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Abstract

Incorporating new information into a knowledge base is an important problemwhich has
been widely investigated. In this paper, we study this problem in a formal framework for
reasoning about actions and change. In this framework, action domains are described in an
action language whose semantics is based on the notion of causality. Unlike theformalisms
considered in the related work, this language allows straightforward representation of non-
deterministic effects and indirect effects of (possibly concurrent) actions, as well as state
constraints; therefore, the updates can be more general than elementarystatements. The
expressivity of this formalism allows us to study the update of an action domain descrip-
tion with a more general approach compared to related work. First of all, weconsider the
update of an action description with respect to further criteria, for instance, by ensuring
that the updated description entails some observations, assertions, or general domain prop-
erties that constitute further constraints that are not expressible in an action description in
general. Moreover, our framework allows us to discriminate amongst alternative updates
of action domain descriptions and to single out a most preferable one, based on a given
preference relation possibly dependent on the specified criteria. We study semantic and
computational aspects of the update problem, and establish basic propertiesof updates as
well as a decomposition theorem that gives rise to a divide and conquer approach to updat-
ing action descriptions under certain conditions. Furthermore, we study thecomputational
complexity of decision problems around computing solutions, both for the generic setting
and for two particular preference relations, viz. set-inclusion and weight-based preference.
While deciding the existence of solutions and recognizing solutions are PSPACE-complete
problems in general, the problems fall back into the polynomial hierarchy under restric-
tions on the additional constraints. We finally discuss methods to compute solutions and
approximate solutions (which disregard preference). Our results provide a semantic and
computational basis for developing systems that incorporate new informationinto action
domain descriptions in an action language, in the presence of additional constraints.
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1 Introduction

As we live in a world where knowledge and information is in flux, updating knowl-
edge bases is an important issue that has been widely studiedin the area of knowl-
edge representation and reasoning, (see e.g. [67,12,20,61] and references therein).
However, the problem is far from trivial and many different methods have been
proposed to incorporate new information, be it affirmative or prohibitive, which are
based on different formal and philosophical underpinnings, cf. [67,39,57]. It ap-
pears that there is no general purpose method that would workwell in all settings,
which is partly due to the fact that an update method is also dependent to some
extent on the application domain.

In particular, in reasoning about actions and change, the dynamicity of the world
is a part of the domain theory, and requires special attention in update methods.
For various approaches to formal action theories, including the prominent situation
calculus, event calculus, and action languages that emerged from the research on
non-monotonic reasoning, the problem of change has been widely studied and dif-
ferent methods have been proposed (see [64] for background and references, and
Section 8.1 for a more detailed discussion).

To give a simple example, consider an agent having the following knowledge,KTV ,
about a TV with remote control:

(TV1) If the power is off, pushing the power button on the TV turns the power on.

(TV2) If the power is on, pushing the power button on the TV turns the power off.

(TV3) The TV is on whenever the power is on.1

(TV4) The TV is off whenever the power is off.

Now assume that the agent does not know how a remote control works (e.g., she
does not know the effect of pushing the power button on the remote control). Sup-
pose that later she obtains the following information,KRC , about remote controls:

(RC1) If the power is on and the TV is off, pushing the power button on the remote
control turns the TV on.

(RC2) If the TV is on, pushing the power button on the remote control turns the
TV off.

⋆ This paper is a revised and significantly extended version of a preliminary paper that ap-
peared in:Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI 2005),
pp. 418–423.

Email addresses:eiter@kr.tuwien.ac.at (Thomas Eiter),
esraerdem@sabanciuniv.edu (Esra Erdem),michael@kr.tuwien.ac.at
(Michael Fink),jan@kr.tuwien.ac.at (Ján Senko).
1 Note that the statement is wrong; its defectiveness is observed and resolved upon update.
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The task is now to incorporate this new knowledge into the current knowledge base
KTV . In this particular case, this seems unproblematic, as uponsimply addingKRC

toKTV the resulting stock of knowledge is consistent; in general,however, it might
be inconsistent, and a major issue is how to overcome this inconsistency.

We study the incorporation problem in the context of action languages [30]. In these
formalisms, actions and change are described by “causal laws.” For instance, in the
action languageC [32], the direct effect of the action of pushing the power button
on the TV, stated in (TV1), is described by the causal law

causedPowerON after PushPBTV ∧ ¬PowerON , (1)

which expresses that this action, represented byPushPBTV , causes the value of the
fluentPowerON to change from false to true; the indirect effect of this action that
is stated in (TV3) is described by the causal law

causedTvON if PowerON , (2)

which expresses that if the fluentPowerON is caused to be true, then the fluent
TvON is caused to be true as well.

Action description languages are quite expressive to easily handle nondeterminism,
concurrency, ramifications, qualifications, etc. The meaning of an action descrip-
tion can be represented by a “transition diagram”—a directed graph whose nodes
correspond to states and whose edges correspond to action occurrences; Figure 1
below (Section 2) shows an example. There are reasoning systems, like CCALC 2

and DLVK, 3 that accept domain descriptions in an action language, likeC or K
respectively, and support various kinds of reasoning tasksover these descriptions,
including planning, prediction and postdiction in CCCALC and computing different
kinds of plans in DLVK.

As far as action languages are concerned, the update problemwas studied to a re-
markably little extent. For the basic action languageA (see [30]), which is far less
expressive thanC, the update problem has been considered, e.g., in [44,47]. Both
works focused on updates that consist of elementary statements (i.e., essentially
facts) over time, and presented specific update methods, focusing on the contents
of the knowledge base. We address the update problem from a more general per-
spective in the following ways:

• We consider a richer language (i.e., a fragment ofC) to study the update problem,
and updates are represented in terms of a set of arbitrary causal laws.
• We view the update problem from a more general perspective. Sometimes, en-
suring consistency is not sufficient: we might want to ensurealso that the updated
action description entails some scenarios, conditions, orgeneral properties of the

2 http://www.cs.utexas.edu/users/tag/cc/
3 http://www.dbai.tuwien.ac.at/proj/dlv/K/
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domain that cannot be expressed by causal laws. In our updateframework, such
further knowledge could be taken into account.

For example, for the effective use of the TV system in the above scenario, the
following constraint might be imposed:

(C) Pushing the power button on the remote control is always possible.4

If KRC is simply added toKTV , then (C) is not satisfied byKRC ∪KTV : when the
power and the TV are on, pushing the power button on the remotecontrol is not
possible, since (RC2) and (TV3) contradict. The question is then how the agent can
updateKTV by incorporatingKRC relative to (C); note that (C) is not expressible
by causal laws in the action languageC.

To represent constraints like (C), we use formulas for “queries” in action lan-
guages like in [30]; here, the formula

ALWAYS executable{PushPBRC}. (3)

has to evaluate to true, where{PushPBRC} stands for the concrete action of push-
ing the power button on the remote control. Similarly, consider the following sce-
nario that we might want the updated action description to entail:

(S) Sometimes, when the power is on, pushing the power buttonon TV turns the
power off, and after that if we push the power button on the TV then the power
is on again.

This scenario cannot be expressed by means of causal laws either; however, it can
be expressed by a formula

SOMETIMES evolves PowerON ; {PushPBTV };

¬PowerON ; {PushPBTV };PowerON .

• Sometimes, an action description can be updated in several ways. Our framework
allows us to discriminate amongst alternatives and to single out a most preferable
candidate as the result, based on a given preference relation possibly dependent on
the additional constraint formulas.

In this paper, we consider a generic framework for incorporating new causal laws
into an existing action description, that takes into account the constraint formulas
to be satisfied in the end. We thus take here the stance that thecausal laws, which
have been designed by the user or the knowledge engineer, areto be modified,
while constraint formulas are not subject to change (they might capture indisputable
properties of the domain); a violation of constraints mightbe tolerated, though, if
indicated by the user. Our main contributions can be summarized as follows:

(1) We introduce a formal notion of anaction update problem, which is, given
action descriptionsD and I, and a setC of constraint formulas, to determine a

4 Note the conceptual difference between (C) and (TV2): (C) expresses an executability
condition, whereas (TV2) captures a causal relationship.
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(possibly new) action descriptionD′ which incorporatesI into D. While D and
I are in (a canonical subset of)C, we describe conditions like (C) and scenarios
like (S) by “constraints” using formulas from anaction query language, similar to
the one in [30]. In a more fine-grained treatment,D is split into an unmodifiable
part,Du, and a modifiable part,Dm, whileC is split into obligatory constraints,Co,
(which must hold under all circumstances) and preference constraints,Cp (which
ideally should hold, but might be violated).

A solution to an action update problem is then defined in termsof an action de-
scriptionD′ that consists ofI and statements fromD such thatCo is satisfied by
D′; as, in general, different candidatesD′ are possible, we use a (strict)preference
relation⊏C over action descriptions5 in order to discriminate amongst alternatives
and to single out a most preferable candidateD′ as the result. Here the subscript
C indicates that the preference relation is possibly dependent on the setC of con-
straints. Such a preference relation can be defined in different ways, in terms of
syntactic conditions (e.g., the set of causal laws in an action description), or se-
mantic conditions (e.g., the presence or absence of paths inthe transition diagram).

(2) We investigate semantic properties of action updates, and establish some ba-
sic properties regarding solution preference, and specialforms of updates, which
serve as tests for the suitability of the notions proposed. We furthermore determine
conditions under which computing a solution to an action update problem can be
structurally decomposed, such that a divide-and-conquer approach becomes feasi-
ble. In particular, this is possible if the action description and the constraints can be
split into disjoint parts that interfere in a benign way, andif the preference ordering
can be gracefully decomposed along this split.

(3) We study the computational complexity of the action update problem, where
we consider the generic setting (making some assumptions about the cost of de-
ciding whether the constraintsC are satisfied by an action descriptionD, denoted
D |= C, and whetherD ⊏C D′ holds givenD andD′), as well as some natural
instances. Among the latter are those where the preference relation⊏C is ordinary
set-inclusion and where it is weight-based relative to satisfied constraints. Under
the assumption that testingD |= C andD ⊏C D′ is feasible in polynomial space,
deciding the existence of some solution to an action update problem turns out to
be PSPACE-complete in general, and also verifying a given solution candidate
has this complexity. However, the complexity of both problems falls back into the
polynomial hierarchy, if decidingD |= C andD ⊏C D′ is located there, and is
located at most one level higher up there; we recall here thatdeciding the consis-
tency of an action description inC is intractable in general (andNP-complete for
the canonical fragment of our concern). Given that the testD |= C andD ⊏C D′ is
polynomial, deciding solution existence isNP-complete and thus not harder than
the consistency problem, and recognizing a given solution is only mildly harder.

(4) We discuss methods for computing solutions and “pre-solutions” which ap-
proximate them, by disregarding solution preference. As for solutions, we focus

5 That is,⊏C is irreflexive and transitive.
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on set-inclusion and one particular weight-based comparison, as preference rela-
tions ⊏C , which use an oracle for pre-solutions. For pre-solutions,we present a
method that reduces the problem into reasoning over an action description that is
constructed from the problem input; here, evaluating constraint formulas can be
exploited to test given candidates.

(5) Finally, we show the applicability of our algorithm based on the computation
of pre-solutions, and the usefulness of the theoretical results on the decomposability
of the update problem, in the context of the Zoo World, which is an action domain
proposed by Erik Sandewall in his Logic Modelling Workshop.6 The Zoo World
consists of several cages and the exterior, gates between them, and animals of sev-
eral species, including humans, and its actions include moving within and between
cages, opening and closing gates, and mounting and riding animals; a description
of this domain in the action languageC+ was given in [1].

Our results go significantly beyond previous results in the literature (see Section 8.1),
and provide a semantic and computational basis for developing systems that in-
corporate new information into action descriptions in an action language, in the
presence of further constraints that can be expressed as formulas to be entailed by
the updated description. Our generic framework can be instantiated to different set-
tings, which reflect different intuitions or criteria for solution preference. It thus
provides a flexible tool for modeling action update. As a byproduct, we obtain de-
composition results of action descriptions that emerge from special cases of action
update instances, which are interesting in their own right.

The rest of this paper is structured as follows. In the next section, we provide pre-
liminaries about transition diagrams, action languages, and constraint formulas as
needed for the problem setting. After that, we define in Section 3 the update prob-
lem in a generic framework and briefly introduce a syntactic and a semantic in-
stance of it. In Section 4, we study some semantic propertiesof updates, including
possible decompositions. After that, we turn to computational issues. In Section 5,
we characterize the computational complexity of problems around updates, and in
Section 6 we provide algorithms for computing updates. Example applications in
the Zoo World are considered in Section 7. After a discussionof related work and
further aspects of the problem in Section 8, we conclude witha summary and issues
for further research.

2 Preliminaries

We describe action domains and the updates in an action description language, a
fragment ofC [32], by “causal laws.” Therefore, in the following, first wedescribe

6 http://www.ida.liu.se/ext/etai/lmw/
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{PushPBRC}

PowerON

TvON ¬TvON

¬PowerON

{PushPBTV , PushPBRC}

{}

{PushPBTV }

{PushPBTV , PushPBRC}
{PushPBTV }

{}
{PushPBRC}

Fig. 1. A transition diagram

the syntax and the semantics of the action description language, which is defined
by means of “transition systems.”

While updating an action domain description, we sometimes would like ensure that
the updated description entails some conditions or scenarios. Most of the time such
scenarios or conditions are not expressible in the action language. We describe
them as constraints using formulas from an action query language, like the one
in [30]. Therefore, we also describe the action query language we use, and define
satisfaction of a constraint by an action domain description.

Finally, we give sample constraints that are useful in action updates but cannot be
represented in the action description language. We also discuss and emphasize the
necessity of a query language in addition to the descriptionlanguage.

2.1 Transition Diagrams

We start with a(propositional) action signaturethat consists of a setF of fluent
names, and a setA of action names. Aliteral is an expression of the formP or
¬P , whereP is a fluent name. Anaction is a truth-valued function onA, denoted
by the set of action names that are mapped tot. Thus, action names represent basic
(atomic) actions, while a (compound) action is identified with the basic actions
taking place at the same time, providing an intuitive representation of both, atomic
and concurrent, actions.

Definition 1 ([30]) A (propositional) transition diagramof an action signatureL =
〈F,A〉 consists of a setS of states, a functionV : F×S → {f, t}, and a subsetR ⊆
S × 2A × S of transitions. We say thatV (P, s) is thevalueof P in s. The statess′

such that〈s, A, s′〉 ∈ R are the possibleresults of the executionof the actionA in
the states. We say thatA is executablein s if at least one such states′ exists; and
thatA is deterministicin s if there is at most one suchs′.

A transition diagram can be thought of as a labeled directed graph. Every states is
represented by a vertex labeled with the functionP 7→ V (P, s) from fluent names
to truth values. Every triple〈s, A, s′〉 ∈ R is represented by an edge leading froms
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causedPowerON after PushPBTV ∧ ¬PowerON

caused¬PowerON after PushPBTV ∧ PowerON

causedTvON if PowerON

caused¬TvON if ¬PowerON

inertial PowerON ,¬PowerON ,TvON ,¬TvON

Fig. 2. An action description forKTV

causedTvON after PushBRC ∧ PowerON ∧ ¬TvON

caused¬TvON after PushBRC ∧ TvON

Fig. 3. Causal laws forKRC

to s′ and labeledA. An example of a transition diagram is shown in Figure 1.

2.2 Action Description Languages

We consider the prime subset of the action description languageC [32] that consists
of two kinds of expressions (calledcausal laws): static lawsof the form

causedL if G, (4)

whereL is a literal andG is a propositional combination of fluent names, and
dynamic lawsof the form

causedL if G after H, (5)

whereL andG are as above, andH is a propositional combination of fluent names
and action names. In (4) and (5) the partif G can be dropped ifG is True.

An action descriptionis a set of causal laws. For instance, the knowledge base
about a TV system,D, of the agent in the previous section, can be described by
causal laws in Figure 2. An expression of the form

inertial L1, . . . , Lk (6)

stands for the causal laws

causedLi if Li after Li (1 ≤ i ≤ k)

describing that the value of the fluentLi stays the same unless changed by an action.
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The meaning of an action description can be represented by a transition diagram.
Let D be an action description with a signatureL = 〈F,A〉. Then the transition
diagram〈S, V,R〉 describedbyD, denoted byT (D), is defined as follows:

(i) S is the set of all interpretationss of F such that, for every static law (4) inD,
s satisfiesG ⊃ L,

(ii) V (P, s) = s(P ),

(iii) R is the set of all triples〈s, A, s′〉 such thats′ is the unique interpretation of
F which satisfies the headsL of all
• static laws (4) inD for whichs′ satisfiesG, and
• dynamic laws (5) inD for whichs′ satisfiesG ands ∪ A satisfiesH.

The laws included in(iii) above are those that areapplicableto the transition from
s to s′ caused by executingA: the static causal laws make sure thats′ is a state, and
handles the ramifications and the qualifications ofA; whereas the dynamic causal
laws handle the preconditions and the direct effects ofA.

Action languageC is based on the “principle of universal causation”, according to
which every fact that obtains is caused. In the definition above, the condition thats′

is theonly interpretation satisfying the heads of the applicable causal laws ensures
this. For instance, the transition diagram described by theaction description for
KTV in Figure 2 is presented in Figure 1. Consider the transition〈{¬PowerON ,
¬TvON }, {PushPBTV }, {PowerON ,TvON }〉. The causal laws that are applica-
ble to this transition are

causedPowerON after PushPBTV ∧ ¬PowerON

causedTvON if PowerON .

Here{PowerON ,TvON } is the only interpretation that satisfies the heads of these
causal laws, i.e.,{PowerON ,TvON }.

Now consider the triple〈{¬PowerON ,¬TvON }, {}, {PowerON ,TvON }〉. There
is only one of the two causal laws above applicable to this triple, viz. the second.
There are two interpretations that satisfy the head of this causal law:{PowerON ,
TvON } and{¬PowerON ,TvON }. In other words, no causal law provides a causal
explanation forPowerON . Therefore, this triple is not a transition.

We say that an action description isconsistentif it can be represented by a transition
diagram with nonempty state set.

In the following, we suppose that an action descriptionD consists of two parts:
Du (unmodifiable causal laws) andDm (modifiable causal laws). Therefore, we
sometimes denote an action descriptionD asDu ∪Dm.
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2.3 Why Action Languages?

In this work, we consider action languages to formalize action domains. There are
several reasons for this decision.

First of all, action description languages, likeC, are quite expressive to easily han-
dle nondeterminism, concurrency, ramifications, defaults, qualifications, state con-
straints, etc. For instance, we can express that tossing a coin may lead to Heads or
Tails by the causal laws

causedHeads if Heads after Toss

caused¬Heads if ¬Heads after Toss .

Concurrency is allowed unless no qualification constraint isviolated or unless ex-
plicitly stated otherwise by a causal law like

causedFalse after MoveRight ∧MoveLeft .

The commonsense law of inertia is immediately expressed by causal laws of the
form (6). A direct effect of turning on the power is that the power is on; a ramifi-
cation of turning on the power is that TV is on. We can express such a ramification
by the causal law

causedTvON if PowerON .

We can describe that a spring-loaded door is by default closed by the causal laws:

causedOpen if Open.

Second, there are reasoning systems, like CCALC and DLVK, that accept domain
descriptions in an action language, likeC orK respectively, and allow various kinds
of reasoning tasks over these descriptions.

Third, there is a large amount of theoretical and application-oriented work on action
languages, including our earlier work on planning and monitoring. On the other
hand, as discussed briefly in the introduction, the update problem was studied to
a remarkably little extent in the context of action languages. This paper not only
extends our earlier work to take updates into account but also fulfills the need for a
general approach to updates in action languages.

2.4 Expressive Constraints

Once we describe an action domain, we may want check whether this domain de-
scription entails some observations of the world, assertions about the effects of the
execution of actions, or even some scenarios. Similarly as in [18], we express such
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conditions as constraints using formulas from an action query language, like the
one in [30]. After that, we can check whether a given action description satisfies
a given constraint using reasoning systems, e.g. CCALC (cf. the examples in Ap-
pendix C).

Now constraint formulas are formally defined as follows.7

An open constraintis either(a) astatic constraintof the form

holdsF , (7)

whereF is a fluent formula, or(b) adynamic constraintof the form

necessarilyQ after A1; . . . ;An, (8)

whereQ is an open constraint and eachAi is an action;8 or (c) any propositional
combination of open constraints. Anexistential constraintis an expression of the
form

SOMETIMES Q, (9)

whereQ is an open constraint; auniversal constraintis of the form

ALWAYS Q, (10)

whereQ is an open constraint. Aconstraintq is a propositional combination of
existential constraints and universal constraints.

For an open constraintq, its maximal nesting depth of dynamic constraintsk is de-
fined inductively as follows. Ifq is a static constraint, thenk = 0; if q is a dynamic
constraint of the form (8), thenk = kQ + 1, wherekQ is the maximal nesting depth
of dynamic constraints inQ; if q is a Boolean combination of open constraints,
thenk is a maximal element from the set of maximal nesting depths ofdynamic
constraints of its subformulas. This definition is easily extended to (general) con-
straints. For an existential (universal) constraint of theform (9) (resp. of the form
(10)), its maximal nesting depth of dynamic constraints iskQ, i.e., the maximal
nesting depth of dynamic constraints inQ. For a propositional combination of ex-
istential and universal constraints, its maximal nesting depth of dynamic constraints
is a maximal element from the set of maximal nesting depths ofdynamic constraints
of its subformulas.

As for the semantics, letT = 〈S, V,R〉 be a transition diagram, with a setS of
states, a value functionV mapping, at each states, every fluentP to a truth value,

7 In action query languages, “constraints” as here etc. are called “queries;” the former term
is more appealing here as satisfaction is required.
8 This amounts to[Q]A1; . . . ; An in dynamic logic [37]; however, we stick here to the
commonly used syntax of action queries.
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and a setR of transitions. Ahistoryof T of lengthn is a sequence

s0, A1, s1, . . . , sn−1, An, sn (11)

where each〈si, Ai+1, si+1〉 (0 ≤ i < n) is inR. We say that a states ∈ S satisfiesan
open constraintQ′ of form (7) (resp. (8)) relative toT (denotedT, s |= Q′), if the in-
terpretationP 7→ V (P, s) satisfiesF (resp. if, for every historyh = s0, A1, s1, . . . ,
sn−1, An, sn of T which is of lengthn and such thats = s0, open constraintQ is
satisfied at statesn). For other forms of open constraintsQ, satisfactionis defined
by the truth tables of propositional logic. IfT is described by an action descrip-
tion D, then the satisfaction relation betweens and an open constraintQ can be
denoted byD, s |= Q as well.

Note that, for every states and for every fluent formulaF ,

D, s |= holdsF ⇐⇒ D, s |= ¬holds¬F.

For every states, every fluent formulaF , and every action sequenceA1, . . . , An

(n ≥ 1), if

D, s |= necessarily(holdsF ) after A1; . . . ;An

then

D, s |= ¬necessarily(¬holdsF ) after A1; . . . ;An.

We say thatD satisfiesa constraintq (denotedD |= q) if one of the following
holds:

• q is an existential constraint (9) andD, s |= Q for some states ∈ S;
• q is a universal constraint (10) andD, s |= Q for every states ∈ S;
• q = ¬q′ andD 6|= q′;
• q = q1 ∧ q2 andD |= q1 andD |= q2; or
• q = q1 ∨ q2 andD |= q1 orD |= q2.

For every open constraintQ,

D |= SOMETIMES Q iff D |= ¬ALWAYS ¬Q.

For a setC of constraints, we say thatD satisfiesC (denotedD|=C) if D satisfies
every constraint inC. Consider, e.g., the action description presented in Figure2.
It does not satisfy any set of constraints containing

ALWAYS necessarily (holds¬TvON ) after {PushPBRC}

because this constraint is not satisfied at the state{TvON ,PowerON }; but, it sat-
isfies the constraints:

12



ALWAYS holds PowerON ≡ TvON , (12)

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV }.
(13)

In the rest of the paper, an expression of the form

possiblyQ after A1; . . . ;An,

whereQ is an open constraint and eachAi is an action, stands for the dynamic
constraint

¬necessarily¬Q after A1; . . . ;An;

an expression of the form

evolvesF0;A1;F1; . . . ;Fn−1;An;Fn,

where eachFi is a fluent formula, and eachAi is an action, stands for

holdsF0 ∧ possibly(holdsF1 ∧ possibly(holdsF2 ∧ ...) after A2) after A1;

and
executableA1; . . . ;An

where eachAi is an action, stands for

possiblyTrue after A1; . . . ;An.

We sometimes dropholds from static constraints appearing in dynamic constraints.

2.4.1 Examples

To get a better intuition about the capability of constraints, we give some examples
of properties that can be expressed by them.

• Existence of certain states, transitions, and histories:For instance, we can ex-
press the existence of states where a formulaF holds by means of the constraint

SOMETIMES holds F.

Similarly, we can express the existence of a transition fromsome state where a
formulaF holds to another state where a formulaF ′ holds, by the execution of
an actionA:

SOMETIMES holds F ∧ possiblyF ′ after A.

In general, the existence of a history (11) such that, for each si of the history,
the interpretationP 7→ V (P, si) satisfies some formulaFi is expressed by the
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constraint:

SOMETIMES evolvesF0;A1;F1; . . . ;Fn−1;An;Fn.

For instance, the constraint

SOMETIMES evolves PowerON ; {PushPBTV };

¬PowerON ; {PushPBTV };PowerON .

describes the presence of the following history in Fig. 1:

{PowerON ,TvON }, {PushPBTV },

{¬PowerON ,¬TvON }, {PushPBTV }, {PowerON ,TvON }.

• (Non-)executability of an action:Like in [16], executability of an action sequence
A1, . . . , An (n ≥ 1) at every state can be described by

ALWAYS executableA1; . . . ;An.

That no action is possible at a state where formulaF holds is expressed by

SOMETIMES holds F ∧
∧

A∈2A
necessarilyFalse after A.

• Mandatory and possible effects of actions:Like in [16], mandatory effects of a
sequenceA1, . . . , An (n ≥ 1) of actions in a given context are described by

ALWAYS holds G ⊃ necessarilyF after A1; . . . ;An;

and possible effects of a sequence of actions in a context by

ALWAYS holds G ⊃ possiblyF after A1; . . . ;An.

