Declar ative Knowledge Updates Through Agents

Thomas Eiter; Michael Fink; Giuliana Sabbatini; and Hans Tompits
Institut fir Informationssysteme, Abteilung Wissensbasierte Systeme 184/3
Technische Universitat Wien; Favoritenstrasse 9-11
A-1040 Vienna, Austria
{eiter,michael,giuliana,tompits } @kr.tuwien.ac.at

Abstract

Cooperative, intelligent agents often share a common knowledge which, in the presence of learning agents, is likely to be
subject to change. In this paper, we describe a method to construct specialized agents that incorporate new information
into a given body of knowledge. These update agents are based on established methods from logic programming and
follow a declarative update policy in order to perform their tasks. The proposed update agents not only adhere to a clear
semantics, but are also able to deal with incomplete or inconsistent information in an appropriate way. We outline a
concrete realization of update agents in terms of the IMPACT agent system and briefly discuss possible applications.

1 Introduction

Recent years witnessed a growing interest in the devel-
opment of intelligent software agents for diverse appli-
cation domains, like e-commerce, entertainment, knowl-
edge management and many more. Such agents provide a
wide range of services, including data mediation agents,
mobile agents, personalized visualization agents, moni-
toring agents, mail-filtering agents and the like (see, e.g.,
(Decker et al., 1997; Flores-Mendez, 1999; Bargmeyer
etal., 1999; Levy and Weld, 2000; Sadri and Toni, 2000)).

The environment in which intelligent agents operate
is usually nondeterministic and in many cases only par-
tially accessible. Intelligent agents must, to some extent,
be able to adapt to changes in the environment and, at the
same time, cooperate with other agents in order to achieve
their goals. Besides communicational purposes, cooper-
ating agents often share common knowledge. This knowl-
edge may be static but, in the presence of learning agents,
it is likely to be subject to change.

Two possible multi-agent scenarios are relevant for
our purposes. In the first one, several cooperative agents
share a common knowledge base, which has to be dynam-
ically updated by a knowledge management agent. The
latter agent receives inputs from the environment and up-
date information from the single agents. In the second
scenario, each agent in the system has to maintain its own
knowledge base, depending on external updates and on
internal specifications.

For our purposes, we assume some agent communi-
cation language, together with a suitable interaction pro-
tocol, and we are interested in maintaining a dynamic
knowledge state. In particular, we propose to use declar-
ative methods to realize agents whose task is the incor-
poration of new information into a given body of knowl-

edge. Moreover, we describe how such update agents can
be implemented in an existing agent architecture, namely
in the multi-agent framework IMPACT (Subrahmanian
etal., 2000).

As regards knowledge base updates, we utilize declar-
ative techniques which have recently been developed in
the area of nonmonotonic knowledge bases (Alferes et al.,
2000; Eiter et al., 2000) (cf. also (Foo and Zhang, 1998;
Inoue and Sakama, 1999) for related approaches). The
reason for using declarative methods is that they provide a
clear semantics for knowledge base updates, which allow
one to reason about updates. Furthermore, they are also
capable of handling incomplete and inconsistent informa-
tion, modeling some form of nonmonotonic reasoning.

The basic layout of our agent architecture is as fol-
lows. The knowledge base consists of facts and rules,
represented in the form of a logic program. It represents
a partial description of the world in which the agent oper-
ates in, and which may be shared with other agents. The
agent itself receives new information, also in the form
of facts or logic programming rules. Besides an under-
lying update framework, which specifies under a partic-
ular semantics how new, possibly inconsistent informa-
tion is to be incorporated, the agent possesses also a cer-
tain update policy, allowing additional flexibility for in-
corporating specific knowledge. For instance, the policy
may specify the change or retraction of certain rules from
the knowledge base, given some particular information.
More precisely, given a new piece of information, the up-
date mechanism addresses the following questions:

1. Which facts and rules should be incorporated?
2. How should facts and rules be incorporated?

In contrast to ad-hoc solutions for these problems, we
suggest an approach which tackles these issues by resort-

ing to well-understood declarative methods based on for-
mal principles and designed to handle incomplete and in-
consistent information.

2 IMPACT Agents

IMPACT, the Interactive Maryland Platform for Agents
Collaborating Together (Arisha et al., 1999), is an agent
framework which allows for existing legacy code and data
sources to be “agentized”. Moreover, the behavior of
an IMPACT agent, i.e., which actions it takes upon a
state change, is specified declaratively by a set of rules.
The possibility to employ existing implementations, to-
gether with the possibility of declarative agent specifica-
tions, makes the realization of update agents as IMPACT
agents straightforward.

