && (0: owner (HA1, apu)) &&
(0: owner (HA2, snoopy)) && T4<nmaxstep && (T4: exchange(HAl, HA2))].

Fig. D.2. The sample constraint to check that Snoopy and Abu can exelnats.

90

i- query
| abel ::ell;
maxstep :: 1;
[\/HAL \/HA2 \/ T4 | HAL\=HA2 && (0: owner(HA1, apu)) &&
(0: owner (HA2, snoopy)) && T4<nmaxstep && (T4: exchange(HAl, HA2))];
[/\HA /\ANML /\T | T =< maxstep ->> (T: -aux4(HA ANM.))].

Fig. D.3. The sample constraint to check that Snoopy and Abu can exehmats, if we
remove the causal laws labeled dyx 4 from the description in Figure D.1.

?- query ell.

0: owner(hal, snoopy) owner(ha2, apu)

-aux4(hal, apu) -aux4(hal, nol) -aux4(hal, np2)
-aux4(hal, snoopy) -aux4(ha2, apu) -aux4(ha2, nol)
-aux4(ha2, no2) -aux4(ha2, snoopy)

ACTI ONS: exchange(ha2, hal)

1: owner(hal, apu) owner(ha2, snoopy)

-aux4(hal, apu) -aux4(hal, npl) -aux4(hal, np2)
-aux4(hal, snoopy) -aux4(ha2, apu)

-aux4(ha2, nol) -aux4(ha2, nmo2) -aux4(ha2, snoopy)

Fig. D.4. A possible scenario to show that the sample constraint to checRribapy and
Abu can exchange hats is satisfied by the description in Figure D.1 if we eethewausal
laws labeled byaux4.

91