In these constraints,F describes the effects andG the context.

2.4.2 Constraints vs. Causal Laws

In all action languages [30], queries have been expressed ina language different
from the action description languages. As we consider constraints as queries that
evaluate to true, it may look suggestive to merge causal lawsand constraints into
a single set of formulas that constitute an action description. However, constraints
and causal laws are conceptually different: causal laws areaxioms that describe
action domains in agenerative manner(in particular, in action languageC via cau-
sation), whereas constraints express conditions (which may also refer to time steps)
that we would like to ensure about an action domain; they thusserve foreliminating
unwanted models. In other words, constraints restrict the possibilities for an action
description, but they are non-constructive in the sense that they do not causally
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generate transitions. The latter however is at the heart ofC and many other action
languages: each edge〈s, A, s′〉 in the transition diagram is causally explained (or
“generated”), meaning that the follow up states′ is uniquely described by the liter-
als in heads of the causal laws that “fire”, i.e., the causal laws that are applicable to
〈s, A, s′〉.

For instance, if the action description consists of the onlycausal law

causedG after A1 ∧ F ,

where every fluent is inertial, then the transition diagram has the edge〈{F,¬G},
{A1}, {F,G}〉, i.e., we can get from the states = {F,¬G} to the states′ = {F,G}
with the occurrence of the action{A1}. However, the transition diagram does not
have the edge〈∅, {A1}, {F,G}〉. If instead of the causal law above, we consider
the constraint

ALWAYS holds F ⊃ necessarilyG after A1;

which is similar to the causal law, then both〈{F,¬G}, {A1}, {F,G}〉 and〈∅, {A1},
{F,G}〉 would be included in the transition diagram (sinceF is false wrt.s = ∅,
the implication is true).

Although in some cases a constraint may be expressed by an equivalent causal law
(or multiple such laws), this is not always the case. Moreover, the meaning of a
set of causal laws is described by a set of nodes and a set of edges that form a
transition system, where each of these edges expresses a causal relationship (which
generates the edge), whereas roughly speaking, the meaningof a constraint is de-
scribed by a set of paths in the transition diagram without such a causal relation.
In other words, constraints might describe conditions characterizing subgraphs of a
transition diagram. Consequently, some constraints cannotbe expressed as causal
laws, for instance “existential constraints” like the constraint

SOMETIMES possibly F after A,

the constraint (21), and similar constraints in Section 2.4.1. They can not be ex-
pressed via causal laws, as the latter are inherently universal statements. Also “uni-
versal” constraints like

ALWAYS (possiblyF after A) ∧ (possibly¬F after A)

(which implicitly enforce existence of causal transitions) are difficult to express via
causal laws. Another aspect is that constraints allow us to talk about sequences of
actions, while causal laws do not.

Due to the syntactic and the semantic differences between causal laws and queries,
the reasoning systems (like CCALC) based on action languages also have different
syntax for query formulas (cf. Appendix C); hence a difference in practice as well.
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For instance, in reasoning systems, queries can be used to describe reasoning tasks
(like temporal projection or planning) about a given actiondomain.

Although there are some formalisms (like situation calculus as in [60], dynamic
logic as in [37], or answer set programming as in [48]) that can be used to describe
both axioms and constraints, a distinction between formalisms to express axioms
and constraints is not unusual in other areas either. Consider, for instance, the de-
scription of a circuit in propositional logic and the conditions we want to check
about this circuit that are expressed in a temporal logic [25]. Also, consider on-
tologies described in ontology description languages (like RDF), and constraints
described in ontology query languages (like SPARQL).

The differences between causal laws and query formulas alsoaffect the computa-
tional efficiency of reasoning systems. For instance, givena domain description and
a query, CCALC checks whether the query is entailed by the domain description as
follows:

(1) it transforms the causal laws into a propositional theory ΓD,
(2) it transforms the negated query into a propositional theory ΓP ,
(3) it checks whetherΓD ∪ ΓP is satisfiable;
(4) if ΓD ∪ ΓP is unsatisfiable, it returns Yes;
(5) otherwise, it returns No and presents a counter example extracted from a sat-

isfying interpretation forΓD ∪ ΓP .

The transformations in the first two steps are different: theone in 1) is based on
literal completion, whereas the one in 2) is based on a simpler procedure (see [31]
for a detailed description). Such a difference allows one tocheck the entailment of
other queries without executing the first step again. If we had described a constraint
by means of causal laws, then in general we would have to transform the union of
the causal laws and the constraint into a propositional theory; for large domain de-
scriptions, like the Zoo World, such a bulk transformation would lead to inefficient
computations.

3 Problem Description

In this section, we provide a formal description of the update problem, and its solu-
tion, as well as a weaker form of solution, called pre-solution. The basic problem is
a theory change problem, i.e., a problem of incorporating new information into an
existing stock of knowledge (cf. Sections 4.2 and 8.2 for more detailed discussions
of relations to well-known work in this area). Since we studythe incorporation
problem in the context of an action language, we consider single causal laws as the
atomic entities that are subject to change (for a discussionhow to refine this further,
see Section 8.3). In addition to causal laws for incorporation, the new information
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may contain constraints that characterize intended properties of the change (reasons
for the distinction between causal laws and constraints have been discussed in the
previous section). Concerning solutions of the problem, we aim at keeping the size
of the search space practically reasonable, as well as at building on natural analo-
gies with change operators developed in other areas of database or AI research (cf.
[67,61,57] and references therein).

Informally, we define anAction Description Update (ADU)problem by an action
descriptionD = Du ∪ Dm, a setI of causal laws (a partial action description), a
setC = Co ∪ Cp of constraints, and a preference relation⊏C over action descrip-
tions. HereDu andDm are the unmodifiable (protected) and the modifiable part
of D, respectively, andI is the update that has to be incorporated. The constraints
in Co are “hard (obligatory) constraints” that have to be satisfied in an acceptable
action description, while the constraints inCp are “soft (preference) constraints”
that might be accounted for by the preference relation⊏C . In the latter,D ⊏C D′

expresses thatD is less preferable compared toD′.

Definition 2 (Action Description Update) Given an action descriptionD = Du∪
Dm, a setI of causal laws (a partial action description), a setC = Co∪Cp of con-
straints, and a preference relation⊏C over action descriptions, all over the same
signatureL, an action descriptionD′ accomplishes an (action description) update
ofD by I relative toC, if

(i) D′ is consistent,
(ii) Du ∪ I ⊆ D′ ⊆ D ∪ I,

(iii) D′ |= Co,
(iv) there is no consistent action descriptionD′′ such thatDu ∪ I ⊆ D′′ ⊆ D ∪ I,

D′′ |= Co, andD′
⊏C D′′. 9

Such aD′ is called asolution to the ADU problem(D, I, C,⊏C). If an action
descriptionD′ satisfies (i)–(iii), then we callD′ a pre-solutionto the ADU problem
(D, I, C,⊏C).

Condition(i) expresses that an action description update, modeling a dynamic do-
main, such as the TV system in Section 1, must have a state. According to Con-
dition (ii) , new knowledge about the world and the invariable part of theexisting
action description are kept, and the causal laws in the variable part are considered
to be either “correct” or “wrong”, and in the latter case simply disposed.

Condition (iii) imposes semantical constraintsCo onD′, which comprise further
knowledge about the action domain gained, e.g., from experience. It is important to
note thatC can be modified later for another action description update (as will be
discussed below).

9 Note that soft constraintsCp are used implicitly in this definition, since the preference
relation⊏C is one in whichC = Co ∪ Cp is explicitly known as parameter.
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Finally, Condition(iv) picks the most preferred action description among the ones
for which Conditions(i)–(iii) are satisfied.

In an ADU problem, the preference relation can be described in various ways. For
instance, it can be defined in terms of syntactic conditions,like simple set inclusion.
If we define⊏C to be⊂, then an action descriptionD is less preferable than an
action descriptionD′ if D ⊂ D′. Alternatively, the preference relation⊏C can be
defined in terms of semantic conditions. For instance, once aweight is assigned to
each action description with respect to some semantic measure (e.g., the number
of certain paths present in the transition diagram of the description) by a function
weight , we can take⊏C to be an operator<weight comparing the weights of the
action descriptions; then an action descriptionD is less preferable than an action
descriptionD′ if D <weightD

′.

In the literature, two kinds of changes that incorporate newinformation into a
knowledge base have been identified, viz. revision (which adds more precise knowl-
edge about the domain) and update (which is a change of the world per se) [66],
which should be governed by different sets of postulates in axiomatic approaches
like the AGM theory [2] and the KM theory [39]. Our notion of ADU has more
of a revision flavor, but we do not govern it with AGM or KM postulates, as the
formalism does not satisfy the prerequisites; see Section 8.2 for more discussion.
However, the constraintsC can be adjusted if the nature of the changeI is known.
In case of a revision,C should reasonably contain all conditions corresponding
to observations made about the domain, while other conditions may be kept or
dropped; on the other hand, ifI is a change of the world per se, then conditions
corresponding to observations might be dropped.

Eventually we remark that, in descriptive domains, like physical domains, one
might carry out tests and collect respective results (observations) in order to find
out erroneous causal laws. In this case, the update problem would be rather viewed
as a diagnosis problem. Note however, that such an approach hinges on the possibil-
ity to make observations for learning causal relationships. In contrast, our approach
is intended to also allow for normative (artificial) worlds modeled as action descrip-
tions (e.g., agent systems, games, protocols), where the world is designed, rather
than perceived. In such domains, and likewise for physical worlds that are not ob-
servable (where one is impeded to make observations for whatever reason), it is not
feasible to treat the update problem as a diagnosis problem.

3.1 Examples

The following is an example of an ADU problem with the syntax-based preference
relation above.

Example 1 LetD be the action description forKTV in Figure 2, i.e.,D = Du∪Dm
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{PushPBRC}

PowerON

TvON ¬TvON

¬PowerON

{PushPBTV , PushPBRC}

{}

{PushPBTV }

{PushPBTV , PushPBRC}
{PushPBTV }

{}

Fig. 4. Transition diagram described byD∪ I of Ex. 1.

with

Du = { causedPowerON after PushPBTV ∧ ¬PowerON ,

caused¬PowerON after PushPBTV ∧ PowerON ,

inertial PowerON ,¬PowerON ,TvON ,¬TvON }

andDm = {causedTvON if PowerON , caused¬TvON if ¬PowerON }, and let
I be the set of causal laws forKRC in Figure 3:

causedTvON after PushPBRC ∧ PowerOn ∧ ¬TvON ,

caused¬TvON after PushPBRC ∧ TvON .

Furthermore, letC = Co contain besides constraints (3) and (13):

ALWAYS executable{PushPBRC},

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV },

also the constraint

ALWAYS executable{PushPBTV }, (14)

and take (strict) set-inclusion (⊂) as the preference relation⊏C . The transition
diagram described byD ∪ I is shown in Figure 4. Here we can see that, at the state
where bothPowerON andTvON are mapped tot, the actionPushPBRC is not
executable. Therefore,D ∪ I is not a solution to the ADU problem(D, I, C,⊏C).
In fact, a solution is obtained by dropping the static law (2), i.e., causedTvON

if PowerON , fromD ∪ I. 2

For an instance of a semantic definition of⊏C , consider the following setting based
on weights that are assigned to constraints onC (i.e.,weighted constraintsin [18]).
We define the weight of an action descriptionD relative to a setC of constraints,
and a weight functionf : C → R mapping each constraint inC to a real number
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by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the weights of
constraints encodes to what extent the setC of given preferable constraints is satis-
fied. (Note thatf can easily express a threshold function as well.) With this defini-
tion, the more the highly preferred constraints are satisfied, the more preferred the
action description is.

Example 2 Reconsider our previous example whereCp consists of the constraint (13)
with weight 1:

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV },

Suppose that the preference relation⊏C is defined in terms of a weight function
on constraints (i.e.,⊏C =<weightq ). Then, the action descriptionsD′ = (D ∪ I) \
{causedTvON if PowerON } andD′′ = Du ∪ I satisfyCo and thus are pre-
solutions. However,D′′ does not satisfyCp, which impliesweightq(D

′′) = 0,
whereasweightq(D

′) = 1, and henceD′′
⊏C D′.

For further details on comparing action descriptions by means of weighted con-
straints and other semantic preferences, we refer the reader to [18].

In the rest of the paper, we will study ADU problems at an abstract level, leaving the
preference relation undefined. For some problems, we will provide more concrete
results by instantiating the preference relation: we will take⊏C as⊂ (andCp = ∅,
thusC = Co) for an instance of a syntax-based relation, and we consider⊏C =
<weightq as a representative of the semantic-based approaches.

4 Properties of Updates

In this section, we study some basic properties of solutionsto an ADU problem.
To this end, we first introduce a subsumption relation between action descriptions,
and then show that solutions to an ADU problem fulfill some desired properties
regarding special updates, provided that the preference relation ⊑C obeys some
natural conditions. We then consider the structure of solutions and pre-solutions,
and establish a disjoint factorization result that allows decomposing an ADU into
smaller parts.
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4.1 Basic Update Properties

We define subsumption of causal laws by an action descriptionas follows.

Definition 3 (Subsumption) LetD be an action description over a signatureL =
〈F,A〉. Then,

• a static law (4) overL is subsumedby D, if for every states in T (D), the
interpretation ofF describings satisfiesG ⊃ L;
• a dynamic law (5) overL is subsumedbyD, if for every transition〈s, A, s′〉 in
T (D), the following holds: if the interpretation ofF ∪ A describings andA
satisfiesH, then the interpretation ofF describings′ satisfiesG ⊃ L.

A setS of causal laws issubsumedby an action descriptionD, if every law inS is
subsumed byD.

Furthermore, we build on the properties of a preference relation ⊏C introduced
next.

In the following, for an action descriptionD and a setC of constraints, let us denote
byCD the set{c ∈ C | D |= c}.

Definition 4 Given a set of constraintsC over a signatureL = 〈F,A〉, a prefer-
ence relation⊏C over aL is called

• monotone with respect toC, if for any two action descriptionsD andD′ in
L, CD′ ⊆ CD impliesD 6⊏C D′, andstrongly monotone with respect toC, if
additionallyCD′ ⊂ CD impliesD′

⊏C D;
• monotone with respect toL, if for any two action descriptionsD andD′ in
L, D′ ⊆ D impliesD 6⊏C D′, and strongly monotone with respect toL, if
additionallyD′ ⊂ D impliesD′

⊏C D;
• non-minimizing with respect toL, if for any action descriptionD in L, D |= C

impliesD 6⊏C D′ for all D′ ⊆ D, andstrongly non-minimizing with respect to
L, if additionallyD |= C impliesD′

⊏C D for all D′ ⊂ D.

We say that⊏C is monotone, if it is either monotone with respect toC or monotone
with respect toL (or both).

Monotonicity is an intuitive potential requirement one might have on a preference
relation: monotonicity with respect toC encodes the semantically motivated prefer-
ence of satisfying preferable constraints as much as possible, whereas monotonicity
with respect toL expresses a more syntactic view of retaining as many causal laws
as possible. This is reflected in our representative preference relations. Notice that
⊂ is strongly monotone with respect toL (but not necessarily with respect toC),
whereas<weightq is monotone with respect toC if, for instance, all weights are non-
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negative (but not necessarily with respect toL).

Obviously, any monotone preference relation is also non-minimizing with respect
to L, and strong monotonicity with respect toL implies that⊏C is also strongly
non-minimizing with respect toL. Intuitively, a non-minimizing preference rela-
tion with respect toL ensures that syntactically smaller (with respect to subset
inclusion) action descriptions cannot prevent an action description that satisfies all
constraints from being a solution, while the respective strong property explicitly ex-
cludes syntactically smaller action descriptions as solutions in this case (note that
the additional condition implies the condition of non-minimizing, and could serve
as a definition alone). This intuition motivates basic properties of solutions to an
ADU problem as follows.

Proposition 1 (Subsumption) Let (D, I, C,⊏C) be an ADU problem, such that
⊏C is non-minimizing with respect toL, D is consistent andD |= C. If D sub-
sumesI, thenD ∪ I is a solution to(D, I, C,⊏C). Moreover if⊏C is strongly
non-minimizing with respect toL, thenD ∪ I is the unique solution.

Proof. LetD = Du ∪Dm and letT (D) = 〈S, V,R〉. SinceD ∪ I = Du ∪ I ∪Dm

trivially satisfies(ii) of our definition of update accomplishment, it remains to show:
(i) D∪I is consistent,(iii) D∪I |= Co, and(iv) for everyD′,Du∪I ⊆ D′ ⊆ D∪I
andD′ |= Co impliesD ∪ I 6⊏C D′.

Let T (D ∪ I) = 〈S ′, V ′, R′〉. In the following we prove thatT (D ∪ I) = T (D).

S ′ = S: SinceD ⊆ D∪ I, we getS ′ ⊆ S. Furthermore,D subsumesI and, hence,
everys ∈ S satisfiesG ⊃ L for all static laws of form (4) inI, i.e.,S ⊆ S ′.

V ′ = V : Follows fromS ′ = S and our labeling convention for states.

R′ = R: Let 〈s, A, s′〉 be acandidatefor a transition relation,R, of an action
description,D, if (a) s′ satisfies the headsL of all static laws of form (4) inD,
for which s′ satisfiesG, and (b) s′ satisfies the headsL of all dynamic laws of
form (5) inD, for which s′ satisfiesG ands ∪ A satisfiesH. Furthermore, lets′

be adetermined successorof s w.r.t.A, if the set of heads of all laws applicable to
〈s, A, s′〉 uniquely determiness′, i.e., it contains (at least) one fluent literal for every
fluent inF. Then,〈s, A, s′〉 ∈ R iff it is a candidate forR ands′ is a determined
successor ofs with respect toA. SinceD ⊆ D ∪ I, every candidate〈s, A, s′〉 for
R′ is a candidate forR. Moreover, thatD subsumesI implies that every candidate
〈s, A, s′〉 for R is a candidate forR′ as well. As〈s, A, s′〉 is neither inR nor inR′,
if s′ is not a determined successor ofs with respect toA it follows thatR′ = R.

Given thatD is consistent and thatD |= C, T (D ∪ I) = T (D) proves(i) and(iii) .
As for (iv), D |= C andT ′ = T impliesD ∪ I |= C. Since⊏C is non-minimizing
with respect toL, it follows for all Du ∪ I ⊆ D′ ⊆ D ∪ I, thatD ∪ I 6⊏C D′,
which proves(iv). Therefore,D ∪ I is a solution to(D, I, C,⊏C). Moreover, if
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⊏C is strongly non-minimizing with respect toL, thenD′
⊏C D ∪ I holds for all

Du∪I ⊆ D′ ⊆ D∪I. This implies thatD∪I is the unique solution to(D, I, C,⊏C)
in this case. 2

From this result, we obtain the following corollaries telling us that the solution to
an ADU is as we would expect in some extremal cases, that correspond to cases
that were considered for nonmonotonic logic programming updates [5,20].

Corollary 1 (Void Update) Let (D, ∅, C,⊏C) be an ADU problem. If⊏C is non-
minimizing with respect toL, D is consistent, andD |= C, thenD is a solution to
(D, ∅, C, ⊏C). If ⊏C is strongly non-minimizing with respect toL, thenD is the
unique solution.

Corollary 2 (Idempotence) Let(D,D,C,⊏C) be an ADU problem, such that⊏C

is non-minimizing with respect toL, D is consistent, andD |= C, thenD is the
unique solution to(D,D,C,⊏C).

Note that Void Update and Idempotence can easily be extendedto cases where
I ⊆ D: given thatD is consistent andD |= C, it holds thatD is a solution if⊏C is
non-minimizing; for strongly non-minimizing⊏C , it is the unique solution.

Let us call a causal lawtautological, if it is subsumed by every action description
D. Informally, such a causal law has no logical content, and updating with it should
not lead to any change. In fact we have the following property.

Corollary 3 (Addition of Tautologies) Let(D, I, C,⊏C) be an ADU problem, such
that⊏C is non-minimizing with respect toL,D is consistent, andD |= C. If I con-
sists of tautological causal laws, thenD∪ I is a solution to(D, I, C,⊏C). If ⊏C is
strongly non-minimizing with respect toL, thenD ∪ I is the unique solution.

Notice that a similar property fails for logic programming updates as in [5,20].

Example 3 Consider an action descriptionD that has the following causal laws:

inertial LightON ,¬LightON ,
causedLightON after SwitchLight ∧ ¬LightON ,
caused¬LightON after SwitchLight ∧ LightON .

SinceD is consistent and⊂ is strongly non-minimizing, we can state for any set
C of constraints, such thatD |= C: D is the unique solution to(D, ∅, C,⊂) (void
update), as well as to(D,D,C,⊂) (idempotence), and to(D,D′, C,⊂) for any
tautological action descriptionD′ (addition of tautologies).

Considering<weightq with nonnegative weights for any constraintc ∈ C instead of
⊂ as a preference relation (which is non-minimizing), we can still infer thatD′ is a
solution, in general however, it need not be unique. 2
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4.2 Postulates of Belief Change

In the literature, two kinds of changes have been identified with the incorporation
of new information, viz. revision (which adds more precise knowledge about the
domain) and update (which is a change of the world per se) [66]. Despite the nature
of change, a distinction is made whether beliefs are represented by a theory, i.e.,
by a logically closed set of sentences, or through a theory base (knowledge base),
i.e., a finite representation of a theory [33]. Ideally, operators for the different kinds
of belief change are characterized by different sets of axioms or postulates like the
AGM theory [2] for belief revision and the KM theory [39] for belief base update.

Fitting our approach in this context, we first observe that a common basic assump-
tion of the different belief change postulates is that beliefs are sentences from a
given logical language which is closed under the standard Boolean connectives; this
is not the case for action languages. In order to evaluate ourapproach in the style
of AGM, or KM respectively, it is thus necessary to interpretand adapt respective
postulates. We note, however, that additional assumptionsof the AGM theory re-
garding the underlying inference relation, that it satisfies super-classicality, modus
ponens, the deduction theorem etc. (cf. [57]), are inapplicable.

Since an action description constitutes a finite representation of a theory about an
action domain, our update approach has to be classified as operating on belief bases.
Let us briefly recall the KM postulates for belief base update: 10

(U1) KB ⋄ φ impliesφ.
(U2) If KB impliesφ, thenKB ⋄ φ ≡ KB .
(U3) If both KB andφ are satisfiable, thenKB ⋆ φ is satisfiable.
(U4) If KB1 ≡ KB2 andφ1 ≡ φ2, thenKB1 ⋄ φ1 ≡ KB2 ⋄ φ2.
(U5) (KB ⋄ φ1) ∧ φ2 impliesKB ⋄ (φ1 ∧ φ2).
(U6) If KB ⋄ φ1 impliesφ2 andKB ⋄ φ2 impliesφ1, thenKB ⋄ φ1 ≡ KB ⋄ φ2.
(U7) If KB is complete, then(KB ⋄ φ1) ∧ (KB ⋄ φ2) impliesKB ⋄ (φ1 ∨ φ2).
(U8) (KB1 ∨KB2) ⋄ φ ≡ (KB ⋄ φ1) ∨ (KB ⋄ φ2).

Besides these postulates for update, Katsuno and Mendelzon have reformulated the
AGM postulates for the case of belief base revision in propositional logic:

(R1) KB ⋆ φ impliesφ.
(R2) If KB ∧ φ is satisfiable, thenKB ⋆ φ ≡ KB ∧ φ.
(R3) If φ is satisfiable, thenKB ⋆ φ is satisfiable.
(R4) If KB1 ≡ KB2 andφ1 ≡ φ2, thenKB⋆φ1 ≡ KB2 ⋆ φ2.
(R5) (KB ⋆ φ1) ∧ φ2 impliesKB ⋆ (φ1 ∧ φ2).

10 Hansson’s [33] postulates for contraction would, in style of Levi Identitygive rise to
revision via contraction and expansion; however, this requires the use of negation, which
we lack here.
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(R6) If (KB ⋆ φ1)∧ φ2 is consistent, thenKB ⋆ (φ1 ∧ φ2) implies(KB ⋆ φ1)∧ φ2.

4.2.1 Interpretation of Postulates

As for an interpretation of these postulates in our setting,we may take the sub-
sumption relation between an action description and a set ofcausal laws for char-
acterizing implication (and thus equivalence).

Lemma 1 (Equivalence) LetD1 andD2 be action descriptions over a signature
L = 〈F,A〉. Suppose that for every causal lawl overL, it holds thatD1 subsumes
l iff D2 subsumesl. ThenT (D1) = T (D2).

Proof. Let T (D1) = 〈S1, V1, R1〉 andT (D2) = 〈S2, V2, R2〉. Towards a contra-
diction first suppose thatS1 6= S2. W.l.o.g., assume thats is a state inS1 such that
s 6∈ S2. Consider an arbitrary fluentF , and letF̄ denote¬F if F is true ins, andF
otherwise. Then,D1 does not subsumel = causedF̄ if

∧

s(G)=tG ∧
∧

s(G)=f ¬G,
whereasD2 trivially subsumesl, a contradiction. Hence,S1 = S2 holds, and there-
fore alsoV1 = V2. Next, supposeR1 6= R2, and w.l.o.g. assume that〈s, A, s′〉 ∈ R1

and〈s, A, s′〉 6∈ R2. Again consider an arbitrary fluentF , and letF̄ denote¬F if
F is true ins′, andF otherwise. Then,D1 does not subsume

l = causedF̄ if
∧

s′(G)=t

G ∧
∧

s′(G)=f

¬G after
∧

Ha∈A

Ha ∧
∧

Ha∈A\A

¬Ha ∧

∧

s(Hs)=t

Hs ∧
∧

s(Hs)=f

¬Hs,

whereasD2 trivially subsumesl, a contradiction. ThereforeR1 = R2 holds as well.
This proves the claim. 2

Closing the language under conjunction is also no problem, since an action descrip-
tion can be regarded as the conjunction of its causal laws. However, the meaning
of negation (and disjunction) of causal laws and action descriptions is ambiguous
and undefined. Therefore, we refrain from an interpretationof postulates (U7) and
(U8).