Figure 1 shows the overall architecture of an IMPACT
agent. All IMPACT agents have the same architecture,
and hence the same components, but the contents of these
components can be different, leading to different behav-
iors and capabilities.

Action Policy
Action
Base
Integrity
Constr.

Messages
Out

Function Calls

Legacy Data

AGENT

Figure 1: IMPACT Agent Architecture

Basically, the behavior of the agent is driven by an ac-
tion policy. Each agent possesses a message box, which
contains incoming and outgoing messages. On the basis
of the content of the message box and of queries to legacy
data (performed by means of function calls which abstract
both from the structure of the underlying data and of the
information sources), the actions to be performed are se-
lected under a declarative semantics. Constraints ensure
security and integrity of data and behavior. Actions may
themselves be changes to available data, posting of mes-
sages to other agents, and so on.

Agent Data Structures. Agents are built “on top” of
some existing body of code. Thus, to every agent, a set
of types can be assigned, which contains all data types or
data structures that the agent manipulates. As usual, each
data type has an associated domain which is the space of
objects of that type. The set of data structures is manip-
ulated by a set of functions that are callable by external
programs via code calls. Such functions constitute the
application programmer interface (API) of the package
on top of which the agent is built. An agent includes a

specification of all signatures of these API function calls
(i.e., types of the inputs to such function calls and types
of the output of such function calls).

Every code call S : £(ty,...,ty), Where ty,...,t,
are terms, i.e., either values or variables, is based on a
body of software code, S (a so-called software package).
Such a code call says “execute function £ as defined in
package S on the list of arguments”. A code call can
be evaluated providing it is ground, i.e., all arguments t;
must be values. Its output is a set of objects.

Code call atoms are expressions of the form in(t, cc)
or notin(t, cc), where t is a term and cc is a code call.
A ground term t succeeds (i.e., has answer true) if t is
in the set of values returned by cc, otherwise it fails (i.e.,
has answer false). If t is a variable, then a code call atom
returns each value from the result of cc, i.e., its answer
is the set of ground substitutions for t such that the code
call atom succeeds.

A code call condition is a conjunction of code call
atoms and constraint atoms, which may involve decon-
struction operations. An example of a constraint atom is
X > 25, where X is a variable. A code call condition
checks whether the stated condition is true. In general,
constraint atoms are of the form t; o t, where o € {=,
#, <, <, >, >}andty, tyare terms.

Each agent has access to a message box data structure,
together with some API function calls to access it.

At any given point in time, the actual set of objects in
the data structures (and the message box) managed by the
agent constitutes the state of the agent. The set of ground
code calls which are true in it are identified as the state,
O, of the agent.

Actions. The agent has a set of actions. For example,
reading a message from the message box, executing a re-
quest, updating the agent data structures, or even doing
nothing is an action. Expressions «(%), where « is an
action and % is a list of terms, are action atoms. They
represent the sets of (ground) actions which result if all
variables in ¢ are instantiated by values. Only such ac-
tions may be executed by an agent. Every action has a
precondition, a set of effects that describe how the agent
state changes when the action is executed, and an exe-
cution script or method consisting of a body of physical
code that implements the action.

Agent Programs. Each agent has a set of rules (action
rules) called the agent program specifying the principles
under which the agent is operating. These rules specify,
using deontic modalities, what the agent may do, must
do, may not do, etc. Expressions O«(t), Pa(t), Fa(?),
Do «(t), and Wa(t), where (%) is an action atom, are
called action status atoms. These action status atoms are
respectively read as «(t) is obligatory, (%) is permitted,
a(t) is forbidden, do «(¥), and the obligation to do a(%)
is waived.

If A isan action status atom, then A and — A are called
action status literals. An agent program P is a finite set
of rules of the form

A — y&Li& - &Ly,

where A is an action status atom, x is a code call condi-
tion,and L+, ..., L,, are action status literals.

Each agent program has a formal semantics which
is defined in terms of semantical structures called sta-
tus sets, i.e., sets of ground action status atoms. More
specifically, the semantics of an agent is defined with re-
spect to feasible status sets, which satisfy various condi-
tions. For instance, feasible status sets are required to be
closed under the rules of the agent program and comply to
certain deontic axioms. Additionally, stronger semantical
notions than feasible status sets have been introduced for
IMPACT agents, namely rational status sets and reason-
able status sets.

There are also further components of IMPACT agents
which are not relevant for our purposes here. A detailed
description of the semantics can be found in (Subrahma-
nian et al., 2000; Eiter et al., 1999).

3 Knowledge Bases

Update agents operate on knowledge bases, which we as-
sume to be represented by extended logic programs (ELPs
for short) (Gelfond and Lifschitz, 1991), i.e., finite sets
of facts and rules. Facts are represented by literals, i.e.,
atomic formulae A or negations —A of atomic formulae.
We only deal here with propositional formulas; facts and
rules involving variables may be represented by their re-
spective ground instances. A rule, r, is an expression of
the form

LO — Ll, ey er, not L'rn-i—la ey not Ln,

where each L;, 0 < i < n, is a literal. We call L the
head of r (symbolically H(r)) and the set
B(r)={L1,...,Lyn,not Lyyy1,...,n0t L}

the body of r. The set {L4,...,L,,} will also be de-
noted by B*(r), and {L1, ..., L,} will be denoted

by B~ (r).
Intuitively, rule » means that we can conclude L, if
(i) Ly, ..., Ly, are known and (ii) L,,+1,..., L, are not

known. Furthermore, note the difference between strong
negation —A of an atom A, expressing the fact that A is
false, and weak negation not A of the atom A, which is
true if we cannot assert that A is true, i.e., if either A is
false or we do not know whether A is true or false.

A set of literals is consistent iff it does not contain a
complementary pair A, —A of literals. Consistent sets of
literals are also referred to as interpretations. A literal
L is true in an interpretation I (symbolically I = L) iff
L € I, and false otherwise.

Given a rule r, the body B(r) of r is true in I iff
(i)each L € BT (r)istruein I and (ii)each L € B~ (p) is
false in I. In other words, B(r) istruein [iff B*(r) C I
and B~ (r) NI = (. We write I = B(r) to express that
B(r) istrue in I. Rule r is true in I iff H(r) is true in I
whenever B(r) is true in I. The fact that r is true in T will
be denoted by I |= r. Likewise, for a program P, I = P
means that I |= r for all » € P. In this case, I is said to
be a model of P.

Since rules may include weak negation, they are more
expressive than ordinary Horn clauses. This is the rea-
son why we cannot always assign a unique set of conse-
quences to a knowledge base. Several semantics for ex-
tended logic programs exist; in the following, we describe
the well-known answer set semantics due to Gelfond and
Lifschitz (1991).

Let be a rule. Then, r* denotes the rule obtained
from r by deleting all weakly negated literals in the body
of r, i.e.,, 7t = H(r) «— B™(r). Furthermore, we say
that rule r is defeated by a set of literals S if some literal
in B~(r)istruein S, i.e., if B~ (r) NS # 0.

The reduct, P°, of a program P relative to a set S of
literals is defined by

PS = {r* | r € P and r is not defeated by S}.

In other words, P° is obtained from P by (i) deleting
any » € P which is defeated by S and (ii) deleting each
weakly negated literal occurring in the bodies of the re-
maining rules.

An interpretation I is an answer set of a program P
iff it is a minimal model of P! (the reduct P! is often
called the Gelfond-Lifschitz reduction). Observe that any
answer set of P is a fortiori a model of P.

Example 1 Consider the knowledge base KB consisting
of the following rules:

KB = {7’1 : sleep «— mot tv_on, ro : night — ,
rs: tv_on <« , rq: watch_tv < tv_on }

Given the interpretation S = {night, tv_on, watch_tv},
the reduct KB* consists of the rules ro, r3, and ry. It is
easily verified that S is a minimal model of KB°. Hence,
S is an answer set of KB.

A program may possess one or several answer sets, or
none at all. Therefore, we associate with every knowledge
base KB a specific set of beliefs, Bel(KB). Taking a
cautious view, a rule r (or a fact L) is in Bel(KB) iff
every answer set of KB is a model for it.

If changes occur in the environment, or if new infor-
mation is acquired which has to be incorporated, then the
knowledge base must be updated. This is represented
in terms of sequences (P4, ..., P,) of logic programs,
where each P; (1 < i < n) is assumed to update the
information given by Py,..., P;_.