Another difficulty arises from the fact that the new information to be incorporated
into our action description is characterized by syntactically and semantically differ-
ent entities, namely causal laws and constraints. Naturally, KB impliesφ might be
understood component-wise asKB subsumes the causal laws given byφ andKB

satisfies the constraints given byφ.

Given these considerations, we paraphrase the postulates as follows:

(R1), (U1) If D′ is a solution to(D, I, C,⊏C), thenD′ subsumesI andD′ |= C.
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(R2) If D ∪ I is consistent andD ∪ I |= C, thenT (D′) = T (D) for any solution
D′ of (D, I, C,⊏C).

(U2) If D subsumesI andD |= C, thenT (D′) = T (D) for any solutionD′ of
(D, I, C,⊏C).

(R3) If there exists an action descriptionD′ such thatD′ is consistent,D′ subsumes
I andD′ |= C, then there exists a solution to(D, I, C,⊏C).

(U3) If D is consistent, and there exists an action descriptionD′ such thatD′ is
consistent,D′ subsumesI, andD′ |= C, then(D, I, C,⊏C) has a solution.

(R4), (U4) If T (D1) = T (D2), T (I1) = T (I2), andC1 ≡ C2, thenT (D′
1) =

T (D′
2) for any solutionsD′

1 andD′
2 of (D1, I1, C1,⊏C) and (D2, I2, C2,⊏C),

respectively.
(R5), (U5) If D′ is a solution to(D, I1, C1,⊏C) andD′ ∪ I2 subsumesl, thenD′′

subsumesl for some solutionD′′ of (D, I1 ∪ I2, C1 ∪ C2,⊏C).
(R6) If D′ is a solution to(D, I1, C1,⊏C) andD′ ∪ I2 is consistent and satisfies
C2, thenD′′ subsumesl impliesD′ ∪ I2 subsumesl, for some solutionD′′ of
(D, I1 ∪ I2, C1 ∪ C2,⊏C).

(U6) If D′
1 is a solution to(D, I1, C1,⊏C) such thatD′

1 subsumesI2 andD′
1 |= C2,

andD′
2 is a solution to(D, I2, C2,⊏C) such thatD′

2 subsumesI1 andD′
2 |= C1,

thenT (D′
1) = T (D′

2).

Obviously, R1 and U1 hold by definition, whereasR2 holds for strongly non-
minimizing ⊏C . For U2, we also know from Proposition 1 that it holds ifD is
consistent, in addition to a strongly non-minimizing⊏C . Both conditions are nec-
essary.

ConcerningR3 andU3, they do not hold in general, unlessDu ⊆ D′ ⊆ D ∪ I.
In case of the latter they hold by definition; to wit the former, let D = Du =
{causedF}, ⊏C=⊂, I = {caused¬F}, andC = ∅. Note that the property holds
if C = ∅ andDu = ∅.

Proposition 2 (Solution Existence)Let (D, I, C,⊏C) be an ADU problem, such
thatD′ is consistent,D′ |= C, andD′ subsumesI for some action descriptionD′

with signatureL. Then, there exists a solution to(D, I, C,⊏C) if (i) Du ⊆ D′ ⊆
D ∪ I andD′ ∪ I |= C, or (ii) C = ∅ andDu = ∅.

Proof. Note that consistency ofD′ and thatD′ subsumesI implies thatI is consis-
tent. In Case (i) this implies thatD′ ∪ I is consistent. Furthermore,Du ⊆ D′ ∪ I ⊆
D ∪ I andD′ ∪ I |= C hold. Hence,D′ ∪ I is a pre-solution, which proves the
existence of a solution. For (ii), observe thatDu = ∅ ⊆ I ⊆ D ∪ I, and that
I |= C (sinceC = ∅). Hence,I is a pre-solution, which proves the existence of a
solution. 2

Irrelevance of Syntax (R4/U4) does not hold, even for⊏C=⊂ andC = ∅: Consider
D1 = {causedF, caused¬F},D2 = {causedG, causedF if G, caused¬F if G},
andI1 = I2 = ∅.
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We remark, that the above counterexample is a canonical one,in the sense that
I1 = I2 = ∅ andC = ∅, however with inconsistentD1 andD2. Note, that is
is easily modified to a counterexample whereD1 andD2 are consistent (and, for
instance,I1 andI2 are nonempty).

PropertyR5, U5 holds if just consistency is required (C = ∅), D′ ∪ I2 is con-
sistent, and⊏C is strongly non-minimizing. In general it fails as witnessed by:
D = Dm = {causedF after A}, ⊏C=⊂, I1 = {caused¬F after A ∧ ¬F},
I2 = {caused¬F after A ∧ F}, andC = {SOMETIMES executableA}. In
this case,D′′ = I1∪ I2 is the only solution of(D, I1∪ I2, C,⊏C) (sinceD∪ I1∪ I2
does not satisfyC). However,D′′ does not subsumecausedF after A, which is the
case forD′ = D∪ I1. The property also does not hold for strongly non-minimizing
⊏C in case ofC = ∅ if D′ ∪ I2 is inconsistent: LetD = Dm = {causedF},
⊏C=⊂, I1 = {causedG}, I2 = {caused¬F}. Then,D′′ = I1 ∪ I2, which does
not subsumecausedF .

Similarly, R6 holds if just consistency is required (C = ∅), and⊏C is strongly non-
minimizing. In general it fails: LetD = Dm = {causedF after A ∧ F}, ⊏C=⊂,
I1 = ∅, I2 = {causedF after A ∧ ¬F}, C1 = {SOMETIMES ¬executableA},
andC2 = ∅. Then,D′′ = I2, which subsumesl = caused¬F after A ∧ F . How-
ever,D′ ∪ I2 = D ∪ I2 does not subsumel, although it is consistent and trivially
satisfiesC2.

Proposition 3 (Unique Consequence)Let (D, I1, ∅,⊏C) and (D, I1∪ I2, ∅,⊏C)
be ADU problems, such that⊏C is strongly non-minimizing wrt.L. If D′ is a so-
lution to (D, I1, ∅,⊏C) andD′ ∪ I2 is consistent, thenD′ ∪ I2 is a solution to
(D, I1 ∪ I2, ∅,⊏C).

Proof. ObviouslyD′ ∪ I2 is a pre-solution of(D, I1 ∪ I2, ∅,⊏C), since it is con-
sistent and trivially satisfiesC = ∅. Towards a contradiction assume that there is a
consistent action descriptionD′′ such that(D′ ∪ I2) ⊏C D′′ andDu ∪ I1 ∪ I2 ⊆
D′′ ⊆ D∪ I1∪ I2. Then, since⊏C is strongly non-minimizing wrt.L, we conclude
that(D′ ∪ I2) ⊂ D′′. LetD1 = D′′ \ (I2 \D

′). Then,D′ ⊂ D1. Furthermore,D1 is
consistent (because satisfaction of static laws is monotone) and trivially satisfiesC,
i.e.,D1 is a pre-solution to(D, I1, ∅,⊏C). Because⊏C is strongly non-minimizing
wrt. L, it follows fromD′ ⊂ D1 thatD′

⊏C D1. This contradicts the assumption
thatD′ is a solution to(D, I1, ∅,⊏C). Therefore,D′′ cannot exist, i.e.,D′ ∪ I2 is a
solution to(D, I1 ∪ I2, ∅,⊏C). 2

Eventually,U6 fails to hold even for strongly non-minimizing⊏C if just consis-
tency is requiredC = ∅: Let D = ∅, ⊏C=⊂, I1 = {causedF after A ∧ F},
I2 = {causedF after A}, andC1 = C2 = ∅. ThenI1 subsumesI2 and vice versa,
butT (I1) 6= T (I2).
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4.2.2 Discussion

Summing up, we observe that even in the simple setting without unmodifiable laws
(Du = ∅), without constraints (C = ∅), and with set inclusion as preference relation
(⊏C=⊂), not all postulates are satisfied. Concerning the revision postulates, apart
from an additional consistency requirement for solution existence inR5, the only
postulate that completely fails is Irrelevance of Syntax (R4/U4). This is intuitive,
however, given that the causal information in an action description depends on its
syntactical representation in terms of causal laws. While different sets of causal
laws, i.e., knowledge bases, may represent the same transition diagram, when (the
same) new information is incorporated, this no longer needsto be the case.

Concerning the update postulates, in addition to the failureof U4, postulateU2
does not hold in general. The reason is that solutions must beconsistent, a property
which has been discussed as one of the discriminating properties between update
and revision. In this respect, our approach certainly acts like a revision operator.
Moreover,U6 fails to hold even in this simple setting.

Let us turn to more sophisticated ADU problems, where more than (static) con-
sistency is required for solutions, and dynamic requirements need to hold after
changing the knowledge base. Recall that in general such requirements cannot be
expressed in terms of causal laws. (With the latter, one can represent action do-
mains that satisfy the respective requirement, which wouldamount to specify the
solution as the new information to be incorporated, however, rather than express-
ing the requirement itself.) As soon as dynamic requirements can be demanded
(C 6= ∅), several postulates cease to hold:R3/U3, R5/U5, andR6. ForR3/U3, the
reason is that the solution space is constrained to causal laws occurring inD ∪ I
(which we consider a reasonable assumption for practical change operations in our
setting). In case ofR5/U5, andR6, which are related to thesupplementary AGM
postulates(i.e., AGM postulates K∗7 and K∗8 [57]), the simple counterexamples
reveal that the main reason for this failure is due to the non-monotonicity of the
action language and that it is rather independent of the problem definition.

4.3 Disjoint Factorization

We next consider a structural property of solutions and pre-solutions, which can
be exploited for a syntactical decomposition of an ADU problem, in a divide-and-
conquer manner. Because of the involved semantics of transitions and causation, in
general some prerequisites are needed.

Definition 5 (NOP) We say that an action descriptionD has NOP, if T (D) has
either (i) a transition〈s, ∅, s〉 for some states, or (ii) for every states, there exists
a transition〈s, ∅, s′〉.
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Notice that NOP is a very natural property that often applies, in particular fortime-
driven domains, where passage of time causes〈s, ∅, s〉 by inertia, usually for all
statess.

The following lemma is the key for our disjoint factorization result. For any action
signatureL= 〈F,A〉, we denote byLD the part of it which appears in any action
descriptionD.

Lemma 2 LetT (Di) = 〈Si, V i, Ri〉 for action descriptionsDi, i = 0, 1, such that
LD0 ∩ LD1 = ∅. LetT (D0 ∪D1) = 〈S, V,R〉. Then the following hold:

(i) S = {s0 ∪ s1 | s0 ∈ S
0, s1 ∈ S

1};
(ii) If R0 6= ∅ andR1 6= ∅ then, for〈s0

0, A
0, s0

1〉 ∈ R0 and 〈s1
0, A

1, s1
1〉 ∈ R1,

〈s0
0 ∪ s

1
0, A

0 ∪ A1, s0
1 ∪ s

1
1〉 ∈ R;

(iii) for 〈s, A, s′〉 ∈ R, 〈s ∩ LD0 , A ∩ LD0 , s′ ∩ LD0〉 ∈ R0 and 〈s ∩ LD1 , A ∩
LD1 , s′ ∩ LD1〉 ∈ R1.

Proof. (i) is trivial. We prove(ii) and(iii) as follows.

(ii) Suppose thatR0 6= ∅ andR1 6= ∅. Take any〈s0
0, A

0, s0
1〉 ∈ R

0 and〈s1
0, A

1, s1
1〉 ∈

R1. We show that〈s0
0∪s

1
0, A

0∪A1, s0
1∪s

1
1〉 ∈ R. Suppose this is not the case. Then

one of the following two cases holds:

(1) For some dynamic lawd of the form (5) inD0 ∪D1, s0
0 ∪ s

1
0 ∪A

0 ∪A1 satisfies
H, ands0

1∪ s
1
1 does not satisfyG∧L. W.l.o.g., suppose thatd is inD0. Then, since

LD0 ∩ LD1 = ∅, s0
0 ∪ A

0 satisfiesH ands0
1 does not satisfyG ∧ L. This implies

that〈s0
0, A

0, s0
1〉 6∈ R

0, which is a contradiction.

(2) s0
2∪s

1
2 is another state (different froms0

1∪s
1
1) that satisfies the heads of all static

laws (4) inD0 ∪ D1 for which s0
0 ∪ s

1
0 satisfiesG, and of every dynamic law (5)

in D0 ∪D1, such that satisfaction ofH by s0
0 ∪ s

1
0 ∪ A

0 ∪ A1 implies thats0
1 ∪ s

1
1

satisfiesG. Then, (since each causal law is inD0 or D1 but not in both, due to
LD0 ∩ LD1 = ∅) it follows that,s0

2 satisfies the heads of all static laws (4) inD0

for whichs0
0 satisfiesG, and of every dynamic law (5) inD0, such that satisfaction

of H by s0
0 ∪ A

0 implies thats0
1 satisfiesG. This implies that〈s0

0, A
0, s0

1〉 6∈ R1.
(Symmetrically, the claim holds forD1.) This is again a contradiction.

(iii) Take any〈s, A, s′〉 ∈ R. W.l.o.g., suppose that〈s∩LD0 , A∩LD0 , s′∩LD0〉 6∈
R0. Then one of the following two cases holds:

(1) For some dynamic lawd of the form (5) inD0, s ∩ LD0 ∪A ∩ LD0 satisfiesH,
ands′ ∩ LD0 does not satisfyG ∧ L. SinceLD0 ∩ LD1 = ∅, s ∪ A satisfiesH and
s′ does not satisfyG ∧ L. This implies〈s, A, s′〉 6∈ R, a contradiction.

(2) s0
2 is another state that satisfies the heads of all static laws inD0 for which

s∩LD0 satisfiesG, and of every dynamic law (5) inD1 such that satisfaction ofH
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by s∩LD0∪A∩LD0 implies thats′∩LD0 satisfiesG. Considers′′ = s0
2∪s

′∩LD1.
Due to(i) above,s′′ ∈ S. Moreover, sinceLD0 ∩ LD1 = ∅, the following holds:s′′

satisfies the heads of all static laws (4) inD0 ∪D1 for which s satisfiesG, and of
every dynamic law (5) inD0∪D1, such that satisfaction ofH by s∪A implies that
s′ satisfiesG. This implies that〈s, A, s′〉 6∈ R, which is a contradiction. 2

Intuitively, this lemma describes how the transition diagram of an action description
can be composed, if the action description consists of two syntactically disjoint
parts. It can thus be exploited to decompose a given action description into disjoint
parts as in our next result. For such a decomposition to be faithful in the sense that
solutions to the respective ADU subproblems can be composedto yield a solution
to the original ADU problem, care has to be taken with respectto two aspects:
First, an empty set of transitions shall not compromise the approach, and thus has
to be avoided, in the presence of dynamic constraints (cf. Lemma 2(ii) ). This can be
guaranteed by the NOP property, which will in fact be sufficient for composing pre-
solutions. Second, for composing solutions the composed preference relation needs
to comply with the preferences of the subproblems. Stated from the viewpoint of
decomposition, the preference relation must be factorizable.

Towards a formal treatment of these ideas, we need further terminology. We call
(L0,L1), whereLi = 〈Fi,Ai〉, i = 0, 1, a partitioning of a signatureL= 〈F,A〉,
if (F0,F1) and(A0,A1) are partitioning ofF andA, respectively. We first define
decompositions of action descriptions and constraints.

Definition 6 (AD/Constraint Decomposition) Suppose(L0,L1) is a partitioning
of a signatureL = 〈F,A〉, and letX be either an action description or a set of con-
straints overL. Then a partitioning(X0, X1) ofX is called adecomposition ofX
with respect to(L0,L1), if LXi ⊆Li, for i = 0, 1. Furthermore,X is decomposable
with respect to(L0,L1), if such a decomposition exists.

Based on this, we next define the notion of a near-decomposition of an ADU prob-
lem, which splits the action description and the constraints in separate parts while
disregarding preference.

Definition 7 (Near-Decomposition) Let (D, I, C,⊏C) be an ADU problem with
signatureL, and let(D0, D1), (I0, I1), and (C0, C1) be decompositions ofD, I,
andC, respectively, with respect to a partitioning(L0,L1) ofL. Then,((D0, I0, C0),
(D1, I1, C1)) is a near-decompositionof (D, I, C,⊏C) with respect to(L0,L1).

The following theorem now formally shows that the pre-solutions of an ADU prob-
lem can be obtained from those of a near-decomposition, provided that some rami-
fying conditions hold. We say that a constraintc occurspositively(resp.negatively)
in a setC of constraints, ifc occurs in the scope of an even (resp. odd) number of
negations in a constraint inC.

Theorem 1 (Disjointness)Given an ADU problem(D, I, C,⊏C) with signature
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L, let ((D0, I0, C0), (D1, I1, C1)) be a near-decomposition with respect to a par-
titioning (L0,L1) of L, and let⊑Ci

be an arbitrary preference ordering for action
descriptions overLi, i = 0, 1. Then the following holds:

(i) Let X i be a pre-solution to(Di, I i, Ci,⊏Ci) such thatX i has NOP if some
dynamic constraint occurs negatively inC1−i, for i = 0, 1. ThenX0 ∪X1 is
a pre-solution to(D, I, C,⊏C).

(ii) LetX be a pre-solution to(D, I, C,⊏C), and let(X0, X1) be any partitioning
of X with respect to(L0,L1) such thatX i ⊆ Di andX i has NOP if some
dynamic constraint occurs positively inC1−i, for i = 0, 1. Then,X i is a pre-
solution to(Di, I i, Ci,⊏Ci), for i = 0, 1.

Proof. Let T (X0 ∪X1) = 〈S, V,R〉 and letT (X i) = 〈Si, V i, Ri〉. We first show
for any static constraintc, thatX0∪X1, s |= c if c ∈ Ci,X i, si |= c, ands∩Li = si.
Since for each fluent literalL in c, si |= L impliess |= L, and sincec ∈ LCi ⊆ Li

(i.e., c contains only fluent literals fromLi), the claim follows. Conversely, for
any static constraintc, it holds thatX i, si |= c if c ∈ Ci, X0 ∪ X1, s |= c, and
si = s ∩ Li. Again due to the fact that every fluent literalL in c is from Li,
we conclude thats |= L implies si |= L, which proves the claim. Therefore, we
conclude for any static constraintc ∈ LCi ⊆ Li that there exists a states ∈ S such
thatX0 ∪X1, s |= c iff there exists a statesi ∈ Si such thatX i, si |= c. Moreover
by the structure ofS (cf. Lemma 2(i)),X0 ∪X1, s |= c for all s ∈ S iff X i, si |= c
for all si ∈ Si. Hence, ifC just contains static constraints, thenX0 ∪X1 satisfies
C iff X0 satisfiesC0 andX1 satisfiesC1.

We next consider dynamic constraintsc of the formnecessarilyQ after A1; . . . ;An

or¬necessarilyQ after A1; . . . ;An and show the following: (1)X0∪X1, s |= c if
c ∈ Ci,X i, si |= c, s∩Li = si, andX1−i has NOP ifc is negative, orQ contains a
negative dynamic constraint; (2)X i, si |= c if c ∈ Ci,X0∪X1, s |= c, si = s∩Li,
andX1−i has NOP ifc is positive, orQ contains a positive dynamic constraint. We
proceed by induction on the nesting depthk of the constraint.

Base Case (k = 0): (1) Letc be positive and towards a contradiction consider a state
s ∈ S, such thats∩Li = si and there exists a historyh = s, A1, s1, . . . , sn−1, An, sn,
such thatsn 6|= Q. By Lemma 2(iii) , every transition of the historyhi = si, A1, s1∩
Li, . . . , sn−1 ∩L

i, An, sn ∩L
i is inRi. Furthermore,sn 6|= Q impliessn ∩L

i 6|= Q
becausec ∈ X i andQ contains only static constraints. Contradiction. Ifc is
negative, then there exists a historyhi = si, A1, s

i
1, . . . , s

i
n−1, An, s

i
n such that

si
n 6|= Q. SinceX1−i has NOP, there exists a sequence ofn + 1 states, such

thath1−i = s1−i, ∅, s1−i
1 , . . . , s1−i

n−1, ∅, s
1−i
n is a history ofX1−i. By Lemma 2(ii) ,

h = si ∪ s1−i, A1, . . . , An, s
i
n ∪ s

1−i
n is a history ofX0 ∪X1. Furthermore,si

n 6|= Q
implies si

n ∪ s
1−i
n 6|= Q becausec ∈ X i andQ contains only static constraints.

Contradiction. This proves (1) fork = 0.
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(2) Let c be positive and towards a contradiction consider a statesi ∈ Si, such that
si = s ∩ Li and there exists a historyh = si, A1, s

i
1, . . . , s

i
n−1, An, s

i
n, such that

si
n 6|= Q. SinceX1−i has NOP, there exists a sequence ofn + 1 states, such that
h1−i = s1−i, ∅, s1−i

1 , . . . , s1−i
n−1, ∅, s

1−i
n is a history ofX1−i. By Lemma 2(ii) , h =

si∪s1−i, A1, . . . , An, s
i
n∪s

1−i
n is a history ofX0∪X1. Furthermore,si

n 6|= Q implies
si

n∪s
1−i
n 6|= Q becausec ∈ X i andQ contains only static constraints. Contradiction.

If c is negative, then there exists a historyh = s, A1, s1, . . . , sn−1, An, sn, such
that sn 6|= Q. By Lemma 2(iii) , every transition of the historyhi = si, A1, s1 ∩
Li, . . . , sn−1 ∩L

i, An, sn ∩L
i is inRi. Furthermore,sn 6|= Q impliessn ∩L

i 6|= Q
becausec ∈ X i andQ contains only static constraints. Contradiction. This proves
(2) for k = 0.

Induction Step: Let (1) and (2) be true for dynamic constraints of nesting depth
at mostk − 1 and consider a dynamic constraintc of nesting depthk. Then,Q
contains only static constraints and dynamic constraints of nesting depth at most
k − 1. Thus, (1) and (2) also hold forc, as follows easily by the arguments of the
base case, replacing justifications by the fact thatQ contains only static constraints
with a respective justification thatQ contains only static constraints and dynamic
constraints of nesting depth at mostk − 1.

So far, we have shown that (1) and (2) hold for any open constraint. By the structure
of S (cf. Lemma 2(i)), we conclude for any existential or universal constraintc that
X0∪X1 |= c if c ∈ Ci,X i |= c, andX1−i has NOP ifc contains a negative dynamic
constraint, as well as thatX i |= c if c ∈ Ci,X0 ∪X1 |= c, andX1−i has NOP ifc
contains a positive dynamic constraint. Therefore,X i |= Ci andX1−i has NOP if
Ci contains a negative dynamic constraint, fori ∈ {0, 1}, impliesX0 ∪X1 |= C.
Conversely,X0 ∪ X1 |= C andX1−i has NOP ifCi contains a positive dynamic
constraint impliesX i |= Ci, for i ∈ {0, 1}.

We now proceed with the proof of the theorem. Case(i): LetX i be a pre-solution
to (Di, I i, Ci,⊏Ci), for i = 0, 1. Suppose that, fori = 0, 1, X i has NOP if some
dynamic constraint occurs negatively inC1−i. We show thatX0 ∪ X1 is a pre-
solution to(D, I, C,⊏C). By Lemma 2(i),X0∪X1 is consistent, sinceX0 andX1

are consistent. Furthermore,D0
u ∪D

1
u ∪ I

0 ∪ I1 ⊆ X0 ∪X1 ⊆ D ∪ I follows from
D0

u ∪ I
0 ⊆ X0 ⊆ D0 ∪ I0 andD1

u ∪ I
1 ⊆ X1 ⊆ D1 ∪ I1, respectively. Eventually,

X0 |= C0 andX1 |= C1 impliesX0 ∪ X1 |= C. This proves thatX0 ∪ X1 is a
pre-solution to(D, I, C,⊏C).

Case(ii) : LetX be a pre-solution to(D, I, C,⊏C), and let(X0, X1) be a partition-
ing ofX such thatX0 ⊆ D0 andX1 ⊆ D1. Suppose that, fori = 0, 1,X i has NOP
if some dynamic constraint occurs positively inC1−i. We prove that fori = 0, 1,
X i is a pre-solution to(Di, I i, Ci,⊏Ci). SinceX is consistent, alsoX0 andX1 are
consistent. To see this, observe that w.l.o.g., ifX0 is inconsistent, then the static
laws inX0 are unsatisfiable, which impliesX is unsatisfiable as well, a contradic-
tion. Moreover,Du ∪ I ⊆ X ⊆ D ∪ I impliesD0

u ∪ I
0 ⊆ X0 ⊆ D0 ∪ I0 and
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D1
u∪ I

1 ⊆ X1 ⊆ D1∪ I1. Finally,X0∪X1 |= C impliesX0 |= C0 andX1 |= C1.
Thus,X0 andX1 are near solutions to(D0, I0, C0,⊏C0) and (D1, I1, C1,⊏C1),
respectively. 2

Informally, the NOP property in Theorem 1 is needed to ensurethat the transi-
tion diagrams of pre-solutions to the sub-problems can be “combined”. As already
mentioned above, this is only necessary in the presence of dynamic constraints.

For a full decomposition of an ADU problem, we need beyond a near decompo-
sition also a factorization of the preference relation, which is formally defined as
follows.

Definition 8 (Preference Factorization) Let ⊏C be a preference relation for ac-
tion descriptions over signatureL, and let(L0,L1) be a partitioning ofL. A pair
(⊏C0 ,⊏C1) of preference relations⊏Ci for action descriptions overLi, i = 0, 1, is
a factorization of⊏C with respect to(L0,L1), if for any action descriptionsD,D′

overL that are decomposable with respect to(L0,L1), it holds thatD ⊏C D′

implies that eitherD0
⊏C0 D′0 ∧D′1 6⊏C1 D1 or D′0 6⊏C0 D0 ∧D1

⊏C1 D′1.

Note that preference by strict subset inclusion (⊑C=⊂) is always factorizable (e.g.,
taking⊂ as the preference relations of the factorization). We also remark that if the
set of constraintsC is decomposable with respect to(L0,L1), then the constraint
weight preference<weightq is factorizable, provided that weights are nonnegative
(for instance, taking the same weights for the factorization).

A full decomposition of an ADU problem is then as follows.