Several update formalisms for logic programs have
been suggested in the literature (see, e.g., (Foo and Zhang,

1998; Inoue and Sakama, 1999; Alferes et al., 2000; Eiter
et al., 2000)). For all these formalisms, the update pol-
icy is fixed and implicitly encoded in the semantics of
the update process itself. In order to resolve conflicting
information, the update semantics assigns more recent in-
formation precedence over old one. However, the infor-
mation learnt cannot be “filtered” or “pre-processed”, and
is dealt with in the same uniform way.

Example 2 Assume the knowledge base KB of Exam-
ple 1 is updated with the following information:

U, = {r5 . —tv_on «— power_failure,
r¢ : power_failure — }

Simply adding the new rules to KB would result in an
inconsistent knowledge base, since it would be able to de-
rive the facts "tv_on’ and ’power _failure’, and, due to
rule r5, —tv_on’. Update formalisms avoid such situa-
tions by employing more subtle update mechanisms. For
example, applying the update semantics proposed by Eiter
et al. (2000), rule r3 would be rejected in favour of the
more recent rule r5. In this case,

S1 = {power _failure, ~tv_on, night, sleep }
would be an answer set for KB updated by U;.

The language LUPS, due to Alferes et al. (1999), al-
lows for more flexibility of the update process. It per-
mits to dynamically specify the contents of a sequence of
updates by compiling a corresponding sequence of meta-
programs into a concrete update sequence. Within the
meta-programs, one can express conditional assertion or
retraction of rules, based on the semantics of the current
knowledge state. This is achieved by means of the follow-
ing commands:

e assert r: add rule r to the current knowledge state;

e assert event r: add rule r only once to the current
knowledge state, i.e., r is not supposed to persist by
inertia;

e retract r: remove rule » from the current knowl-
edge state;

e retract event r: remove rule » once from the cur-
rent knowledge state, i.e., » persists in ensuing up-
dates;

e alwaysr: apply assert r in every update;

e always event r: apply assert event r in every up-
date;

e cancel r: cancel rule r in a previous always com-
mand.

These commands permit the specification of changes
to a knowledge base KB in terms of specifying which
rules should hold or not hold in the resulting knowledge

state (and whether they should hold or not hold by iner-
tia). For instance,

assert sleep «— power_failure when night

asserts that the rule sleep «— power_failure should be
added to KB if night is currently true in it.

4 Update Agents

Although LUPS enhances the flexibility of logic program
updates, a limitation is that it has no notion of incoming
information from the environment, i.e., LUPS possesses
no notion of event. Therefore, unforeseen updates cannot
be modeled. Also, it is not possible for the assertion or
retraction of a rule to be conditioned on the execution of
other LUPS commands.

In what follows, we introduce update agents which
overcome these limitations. These agents are able to han-
dle LUPS commands and, additionally, execute them de-
pending on other commands and events that occur. The
basic idea is to combine and integrate the features of the
declarative action language of IMPACT and the declara-
tive LUPS formalism for updating knowledge bases in a
suitable way, leading to a rule-based language for spec-
ifying update behavior to a knowledge base. A formal
semantics for update policies, given in this language, is
inherited from the semantics for agent programs in /M-
PACT, combined with the semantics of the LUPS lan-
guage as in (Alferes et al., 1999).

More specifically, an update policy consists of an IM-
PACT agent program, which is build over the following
agent data structures and actions.

Software Package. We developed a software package
SP for updating and querying a knowledge base KB,
which implements the methods described above. The API
consists of two code calls:

e bel() accesses KB and returns the current belief
set Bel(KS), and

e event() lists all rules in the current event, which is
a finite set of rules.!

Code call atoms, i.e., atoms of the form in(t, bel()),
not_in(t,bel()), and in(t, event()), where ¢ is either a
specific rule r or a variable R, can be used to express
conditions on the belief set and the event. In case ¢ is a
variable, it is quantified over all such that in(r, bel()),
not_in(t, bel()), and in(t, event())) is true, respectively.

Actions. Certain IMPACT actions, which can be real-
ized in any suitable programming language (like, e.g.,
Java or C), model the operations of the LUPS language
by means of their effects, which are logically specified in
terms of add lists and delete lists. In particular, the actions

INote that afact L can be equivalently represented asarule L — .

e always(R), always_event(R),

o assert(R), assert_event(R),

o retract(R), retract_event(R), and
e cancel(R),

where R is a (rule) parameter, are required. Further auxil-
iary actions, such as ignore(R), whose semantical effect
is a “no operation,” may be defined, facilitating more con-
venient formulations of the agent policy.

Obviously, not all actions are compatible with each
other, e.g., assert(R) and retract(R) should not be ex-
ecuted simultaneously. This can be handled naturally in
IMPACT by formulating action constraints, which dis-
able joint execution of actions, subject to an optional code
call condition.

Update Policy. An update policy, i/, can be represented
as a set of IMPACT action rules of the form

Docmdi(t1) «— [-]|Docmda(ts),. ..,
[-]Do cmd,,(t,),CC_cond,

where each cmd;(t;) (1 <4 < n) is an action atom and
CC_cond is a list of code call atoms expressing conditions
on the belief set and the event as described above. In-
tuitively, such a rule expresses that the update agent will
perform action cmd; (with the given arguments) if it also
performs actions cmd;, 1 < i < n, (or does not perform
those actions, if the action atoms are negated) and if the
current belief set and event satisfy CC_cond. E.g., the ac-
tion rule

Do assert(R) « —Doignore(R),in(R, event())

encodes a simple incorporate-by-default policy, in the

sense that event rules are incorporated in the knowledge
base except if it is explicitly specified that the rule has to
be ignored.

Example 3 Consider a simple agent selecting Web shops
si, 1 < i < n, in search for some specific merchandise.
Suppose its knowledge base, KB, contains the rules

75 : o query(s;) «— sale(si), up(s:),
not ~query(s;);

rj i try-query — query(s;);

Tont1 : notify «— not try_query

(1<i<n,n+1<j<2n)andafactry: date(0) as
an initial time stamp. Here, r,...,r, express that shop
s;, which has a sale and whose Web site is up, is queried
by default, and 7,11, ...,72,41 Serve to detect that no
site is queried, which causes ‘notify’ to be true.

Assume that an event, E/, might be any consistent set
of facts or ground rules of the form sale(s;) < date(t),
stating that shop s; has a sale on date ¢, such that ' con-
tains at most one time stamp date(-). An update pol-
icy U might be defined as an IMPACT agent program
as follows. Assume it contains the above incorporate-by-
default rule, as well as:

Do always(sale(S) «— date(T)) —

Do assert(sale(S) «— date(T)),
in(S, shops()), in(T, dates());

Do cancel(sale(S) «— date(T)) «—
in(date(T),isBel()), T # T,
in(date(T"), event()),in(S, shops()),
in(T,dates()),in(T’, dates());

Do retract(sale(S) — date(T)) «—
in(date(T),isBel()), T # T,
in(date(T"), event()),in(S, shops()),
in(T,dates()),in(T’, dates());

Informally, the first rule repeatedly confirms the in-
formation about a future sale, which guarantees that it is
effective on the given date, while the second rule revokes
this. The third one removes information about a previ-
ously ended sale (assuming the time stamps increase).
Note that we assume the existence of two code calls, given
by ‘shops()’ and ‘dates()’, which we use for grounding,
i.e., they return all possible assignments for shops and
time stamps. Furthermore, ¢/ includes also the following
rules:

Doretract(date(T)) <« in(date(T),isBel()),
T # T’ in(date(T"), event()),
in(T,dates()),in(T’, dates());

Dovignore(sale(s;)) <« in(sale(sy), event());

Doignore(sale(s;) <« date(T)) «—
in(sale(sy) «— date(T),event()),in(T, dates());

The first rule keeps the time stamp ‘date(t)’ in KB
unique, and removes the old value. The other statements
simply express that sales information about shop s; is ig-
nored.

Intuitively, an update agent follows its update policy
by calculating a new (reasonable) status set on each event
it receives, and by executing exactly those (ground) ac-
tions emd(t) such that the action status atom Do cmd ()
is in the status set.

For instance, suppose the update agent specified in
Example 3 is triggered by the event {sale(sz), date(1)}.
Then, its reasonable status set includes the action sta-
tus atoms assert(sale(sz)), assert(date(1)), as well as
retract(date(0)). By performing the corresponding ac-
tions, the knowledge base is updated by the agent accord-

ingly.

Using Action Modalities. A direct benefit of using IM-
PACT programs is the availability of deontic modalities.
By allowing arbitrary modalities in the action rules of an
update policy, its expressiveness can be further enhanced,
i.e., one admits rules of the form

Op, cmdi(t1) «— [7]Opyemda(ts2), .. .,
[-]Op,, cmdy (t,),CC_cond,

where each Op,; € {O,P,F,Do, W} is a modality.
This makes it possible to state under which conditions the

assertion or retraction of a rule is possible, allowed, for-
bidden, etc. For example,

Do cmdi (t1) <« —Femdi (t1), CC_cond

expresses that emd; (27) is executed unless it is explicitly
forbidden.