Definition 9 (ADU Decomposition) A decompositionof a given ADU problem
(D, I, C, ⊏C) with respect to a partitioning(L0,L1) of its signatureL is a pair
((D0, I0, C0,⊏C0), (D1, I1, C1,⊏C1)) such that((D0, I0, C0), (D1, I1, C1)) is a
near-decomposition of(D, I, C,⊏C) and(⊏C0 ,⊏C1) is a factorization of⊏C .

The following result, which is the main result of this section regarding solutions of
an ADU problem, is then easily obtained from Theorem 1.

Theorem 2 Let ((D0, I0, C0,⊏C0), (D1, I1, C1,⊏C1)) be a decomposition of an
ADU problem(D, I, C,⊏C) with respect to a partitioning(L0,L1) of its signature
L. Suppose that either (i) no dynamic constraint occurs inC, or (ii) no dynamic
constraint occurs inC1. If X i is a solution to(Di, I i, Ci,⊏Ci) for i = 0, 1, where
in case (ii)X1 has NOP, thenX0∪X1 is a solution to(D, I, C,⊏C). Furthermore,
in case (i) every solution to(D, I, C,⊏C) can be represented in this form.

Item (i) states that we can fully decompose an ADU into two components, and that
all solutions can be obtained by a simple combination of the solutions of the in-
dividual components. However, this works in general only inabsence of dynamic
constraints (combining the transition graphs of the components is then unproblem-
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atic). Item(ii) accounts for possible dynamic constraints in one component, which
are unproblematic as long as solutions of the other have NOP.However, not all
solutions can be composed from solutions of the components in general.

Example 4 Consider the ADU problem(D∪D′, I, C,⊂), with D, I, andC as
in Example 1, andD′ as in Example 3. SinceX0 = D ∪ I \ {causedTvON

if PowerON } is a solution to(D, I, C,⊂) (cf. Example 1),X1 = D′ is (the unique)
solution to(D′, ∅, ∅,⊂) (cf. Example 3), andD′ has NOP (which is easily verified),
by Theorem 2(ii) X0 ∪ X1 = (D∪D′ ∪ I) \ {causedTvON if PowerON } is a
solution to(D∪D′, I, C,⊂). 2

Example 5 Consider the ADU problem(D∪D′, I, C,<weightq), withD, I, C, and
weight q as in Example 2, andD′ as in Example 3. AgainX0∪X1 = (D∪D′ ∪ I)\
{causedTvON if PowerON } is a solution to(D∪D′, I, C,<weightq), asX0 = D∪
I\{causedTvON if PowerON } is a solution to(D, I, C,<weightq) (cf. Example 2),
and asX1 = D′ is (the unique) solution to(D′, ∅, ∅, <weightq). By Theorem 1,
Du ∪ D

′ ∪ I is a different pre-solution to this ADU problem sinceDu ∪ I is a
pre-solution to(D, I, C,<weightq). Moreover, setting the weight of constraint (13)

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV }

to 0 (which amounts to assigning the preferred constraints a‘don’t care’ status), it
would be another solution. 2

Theorem 1 provides a basis for decomposing an ADU into smaller ADUs that can
be solved in a divide-and-conquer manner,11 and Theorem 2 shows some possible
exploitation. These results can be integrated into algorithms for computing solu-
tions, which we consider in Section 6 below; their effectiveness is demonstrated
on a practical example in Section 7.2. Finally, note that forour exemplary prefer-
ence relations⊂ and<weightq with non-negative weights, the benign properties of
monotonicity and non-minimization with respect toL, carry over to their standard
factorizations (given by restricting the relation to the relevant domain) and can be
recursively exploited.

5 Complexity Analysis

In this section, we investigate the computational complexity of relevant tasks for
solving an ADU problem, including to decide whether a solution exists and whether
a given action description is a solution. The complexity of these tasks strongly

11 For similar and stronger results in classical propositional logic see [54].
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D |= Co & D ⊏C D′ solution existence solution checking

in PSPACE PSPACE PSPACE

in ∆P
i (i > 1) ΣP

i ΠP
i

in P NP DP

Table 1
Complexity of deciding solution existence and solution checking, depending on the com-
plexity of the relevant subproblems (completeness results; hardness holdsfor fixed prefer-
ence relation⊏C).

depends on the complexity of deciding whether a given actiondescription satisfies
a set of (obligatory) constraints (i.e.,D |= Co), and whether an action description is
preferred over another action description under the given preference relation (i.e.,
D ⊏C D′).

We first consider the worst-case complexity of the above mentioned subproblems as
a parameter and derive upper bounds (in terms of membership results) for deciding
whether an ADU problem has a solution, and for checking whether an action de-
scription is a solution to an ADU problem in a generic setting. We then ‘instantiate’
this generic setting by considering different classes (restricted sets) of constraints
which yield different complexities for decidingD |= Co, and by studying concrete
preference relations for which the complexity of decidingD ⊏C D′ differs. In par-
ticular, we provide completeness results for the syntacticpreference⊂ (for which
decidingD ⊏C D′ is polynomial) and for the semantic preference<weightq (for
which decidingD ⊏C D′ ranges up toPSPACE) for the various classes of con-
straints considered. Note that the class of admitted constraints is the main source
of complexity in most concrete settings, in particular whendecidingD ⊏C D′

reduces to deciding constraint fulfillment.

5.1 Generic Upper Bounds

Our main result on generic upper bounds, which however also gives the general
picture of more precise complexity characterizations, is summarized in Table 1.
Recall thatPSPACE is the class of decision problems that can be decided by a
(deterministic) Turing machine using space at most polynomial in the length of the
input.PSPACE contains the so-calledpolynomial hierarchy, a sequence of classes
defined as∆P

0 = ΣP
0 = ΠP

0 = P, and for i ≥ 0, by ∆P
i+1 = PΣP

i , ΣP
i+1 =

NPΣP
i , andΠP

i+1 = coNPΣP
i . Finally, DP is the class of decision problems whose

yes instances are characterized by the “conjunction” of anNP problem and an
independentcoNP problem. The prototypical such problem is SAT-UNSAT, whose
yesinstances are pairs(F,G) of propositional formulas such thatF is satisfiable
andG is unsatisfiable; this problem is also complete forDP . For a background in
complexity theory, we refer to [53].
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Informally, the results show that modulo the cost of deciding the satisfaction of
constraints and preference, the complexity of solution existence and checking in-
creases at most by one level in the polynomial hierarchy, which is due to the expo-
nential search space for a solution respectively a better solution candidate, which
might be nondeterministically guessed. Since the search space can be traversed in
polynomial space, there is no increase in complexity in the most general case.

We next formally establish Table 1. Given an ADU problem(D, I, C,⊏C), let
Ccheck denote the class of problems of decidingD′ |= Co for anyDu ∪ I ⊆ D′ ⊆
D ∪ I. Similarly, let Pcheck denote the class of problems of deciding whether
D1 ⊏C D2 holds, for action descriptionsDu ∪ I ⊆ Di ⊆ D ∪ I andi ∈ {1, 2}.

Theorem 3 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution
(or a pre-solution) is (i) inPSPACE if Ccheck is in PSPACE, (ii) in ΣP

i if Ccheck
is in ∆P

i andi > 1, (iii) in NP if Ccheck is in P.
Given an ADU problem(D, I, C,⊏C) together with an action descriptionD′, de-
ciding whetherD′ is a solution for it is (a) inPSPACE if Ccheck andPcheck are
in PSPACE, (b) in ΠP

i if Ccheck andPcheck are in ∆P
i and i > 1, (c) in DP if

Ccheck andPcheck are inP.

Proof. LetD = Du∪Dm. In order to decide whether(D, I, C,⊏C) has a solution,
we can guess a pre-solutionD′ such thatDu ∪ I ⊆ D′ ⊆ Du ∪ I, along with a
states for D′ (to witness consistency), and checkD′ |= Co in polynomial space(i),
otherwise in polynomial time(iii) , respectively with the help of aΣP

i−1-oracle. This
proves(i), (ii) , and(iii) .

As for deciding whether a givenD′ is a solution, let us consider the complementary
problem. We can nondeterministically guessD′′ together with a states′′ and pro-
ceed as follows. We check in polynomial time whetherDu∪I 6⊆ D′, orD′ 6⊆ D∪I.
We also check whetherD′ is inconsistent(a) in polynomial space, respectively(b)
with a single call to anNP-oracle. Deciding whetherD′ 6|= Co can be done in poly-
nomial space in Case(a), and in polynomial time with aΣP

i−1-oracle in Case(b).
Furthermore, we check in polynomial time whetherDu ∪ I ⊂ D′′ ⊆ D ∪ I and
if D′′ is consistent (whethers′′ is state ofD′′). Two further checks decide whether
D′′ |= Co andD′

⊏C D′′ (a) in PSPACE, and(b) in polynomial time with the help
of aΣP

i−1-oracle. Thus, the complementary problem is(a) in PSPACE, respectively
(b) in ΣP

i , proving(a) and(b).

For (c) we nondeterministically guess a states′ of D′ which we use to check con-
sistency in polynomial time. Also we decideDu ∪ I ⊆ D′ ⊆ Du ∪ I in polyno-
mial time. An independentcoNP-check excludes more preferred pre-solutions, i.e.,
the complementary problem of guessingD′′ together with a states′′ and checking
Du ∪ I ⊂ D′′ ⊆ D ∪ I, consistency (whethers′′ is state ofD′′), D′′ |= Co, and
D′

⊏C D′′ in polynomial time. This provesDP -membership for(c). 2

Before we turn our attention to ‘instantiating’ this generalresult for ADU prob-
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lems with different classes (restricted sets) of constraints and concrete preference
relations, which will yield precise complexity characterizations in terms of com-
pleteness results, we remark that to ease exposition, in theremainder of this section
proofs are sketched, summarizing the main arguments and constructions, while full
proofs are given in Appendix A.

5.2 Constraint Fulfillment

As outlined in the beginning of this section, one of the two important subtasks in
solving ADU problems is checking whether a set of constraints is satisfied by an
action description. This subtask has a major influence on thecomplexity of finding
solutions of an ADU problem. Therefore, besides considering arbitrary constraints,
we also investigate restricted classes of constraints. In particular, when the maximal
nesting depth of dynamic constraints is fixed by an integerk, and when no dynamic
constraints occur at all.

Theorem 4 Given an action descriptionD and a setC of constraints, deciding
D |= C is (i) PSPACE-complete in general, (ii)ΘP

k+3-complete ifk is the maximal
nesting depth of dynamic constraints inC, and (iii) PNP

‖ -complete ifC does not
involve dynamic constraints.

HerePNP
‖ means polynomial-time with a single parallel evaluation ofcalls to an

NP oracle. Similarly fori > 1, ΘP
i is the class of problems that can be decided in

polynomial time with parallel calls to aΣP
i−1 oracle (alternatively, this class is often

characterized by allowingO(log n) many oracle calls) [65].

Proof. Concerning(i) the result has been shown in [18]. Membership in Case(iii)
follows from the fact that checking the truth of a negated universal constraint of
the form¬ALWAYS Q, whereQ is a conjunction of clauses over static constraints
of the formholdsF or ¬holdsF , is in NP. Hence, the complementary task, i.e.,
checking the truth of a positive universal constraint,ALWAYS Q, is incoNP. Thus,
D |= c is decided in polynomial time with a single parallel evaluation of n NP-
oracle calls, given thatn is the number of universal constraints inc. Similarly, one
proves in Case(ii) by induction on the nesting depthk, thatD |= c is decided in
polynomial time with parallelΣP

k+2-oracle calls.

As for hardness, the problem in(iii) is reduced to the followingPNP
‖ -hard deci-

sion version ofMaximum CNF Satisfiability[40]: Given a Boolean formulaF in
conjunctive normal form (CNF)and an integerk, decide whether the maximum
number of clauses inF that can be simultaneously satisfied by an interpretation
is 0 mod k. Consider a 3-CNF formula of the form

∧n
i=1 Li,1 ∨ Li,2 ∨ Li,3, where

Li,j, 1 ≤ i ≤ n, 1 ≤ j ≤ 3, is a literal over atomsX = {X1, . . . , Xm}, and the
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following action descriptionD1:

causedCi if Li,1, causedCi if Li,2, causedCi if Li,3,

caused¬Ci if ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3,











1 ≤ i ≤ n

causedF1,1 if C1, caused¬F1,1 if ¬C1,

causedF1,0 if ¬C1, caused¬F1,0 if C1,

causedFi,j if Ci ∧ Fi−1,j−1,

caused¬Fi,j if ¬Ci ∧ Fi−1,j−1,











2 ≤ i ≤ n, 1 ≤ j ≤ i

causedFi,j if ¬Ci ∧ Fi−1,j,

caused¬Fi,j if Ci ∧ Fi−1,j ,











2 ≤ i ≤ n, 0 ≤ j < i

ThenD1 |= ck iff the maximum number of clauses inF that can be simultaneously
satisfied by an interpretation is0 mod k, whereck is the following constraint:

ALWAYS holds Fn,0∨

SOMETIMES holds Fn,k ∧ ALWAYS (¬holdsFn,k+1 ∧ . . . ∧ ¬holdsFn,n)∨

. . .

SOMETIMES holds Fn,lk ∧ ALWAYS (¬holdsFn,lk+1 ∧ . . . ∧ ¬holdsFn,n).

For hardness in Case(ii) , considerm Quantified Boolean Formulas (QBFs)Φl =
Q1X

l
1Q2X

l
2 · · · QnX

l
nE

l, 1 ≤ l ≤ m, whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀
otherwise,Xk

i andX l
j, 1 ≤ i, j ≤ n and1 ≤ k, l ≤ m, are pairwise disjunct sets

of propositional variables ifi 6= j or k 6= l. andEl is Boolean formula over atoms
in X l = X l

1 ∪ · · · ∪ X
l
n, such that ifΦl is false thenΦl+1, . . . ,Φm are false, too.

Deciding whether the maximum indexo, 1 ≤ o ≤ m, such thatΦo is true, is odd
is ΘP

n+1-hard [65]. The problem of decidingD |= c for a constraintc with nesting
depthk of dynamic constraints is reduced to this problem, as follows.

Letn = k+2, 1 ≤ l ≤ m, and let the action descriptionD2 consist of the following
statements:

causedF l
i if F l

i after Ai−1,

caused¬F l
i if ¬F l

i after Ai−1,











2 ≤ i ≤ n, F l
i ∈ X

l
i

causedF l
j after Ai−1 ∧ F

l
j ,

caused¬F l
j after Ai−1 ∧ ¬F

l
j ,











2 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, F l
j ∈ X

l
j
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Consider the constraint:

co =























∨(m−3)/2
l=0 (SOMETIMES f 2l+1 ∧ ALWAYS ¬f 2l+2) ∨ gm if m is odd,

∨(m−2)/2
l=0 (SOMETIMES f 2l+1 ∧ ALWAYS ¬f 2l+2) otherwise,

where

gm = SOMETIMES fm,and

f l = p1N p1 (. . . (pn−1N pn−1 holdsEl after {An−1}) . . .) after {A1},

whereN = necessarily, and wherepi = ¬ if i is even andpi is void otherwise,
for 1 ≤ i ≤ n− 1. Then, the maximum indexo such thatΦo is true, is odd iff
D2 |= co. 2

5.3 Solution Existence

Equipped with these precise complexity characterizationsof Ccheck for ADU prob-
lems of some classes of constraints, we aim to characterize exactly the complexity
of the solution finding tasks for these classes of constraints and particular prefer-
ence relations. Notice that checking whether a solution exists is independent of the
concrete preference relation and its computation. This leads to the following result.

Theorem 5 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution
(or a pre-solution) is (i)PSPACE-complete in general, (ii)ΣP

k+3-complete, ifk is
the maximal nesting depth of dynamic constraints inCo, (iii) ΣP

2 -complete, ifCo

does not involve dynamic constraints, and (iv)NP-complete ifCo = ∅.

Proof. Membership follows from Theorems 3 and 4, and Hardness in Case (i)
follows from Theorem 4. For hardness in Case(ii) , let n = k + 2 and letΦ =
∃Y Q1X1 · · · QnXnE be a QBF, whereQi = ∃ if i ≡ 0 mod 2 andQi = ∀
otherwise. Consider

Du = D2∪{causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1, Dm =
{causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, C = Co ∪ Cp with Cp = ∅, and
Co = {co}, where

co = ALWAYS p1N p1 (. . . (pn−1N pn−1 holdsE after {An−1}) . . .) after {A1},

and whereN = necessarily, andpi = ¬ if i is odd and void otherwise, for1 ≤
i ≤ n− 1. Then, there exists a solution to the action description update problem
(Du ∪Dm, I, C,⊏C) iff Φ is true.
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For (iii) let Φ = ∃Y ∀X E and consider the action description update problem
(Du ∪ Dm, I, C,⊏C), whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = Co = {ALWAYS holds E}. Again, the action description update
problem(Du ∪Dm, I, C,⊏C) has a solution iffΦ is true.

Finally, for (iv), letE be a Boolean formula over atomsY and let us defineDu =
{causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = ∅. Then,(Du∪Dm, I, C,⊏C) has a solution iffE is satisfiable. 2

This result can be instantiated with any preference relation and yields completeness
results for deciding the existence of a solution. When instantiated with our syntactic
preference⊂, a remarkable consequence is the following. Deciding whetherD ∪ I
is a solution to an ADU problem(D, I, C,⊂) has the same complexity as deciding
D |= Co in general. Deciding the existence of an arbitrary solutionis slightly harder
than decidingD |= Co for restricted settings of constraints inCo. Intuitively, the
additional computational effort accounts for the search ofa solution candidate.

5.4 Solution Checking

We finally turn our attention to the recognition of solutions, where we provide re-
spective results for the syntactic preference⊂ and the semantic preference<weightq .
Again the problem turns out to bePSPACE-complete in general. Similarly as be-
fore, for⊂ in restricted constraint settings testing arbitrary solution candidates has
higher complexity than testingD ∪ I, which intuitively accounts for the additional
maximality criterion to be checked for a solution.

Theorem 6 Given an ADU problem(D, I, C,⊂) and an action descriptionD′,
deciding whetherD′ is a solution for it is (i)PSPACE-complete for general con-
straints inCo, (ii) ΠP

k+3-complete ifk is the maximal nesting depth of dynamic
constraints inCo, (iii) ΠP

2 -complete ifCo does not involve dynamic constraints,
and (iv)DP -complete ifCo = ∅.

Proof. Membership follows from Theorem 3, observing that for any given action
descriptionsD′ andD′′, decidingD′ ⊂ D′′ can be done in polynomial time, i.e.,
thatPcheck is in P for ⊂.

Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2 and letΦ =
∀Y Q1X1 · · · QnXnE be a QBF, whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀
otherwise. Consider

Du = D2∪{causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1, Dm =
{causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS f ∨ g},
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where

f = p1N p1 (. . . (pn−1N p̄n−1 holdsE after {An−1}) . . .) after {A1},

g=
∧

Yi∈Y
SOMETIMES holds Yi ∧ SOMETIMES holds ¬Yi,

whereN = necessarily, pi = ¬ if i is odd and void otherwise, for1 ≤ i ≤ n− 1,
andp̄n − 1 = ¬ if n is odd and void otherwise. Then,Du is a solution to the action
description update problem(Du ∪Dm, I, C,⊂) iff Φ is true.

For (iii) let Φ = ∀Y ∃X E and consider the action description update problem
(Du ∪ Dm, I, C,⊂), whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = Co = {ALWAYS ¬holdsE ∨ g}, with g as before. The ADU
problem(Du ∪Dm, I, C,⊂) hasDu = ∅ as a solution iffΦ is true.

Finally (iv), letE1 andE2 be Boolean formulas over atomsY1 andY2, respectively.
ConsiderDu = {caused¬F, causedF if ¬E1}, Dm = {causedF if ¬E2}, I =
∅, andC = ∅. Then,(Du ∪ Dm, I, C,⊂) has solutionDu iff E1 is satisfiable and
E2 is unsatisfiable. 2

We next consider solution checking for the semantic preference<weightq . Note that
while Pcheck is polynomial for⊂, this is no longer the case for<weightq . However,
intuitively whenever the complexity ofPcheck does not outweigh the complexity
of Ccheck, i.e., when we do not allow for more complex constraints inCp than in
Co, then we stay within the same upper bounds as for⊂. Providing also matching
lower bounds yields the following result, which differs from the previous one only
if C = ∅. The intuitive reason is that for the syntactic preference also in this case a
maximality check is needed to recognize a solution, while the semantic preference
is indifferent forC = ∅, which means that basically a consistency check is sufficient
and that every pre-solution also is a solution.

Theorem 7 Given an ADU problem(D, I, C,<weightq) and an action description
D′, deciding whetherD′ is a solution for it is (i)PSPACE-complete for general
constraints inC, (ii) ΠP

k+3-complete ifk is the maximal nesting depth of dynamic
constraints inC, (iii) ΠP

2 -complete ifC does not involve dynamic constraints, and
(iv) NP-complete ifC = ∅.

Proof. Membership for(i), (ii) , and(iii) follows easily from Theorems 3 and 4.
For (iv), i.e.C = ∅, Pcheck is trivial for <weightq , hence we can decide whetherD′

is a solution essentially by checking consistency.

Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2 and consider
Φ, Du, Dm, I, andCo from the proof of Theorem 6(ii) . Additionally, letCp =
{ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y } and consider a weight of 1
for eachc ∈ Cp. Then,Du is a solution to(Du ∪Dm, I, Co ∪Cp, <weightq) iff it is a
solution to(Du ∪Dm, I, Co,⊂).
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For (iii) considerΦ, D, I, andCo from the proof of Theorem 6(ii) . Again, let
Cp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y }with weight 1 for each
c ∈ Cp. Then, for the same reason as above,Du is a solution to(Du ∪Dm, I, Co ∪
Cp, <weightq) iff it is a solution to(Du ∪Dm, I, Co,⊂).

Finally (iv), letE be a Boolean formula over atomsY and consider the ADU prob-
lem given byDu = {causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = ∅, I = ∅, and
C = ∅. Then,Du is a solution to(Du ∪Dm, I, C,<weightq) iff E is satisfiable. 2

Hence, even recognizing solutions is quite hard. However, recognizing pre-solutions
is easier for restricted sets of constraints (ΘP

k+3-complete if the maximal nesting
depth of dynamic constraints inC is k, PNP

‖ -complete ifC has no dynamic con-
straints, andNP-complete ifC = ∅). This follows easily from Theorem 4.

6 Computing Solutions

Equipped with a clear picture of the computational cost in terms of complexity for
the relevant (sub-)tasks of solving an ADU problem, we now turn to the issue of
computing solutions using dedicated, deterministic algorithms.

6.1 General Algorithms

With an oracle for pre-solutions, in case of the syntactic preference⊂, we can incre-
mentally compute a solution to an ADU problem(D, I, C,⊂) whereD = Du∪Dm,
in polynomial time using the algorithm in Figure 5. By virtue of Theorems 5 and
6, this algorithm is worst case optimal, even when the nesting depthk of dynamic
constraints is restricted, since computing a solution needs the power of aΣP

k+3 ora-
cle. If the existence test for a pre-solution of(Du∪Dm, I, C,⊂) in Step 1 or Step 2
in fact returns some pre-solutionDn, then we can replace the respective assignment
toD′ by the assignmentsD′ := Dn andDm := Dm \D

n.

We remark that for semantic preferences, like<weightq , such a deterministic polyno-
mial time procedure for computing solutions, using an oracle for computing near
solutions, does not work in general. However, in certain cases an oracle for pre-
solutions can be used effectively in a similar way. For instance, whenever the con-
straints inCp can be strictly ordered according to their (non-negative) weights, such
that no subset of constraints that are before a constraintc in the ordering can sum
up to a higher weight thanc. Then, in a procedure similar to SOLUTION, one can
iterate through the set of constraintsCp once, using the oracle to determine whether
pre-solutions exist to the slightly modified problem where certain constraints from
Cp are added toCo in order to determine the set of constraints fromCp satisfied by

42



Algorithm SOLUTION⊂

Input: an ADU problem(D, I, C,⊂)

Output: some solution of(D, I, C,⊂), if one exists.
Step 1 if (Du ∪Dm, I, C,⊂) has a pre-solution

thenD′ := Du elsehalt; // no solution exists
Step 2 whileDm 6= ∅ do

choose someℓ ∈ Dm;
Du := D′ ∪ {ℓ}; Dm := Dm \ {ℓ};
if (Du ∪Dm, I, C,⊂) has a pre-solutionthenD′ := D′ ∪ {ℓ};

endwhile;
Step 3 outputD′. 2

Fig. 5. Algorithm to compute some solution preferred by set-inclusion

an optimal solution. Once this set is known, any pre-solution of the problem where
these constraints are added toCo, is a solution to the original problem.

For the general case of<weightq with nonnegative weights, for instance, a branch
and bound algorithm can be devised from Algorithm SOLUTION that uses an or-
acle for pre-solutions to compute an initial solution candidate and, throughout the
computation, better candidates as usual in the style of an anytime algorithm.

For other preferences⊏C , algorithms will have to be developed that similarly ex-
ploit the structure of⊏C to prune the search space effectively. If⊏C is monotone
with respect to the underlying signature, we may adapt Algorithm SOLUTION sim-
ilarly as for<weightq to a branch and bound algorithm that aims at enumerating
pre-solutions (for which e.g. techniques as in [13] are useful) and cuts branches in
the search tree if no better pre-solutions compared to the currently most preferred
ones,D1, . . . , Dm, can be found in them; more precisely, any branch for a (par-
tial) pre-solutionD can be cut such thatD ∪ {ℓ1, . . . , ℓm} ⊏C Di for someDi.
Note that every solution preferred under⊏C is also preferred under set-inclusion,
and we can adapt in the same way the variant of Algorithm SOLUTION that ex-
ploits pre-solutions returned by the oracle. This scheme may be further refined, as
usual, by exploiting properties like solution dominance (for each possible solution
D′ such thatD ⊆ D′ ⊆ {ℓ1, . . . , ℓm}, one of the solutionsDi is preferred); further
investigation remains for future work.

6.2 Pre-Solutions

Pre-solutions to a given ADU problem may be nondeterministically computed as in
the membership part of Theorem 5, or may be obtained from a QBF encoding us-
ing a QBF solver. We present here a different computation method, which builds on
update descriptions and “update fluent sets.” Roughly, rather than to consider vary-
ing update descriptions, in this method the problem is compiled into a single action
description, called theupdate description, in which special update fluents govern
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the inclusion and exclusion of causal laws. Determining an update then amounts to
determine an appropriate update fluent set, which is semantically defined and may
be computed by constraint satisfaction and state set generation algorithms.

Definition 10 LetD = Du ∪Dm be an action description with signature〈F,A〉.
Theupdate descriptionU(D) is the action description obtained fromD as follows:

(1) Extend〈F,A〉 by a setH of k = |Dm| new fluents (calledupdate fluents)
H1, . . . , Hk;

(2) label each static law (4) inDm with a fluentHi ∈H:

causedL if G ∧Hi, (15)

and each dynamic law (5) inDm with a fluentHi ∈H:

causedL if G after H ∧Hi, (16)

such that no two laws are labeled by the same fluentHi;
(3) for eachHi labeling a law, add the dynamic law:

inertial Hi,¬Hi. (17)

We next define update fluent sets. To this end, we define, given an action description
Du ∪Dm and a set of constraintsC on the same signature, a partitioningSU

C , S
U
¬C

of the state setSU of the update descriptionU = U(D) of Du ∪ Dm having the
setH of update fluents, as follows. For any two statess, s′ ∈ SU let s =H s′ iff
s ∩ H = s′ ∩ H, and letSU

H,s = {s′ ∈ SU | s′ =H s}. Given a constraintc and
states ∈ SU , we say thatc holds ats wrt. SU

H,s, if in case(i) c is existential (9),
E, s′ |= Q holds at somes′ ∈ SU

H,s; (ii) c is universal (10),E, s′ |= Q holds at all
s′ ∈ SU

H,s; (iii) c is a Boolean combination of existential and universal constraints
ci, the combination evaluates to true if eachci has the value ats wrt. SU

H,s. Then,
SU

C = {s ∈ SU | c holds ats wrt. SU
H,s, for all c ∈ C}. Furthermore, in the rest of

this section, we identify states with the sets of fluents which are true at that state.

Definition 11 An update (fluent) setfor U relative toC is a setM ⊆ H such that
(i) s ∩H = M for somes ∈ SU , and (ii)SU

H,s ⊆ SU
C .

With the notions above, we can compute a pre-solution to an ADU problem(D, I,
C,⊏C), whereD = Du ∪Dm, with the algorithm PRE-SOLUTION shown in Fig-
ure 6. The key to its correctness is the following proposition.

Proposition 4 Let (D, I, C,⊏C) be an ADU problem, withD = Du ∪Dm. LetU
be the update description ofD ∪ I = Du ∪ I ∪Dm, and letW denote a subset of
Dm containing laws labeled by the elementsM ⊆ H in U . ThenD′ = Du∪ I ∪W
is a pre-solution to(D, I, C,⊏C) iff M is an update set forU relative toCo.

44



Algorithm PRE-SOLUTION(D, I, C,⊏C)
Input: an ADU problem(D, I, C,⊏C)

Output: some pre-solution of(D, I, C,⊏C), if one exists.
Step 1 ifD ∪ I is consistent andD ∪ I |= Co then outputD ∪ I and halt;
Step 2 construct the update descriptionU of D ∪ I = Du ∪ I ∪Dm;
Step 3 ifsome update fluent setM for U relative toCo exists

then take an arbitrary suchM elsehalt; // no pre-solution exists
Step 4 identify the setW of causal laws inDm labeled by the elements ofM;
Step 5 outputDu ∪W ∪ I.

Fig. 6. Algorithm to compute some pre-solution

The proof of this correspondence result, which is technically involving, is given in
Appendix B. It follows the intuition that by considering an update set forD∪ I rel-
ative toCo and ‘adding’ the corresponding labeled laws (which by construction are
fromDm) toDu∪I, one ends up with an action descriptionD′ that satisfiesCo. The
essential argument is by showing that for any states of D′, s ∪M is a state ofU ,
and due to Condition(ii) of Definition 11 it is a state inSU

Co
, which in turn implies

thats ∈ SD′

Co
, i.e., thatD′ |= Co . Moreover, Condition(i) of Definition 11 guaran-

tees thatD′ is consistent. Vice versa, to every pre-solution corresponds an update
setM , given by the labels of the modifiable laws included in the pre-solution.

From Proposition 4, the correctness of algorithm PRE-SOLUTION is then easily
established.

Theorem 8 Let (D, I, C,⊏C) be an ADU problem, withD = Du ∪ Dm. Then
AlgorithmPRE-SOLUTION outputs some pre-solution of(D, I, C,⊏C) if and only
if some pre-solution of(D, I, C,⊏C) exists.

We observe that for⊂ as the preference ordering⊏C , the algorithm can be easily
adapted to find solutions instead of near solutions: to this end, in Step 3 we take a
maximal one. We also note that Step 1 is not necessary as far asmere computation
of any pre-solution is concerned. However, in the view of ADUproblem solving it
may be worthwhile to particularly returnD ∪ I first, if it is a pre-solution, since it
constitutes the case whereI can be incorporated without modification toD. This is
in particular relevant for preference relations⊏C that are non-minimizing, as then
in fact a solution is output.

Example 6 Consider an ADU problem(D, I, C,⊏C) given byD, I, andC as
presented in Example 1. Note thatD ∪ I 6|= C (as explained in Example 1). We
obtain the following update descriptionU of Du ∪ I ∪Dm, which containsDu ∪ I
and the laws:

causedTvON if PowerON ∧H1,

caused¬TvON if ¬PowerON ∧H2,

inertial Hi,¬Hi (1 ≤ i ≤ 2).
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According to the transition diagram described byU , we have that actionPushPBRC

is not executable, i.e., constraint (3):ALWAYS executable {PushPBRC} is vi-
olated at any states ⊇ {PowerON ,TvON , H1}. Moreover, at any states ⊇
{PowerON , TvON } such thatH2 6∈ s, constraint (13):

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV }

is not satisfied due to missing causation for¬TvON . At every state ofU , however,
constraint (14):ALWAYS executable{PushPBTV } is satisfied. We thus obtain

SU
¬C = {s ∈ SU | s satisfiesH1 ∨ ¬H2},

and, for instance,{PowerON ,TvON , H2} ∈ S
U
C . Therefore,{H2} is an update set

forU relative toC, and obviously it is the only one. Hence, if we add the law labeled
byH2 toDu∪I, or equivalently remove the lawcausedTvON if PowerON , which
is labeled byH1, from D ∪ I, we obtain a pre-solution to the problem (cf. also
Example 1). 2

Example 7 Consider a slight variant of the previous Example 6, where also the dy-
namic laws inD (except for the inertia laws) are modifiable, and with the following
causal laws added toDm:

causedTvON after PushPBTV ∧ ¬PowerON ,

caused¬TvON after PushPBTV ∧ PowerON .

The transition diagram described byD ∪ I is the same as in Figure 4, and thus for
the same reasons as mentioned in Example 1,D ∪ I 6|= C. The update description
U of Du ∪ I ∪Dm consists ofDu ∪ I, the labeled laws as presented in Example 6,
and the following causal laws:

causedPowerON after PushPBTV ∧ ¬PowerON ∧H3,

caused¬PowerON after PushPBTV ∧ PowerON ∧H4,

causedTvON after PushPBTV ∧ ¬PowerON ∧H5,

caused¬TvON after PushPBTV ∧ PowerON ∧H6,

inertial Hi,¬Hi (3 ≤ i ≤ 6).

Constraint (3):ALWAYS executable {PushPBRC} is still violated according to
the transition diagram described byU , since the actionPushPBRC is not executable
whenevers ⊇ {PowerON ,TvON , H1}. Let us consider the remaining statess of
U , i.e., only those such thatH1 6∈ s. We first observe that a violation of constraint
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(13):

ALWAYS holds PowerON ∧ TvON ⊃

¬necessarily(holdsTvON ) after {PushPBTV }

is witnessed by any such state wheres ⊇ {PowerON ,TvON },H6 6∈ s, and either
H2 6∈ s or H4 6∈ s (or both), since there is no causation for¬TvON when ex-
ecutingPushPBTV . Finally, constraint (14):ALWAYS executable {PushPBTV }
does not hold at any such states where the power and the TV are off, i.e.,s ∩
{PowerON ,TvON } = ∅, if {H2, H5} ⊆ s andH3 6∈ s. More formally,

SU
¬C = {s ∈ SU | s satisfiesH1 ∨ (¬H6 ∧ (¬H2 ∨ ¬H4)) ∨ (¬H3 ∧H2 ∧H5)}.

Two update sets forU relative toC are{H3, H4, H5, H6} and{H2, H3, H4, H6}.
(That they actually constitute update sets is witnessed, e.g., by{H3, H4, H5, H6} ∈
SU

C and{H2, H3, H4, H6} ∈ S
U
C , respectively.) We may choose either one and, by

adding the corresponding causal laws toDu ∪ I, we get a pre-solution to the prob-
lem. Note however, that in case of⊏C=⊂, for instance, none of the pre-solutions is
a solution, as removingcausedTvON if PowerON is sufficient. This is reflected
by the (maximal) update set{H2, H3, H4, H5, H6}. 2

Algorithm PRE-SOLUTION can be run in polynomial space, and is thus within the
worst case optimal bounds. Indeed, the update descriptionU for D andC can
be easily computed in polynomial time, and after the consistency and constraint
fulfillment check in Step 1, the bulk of the work is with Step 3,i.e., to com-
pute an update setM . Here, we can resort to different methods. If the full state
setSU of U would be explicitly given, then Step 3 is clearly feasible inpoly-
nomial time. Otherwise, we can use an algorithm that enumerates SU , and for
each states generated takes ∩ H as candidate update setM for which condi-
tion (ii) SU

H,s ⊆ SU
C is tested using constraint satisfaction; a brief outline isas

follows. Let Fs =
∧

Hi∈MHi ∧
∧

Hi∈H\M ¬Hi; intuitively, Fs holds at a states′

iff s′ belongs toSU
H,s. Then, for each existential constraintc of form (9), define

cs = SOMETIMES holds Fs ∧ Q, and for each universal constraintc of form
(10), definecs = ALWAYS holds Fs ⊃ Q. For a Boolean combinationc of exis-
tential and universal constraints, we definecs as the constraint obtained by rewriting
each occurrence of an existential or universal constraint as described above. Then
SU

H,s ⊆ SU
C is equivalent toU |= cs for each constraintc in C.

Thus, one can build algorithms to compute pre-solutions of an ADU on top of basic
reasoning services for action descriptions that generate sets of states and allow for
checking the satisfaction of constraints (as supported e.g. in AD-Constraint [21],
under some limitations), which are applied to the update descriptionU(D). Com-
pared to a simple search over the pre-solution candidatesD′ such thatDu ∪ I ⊆
D′ ⊆ D ∪ I and testing whetherD′ |= Co, this approach has some attractive
advantages. One is that we may compile the transition diagram ofU(D) into an ef-
ficient representation (e.g., into binary decision diagrams that are customary in effi-
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cient processing of transition-based formalisms), and perform state generation and
check constraint fulfillment over this single representation, rather than to consider
reasoning over varying transition diagrams, which may haveconsiderable manage-
ment cost (setting up data structures anew, etc.) at least without further precaution
and effort.

Furthermore, the update description is a useful basis for iterated Markovian (history-
less) updates under lazy evaluation, and more generally forrealizing non-Markovian
semantics of sequences of updatesI1, . . . , Ik, in analogy to update programs in the
context of logic programming updates [5,20]. In the Markovian case, the result of
updating an action descriptionD is obtained by incorporating theIi, i = 1, . . . , k
one after the other intoD. The update descriptionU(D) may be generalized to
capture such iterative updates rather easily, by using timestamped copies of action
descriptions that are suitably linked, and modifying the preference ordering⊏C ap-
propriately into a prioritized version. In the non-Markovian case, linkage and pref-
erence ordering can be tailored to realize particular update semantics. Investigating
this is left for further work.

7 Examples: Updating the Zoo World into a Circus

The Zoo World is an action domain proposed by Erik Sandewall in his Logic Mod-
elling Workshop. It consists of several cages and the exterior, gates between them,
and animals of several species, including humans. Actions in this domain include
moving within and between cages, opening and closing gates,and mounting and
riding animals. This domain was described in the action languageC+ in [1].

We present two examples for updating the action descriptionof the Zoo World inC
(derived from the one in [1]) such that we obtain a description for a Circus. The first
example illustrates the applicability of our method for computing pre-solutions; the
second example illustrates the usefulness of the decomposability theorem.

7.1 Singing and Mounting in the Circus

Suppose that we would like to update the action description of the Zoo World inC in
such a way to obtain a description for a Circus by taking into account the following
new information: a human can sing; and when he does, he becomes happy if he
is also mounted on an animal. We also want to ensure the following condition:
different from the Zoo World, in a Circus, the humans are expected to mount on
each other, who further can mount on a large animal.

First, we transform the description of [1] into the action languageC; the modified
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Fig. 7. The landscape of the little zoo of [1]: positions 1–4 are inside the cage; positions
5–8 are outside the cage, the dashed lines denote the gate.

description is available in Appendix C.

Next, we describe the new informationI by the following causal laws. Suppose that
h ranges over constants denoting humans, andanml ranges over constants denoting
animals in the zoo:

causedHappy(h) if True after Sing(h) ∧Mounted(h, anml).

Note that bothh andanml are schematic variables; so the above expression stands
for a set of “ground” causal laws.

Next, we identify the causal lawsDm that could be modified. The modifications we
desire are about the mounting action in particular, so letDm consist of the following
causal laws. Suppose thath, h1 range over constants denoting humans,anml ranges
over constants denoting animals in the zoo, andp ranges over positions in the zoo.

• If a human tries to mount an animal that doesn’t change position, mounting is
successful:

causedMounted(h, anml) if Pos(anml , p) after Pos(anml , p)∧

Mount(h, anml).
(18)

• A human cannot attempt to mount a human who is mounted:

causedFalse if True after Mount(h, h1 ) ∧Mounted(h1 , anml). (19)

• A human cannot be mounted on a human who is mounted:

causedFalse if Mounted(h, h1 ) ∧Mounted(h1 , anml). (20)

We assume that our little Circus has two humans (a small boy named Bart and an
adult named Homer) and an elephant (Jumbo). We assume that our Circus has the
same landscape as the little Zoo as in [1]: there is a cage, with four positions inside;
outside the cage are four positions as well (Figure 7).

We can express the desired conditions (or scenarios) in thislittle Circus by con-
straints. For instance, consider the following scenario ofthree steps: Initially, Jumbo
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and Bart are at different positions in the cage, and Homer is outside the cage; Homer
is not happy. It should be possible at some point that first Homer mounts on Jumbo
and next Bart mounts on Homer, so that in the end Homer is mounted on Jumbo,
Bart is mounted on Homer, and Homer is happy. Suppose also thatJumbo does not
change its location during the whole scenario. We can describe this scenario by the
following constraintC:

SOMETIMES
∨

l 6=l′′,l,l′′<5,l′>4 holdsPos(Bart , l) ∧ Pos(Homer , l ′) ∧ Pos(Jumbo, l ′′)
∧

¬Happy(Homer)
∧

(possiblyMounted(Bart ,Homer) ∧Mounted(Homer , Jumbo)∧

Happy(Homer) after Mount(Homer , Jumbo);Mount(Bart ,Homer) ∨

possiblyMounted(Bart ,Homer) ∧Mounted(Homer , Jumbo)∧

Happy(Homer) after True;Mount(Homer , Jumbo);Mount(Bart ,Homer))
∧

∨

l′′<5 evolvesPos(Jumbo, l ′′);True;Pos(Jumbo, l ′′);True;Pos(Jumbo, l ′′);

True;Pos(Jumbo, l ′′);True;Pos(Jumbo, l ′′);True;Pos(Jumbo, l ′′);True;

Pos(Jumbo, l ′′);True;Pos(Jumbo, l ′′)

(21)
We can present this constraint to CCALC as (as in Figure C.7 of Appendix C); and
CCALC finds out that this scenario is not possible within the Zoo World.

Let us find a pre-solutionD′ to the ADU problem(D, I, C,⊂), by applying Algo-
rithm 6. For that, first we construct the update descriptionU of the Zoo World:

(1) we introduce update fluents as auxiliary fluents of the following three forms
Aux1 (h, anml , p), Aux2 (h, h1 , anml), andAux3 (h, h1 , anml).

(2) we add new causal laws to make them inertial

inertial Aux1 (h, anml , p),Aux2 (h, h1 , anml),Aux3 (h, h1 , anml)

inertial ¬Aux1 (h, anml , p),¬Aux2 (h, h1 , anml),¬Aux3 (h, h1 , anml)

(3) we replace the causal laws (18)–(20) with the following causal laws respec-
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tively

causedMounted(h, anml) if Pos(anml , p) after Pos(anml , p)∧

Mount(h, anml) ∧ Aux1 (h, anml , p)

causedFalse if True after Mount(h, h1 ) ∧Mounted(h1 , anml)∧

Aux2 (h, h1 , anml)

causedFalse if Mounted(h, h1 ) ∧Mounted(h1 , anml)∧

Aux3 (h, h1 , anml)

After that, we can check whether the scenario represented bythe constraint (21)
is possible if we keep all the causal laws, except for those labeled byAux2 (Bart ,
Homer , Jumbo) andAux3 (Bart ,Homer , Jumbo). For that, we just need to mod-
ify the CCALC constraint above by adding several lines, as shown in FigureC.8 of
Appendix C. Then, CCALC finds a possible execution of this scenario as presented
in Figure C.9 of Appendix C. It suggests dropping fromDm the causal laws

causedFalse if True after Mount(Bart ,Homer) ∧Mounted(Homer , Jumbo)

causedFalse if Mounted(Bart ,Homer) ∧Mounted(Homer , Jumbo)

to update the Zoo World description into a little Circus.

7.2 Exchanging Hats in the Circus

Consider a world, which involves monkeys and dogs among otheranimals, where
only monkeys can wear hats. We can obtain aC descriptionD0 of such a world,
from theC+ description of missionaries and cannibals exchanging hats[50]; it can
be presented to CCALC as in Figure D.1 (Appendix D).

Now consider a variation of the Zoo World described in Section 7.1, which in-
volves also monkeys and dogs, where only monkeys can wear hats. This variation
of the Zoo World can be described by the union of the Zoo World descriptionD1

discussed in Section 7.1 (Figures C.1–C.6, Appendix C) and the descriptionD0

mentioned above.

Suppose that we would like to update the action descriptionD0 ∪ D1 of this ex-
tended Zoo World, to obtain a description of a Circus where notonly humans can
mount on each other who further can mount on a large animal, but also animals
can exchange hats with each other. Assume that the modifiablepartD1

m of D1 is
the same as in Section 7.1, and the modifiable part ofD0

m of D0 consists of the
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following causal laws:

causedFalse if Owner(ha, anml)

whereha ranges over hats, andanml ranges over animals except monkeys.

We assume that our little Circus has the same landscape as in Figure 7; and it
contains two humans (a small boy Bart and an adult Homer), an elephant (Jumbo),
a dog (Snoopy), three monkeys (a small monkey Abu and two large monkeys), and
two hats. In this little Circus, in addition to the desired conditions (or scenarios)
presented in Section 7.1 by the setC1 of constraints (21), we also consider the
following scenario: initially, Snoopy and Abu are wearing hats; they exchange hats
at least once. We can express this condition by the constraintsC0:

SOMETIMES

(evolvesOwner(ha1 ,Abu) ∧Owner(ha2 , Snoopy); exchange(ha1 , ha2 );True ∨

evolvesOwner(ha1 ,Abu) ∧Owner(ha2 , Snoopy);True;True;

exchange(ha1 , ha2 );True ∨

evolvesOwner(ha1 ,Abu) ∧Owner(ha2 , Snoopy);True;True;

True;True;True; exchange(ha1 , ha2 );True).

whereha1 andha2 range over hats. This constraint can be presented to CCALC as
in Figure D.2 (Appendix D).

Here, we can updateD0 ∪ D1 relative toC0 ∪ C1. On the other hand, since
((D0, ∅, C0), (D1, ∅, C1)) is a near-decomposition of(D0 ∪D1, ∅, C0 ∪C1,⊂), by
Theorem 1, we can updateD0 andD1 separately, in parallel. Considering the com-
putation time CCALC takes to verify given constraints, the latter approach takes
much less time. With the former approach, CCALC verifies constraintsC0 ∪ C1

with respect to a propositional theory of size 20450 atoms and 398430 clauses (ob-
tained from the update description ofD0 ∪ D1) in about 9 minutes (including the
grounding and completion time). With the latter approach, CCALC verifiesC0 with
respect to a propositional theory of size 164 atoms and 766 clauses (obtained from
the update description ofD0) in less than a second (including the grounding and
completion time); and it verifiesC1 with respect to a propositional theory of size
5462 atoms and 60567 clauses (obtained from the update description ofD1) in less
than 30 seconds (including the grounding and completion time).
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8 Discussion

8.1 Related Work

Updating and revising knowledge bases has been studied extensively in the context
of both databases and AI, with different approaches, and in various representation
frameworks, see e.g. [67,34,57] and references therein. The relation of this problem
to reasoning about actions has been identified earlier [66,59,56], since the effects
of executing an action in a given situation can be modeled as the change of a theory
representing the current state by a formula representing the action effects. However,
compared to reasoning in action languages, such an approachleaves the action un-
der consideration and its effects rather implicit. Therefore, we restrict our attention
to those works that either treat the notion of an action explicitly in the language, or
that are otherwise more closely related to our work.

Sakama and Inoue’s work [61] is similar to our work in that it also studies update
problems in a nonmonotonic framework (yet in logic programming) and consid-
ers the same criterion of minimal change. It deals with threekinds of updates to a
knowledge baseD: theory update ofD by some new informationI, inconsistency
removal fromD, and view update ofD=Du ∪Dm by some new informationI. In
the context of reasoning about actions and change, these kinds of updates are ex-
pressible as ADU problems(D, I, ∅,⊂), (D, ∅, ∅,⊂), and(Du ∪Dm ∪ I), ∅, ∅,⊂).
Sakama and Inoue show in [61] that checking for solution existence isNP-hard for
each problem; this complies with Theorem 5(iii) . An important difference to [61]
is that in an ADU problem(D, I, C,⊂), the constraintsC may not be directly ex-
pressed inD. Moreover, the semantics of an action descriptionD in C is a transition
diagram, and only captured byall answer sets of a logic program corresponding to
D by known transformations.

Li and Pereira [44] and Liberatore [47] study, like we do, theory update problems
in the context of reasoning about actions and change, based on an action language
(but languageA instead ofC). New information,I, contains facts describing obser-
vations over time (e.g., the actionPushPBRC occurs at time stamp 0). The action
languageC we use is more expressive thanA in that it accommodates nondeter-
minism and concurrency, and the changes in the world are not only due to direct
effects of actions. To formulate temporal observations, wecan extend our constraint
language by formulas of the shapes

E occurs atti, (22)
P holds at ti, (23)

whereE is an action name,P is a fluent name, andti is a time stamp; a states
satisfies a constraint (22) resp. (23) if, for some history (11) such thats= s0, E is

53



in Ai+1 resp.si satisfiesP .

Our notion of consistency of an action descriptionD (in essence, the existence
of a state) is different from that of Zhang in [68]. They describe action domains
in propositional dynamic logic, and require for consistency the existence of some
model of an action description. Different from the setting here, conflicting action
effects may prevent any model. With the extension of our constraint language dis-
cussed above, other forms of consistency studied in [68] canbe achieved in our
framework, by describing possible scenarios or formulas asconstraints.

Some of the related work mentioned above, like [6,49,3,37],study action descrip-
tion updates in connection with the problem of elaboration tolerance. The goal is
to answer the following question: how can an action description be updated to tol-
erate new elaborations on the action domain? [37] studies the update problem in
the context of dynamic logic [35]. Here action domains are represented in a simpli-
fied version of dynamic logic. An action domain description consists of static laws
(e.g.,Up → Light , which expresses that “if the switch is up then the light is on”),
effect laws for actions (e.g.,¬Up → [Toggle]Up, which expresses that “when-
ever the switch is down, after toggling it, the room is lit up”), and executability
laws for actions (e.g.,¬Broken → 〈Toggle〉⊤, which expresses that “toggle can
not be executed if the switch is broken”). To handle the frameproblem and the
ramification problem, a consequence relation is built (in a meta-language) over the
action description. Note that the action description languageC does not require
such a meta-language to be able to handle these problems. In this formal frame-
work for reasoning about actions and change, the authors consider revising beliefs
about states of the world (as in, e.g., [38,62]), as well as revising beliefs about
the action laws. They update action descriptions with respect to some elaborations
(described also by causal laws), by modifying the causal laws in the action de-
scription by first “contraction” and then “expansion”. In the end, the antecedents of
some causal laws in the action description are strengthenedwith respect to the new
elaborations. Consider the example above; during a blackout, the agent toggles the
switch when it is down, and the room is still dark. A respective elaboration is de-
scribed by a causal law, likeBlackout → [Toggle]Light , which is to be contracted
from the action description. The action description is modified by this elaboration,
by first contracting the effect laws (e.g.,¬Up → [Toggle]Up) and then expand-
ing the theory with the weakened laws (e.g.,¬Up ∧ ¬Blackout → [Toggle]Up).
The idea behind modifying a theory with an elaboration of theform φ → [a]ψ
in this way, is to ensure two conditions whenφ does not hold: firsta still has the
effectψ; and seconda has no effect except on those literals that are consequences
of ¬ψ. The semantics of such syntactic operations are given in terms of changes
(e.g., addition/removal of edges) in the transition diagram. Note that [37] modifies
causal laws to tolerate elaborations, whereas we add new causal laws (which may
be obtained from some observations, or which may describe some elaborations)
to the original description and furthermore we drop a minimal set of causal laws
from the original theory so that given constraints (which may describe some de-
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sired/preferred conditions on the domain) are satisfied by the updated description.
In other words, [37] is less suitable for the incorporation of new information com-
pared to our approach. For instance in the example given above, elaborating wrt. the
effect lawBlackout → [ReplaceFuse]Blackout will not serve the intended purpose
to incorporate the effects of replacing a broken fuse, whilein our approach we sim-
ply update with the causal lawcaused¬Blackout after ReplaceFuse ∧ Blackout

for this purpose.