In the above mentioned framework where only Do
modalities are allowed, the modality F can be used to
simulate the ignore action. More specifically, every oc-
currence of Doignore(R) is replaced by Fassert(R),
and rules Femd(R) < Fassert(R) are added which
force Femd(R) for any emd € {always, always_event,
cancel, assert_event, retract, retract,event}.

5 Conclusion

We introduced update agents for the purpose of updat-
ing knowledge bases, represented as logic programs. The
agents follow a declarative policy, and they can easily
be implemented within the IMPACT agent framework,
which implicitly assigns a formal semantics to the update
policies of the agents.

In a companion paper (Eiter et al., 2001), the meta-
language EPI is defined, specifying update behavior over
nonmonotonic knowledge bases. EPI is a generalization
of LUPS, and its formal semantics is based on declara-
tive logic programming. Furthermore, properties of the
EPI language are investigated. EPI can be mapped to /M-
PACT update agents, as described in the present paper,
which provide under reasonable status set semantics an
implementation of this meta-language.

An implementation of update agents as outlined in the
previous section is part of ongoing work. It utilizes an im-
plementation of the update semantics due to Eiter et al.
(2000), which has been integrated within the IMPACT
environment.

The generic nature of the underlying update mecha-
nism, as well as the independently specified update policy,
allows a straightforward change of either module. More-
over, the well-defined semantics, designed to deal with
incomplete and inconsistent information, admits the anal-
ysis of formal properties of the framework. These fea-
tures allow update agents to be a valuable part of (an in-
frastructure for) learning agents. They can not only serve
as knowledge management agents for cooperative agents
sharing a common knowledge base, but they can also be
part of adaptive agents which learn from their interaction
with the environment and which update their knowledge
accordingly. With such a scenario in mind, the integration
of learning components with update agents is an interest-
ing subject for further research.

Acknowledgments

This work was supported by the Austrian Science Fund
(FWF) under grants P13871-INF and N Z29-INF.

References

J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and
T. Przymusinski. Dynamic Updates of Non-Monotonic
Knowledge Bases. J. of Logic Programming, 45(1-3):
43-70, 2000.

J. Alferes, L. Pereira, H. Przymusinska, and T. Przy-
musinski. LUPS—A Language for Updating Logic
Programs. In Proc. LPNMR’99, volume 1730 of LNAI,
pages 162-176. Springer, 1999.

K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S.
Subrahmanian. IMPACT: A Platform for Collaborating
Agents. IEEE Intelligent Systems, 14(2):64-72, 1999.

B. Bargmeyer, J. Fowler, M. Nodine, and B. Perry. Agent-
Based Semantic Interoperability in InfoSleuth. SIG-
MOD Record, 28(1):60-67, 1999.

K. Decker, K. Sycara, and M. Williamson. Middle-
Agents for the Internet. In Proc. IJCAI’97, volume 1,
pages 578-583. Morgan Kaufmann, 1997.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Consid-
erations on Updates of Logic Programs. In Proc. JELIA
2000, volume 1919 of LNALI. Springer, 2000.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Spec-
ifying Update Policies for Nonmonotonic Knowledge
Bases. In Proc. DGNMR 2001, 2001.

T. Eiter, G. Pick, and V.S. Subrahmanian. Heterogeneous
Active Agents, I: Semantics. Artificial Intelligence, 108
(1-2):179-255, 1999.

R. Flores-Mendez. Towards a Standardization of Multi-
Agent System Frameworks. ACM Crossroads, 5(4),
1999.

N. Foo and Y. Zhang. Updating Logic Programs. In Proc.
ECAI’98, pages 403-407. Wiley, 1998.

M. Gelfond and V. Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation
Computing, 9(3—4):365-386, 1991.

K. Inoue and C. Sakama. Updating Extended Logic Pro-
grams through Abduction. In Proc. LPNMR’99, vol-
ume 1730 of LNAI, pages 147-161. Springer, 1999.

A. Levy and D. Weld. Intelligent Internet Systems. Arti-
ficial Intelligence, 118(1-2):1-14, 2000.

F. Sadri and F. Toni. Computational Logic and Multi-
Agent Systems: a Roadmap. Computational Logic,
Special Issue on the Future Technological Roadmap of
Compulog-Net, 2000.

V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Ozcan, and R. Ross. Heterogeneous Agent Systems.
MIT Press, 2000.