Another related work that studies action description updates, for elaboration tol-
erance, is [3]. The authors introduce an action descriptionlanguage, called Evolp
Action Programs (EAPs), built upon the update language Evolp [4]. This language
can be used to represent action domains, as well as their updates due to some elab-
orations. An action domain description consists of static rules (e.g.,Light ← Up),
dynamic rules (e.g.,effect(Light ← Up) ← Toggle,¬Up which expresses that, if
at some stepn the switch is down and the switch is toggled at stepn, thenLight ←
Up becomes true at stepn+1), inertial declarations (e.g.,inertial(Light)), and ini-
tialize declarations (e.g.,initialize(Light) which stands forLight ← prev(Light)
whereprev(F ) is a new atom introduced for describing the value of fluentF in
the previous state) introduced for representing inertia. Note that in the action lan-
guageC, there is no need to introduce new atoms to be able to handle the frame
problem. An elaboration is encoded as a separate action description D, and then
“asserted” to the main description, using theassert construct of Evolp. The seman-
tics of an EAP (and thus theassert construct) is given by means of stable models
[29]. Adding assert(D) to the initial description is different from addingD: like
our approach it ensures static consistency of the resultingaction description (if
the update itself is consistent); preference is implicitlygiven by set inclusion, i.e.,
maximal consistent subsets of the initial laws are retained. Another similarity to
our work is that updates that consist of static/dynamic rules are described in the
same language as the action description. Additionally, thelanguage of [3] allows
to specify changes of rules, as a part of an update (using the assert construct). For
instance, consider addingassert(Light ← Up)← Toggle to an action description.
Then, when the switch is toggled, the ruleLight ← Up remains inertially true un-
til its truth is possibly deleted afterwards. However, apart from rather cumbersome
language extensions for handling the frame problem, EAPs donot provide a means
to specify certain dynamic requirements that an update might have to satisfy (in
particular universal properties quantifying over all states), which is a main feature
of our approach. For instance, in the setting of Example 1, translatingD andI into
a respective EAP would represent an update equivalent to theaction description
D ∪ I, i.e., one that does not satisfy the constraintsC. Since the constraints cannot
be expressed in the language, additional analysis is neededto identify an updateI ′

(different fromI), which would enforce the required behaviour when assertedto
the initial action descriptionD.

The works by Lifschitz [49] and by Balduccini and Gelfond [6] are similar to [3]
in that they also modify action descriptions with respect tonew elaborations, by
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means of adding causal laws, in the sense of additive elaboration tolerance [52,55].
Lifschitz describes in [49] an action domain in languageC such that every causal
law is defeasible (by means of an abnormality predicate). Toformulate some other
variations of the domain, the agent can just add new causal laws, some of which
“disable” some existing causal laws. In [6], the authors extend an action descrip-
tion, encoded as a logic program, with “consistency restoring” rules, so that when
the action description and given observations are incompatible, these rules can be
“applied” to get some consistent answer set. This, however,is more geared towards
handling exceptions (no causal laws are modified). The approaches provide tools
for the user to enact updates (by defeating causal laws, respectively by applying
consistency restoring rules), but different from our approach, no particular modifi-
cations are characterized from first principles as “intended” solutions of an update
problem, which remains with the user. While adding abnormality predicates [49]
is a simple technique that does not support preference constraints, [6] (which is
more geared towards diagnosis) requires to anticipate all possible updates in order
to encode a priori solutions for potential inconsistencieswith subsequent updates
into the initial domain description at design time; the support for preferences on
consistency restoring rules is limited, e.g., cardinalitybased preferences are diffi-
cult to represent. Furthermore, as the result of updating anaction description is not
an action description, adjustments for iterated updates are necessary.

Concerning results on the computational complexity, Eiter and Gottlob [23] study
a number of syntax-based as well as model-based knowledge base revision opera-
tors and provide precise complexity characterizations forthe problem of checking
whether a given formula is derivable from a revised (updated) knowledge base by
reducing the problem to the evaluation of counterfactuals.Herzig [36] improved
these complexity bounds for restricted settings under Winslett’s Possible Models
Approach. Liberatore [46] considers further approaches for belief update from the
literature, derived corresponding complexity results, and extended them to the prob-
lem of iterated update. Baral and Zhang [7] considers the complexity of model
checking for knowledge update. As for traditional belief update, the relation to rea-
soning about actions consists in regarding the effects of anaction as an update to the
current state. However, motivated by sensing actions that do not change the world,
Baral and Zhang distinguish knowledge updates as belief updates where changes
not only correspond to alterations of the real world but may also be affect an agent’s
knowledge about the world. They give a model theoretic account of knowledge up-
dates based on modal logics, show that the complexity of model checking is on the
second layer of the polynomial hierarchy, and identify tractable subclasses.

More closely related to our work are investigations concerning the complexity of
reasoning about actions in an action language. For the action languageA, Libera-
tore [45] establishes, for instance,NP-completeness of consistency checking and
coNP-completeness for entailment, which essentially amounts to checking whether
D |= ALWAYS necessarily (holdsF ) after A1; . . . ;An, for a given action de-
scriptionD, a fluentF , and a sequence of actionsA1; . . . ;An in our setting. Lang
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et al.[42] investigated the computational complexity of the progression problem for
simple causal action theories which constitute a special case of causal theories in
different languages, in particular capturing the fragmentof action languageC that
we considered. Besides the progression problem, the complexity of other reason-
ing tasks, including executability and determinism, is addressed in this framework
which is further extended to so-called generalized action theories. We remark that,
like for progression, several of these results can be obtained as special cases of de-
cidingD |= c for particular constraintsc in our setting. Moreover, to the best of
our knowledge, the complexity of deciding constraint fulfillment has not been ad-
dressed so far (apart from thePSPACE result for the general case for the constraint
language we considered, which has been proven in [18]), let alone the problem of
updating action descriptions in the presence of constraints.

8.2 Nature of Change

As stated in the problem description, our approach is intended to also allow for
designed (normative) worlds that are represented by means of action descriptions,
where changes thus are considered to be updates rather than revisions. However,
as already briefly mentioned in Section 3, our notion of action update has more
of a belief revision than a belief update flavor. This view is supported by a deeper
analysis of change in connection with reasoning about actions and change [41,58].
Lang [41] describes a scope for revision and for update, and he notices that, as
pointed out by [27,28], the scope can not be simply decided bywhether the theory is
about static vs. dynamic worlds. Then, as also pointed out by[10,14], Lang relates
revision and update by means of backward-forward reasoning, in particular, by
means of action progression. According to [41], belief revision is to correct some
initial beliefs about the past/present/future state of theworld by some observations
about the past/present state of the world. On the other hand,belief update by some
formulaα corresponds to progressing the theory by a specific feedback-free action
that will makeα true with respect to a given update operator; hereα does not
describe observations. In this framework, Lang says that our approach is closer
to a revision process than to an update; however, since our approach changes the
transition diagram of an action description, it is meaningful to consider it as an
update process as well.

However, update and revision behave for our problem technically not much differ-
ent: while informally, revision operators aim at selectingmodels of the new infor-
mation that are closest to the models of the knowledge base globally, update oper-
ators change each model of the knowledge base locally (this is intuitively captured
by the axiomU8 of the KM postulates). As each action descriptionD has a unique
associated model given byT (D), the two methods yield the same result. The main
difference remaining is the behavior on inconsistent action descriptions. Revision
with consistent information must make an inconsistent knowledge base consistent
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(as done in our approach), while update must preserve inconsistency. Clearly, our
method can be easily adapted to this behavior, and thus show an update flavor.

The AGM and KM postulates [2,39] are based on several assumptions that do not
hold for the action languageC. One requirement which is not met is that of an un-
derlying formal language which is governed by a logic, i.e.,which is closed under
Boolean connectives. Other requirements, including superclassicality, modus po-
nens, and the deduction theorem, essentially restrict to formalisms with an under-
lying monotonic logic (an explicit restriction for instance in Hansson’s work [33]).
However, the action languageC is is nonmonotonic. For instance, ifD consists of
the single law

causedP if P

whereP is the single fluent, then the transition diagram described byD, T (D), has
two statess1 = {P}, s2 = {¬P}, and two transitions〈s1, ∅, s1〉 and〈s2, ∅, s1〉.
Thus the causal lawcausedP after ∅ is satisfied byT (D) (equivalently,D |=
ALWAYS necessarily holdsP after ∅), and can be seen a semantic consequence
of D. However, if we add

caused¬P if ¬P

to D, thenT (D) has additional transitions (〈s1, ∅, s2〉 and 〈s2, ∅, s2〉) andD 6|=
ALWAYS necessarily holdsP after ∅; thuscausedP after ∅ is no longer a se-
mantic consequence. The AGM framework, and similarly the KMframework, is
not suitable for non-monotonic settings, as discussed, e.g., for non-monotonic logic
programming in [20] and for defeasible logic in [9]. This hasbeen confirmed by
our study of KM-style properties in Section 4, where nonmonotonicity turned out
to be the reason for several properties to fail. Thus governing our action description
updates with the AGM or KM postulates is not meaningful; and intuitively the same
is true for postulates for contraction developed in monotonic settings. We refrained
from a formal investigation in this direction due to anotherreason however: action
languageC is not closed under complement, more precisely it is neitherdefined
nor clear what the complement of an action language should be, or how it is repre-
sented. As a consequence, it does not constitute a logic and well-known identities,
like the Levi Identity used in classical belief change settings to relate contraction,
expansion, and revision, cannot be applied.

By the counterexamples for KM postulates given in Section 4, it also becomes
clear that the same results are obtained for less general, alternative definitions. For
instance, one may consider an initial action descriptionD0, and a set of constraints
C0, as the initial knowledge to be modified by new information, which consists of
a set of causal lawsD1, and a set of constraintsC1, which are considered to hold
for sure in a solution. Preference is given to solutions thatkeep a maximal sets of
the original laws and constraints (wrt. set inclusion), such that the resulting action
description is consistent and satisfies—in addition to all constraints inC1—also
all constraints fromC0 that are kept. Note that in our setting, this is amounts to a
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particular case whereD = Dm = D0, Co = C1, Cp = C0, and⊏C is defined by
D′

⊏C D′′ iff D′ ⊆ D′′, D′
Cp
⊆ D′′

Cp
, and one of the inclusions is strict, where

DCp
= {c ∈ Cp | D |= c}, for any action descriptionD. Note that all counterex-

amples stated in Section 4 are also counterexamples for thissetting. We further
remark that the other properties (except for those that require strongly minimiz-
ing ⊏C , which is not the case for the above preference relation), and in particular
results on computational complexity, hold for this particular setting as well.

An AGM- respectively KM-style theory for non-monotonic logics with significant
attention is, to our knowledge, still missing. We note that [38], for instance, con-
siders the incorporation of belief change into the fluent calculus, geared by an ax-
iomatic treatment of belief revision and update satisfyingthe AGM and KM pos-
tulates, respectively. However, the underlying logic is monotonic and only static
knowledge is subject to change, and preference is based on a ranking of states.
Another notable work is [26], which considers the revision of rational preference
orderings that underly certain (nonmonotonic) consequence operators. However, in
order to avoid shortcomings concerning the general principles of success and min-
imality of change, which are impossible to adhere in generalfor the nonmonotonic
setting, restrictions are imposed concerning the knowledge bases and the condi-
tionals (akin to laws in our setting) admissible for revision. More closely related to
our setting is a very recent approach to belief revision for answer-set programs [15]
with an operator that satisfies the majority of the AGM postulates. This is achieved
by building on a strong underlying notion of equivalence (so-calledstrong equiv-
alence), using a respective monotonic formal characterization ofanswer-set pro-
grams called SE-models, and by applying well-known techniques from classical
belief revision. Applying similar methods to action languageC in order to come up
with a theory-revision operator is an interesting subject for future work. Work by
Turner [63] on SE-models for causal theories may serve as a starting point. How-
ever, several issues are not immediate and need further consideration. For instance,
a direct application of Turner’s SE-models to laws inC is achieved for static laws
only, while it is the dynamic laws which we are mainly interested in for revision.
Hence, the concept of SE-model has to be adapted appropriately. Note that any
revision operator, respectively update operator, obtained this way is characterized
by semantic structures which is orthogonal to our aims in this article. It is not clear
how the resulting semantic structures could be syntactically represented (something
which could be achieved due to a characterization of SE-models in terms of answer-
set programs in [15]). Even if a suitable representation by means of causal laws is
developed, it is not likely that the resulting action description after the change is
reminiscent of the original description (see also discussions in [17] and comments
on this work in the following subsection).
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8.3 Repair of Action Descriptions

We can sometimes improve solutions (and pre-solutions) to an ADU problem(D, I,
C,⊏C) by considering a slightly different version of the problem.We may take the
view that a causal law is not completely wrong, and for instance holds in certain
contexts. Suppose thatI is a dynamic law of the form:

causedL′ after A′ ∧G′,

whereL′ is a literal,G′ is a propositional combination of fluents, andA′ is an
action. We can obtain an action descriptionDs fromD, which describes the same
transition diagram asD, by replacing each dynamic law (5) inDm with:

causedL if F after H ∧G′,

causedL if F after H ∧ ¬G′.

We then have that for each pre-solutionD′ to (D, I, C,⊏C) there exists some
pre-solutionDs′ to (Ds, I, C,⊏C) which containsD′ as a subset (in particular,
for subset preference⊂, each solution to(D, I, C,⊂) gives rise to some solu-
tion of (Ds, I, C,⊂)); with an (ad-hoc) adaptation of the solution preference⊏C

to ⊏
s
C , the solutions of(D, I, C,⊏C) can then be recovered from the ones of

(Ds, I, C,⊏s
C). Therefore, such a replacement method can be useful to prevent

“complete removal” of some laws from the given action description. Furthermore,
solutions of(Ds, I, C,⊏s

C) which do not correspond to solutions of the original
problem(D, I, C,⊏C) can be viewed as approximations of solutions for the latter.
They might be of particular interest if the original problemhas no solution.

Similar methods are also useful for repairing an action description, e.g., if some
dynamic laws (5) in the action description have missing formulas inH. In this
case, we need to replace such causal laws by some modified statement(s) from a
candidate space. Our current framework can be generalized in this direction by
changing the candidate solution space for a solutionD′ fromDu ⊆ D′ ⊆ Du∪ I to
a set of action descriptionscand(D, I) such thatDu ∪ I ⊆ D′ holds for eachD′ ∈
cand(D, I); if a modifiable causal lawℓi in D gives rise to alternative candidate
replacementscand(ℓi, I), thencand(D, I) = {

⋃n
i=1Di | Di ∈ cand(ℓi, I)} should

hold, whereD = {ℓ1, . . . , ℓn}.

We note that as for repairing action descriptions, [17] tooka slightly different,
semantics-oriented view for resolving conflicts between anaction description and
a set of constraints, in the context of action languageC. Conflicts are characterized
by means of states and transitions in the transition diagramdescribed by the given
action description that violate some given constraints. The goal is to resolve each
conflict by modifying the action description, but not necessarily by deleting some
causal laws. However, the repair of a single conflict might beachieved by numerous
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alternative changes to the action description, such that the candidate solution space
is very large; furthermore, the repairs of individual conflicts interfere with each
other, and might introduce other conflicts. This led the authors of [17] to propose
support for the user in terms of reasoning services on an action description given
constraints, which provide explanations for certain disorders, rather than an auto-
mated repair; a respective tool and methodology for its usage to correct editorial
errors in the knowledge representation process (e.g., by typos or omitted formula
parts) are described in [21,22]. An interesting issue for further work is to analyze
under which conditions such repairs can be obtained as solutions of an ADU prob-
lem in a generalized framework as outlined above.

9 Conclusion

In this paper, we have considered the problem of updating an action description
with some new information in the framework of action languages, where knowl-
edge about the domain in terms of observations and other constraints is respected.
To this end, we have introduced a formal notion of action description update which,
given an action descriptionD, the new informationI (as a set of statements) and
some desired constraintsC (expressed as formulas in an action query language),
singles out a solution to the update problem, based on a preference relation⊏C

over action descriptions.

We then studied semantical and computational properties ofaction updates in this
framework, where we presented among other results decomposition results and
complexity characterizations of basic decision problems associated with computing
solutions, viz. deciding solution existence and solution recognition. We considered
in the complexity analysis generic settings as well as particular instances, paying
attention to different classes of constraints and preference relations. Furthermore,
we presented some algorithms for computing solutions and pre-solutions (which
approximate solutions), and we discussed our work in the context of the literature.

Several issues remain for further work. Our computational results provide a basis
for the realization of concrete implementations to incorporate updates into action
descriptions in the action languageC, based on top of existing reasoning systems
like the causal calculator [51] or AD-Constraint [21], whichis an important need for
deploying such systems to applications. However, for practical concerns, efficient
domain-tailored algorithms will need to be developed.

In connection with this, meaningful fragments of low (polynomial) complexity are
of interest; related to this is the study of language fragments that correspond to
simpler (less expressive) action languages, such asA or B (see [30]). However,
several of the intractability results that we established here involved rather simple
action descriptions, which suggests that polynomial complexity will have to be
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achieved by pragmatic constraints rather than logical or structural conditions. On
the other hand, also richer, more expressive action languages, such as the language
C with disjunctive causal laws may be studied, the action languageC+ [43], or the
action languageK [19] (into which the language considered here maps naturally)
may be studied.

Further issues are to consider richer forms of constraints (e.g., by generalized action
query languages), and to extend the current computational study to further notions
of preference relations. For example, to syntax-based preference using cardinality,
lexicographic ordering, or formula ranking, possibly withpriority levels on top
[8,11], or to semantic-based preference that uses other weight assignments like
those in [18] (which are computable in polynomial space) or preference based on
state- and transition-rankings, inspired by approaches e.g. in conditional reasoning
(see [24]).

Another issue are multiple updates. The update descriptions that we presented
here provide a useful basis for a realization of Markovian (history-less) updates
I1, I2, . . . , Ik of an action description under lazy evaluation, and may be used, sim-
ilar as update programs in the context of logic program updates [5,20], also to
realize non-Markovian semantics of a sequence of updates toan action description.
However, this remains to be explored in further investigation.

Finally, in regard with connection with AGM and KM theory, postulates and prop-
erties that are tailored to theories of action in a non-monotonic setting would be
interesting.
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Electronic Appendix

A Proofs for Section 5

Theorem 4 Given an action descriptionD and a setC of constraints, deciding
D |= C is (i) PSPACE-complete in general, (ii)ΘP

k+3-complete ifk is the maximal
nesting depth of dynamic constraints inC, and (iii) PNP

‖ -complete ifC does not
involve dynamic constraints.

Proof. Concerning(i) the result has been shown in [18]. We proceed with the proof
of (ii) and(iii) .

Membership: W.l.o.g.C contains a single constraintc. Let us consider(iii) first.
Then,c is a conjunction of clauses over universal constraints of the following form:
ALWAYS Q or ¬ALWAYS Q, whereQ is a conjunction of clauses over static
constraints of the formholdsF or¬holdsF . Checking truth of a negated universal
(sub-)constraint of this form is inNP. To do so, we nondeterministically guess a
possible states of D and verify in polynomial time thats is a state ofD (satisfies
all static laws ofD) and thats does not satisfyQ (there is a clause inQ such that
none of its static constraints is satisfied ats). Hence, the complementary task, i.e.,
checking the truth of a positive universal constraint,ALWAYS Q, is incoNP. Thus,
we can decideD |= c in polynomial time with a single parallel evaluation ofn NP-
oracle calls, given thatn is the number of universal constraints inc. This proves
PNP
‖ -membership.

For (ii) , the constraintc is a conjunction of clauses over universal constraints of the
form ALWAYS Q or¬ALWAYS Q, whereQ is a conjunction of clauses over static
constraints as above and over dynamic constraints of the form necessarilyQk−1

after A1; . . . ;An or ¬necessarilyQk−1 after A1; . . . ;An, whereQk−1 is a basic
constraint of nesting depthk − 1. Let c1 − c4 denote constraints of the formc1 =
ALWAYS Q, c2 = ¬ALWAYS Q, c3 = ALWAYS ¬Q, andc4 = ¬ALWAYS ¬Q,
respectively. We show by induction that deciding whetherD |= c is in ΘP

k+3.

Base case (k = 0): For staticQ, by (iii) decidingD |= ci, is in PNP
‖ , for 1 ≤

i ≤ 4. Hence, letQ = necessarilyQk−1 after A1; . . . ;An be a dynamic con-
straint. DecidingD |= c1 is in NP since the complementary problemD |= c2 is
in coNP. The latter problem is decided by nondeterministically guessing a history
h = s0, A1, s1, . . . , sn−1, An, sn of lengthn and checking in polynomial time that
h is a history ofD, i.e., thatsi (0 ≤ i ≤ n) is a state ofD and that〈si, Ai+1, si+1〉
(0 ≤ i < n) is in R. Furthermore,D, sn |= ¬Qk−1 can be checked in polynomial
time sinceQk−1 is a propositional combination of static constraints, witnessing
D 6|= c1. DecidingD |= c3 is in ΠP

2 and the complementary problemD |= c4
is in ΣP

2 . To wit, in order to disproveD |= c3, guess a states and—as outlined
above—use theNP-oracle to verify that for all historiesh of lengthn emanating
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from s (s0 = s) it holds thatD, sn |= Qk−1. This establishesD, s 6|= ¬Q and hence,
D 6|= c3. Putting all together, in order to decideD |= c, an oracle forΣP

2 problems
is sufficient to decide the truth of any universal constraintin c. Thus,D |= c can be
checked in polynomial time with a polynomial number of parallel ΣP

2 -oracle calls
and therefore is inΘP

3 .

Induction step: Let the nesting depth of dynamic constraints bek > 0, and assume
that decidingD |= Qk−1 is in ΘP

k+2 for any subconstraint of nesting depthk − 1.
Then, as easily seen by the arguments for the base case above,D |= I can be
decided by means of aΣP

k+2-oracle for any universal constraintQ ∈ c. Thus, again
by parallel evaluation,D |= c is in ΘP

k+3.

Hardness: In order to prove(iii) we reduce the problem to the followingPNP
‖ -hard

decision version ofMaximum CNF Satisfiability: Given a Boolean formulaF in
conjunctive normal form (CNF)and an integerk, decide whether the maximum
number of clauses inF that can be simultaneously satisfied by an interpretation is
0 mod k.

W.l.o.g., letF be a 3-CNF formula of the form
∧n

i=1 Li,1 ∨ Li,2 ∨ Li,3, whereLi,j,
1 ≤ i ≤ n, 1 ≤ j ≤ 3, is a literal over atomsX = {X1, . . . , Xm}. ForXi ∈ X, by
¬L we denote¬Xi if L = Xi andXi if L = ¬Xi. Consider the action description
D1 consisting of:

causedCi if Li,1, causedCi if Li,2, causedCi if Li,3,

caused¬Ci if ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3,











1 ≤ i ≤ n

causedF1,1 if C1, caused¬F1,1 if ¬C1,

causedF1,0 if ¬C1, caused¬F1,0 if C1,

causedFi,j if Ci ∧ Fi−1,j−1,

caused¬Fi,j if ¬Ci ∧ Fi−1,j−1,











2 ≤ i ≤ n, 1 ≤ j ≤ i

causedFi,j if ¬Ci ∧ Fi−1,j,

caused¬Fi,j if Ci ∧ Fi−1,j ,











2 ≤ i ≤ n, 0 ≤ j < i

Observe thatD1 contains only static laws. A state,s, consistent withD1 corre-
sponds to an arbitrary total interpretation onX together with a total interpretation
on fluentsCi, 1 ≤ i ≤ n, such thatCi is true ats iff the interpretation onX satis-
fies clauseCi. The latter is enforced by the first4n laws inD1. The remaining laws
cause a total interpretation on fluentsFi,j, 1 ≤ j ≤ i ≤ n, such thatFi,j is true ats
iff the interpretation onX satisfiesj clauses among{C1, . . . , Ci}.
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Now consider the following constraintck:

ALWAYS holds Fn,0∨

SOMETIMES holds Fn,k ∧ ALWAYS (¬holdsFn,k+1 ∧ . . . ∧ ¬holdsFn,n)∨

. . .

SOMETIMES holds Fn,lk ∧ ALWAYS (¬holdsFn,lk+1 ∧ . . . ∧ ¬holdsFn,n),

wherel = ⌊n/k⌋.

We show that the maximum number of clauses inF that can be simultaneously
satisfied by an interpretation is0 mod k iff D1 |= ck.

Only-If: Suppose that the maximum numbero of clauses inF that can be simul-
taneously satisfied by an interpretation is0 mod k. Considero = 0 first. Then, no
clause ofF is satisfiable. By construction,Fi,0 holds for1 ≤ i ≤ n at every states
of D1. In particular,Fn,0 holds at every state, and thereforeALWAYS holds Fn,0 is
satisfied byD1, i.e.,D1 |= ck. Now leto > 0. W.l.o.g.o = ak for some1 ≤ a ≤ l.
Then, by constructionFn,j is false foro < j ≤ n at every states of D1. There-
fore,D1 |= ALWAYS (¬holdsFn,ak+1∧ . . .∧¬holdsFn,n). Also by construction,
Fn,o is true at a state corresponding to an assignment that maximizes the simultane-
ously satisfied clauses. This impliesD1 |= SOMETIMES holds Fn,ak. Observing
that, together, these two constraints constitute a conjunct of ck, we conclude that
D1 |= ck.

If: SupposeD1 |= ck, and assumeD1 |= ALWAYS holds Fn,0 first. Then, by con-
struction no clause inF is satisfiable, Hence the maximum numbero of clauses inF
that can be simultaneously satisfied by an interpretation is0 and thuso ≡ 0 mod k.
Now let any other conjunct ofck be satisfied byD1, i.e., for some1 ≤ a ≤ l it holds
thatD1 |= SOMETIMES holds Fn,ak andD1 |= ALWAYS (¬holdsFn,ak+1∧. . .∧
¬holdsFn,n). Then, there is a states at whichFn,ak is true. By construction, this
means thatak clauses ofF can simultaneously be satisfied. Moreover,Fn,j is false
at every states of D1 if j > ak. Again by construction, this implies thatak is
the maximum number of clauses inF that can be simultaneously satisfied. Since
ak ≡ 0 mod k this proves the claim.

For hardness in Case(ii) , considerm quantified Boolean formulas of formΦl =
Q1X

l
1Q2X

l
2 · · · QnX

l
nE

l, 1 ≤ l ≤ m, whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀
otherwise,Xk

i andX l
j, 1 ≤ i, j ≤ n and1 ≤ k, l ≤ m, are pairwise disjunct sets

of propositional variables ifi 6= j or k 6= l. andEl is Boolean formula over atoms
in X l = X l

1 ∪ · · · ∪ X
l
n, such that ifΦl is false thenΦl+1, . . . ,Φm are false, too.

Deciding whether the maximum indexo, 1 ≤ o ≤ m, such thatΦo is true, is odd is
ΘP

n+1-hard.
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We reduce the problem of decidingD |= c for a constraintc with nesting depthk
of dynamic constraints to this problem, as follows.

Let n = k + 2, 1 ≤ l ≤ m, and letD2 be the action description consisting of the
statements:

causedF l
i if F l

i after Ai−1,

caused¬F l
i if ¬F l

i after Ai−1,











2 ≤ i ≤ n, F l
i ∈ X

l
i

causedF l
j after Ai−1 ∧ F

l
j ,

caused¬F l
j after Ai−1 ∧ ¬F

l
j ,











2 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, F l
j ∈ X

l
j

Observe that a states of D2 corresponds to an arbitrary consistent total interpreta-
tion overX1 ∪ · · · ∪Xm. Note also that〈s, {Ai}, s

′〉 (1 ≤ i ≤ n− 1) is a transition
in the transition diagram described byD2 iff all fluents are interpreted identically
except those overX1

i+1 ∪ · · · ∪X
m
i+1.

Consider the constraint:

co =























∨(m−3)/2
l=0 (SOMETIMES f 2l+1 ∧ ALWAYS ¬f 2l+2) ∨ gm if m is odd,

∨(m−2)/2
l=0 (SOMETIMES f 2l+1 ∧ ALWAYS ¬f 2l+2) otherwise,

where

gm = SOMETIMES fm,and

f l = p1N p1 (. . . (pn−1N pn−1 holdsEl after {An−1}) . . .) after {A1},

whereN = necessarily, and wherepi = ¬ if i is even andpi is void otherwise,
for 1 ≤ i ≤ n− 1.

We first prove thatΦl is true iff there exists a states of D2, such thatD2, s |= f l.

For the only-if direction supposeΦl is true. We show by a recursive argument that
if a states0 coincides with a satisfying truth assignment forΦl onX l

1 thenD2, s0 |=
f l. Assume thatsn−2 is a state ofD2 that coincides with a satisfying truth assign-
ment forΦl onX l

1 ∪ · · · ∪X
l
n−1. We show thatD2, sn−2 |= pn−1N pn−1 holdsEl

after {An−1}. If n− 1 is odd thenQn = ∀. Thus, any assignment onX l
n will turn

the assignment onX l
1 ∪ · · · ∪X

l
n−1 given bysn−2 into a satisfying assignment for

El. Thus, every transition by{An−1} from sn−2 will lead to a statesn−1 that satis-
fiesEl. This provesD2, sn−2 |= necessarily holdsEl after An−1 if n−1 is odd. So
letn−1 be even. ThenQn = ∃. In this case, there exists an assignment onX l

n that,

70



together with the assignment onX l
1 ∪ · · · ∪X

l
n−1 given bysn−2, is a satisfying as-

signment forEl. Thus, there is a transition by{An−1} from sn−2 to a statesn−1 that
satisfiesEl. Therefore,D2, sn−2 |= ¬necessarily¬holdsEl after An−1 if n− 1 is
even. In any case,D2, sn−2 |= pn−1N holds pn−1E

l after {An−1}. Applying this
argument recursively proves the claim that if a states0 coincides with a satisfying
truth assignment forΦl onX l

1, thenD2, s0 |= f l, and thus, that there exists a state
of D2 such thatD2, s |= f l.

For the if-direction lets be a state ofD2, such thatD2, s |= f l. We establish
the truth ofΦl recursively as follows. Leth = s, A1, s1, . . . , sn−3An−2, sn−2 be a
history ofD2. We show thatsn−2 is a state ofD2 that coincides with a truth assign-
ment onX l

1 ∪ · · · ∪X
l
n−1, such thatQnE

l is true. Ifn− 1 is odd, thenD2, sn−2 |=
necessarily holdsEl after An−1, sinceD2, s |= f l. Thus, any assignment onX l

n

will turn the assignment onX l
1 ∪ · · · ∪X

l
n−1 given bysn−2 into a satisfying assign-

ment forEl. If n−1 is even, thenD2, sn−2 |= ¬necessarily¬holdsEl after An−1,
sinceD2, s |= f l. Therefore, there exists an assignment onX l

n that will turn the
assignment onX l

1 ∪ · · · ∪X
l
n−1 given bysn−2 into a satisfying assignment forEl.

Hence, in any caseQnE
l is true. Applying this argument recursively proves the

claim thatD2, s |= f l implies the truth ofΦl.

We now show that the maximum indexo such thatΦo is true, is odd iffD2 |= co.

Only-If: Let the maximum indexo such thatΦo is true be odd. Consider any states
of D2 such thatD2, s |= f o. If o = m this provesD2 |= co. So leto < m. Then ad-
ditionallyD2, s 6|= f o+1, for every states′ of D2. Hence,D2 |= SOMETIMES f o

andD2 |= ALWAYS ¬f o+1, i.e., for l = (o− 1)/2 D2 |= SOMETIMES f 2l+1 ∧
ALWAYS ¬f 2l+2. This provesD2 |= co.

If: AssumeD2 |= co. If m is odd andD2 |= gm, Thenm is the maximum indexo
such thatΦo is true, ando is odd. This proves the claim. So consider the remaining
cases, i.e., there is an indexl (0 ≤ l ≤ (m−3)/2 if m is odd and0 ≤ l ≤ (m−2)/2,
otherwise), such thatD2 |= SOMETIMES f 2l+1 ∧ ALWAYS ¬f 2l+2. Then, there
is a states of D2 such thatf 2l+1 is satisfied, whereasf 2l+2 is not satisfied at any
states′ of D2. Let o = 2l + 1. We conclude thatΦo is true andΦo+1 is false. Thus,
o is the maximum index such thatΦo is true, and it is odd. This proves the claim
and thereforeΘP

n+1-hardness, i.e.,ΘP
k+3-hardness. 2

Theorem 5 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution
(or a pre-solution) is (i)PSPACE-complete in general, (ii)ΣP

k+3-complete, ifk is
the maximal nesting depth of dynamic constraints inCo, (iii) ΣP

2 -complete, ifCo

does not involve dynamic constraints, and (iv)NP-complete ifCo = ∅.

Proof.
Membership: Follows from Theorems 3 and 4.

Hardness: Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2
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and letΦ = ∃Y Q1X1 · · · QnXnE be a QBF, whereQi = ∃ if i ≡ 0 mod 2 and
Qi = ∀ otherwise. Consider

Du = D2∪{causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1, Dm =
{causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, C = Co ∪ Cp with Cp = ∅, and
Co = {co}, where

co = ALWAYS p1N p1 (. . . (pn−1N pn−1 holdsE after {An−1}) . . .) after {A1},

and whereN = necessarily, andpi = ¬ if i is odd and void otherwise, for1 ≤
i ≤ n− 1. We show that there exists a solution to the action description update
problem(Du ∪Dm, I, C,⊏C) iff Φ is true.

For the only-if direction, letDu ⊆ D′ ⊆ Du ∪ Dm be a solution. ThenD′ is
consistent and states ofD′ coincide with some interpretation onY and an arbitrary
interpretation onX1, . . . , Xn. By the same arguments as in the hardness proof of
Theorem 4(ii) , the fact thatD′ |= Co witnesses the truth ofΦ.

For the if-direction letΦ be true. Consider a satisfying truth assignment onY , let
D′

m be the set of static causal laws fromDm compliant with this assignment, and
let D′ = Du ∪ D

′
m. Then,D′ is consistent andDu ⊆ D′ ⊆ Du ∪ Dm. Moreover,

by the same arguments as in the hardness proof of Theorem 4(ii) , D′ |= Co. This
proves thatD′ is a pre-solution, and hence the existence of a solution.

For (iii) let Φ = ∃Y ∀X E and consider the action description update problem
(Du ∪ Dm, I, C,⊏C), whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = Co = {ALWAYS holds E}. We prove that the action description
update problem(Du ∪Dm, I, C,⊏C) has a solution iffΦ is true.

For the only-if direction, letDu ⊆ D′ ⊆ Dm be a solution. ThenD′ is consistent
and states ofD′ coincide with some interpretation onY and an arbitrary interpre-
tation onX. SinceD′ |= Co,E is true at every such state, witnessing that any truth
assignment onX turns the joint assignment on both,Y andX, into a satisfying
assignment forE. This proves the truth ofΦ.

For the if-direction letΦ be true. Consider a satisfying truth assignment onY , and
let D′ be the set of static causal laws fromDm compliant with this assignment.
Then,D′ is consistent andDu ⊆ D′ ⊆ Dm. Moreover, sinceΦ is true, any truth
assignment onX turns the joint assignment on both,Y andX, into a satisfying
assignment forE. Therefore,E holds at all states ofD′, witnessingD′ |= Co. This
proves thatD′ is a pre-solution, and hence the existence of a solution.

Finally. for (iv), letE be a Boolean formula over atomsY and let us defineDu =
{causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = ∅. Then,(Du ∪Dm, I, C,⊏C) has a solution iffE is satisfiable.
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For the only-if direction, letDu ⊆ D′ ⊆ Du ∪ Dm be a solution. ThenD′ is
consistent and states ofD′ coincide with some interpretation onY . SinceDu ⊆ D′,
E is true at every such state. This proves the satisfiability ofE.

For the if-direction letE be satisfiable. Consider a satisfying truth assignment onY ,
and letD′

m be the set of static causal laws fromDm compliant with this assignment.
Then,D′ = Du ∪ D

′
m is consistent andDu ⊆ D′ ⊆ Du ∪ Dm. MoreoverD′ |=

Co trivially. This proves thatD′ is a pre-solution, and hence the existence of a
solution. 2

Theorem 6 Given an ADU problem(D, I, C,⊂) and an action descriptionD′,
deciding whetherD′ is a solution for it is (i)PSPACE-complete for general con-
straints inCo, (ii) ΠP

k+3-complete ifk is the maximal nesting depth of dynamic
constraints inCo, (iii) ΠP

2 -complete ifCo does not involve dynamic constraints,
and (iv)DP -complete ifCo = ∅.

Proof.
Membership: Follows from Theorem 3, observing that for any given actionde-
scriptionsD′ andD′′, decidingD′ ⊂ D′′ can be done in polynomial time, i.e., that
Pcheck is in P for ⊂.

Hardness: Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2
and letΦ = ∀Y Q1X1 · · · QnXnE be a QBF, whereQi = ∃ if i ≡ 1 mod 2 and
Qi = ∀ otherwise. Consider

Du = D2∪{causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1, Dm =
{causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS f ∨ g},
where

f = p1N p1 (. . . (pn−1N p̄n−1 holdsE after {An−1}) . . .) after {A1},

g=
∧

Yi∈Y
SOMETIMES holds Yi ∧ SOMETIMES holds ¬Yi,

whereN = necessarily, pi = ¬ if i is odd and void otherwise, for1 ≤ i ≤ n− 1,
andp̄n − 1 = ¬ if n is odd and void otherwise. We show thatDu is a solution to
the action description update problem(Du ∪Dm, I, C,⊂) iff Φ is true.

Obviously,Du is consistent andI ⊆ Du. Additionally, states ofDu consist of arbi-
trary truth assignments toY andX1, . . . , Xn. Therefore,Du satisfiesg, and hence
Du |= Co. This proves thatDu is a pre-solution. We show that it is a maximum
pre-solution iffΦ is true.

For the only-if direction, towards a contradiction assume thatΦ is false. Then¬Φ
is true. Observe that¬Φ is a QBF of the form considered in the hardness proof
of Theorem 5(ii) with E negated. Applying the arguments of this proof, we obtain
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that there exists a setDu ⊂ D′ ⊆ Du∪Dm, such thatD′ is consistent andD′, s |= f
for every states of D′ (Note thatp̄n−1 accounts for the negation ofE). Therefore
D′ |= Co, and thusD′ is a pre-solution. This contradicts the maximality ofDu.

For the if-direction, towards a contradiction assume thatDu is not maximal. Then,
all states of a maximum solution coincide on at least one assignment to some
Yi ∈ Y , and therefore it does not satisfyg. Consequently,f is satisfied at all
states of a maximum solution. Applying the arguments of the hardness proof of
Theorem 5(ii) , we conclude that¬Φ is true, a contradiction.

For (iii) let Φ = ∀Y ∃X E and consider the action description update problem
(Du ∪ Dm, I, C,⊂), whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y },
I = ∅, andC = Co = {ALWAYS ¬holdsE ∨ g}, with g as before. We prove that
the action description update problem(Du∪Dm, I, C,⊂) hasDu = ∅ as a solution
iff Φ is true.

Obviously,Du is consistent andI ⊆ Du. Additionally, states ofDu consist of arbi-
trary truth assignments toY andX. Therefore,Du satisfiesg, and henceDu |= Co.
This proves thatDu is a pre-solution. We show that it is a maximum pre-solution
iff Φ is true.

For the only-if direction, towards a contradiction assume that Φ is false. Then
¬Φ is true. Observe that¬Φ is a QBF of the form considered in the hardness
proof of Theorem 5(iii) with E negated. Applying the arguments of this proof,
we obtain that there exists a setDu ⊂ D′ ⊆ Dm, such thatD′ is consistent and
D′ |= ALWAYS ¬holdsE, i.e.,D′ |= Co. Therefore,D′ is a pre-solution, which
contradicts the maximality ofDu.

For the if-direction, towards a contradiction assume thatDu is not maximal. Then,
all states of a maximum solution coincide on at least one assignment to someYi ∈
Y , and therefore it does not satisfyg. Consequently, a maximum solution must
satisfyALWAYS ¬holds E . Applying the arguments of the hardness proof of
Theorem 5(iii) , we conclude that¬Φ is true, a contradiction.

Finally (iv), letE1 andE2 be Boolean formulas over atomsY1 andY2, respectively.
ConsiderDu = {caused¬F, causedF if ¬E1}, Dm = {causedF if ¬E2}, I =
∅, andC = ∅. Then,(Du ∪ Dm, I, C,⊂) has solutionDu iff E1 is satisfiable and
E2 is unsatisfiable.

Obviously,I ⊆ Du, andDu |= Co. Therefore,Du is a solution iff it is consistent
and maximal, i.e., no superset ofDu is consistent. We show that this two conditions
hold iff E1 is satisfiable andE2 is unsatisfiable.

For the only-if direction, assume thatDu is consistent and maximal. ThenE1 is
satisfiable witnessed by the truth assignment toY1 of any state ofDu. Furthermore,
Du∪Dm is inconsistent (otherwise it would be a solution, since it trivially satisfies
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Co), which implies thatE2 is unsatisfiable.

For the if-direction, letE1 be satisfiable andE2 be unsatisfiable. Then any satisfy-
ing assignment to fluents inY1 together with assigning falsity toF and any truth
assignment to fluents fromY2 yields a state ofDu witnessing its consistency. More-
over,Du ∪Dm is inconsistent due to the unsatisfiability ofE2, which implies that
Du is maximal. This provesDP -hardness. 2

Theorem 7 Given an ADU problem(D, I, C,<weightq) and an action description
D′, deciding whetherD′ is a solution for it is (i)PSPACE-complete for general
constraints inC, (ii) ΠP

k+3-complete ifk is the maximal nesting depth of dynamic
constraints inC, (iii) ΠP

2 -complete ifC does not involve dynamic constraints, and
(iv) NP-complete ifC = ∅.

Proof.
Membership: For (i), (ii) , and(iii) membership follows from Theorems 3 and 4.
Note that in order to decideD1 <weightq D2 for any action descriptionsD1 andD2,
such thatDu ∪ I ⊆ Di ⊆ D ∪ I for i ∈ {1, 2}, and a set of weighted constraints
Cp, we decideDi |= c, for everyc ∈ Cp (i.e., polynomially many), and sum up
the corresponding weights in polynomial time. Thus, ifDi |= c can be decided in
polynomial space, respectively in polynomial time with thehelp of aΣP

i−1-oracle,
thenPcheck is in PSPACE, respectively in∆P

i , for <weightq . For (iv), i.e.C = ∅,
Pcheck is trivial for <weightq . In this case we can decide whetherD′ is a solution by
guessing a states and checking that it is a state ofD′ in polynomial time (witnessing
consistency) and additionally checkingDu∪I ⊆ D′ andD′ ⊆ D∪I in polynomial
time. This provesNP-membership for(iv).

Hardness: Hardness in Case(i) follows easily from Theorem 4. For(ii) letn = k+2
and considerΦ,Du,Dm, I, andCo from the proof of Theorem 6(ii) . Additionally,
let Cp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y } and consider
a weight of 1 for eachc ∈ Cp. Then,Du <weightq D′ for everyDu ⊂ D′ ⊆
Du ∪ Dm, sinceweightq(Du) = 0, whereas all states ofD′ coincide on at least
one assignment to someYi ∈ Y , thus making at least one of the constraints in
Cp true, i.e.,weight q(D

′) ≥ 1. Therefore,Du is a solution to(Du ∪ Dm, I, Co ∪
Cp, <weightq) iff it is a solution to(Du∪Dm, I, Co,⊂), which provesΠP

k+3-hardness
(cf. Theorem 6(ii) ).

For (iii) considerΦ, D, I, andCo from the proof of Theorem 6(ii) . Again, let
Cp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y } with weight 1 for
eachc ∈ Cp. Then, for the same reason as above,Du <weightq D

′ for everyDu ⊂
D′ ⊆ Du ∪Dm. Therefore,Du is a solution to(Du ∪Dm, I, Co ∪ Cp, <weightq) iff
it is a solution to(Du ∪Dm, I, Co,⊂), provingΠP

2 -hardness.

Finally (iv), letE be a Boolean formula over atomsY and consider the ADU prob-
lem given byDu = {causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = ∅, I = ∅, and
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C = ∅. Then,Du is a solution to(Du ∪Dm, I, C,<weightq) iff E is satisfiable.

For the only-if direction, letDu be a solution. ThenDu is consistent, states ofDu

coincide with some interpretation onY , andE is true at every such state. This
proves the satisfiability ofE.

For the if-direction letE be satisfiable. A satisfying truth assignment onY is a
state ofDu, i.e.,Du is consistent. Moreover,Du ∪ I ⊆ Du ⊆ D ∪ I andDu |= Co

trivially. And sinceDu ∪ I = Du = D ∪ I, we conclude thatDu is a solution. 2

B Proofs for Section 6

Prior to the proof of Proposition 4, we establish the following lemma which pin-
points the relation between states and transitions of an update descriptionU and
any action descriptionD′ obtained by an (arbitrary) selection of modifiable laws.

Lemma 3 LetD = Du ∪ Dm be an action description, and letD′
m be a subset

of Dm. Let 〈S, V,R〉 be the transition diagram described byD′ = Du ∪ D
′
m. Let

U = U(D) be the update description ofD, with a setH of update fluents, and let
〈SU , V U , RU〉 be the transition diagram described byU . LetM be the subset ofH
labeling the laws inD′

m. Then the following hold:

(i) s \H ∈ S iff s ∈ SU ands ∩H = M,
(ii) 〈s, A, s′〉 in RU iff s =H s′, and
(iii) 〈s \H, A, s′ \H〉 ∈ R iff 〈s, A, s′〉 ∈ RU ands ∩H = M.

Proof.

(i) For the only-if direction consider any states ∈ S. By the definition of a
transition diagram described by an action description, forevery static law (4)
in D′, s satisfiesG ⊃ L.

Case 1.Take any static law (4) inU , that does not contain anyHi ∈ H. By
the definition of an update description, this static law is inDu as well. Then,
sinces satisfiesG ⊃ L, s ∪M satisfiesG ⊃ L.

Case 2.Take any static law (15) inU such thatHi ∈M. By the definition
of an update description, there is a corresponding static law (4) inD′

m. Then,
sinces satisfiesG ⊃ L, s ∪M satisfiesG ∧Hi ⊃ L.

Case 3.Take any static law (15) inU such thatHi 6∈M. Sinces ∪M does
not satisfyG ∧Hi, s ∪M satisfiesG ∧Hi ⊃ L.

By the definition of an update description,U does not contain any other
static laws. Therefore, from these three cases, it follows thats ∪M is a state
in SU .

For the if-direction consider any states in SU , such thats ∩H = M. By
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the definition of a transition diagram described by an actiondescription, for
every static law (4) inU , s satisfiesG ⊃ L.

Case 1.Take any static law (4) inDu. By the definition of an update de-
scription it is also inU , and it does not contain any element ofH. Therefore,
s \H satisfiesG ⊃ L.

Case 2.Take any static law (4) inD′
m. By the definition of an update de-

scription, for every static law (4) inD′
m, there is a static law (15) inU . Since,

for every corresponding static law (15) inU , s satisfiesG∧Hi ⊃ L, and since
by assumptionHi is in s, s \H satisfiesG ⊃ L.

From these two cases, it follows that, for every static law (4) in D′, s \H

satisfiesG ⊃ L. Thus,s \H is in S.
(ii) Since no element ofH appears in the head of any causal law inU except for

the inertia laws (17), we conclude that〈s, A, s′〉 in RU iff s =H s′.
(iii) For the only-if direction consider any〈s, A, s′〉 in R. By the definition of

a transition diagram described by an action description, for every dynamic
law (5) inD′, s′ satisfiesL if the law is applicable to〈s, A, s′〉 (i.e., s ∪ A
satisfiesH ands′ satisfiesG). Due to(i), boths ∪M ands′ ∪M are inSU .

Case 1.Consider any dynamic law (5) inU , that does not contain anyHi ∈
H. Suppose that it is applicable to〈s∪M, A, s′∪M〉. Then, since noHi ∈ H

occurs in this law, it is applicable to〈s, A, s′〉 as well. By the definition of an
update description, this law is inDu. Since〈s, A, s′〉 is in R, s′ satisfiesL.
Thens′ ∪M satisfiesL.

Case 2.Consider any dynamic law (16) inU , that is not of the form (17),
whereHi labels a dynamic law (5) inD′

m, i.e.,Hi ∈ M. Suppose that it is
applicable to〈s ∪M, A, s′ ∪M〉. That is,s ∪M ∪ A satisfiesH ∧ Hi and
s′ ∪M satisfiesG. SinceH does not contain anyHi ∈ H, s ∪ A satisfiesH;
sinceG does not contain anyHi ∈ H, s′ satisfiesG. Then, the corresponding
dynamic law (5) inD′

m is applicable to〈s, A, s′〉. Since〈s, A, s′〉 is in R, s′

satisfiesL. Then,s′ ∪M satisfiesL.
Case 3.Consider any dynamic law (17) inU . By (ii ) we conclude that

〈s, A, s′〉 in RU iff s =H s′. Hence,s ∪M satisfiesHi iff s′ ∪M satisfiesHi.
Therefore, this law is applicable to〈s ∪M, A, s′ ∪M〉 iff L = Hi andHi is
in M, or L = ¬Hi andHi 6∈ M. Consequently,M is the only interpretation
onH satisfying the heads of the applicable inertia laws.

By the definition of an update description,U does not contain any other
dynamic laws applicable to〈s ∪M, A, s′ ∪M〉.

So far we have shown that,(a) for every〈s, A, s′〉 in R, s′ ∪M satisfies
the heads of every dynamic law inU that is applicable to〈s∪M, A, s′ ∪M〉.
Moreover, we can observe that(b) for each dynamic law inD′ applicable to
〈s, A, s′〉, there is a corresponding law inU applicable to〈s∪M, A, s′ ∪M〉,
and that(c) except for the inertia laws (17),U does not contain any other
dynamic laws applicable to〈s ∪M, A, s′ ∪M〉.

Since we know thats′ is the only interpretation satisfying the heads of all
dynamic laws inD′ applicable to〈s, A, s′〉, it follows from (a)–(c) and Case 3
above, thats′∪M is the only interpretation satisfying the heads of all dynamic
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laws inU applicable to〈s∪M, A, s′ ∪M〉. Therefore,〈s∪M, A, s′ ∪M〉 is
in RU .

For the if-direction consider any〈s, A, s′〉 inRU , such thats∩H = s′∩H =
M. Due to(i) above,s\H ands′ \H are inS. By the definition of a transition
diagram described by an action description, for every dynamic law (5) inU ,
s′ satisfiesL if the law is applicable to〈s, A, s′〉 (i.e.,s ∪A satisfiesH ands′

satisfiesG).
Consider any dynamic law (5) inD′. Suppose that it is applicable to〈s \

H, A, s′ \H〉. That is,(s \H) ∪ A satisfiesH ands′ \H satisfiesG.
Case 1.This law is inDu. SinceG andH do not contain any element

of H, s∪A satisfiesH ands′ satisfiesG, and thus the law (5) is applicable to
〈s, A, s′〉 as well. By the definition of an update description, this law isalso
in U . Since〈s, A, s′〉 is in RU , s′ satisfiesL. SinceL does not contain any
element ofH, s′ \H satisfiesL.

Case 2.This law is inD′
m. Sinces contains every elementHi of H labeling

a dynamic law inD′
m, s ∪ A satisfiesH ∧Hi. By the definition of an update

description, there is a corresponding law (16) inU , which is applicable to
〈s, A, s′〉. Since〈s, A, s′〉 is inRU , s′ satisfiesL. SinceL does not contain any
element ofH, s′ \H satisfiesL.

So far we have shown that,(a) for every〈s, A, s′〉 in RU , s′ \ H satisfies
the heads of every dynamic law inD′ that is applicable to〈s \H, A, s′ \H〉.
Moreover, we can observe that(b) for each dynamic law inU applicable to
〈s, A, s′〉, except for the inertia laws (17), there is a corresponding law inD′

applicable to〈s \ H, A, s′ \ H〉, and that(c) D′ does not contain any other
dynamic laws applicable to〈s \H, A, s′ \H〉.

Since we know thats′ is the only interpretation satisfying the heads of
all dynamic laws inU applicable to〈s, A, s′〉, it follows from (a)–(c) that
s′ \H is the only interpretation satisfying the heads of all dynamic laws inD′

applicable to〈s \H, A, s′ \H〉. Therefore,〈s \H, A, s′ \H〉 is inR. 2

Proposition 4 Let (D, I, C,⊏C) be an ADU problem, withD = Du ∪Dm. LetU
be the update description ofD ∪ I = Du ∪ I ∪Dm, and letW denote a subset of
Dm containing laws labeled by the elementsM ⊆ H in U . ThenD′ = Du∪ I ∪W
is a pre-solution to(D, I, C,⊏C) iff M is an update set forU relative toCo.

Proof. Let (D, I, C,⊏C) be an ADU problem, withD = Du ∪ Dm. Let U be
the update description ofD ∪ I = Du ∪ I ∪ Dm, with a setH of update flu-
ents, describing the transition diagramTU = 〈SU , V U , RU〉. Let W be a subset
of Dm containing laws labeled byM ⊆ H in U . Let T = 〈S, V,R〉 be the transi-
tion diagram described byD′ = Du ∪ I ∪W . We show thatD′ is a pre-solution
to (D, I, C,⊏C) iff M is an update set forU relative toCo.

For the if-direction suppose thatM is an update set forU relative toCo. We show
thatD′ is a pre-solution to(D, I, C,⊏C) the definition of a solution hold.
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(i) Sinces ∩H = M for some states ∈ SU , and due to Lemma 3(i), S is not
empty. Therefore,D′ is consistent.

(ii) It follows from the definition ofD′ thatDu ∪ I ⊆ D′ ⊆ D ∪ I.
(iii) For any states in S, observe that by Lemma 3(i), s ∪M is in SU .

We show for any static or dynamic constraintc and any states in S, that
U, s∪M |= c impliesD′, s |= c. Towards a contradiction assumeU, s∪M |= c
andD′, s 6|= c, and consider a static constraintc first. Since no element ofH
appears inc, and the constraint is static,s∪M 6|= c follows. However, this con-
tradicts the assumption. So letc be a dynamic constraint andh a history (11)
in T such thats0 = s andD′, sn 6|= Q. We continue by induction on the nest-
ing depthk of c. If k = 0, thenQ is a static constraint and, since no element
of H appears inc, it follows thatsn ∪M 6|= Q. Moreover, by Lemma 3(iii) ,

hU = s0 ∪M, A0, s1 ∪M, . . . , sn−1 ∪M, An, sn ∪M

is a history inTU . Thus, we concludeU, s∪M 6|= c, a contradiction. So let us
assume the claim holds for dynamic constraints with maximumnesting depth
k−1, and consider a dynamic constraint of nesting depthk. Then,Q contains
only static constraints and dynamic constraints of nestingdepth at mostk−1.
By hypothesis,D′, sn 6|= Q impliesU, sn ∪M 6|= Q. Furthermore, again by
Lemma 3(iii) , the historyhU corresponding toh is a history inTU . Thus, we
concludeU, s ∪M 6|= c, a contradiction. This provesU, s ∪M |= c implies
D′, s |= c for all s in S, and any static or dynamic constraintc, and thus also
for any open constraintc.

We continue considering existential and universal constraints c. We show
that if c holds ats ∪M wrt. SU

H,s∪M
, thenD′ |= c. For an existentially quan-

tified open constraintQ, the claim follows from the fact that, by definition, if
c holds ats ∪M wrt. SU

H,s∪M
, somes′ ∈ SU exists such thatU, s′ |= Q and

s′ =H s. By Lemma 3(i), we conclude thats′ \H is a state ofD′. Moreover,
from U, s′ |= Q and the fact thatQ is open, it follows thatD′, s′ \H |= Q,
and henceD′ |= c. So letc be a universally quantified open constraintQ, and
towards a contradiction, assume thatD′ 6|= c. Then, there exists a states′ of
D′ such thatD′, s′ 6|= Q. Note that by Lemma 3(i) s′ ∪M ∈ SU . Moreover,
sinceQ is open we conclude thatU, s′ ∪M 6|= Q (otherwiseD′, s′ |= Q fol-
lows which is in contradiction with our assumption). However,U, s′∪M 6|= Q
contradicts thatc holds ats ∪M wrt. SU

H,s∪M
. Therefore, ifc holds ats ∪M

wrt. SU
H,s∪M

, thenD′ |= c for every existential and universal constraintc; the
same follows for any Boolean combination of existential and universal con-
straints. This proves that ifc holds ats ∪M wrt. SU

H,s∪M
, thenD′ |= c, for

any constraintc.
Finally, we show thatD′ |= Co. Consider an arbitrarys ∈ S (which exists,

since by(i) D′ is consistent). Then, due to Condition(ii) for update fluent sets,
s ∪M ∈ SU

Co
. This means by definition thatc holds ats wrt. SU

H,s for every
c ∈ Co. As we have shown above, this impliesD′ |= c for all c ∈ Co. This
provesD′ |= Co.
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For the only-if direction letD′ be a pre-solution to(D, I, C,⊏C). We show thatM
is an update set forU relative toCo, i.e.,(i) s ∩H = M for somes ∈ SU , and(ii)
SU

H,s ⊆ SU
Co

.

(i) SinceD′ is consistent there exists a states ∈ S. Furthermore, by Lemma 3(i)
we conclude thats ∪M ∈ SU , for any such states.

(ii) We first show for any static or dynamic constraintc and any states in S, that
D′, s |= c impliesU, s ∪M |= c. Towards a contradiction assumeD′, s |= c
andU, s ∪M 6|= c, and consider a static constraintc first. Since no element
of H appears inc, and the constraint is static,s 6|= c follows. However, this
contradicts the assumptionD′, s |= c. So letc be a dynamic constraint andhU

a history (11) inTU such thats0 = s ∪M andU, sn 6|= Q. We continue by
induction on the nesting depthk of c. If k = 0, thenQ is a static constraint and,
since no element ofH appears inc, it follows thatsn \H 6|= Q. Furthermore,
by Lemma 3(ii) , si =H s0 for 1 ≤ i ≤ n. Therefore, by Lemma 3(iii) ,

h = s0 \H, A0, s1 \H, . . . , sn−1 \H, An, sn \H

is a history inT . Thus, we concludeD′, s 6|= c, a contradiction. So let us
assume the claim holds for dynamic constraints with maximumnesting depth
k−1, and consider a dynamic constraint of nesting depthk. Then,Q contains
only static constraints and dynamic constraints of nestingdepth at mostk−1.
By hypothesis,U, sn 6|= Q impliesD′, sn \ H 6|= Q. Furthermore, again by
Lemma 3(ii) and (iii) , the historyh corresponding tohU is a history inT .
Thus, we concludeD′, s 6|= c, a contradiction. This provesD′, s |= c implies
U, s ∪M |= c for all s in S, and any static or dynamic constraintc, and thus
also for any open constraintc.

We continue considering existential and universal constraints c. Let s be
any state inSU such thats ∩ H = M. We show thatD′ |= c implies that
c holds ats wrt. SU

H,s. For an existentially quantified open constraintQ, the
claim follows from the fact that then there exists a states′ ∈ S, such that
D′, s′ |= Q. By Lemma 3(i) s′ ∪M is a state inSU , and sinceQ is open, it
follows thatU, s′ ∪M |= Q. Moreovers′ ∪M =H s, and hence,c holds at
s wrt. SU

H,s by definition. So letc be a universally quantified open constraint
Q, and towards a contradiction, assume thatc does not hold ats wrt. SU

H,s.
Then there existss′ ∈ SU

H,s, such thatU, s′ 6|= Q. By Lemma 3(i) s′ \M is a
state ofD′, and sinceQ is open,D′, s 6|= Q follows. However, this contradicts
D′ |= c. Therefore, ifD′ |= c, thenc holds ats wrt. SU

H,s for every existential
and universal constraintc; the same follows for any Boolean combination of
existential and universal constraints. This proves thatD′ |= c implies thatc
holds ats wrt. SU

H,s.
Therefore, given thatD′ is a pre-solution and henceD′ |= Co, we conclude

thatSU
H,s ⊆ SU

Co
. 2
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C The Zoo World in C

The Zoo World was described in the action languageC+ and presented in the
language of CCALC in [1], in five parts: animals (zoo-animals), movement
(zoo-movement), actions (zoo-actions), landscape (zoo-landscape), as
well as their union (zoo). We have transformed the first three components intoC
(in the language of CCALC as well)12 as shown in Figures C.1–C.6, by replacing
the non-Boolean fluents of the formpos(Animal) = Positionwith Boolean
fluentspos(Animal,Position), and by adding several causal laws to make
sure that they express the same fluent:13

constraint [\/P | pos(ANML,P)].
caused -pos(ANML,P) if pos(ANML,P1) & P\=P1.

The first three forms of causal laws in Figure C.6 constitute the modifiable partDm

of this description. The sample constraint given in Section7.1 can be represented
by the CCALC query given in Figure C.7.

D Exchanging Hats in the Circus

Consider a Circus world including monkeys and dogs, where onlymonkeys can
exchange hats with each other. We can obtain aC description of this world, from
theC+ description of missionaries and cannibals exchanging hats[50], and present
it to CCALC as in Figure D.1.

Now consider a variation of the Zoo World described in Section 7.1, which involves
also monkeys and dogs, where only monkeys can exchange hats.This variation of
the Zoo World can be described by the union of the Zoo World description D1

discussed in Section 7.1 (Figures C.1–C.6) and the descriptionD0 mentioned above
(Figure D.1).

Suppose that we would like to update the action descriptionD0 ∪ D1 of this ex-
tended Zoo World, to obtain a description of a Circus where notonly humans can
mount on each other who further can mount on a large animal, but also animals
can exchange hats with each other. Assume that the modifiablepartD1

m of D1 is
the same as in Section 7.1, and the modifiable part ofD0

m of D0 consists of the
last causal law in Figure D.1. The sample constraint given inSection 7.2 can be
represented by the CCALC query in Figure D.2.

12 The input language of CCALC is explained at its manual athttp://www.cs.
utexas.edu/users/tag/cc/, with further examples.
13 In CCALC an expression of the formconstraint G is called a constraint; it is short-
hand for the causal lawcausedFalse if ¬G.
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:- sorts
animal >> human;
species.

:- variables
ANML,ANML1 :: animal;
H,H1 :: human;
SP :: species.

:- objects
% One of the species is human (lmw)
humanSpecies :: species.

:- constants
% Each animal belongs to exactly one of a number of species. (lmw)
% Membership of an animal in a species does not change over time (lmw)
sp(animal) :: species;

% Some species are large, some are not. (lmw)
largeSpecies(species) :: boolean;

% Each animal has a position at each point in time. (lmw)
pos(animal,position) :: inertialFluent;

% Boolean properties of animals (lmw)
adult(animal) :: boolean;
mounted(human,animal) :: inertialFluent.

constraint [\/P | pos(ANML,P)].
caused -pos(ANML,P) if pos(ANML,P1) & P\=P1.

default largeSpecies(SP).
default adult(ANML).

% Humans are a species called humanSpecies
caused sp(H)=humanSpecies.
constraint sp(ANML)=humanSpecies ->> [\/H | ANML=H].

:- macros
% Adult members of large species are large animals (lmw)
large(#1) -> adult(#1) & largeSpecies(sp(#1)).

% There is at least one human-species animal in each scenario
% (lmw)
constraint [\/H | true].

% Two large animals can not occupy the same position,
% except if one of them rides on the other (lmw)
constraint pos(ANML,P) & pos(ANML1,P) & large(ANML) & large(ANML1)

->> [\/H | (H=ANML & mounted(H,ANML1)) ++
(H=ANML1 & mounted(H,ANML))] where ANML@<ANML1.

Fig. C.1. The Zoo World: Animals
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:- constants
accessible(position,position) :: sdFluent.

caused accessible(P,P1)
if neighbor(P,P1) & -[\/G | sides(P,P1,G) & -opened(G)].

default -accessible(P,P1).

% In one unit of time, an animal can move to one of the posi-
% tions accessible from its present one, or stay in the posi-
% tion where it is. Moves to non-accessible positions are
% never possible (lmw)
constraint -pos(ANML,P1)

after pos(ANML,P) & -(P=P1 ++ accessible(P,P1)).

% A concurrent move where animal A moves into a position at the
% same time as animal B moves out of it, is only possible if
% at least one of A and B is a small animal. (lmw)
% Exceptions for (failed) mount actions and certain occurrences
% of throwOff -- when thrown human ends up where another large
% animal was (see the first two propositions in ’%%% ACTIONS %%%’)
constraint -(pos(ANML,P) & -pos(ANML1,P))

after -pos(ANML,P) & pos(ANML1,P)
& large(ANML) & large(ANML1) unless ab(ANML).

% Two large animals cannot pass through a gate at the same time
% (neither in the same direction nor opposite directions) (lmw)
constraint -(pos(ANML,P1) & pos(ANML1,P1))

after pos(ANML,P) & pos(ANML1,P) & sides(P,P1,G)
& large(ANML) & large(ANML1) where ANML@<ANML1.

constraint -(pos(ANML,P) & pos(ANML1,P1))
after pos(ANML,P1) & pos(ANML1,P) & sides(P,P1,G)

& large(ANML) & large(ANML1) where ANML@<ANML1.

% While a gate is closing, an animal cannot pass through it
constraint -opened(G) ->> -pos(ANML,P1)

after pos(ANML,P) & sides(P,P1,G) & opened(G).

Fig. C.2. The Zoo World: Movement
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:- variables
A,A1 :: exogenousAction.

:- constants
move(animal,position),
open(human,gate),
close(human,gate),
mount(human,animal),
getOff(human,animal,position),
throwOff(animal,human) :: exogenousAction.

:- macros
% Action #1 is executed by animal #2
doneBy(#1,#2) ->

([\/P | #1==move(#2,P)] ++
[\/G | #1==open(#2,G) ++ #1==close(#2,G)] ++
[\/ANML | #1==mount(#2,ANML)] ++
[\/ANML \/P | #1==getOff(#2,ANML,P)] ++
[\/H | #1==throwOff(#2,H)]).

% A failed mount is not subject to the usual, rather strict,
% movement restriction on large animals
mount(H,ANML) causes ab(H).

% If the position a large human is thrown into was previously
% occupied by another large animal, the usual movement restriction
% doesn’t apply
throwOff(ANML,H) causes ab(H).

% Every animal can execute only one action at a time
nonexecutable A & A1 if doneBy(A,ANML1) & doneBy(A1,ANML1)

where A@<A1.

Fig. C.3. The Zoo World: Actions, Part 1
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% Direct effect of move action
move(ANML,P) causes pos(ANML,P).

% An animal can’t move to the position where it is now
nonexecutable move(ANML,P) & pos(ANML,P).

% A human riding an animal cannot perform the move action (lmw)
nonexecutable move(H,P) if mounted(H,ANML).

% Effect of opening a gate
open(H,G) causes opened(G).

% A human cannot open a gate if he is not located at a position
% to the side of the gate (lmw)
nonexecutable open(H,G)

if pos(H,P) & side1(G)\=P & side2(G)\=P.

% A human cannot open a gate if he is mounted on an animal
nonexecutable open(H,G) if mounted(H,ANML).

% A human cannot open a gate if it is already opened
nonexecutable open(H,G) if opened(G).

% Effect of closing a gate
close(H,G) causes -opened(G).

% A human cannot close a gate if he is not located at a position
% to the side of the gate (lmw)
nonexecutable close(H,G)

if pos(H,P) & side1(G)\=P & side2(G)\=P.

% A human cannot close a gate if he is mounted on an animal
nonexecutable close(H,G) if mounted(H,ANML).

% A human cannot close a gate if it is already closed
nonexecutable close(H,G) if -opened(G).

% When a human rides an animal, his position is the same as the
% animal’s position while the animal moves (lmw)
caused pos(H,P) if mounted(H,ANML) & pos(ANML,P).

Fig. C.4. The Zoo World: Actions, Part 2
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% If a human tries to mount an animal that doesn’t change position,
% mounting is successful

caused mounted(H,ANML) if pos(ANML,P)
after pos(ANML,P) & mount(H,ANML).

% A human cannot attempt to mount a human who is mounted
nonexecutable mount(H,H1) if mounted(H1,ANML).

% A human cannot be mounted on a human who is mounted
caused false if mounted(H,H1) & mounted(H1,ANML).

% The action fails if the animal changes position, and in this
% case the result of the action is that the human ends up in
% the position where the animal was (lmw)
caused pos(H,P) if -pos(ANML,P)

after pos(ANML,P) & mount(H,ANML).

% A human already mounted on some animal cannot attempt to mount
nonexecutable mount(H,ANML) if mounted(H,ANML1).

% A human can only be mounted on a large animal
constraint mounted(H,ANML) ->> large(ANML).

% A human cannot attempt to mount a small animal (lmw)
nonexecutable mount(H,ANML) if -large(ANML).

% A large human cannot be mounted on a human
constraint mounted(H,H1) ->> -large(H).

% A large human cannot attempt to mount a human
nonexecutable mount(H,H1) if large(H).

% An animal can be mounted by at most one human at a time
constraint -(mounted(H,ANML) & mounted(H1,ANML)) where H@<H1.

% A human cannot attempt to mount an animal already mounted by
% a human
nonexecutable mount(H,ANML) if mounted(H1,ANML).

% A human cannot attempt to mount an animal if the human is
% already mounted by a human
nonexecutable mount(H,ANML) if mounted(H1,H).

Fig. C.5. The Zoo World: Actions, Part 3
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% The getOff action is successful provided that the animal does
% not move at the same time. It fails if the animal moves, and
% in this case the rider stays on the animal (lmw)
caused pos(H,P) if pos(ANML,P1)

after pos(ANML,P1) & getOff(H,ANML,P).

caused -mounted(H,ANML) if pos(ANML,P1)
after pos(ANML,P1) & getOff(H,ANML,P).

% The action cannot be performed by a human not riding an animal
% (lmw)
nonexecutable getOff(H,ANML,P) if -mounted(H,ANML).

% A human cannot attempt to getOff to a position that is not
% accessible from the current position
nonexecutable getOff(H,ANML,P) if -accessible(P1,P) & pos(ANML,P1).

% The throwOff action results in the human no longer riding the
% animal and ending in a position adjacent to the animal’s
% present position. It is nondeterministic since the rider may
% end up in any position adjacent to the animal’s present position. (lmw)
throwOff(ANML,H) may cause pos(H,P).
throwOff(ANML,H) causes -mounted(H,ANML).

% If the resultant position is occupied by another large animal
% then the human will result in riding that animal instead
% (lmw)
caused mounted(H,ANML1) if pos(H,P) & pos(ANML1,P) & large(ANML1)

after throwOff(ANML,H) where H\=ANML1.

% The action cannot be performed by an animal not ridden by a
% human (lmw)
nonexecutable throwOff(ANML,H) if -mounted(H,ANML).

% The actions getOff and throwOff cannot be executed
% concurrently

nonexecutable getOff(H,ANML,P) & throwOff(ANML,H).

Fig. C.6. The Zoo World: Actions, Part 4
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:- query
label :: 10;
maxstep :: 3;
% suppose that initially the gate is closed,
% Jumbo and Bart are at different positions in the cage,
% and Homer is outside the cage.
0: -opened(gateAO),

[\/P \/P1 \/P2 | pos(bart,P), pos(jumbo,P2), P<5, P2<5, P=\=P2,
pos(homer,P1), P1>4];

% at some time T, Homer mounts on Jumbo and next Bart mounts on Homer;
% afterwards, Homer is mounted on Jumbo and Bart is mounted on Homer.
[\/T | T+1<maxstep && (T: mount(homer,jumbo)) && (T+1: mount(bart,homer))

&& (T+2: mounted(bart,homer)) && (T+2: mounted(homer,jumbo))];
% also Jumbo does not change its position in the cage.
[\/P3 | P3<5 && [/\T1 | T1=<maxstep ->> (T1: pos(jumbo,P3))]].

Fig. C.7. The sample constraint given in Section 7.1 for updating the Zoo World into a little
Circus, expressed as a query in CCALC.

:- query
label :: 10;
maxstep :: 3;
% suppose that initially the gate is closed,
% Jumbo and Bart are at different positions in the cage,
% and Homer is outside the cage.
0: -opened(gateAO),

[\/P \/P1 \/P2 | pos(bart,P), pos(jumbo,P2), P<5, P2<5, P=\=P2,
pos(homer,P1), P1>4];

% at some time T, Homer mounts on Jumbo and next Bart mounts on Homer;
% afterwards, Homer is mounted on Jumbo and Bart is mounted on Homer.
[\/T | T+1<maxstep && (T: mount(homer,jumbo)) && (T+1: mount(bart,homer))

&& (T+2: mounted(bart,homer)) && (T+2: mounted(homer,jumbo))];
% also Jumbo does not change its position in the cage.
[\/P3 | P3<5 && [/\T1 | T1=<maxstep ->> (T1: pos(jumbo,P3))]];
% suppose that in the update description of the Zoo World,
% the causal laws labeled by aux2(bart, homer, jumbo)
% and aux3(bart, homer, jumbo) are deleted:
(T2=<maxstep ->>
([/\H2 /\P /\ANML | (T2: aux1(H2,ANML,P))] &&
[/\H /\H1 /\ANML | (H \= bart && H1 \= homer && ANML \= jumbo) ->>

((T2: aux2(H,H1,ANML)) && (T2: aux3(H,H1,ANML)))]).

Fig. C.8. The constraint of Figure C.7 modified by adding further constraints as described
in Section 7.1.

88



0: pos(homer, 7) pos(bart, 3) pos(jumbo, 4) happy(bart)
-aux2(bart, homer, jumbo) -aux3(bart, homer, jumbo)

ACTIONS: move(bart, 4) open(homer, gateAO)

1: opened(gateAO) pos(homer, 7) pos(bart, 4) pos(jumbo, 4)
happy(bart) -aux2(bart, homer, jumbo) -aux3(bart, homer, jumbo)

ACTIONS: mount(homer, jumbo) mount(bart, homer)

2: opened(gateAO) pos(homer, 4) pos(bart, 7) pos(jumbo, 4)
mounted(homer, jumbo) happy(bart) -aux2(bart, homer, jumbo)
-aux3(bart, homer, jumbo)

ACTIONS: mount(bart, homer) sing(homer)

3: opened(gateAO) pos(homer, 4) pos(bart, 4) pos(jumbo, 4)
mounted(homer, jumbo) mounted(bart, homer) happy(homer) happy(bart)
-aux2(bart, homer, jumbo) -aux3(bart, homer, jumbo)

Fig. C.9. A possible scenario which shows that the constraint of Figure C.8is satisfied by
the Zoo World (i.e., the Zoo World can be updated into a little Circus) if we remove the
causal laws labeled byaux2(bart, homer, jumbo) andaux3(bart, homer,
jumbo).
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:- sorts
species;
animal >> (monkey; dog);
hat.

:- variables
D :: dog;
ANML,ANML1 :: animal;
SP :: species;
HA,HA1 :: hat;
MO,MO1 :: monkey.

:- objects
dogSpecies :: species;
monkeySpecies :: species.

:- constants
sp(animal) :: species;
exchange(hat,hat) :: exogenousAction;
owner(hat,animal),
aux4(hat,animal) :: inertialFluent.

caused sp(D)=dogSpecies.
constraint sp(ANML)=dogSpecies ->> [\/D | ANML=D].

caused sp(MO)=monkeySpecies.
constraint sp(ANML)=monkeySpecies ->> [\/MO | ANML=MO].

caused -owner(HA,ANML1) if owner(HA,ANML) & ANML\=ANML1.
caused -owner(HA1,ANML) if owner(HA,ANML) & HA\=HA1.

exchange(HA,HA1) causes owner(HA,ANML1) & owner(HA1,ANML)
if owner(HA1,ANML1) & owner(HA,ANML).

nonexecutable exchange(HA,HA).

caused false if owner(HA,ANML) && sp(ANML)\=monkeySpecies.

Fig. D.1. Monkeys exchanging hats.

:- query
label ::e10;
maxstep :: 1;
[\/HA1 \/HA2 \/T4 | HA1\=HA2 && (0: owner(HA1,apu)) &&

(0: owner(HA2,snoopy)) && T4<maxstep && (T4: exchange(HA1,HA2))].

Fig. D.2. The sample constraint to check that Snoopy and Abu can exchange hats.
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:- query
label ::e11;
maxstep :: 1;
[\/HA1 \/HA2 \/T4 | HA1\=HA2 && (0: owner(HA1,apu)) &&

(0: owner(HA2,snoopy)) && T4<maxstep && (T4: exchange(HA1,HA2))];
[/\HA /\ANML /\T | T =< maxstep ->> (T: -aux4(HA,ANML))].

Fig. D.3. The sample constraint to check that Snoopy and Abu can exchange hats, if we
remove the causal laws labeled byaux4 from the description in Figure D.1.

?- query e11.

0: owner(ha1, snoopy) owner(ha2, apu)
-aux4(ha1, apu) -aux4(ha1, mo1) -aux4(ha1, mo2)
-aux4(ha1, snoopy) -aux4(ha2, apu) -aux4(ha2, mo1)
-aux4(ha2, mo2) -aux4(ha2, snoopy)

ACTIONS: exchange(ha2, ha1)

1: owner(ha1, apu) owner(ha2, snoopy)
-aux4(ha1, apu) -aux4(ha1, mo1) -aux4(ha1, mo2)
-aux4(ha1, snoopy) -aux4(ha2, apu)
-aux4(ha2, mo1) -aux4(ha2, mo2) -aux4(ha2, snoopy)

Fig. D.4. A possible scenario to show that the sample constraint to check thatSnoopy and
Abu can exchange hats is satisfied by the description in Figure D.1 if we remove the causal
laws labeled byaux4.
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