Ann Math Artif Intell (2007) 50:273-304
DOI 10.1007/s10472-007-9077-y

Comparing action descriptions based
on semantic preferences

Thomas Eiter - Esra Erdem - Michael Fink - Jan Senko

Published online: 8 August 2007
© Springer Science + Business Media B.V. 2007

Abstract The focus of this paper is on action domain descriptions whose meaning
can be represented by transition diagrams. We introduce several semantic measures
to compare such action descriptions, based on preferences over possible states of
the world and preferences over some given conditions (observations, assertions,
etc.) about the domain, as well as the probabilities of possible transitions. This
preference information is used to assemble a weight which is assigned to an action
description. As applications of this approach, we study updating action descriptions
and identifying elaboration tolerant action descriptions, with respect to some given
conditions. With a semantic approach based on preferences, not only, for some
problems, we get more plausible solutions, but also, for some problems without any
solutions due to too strong conditions, we can identify which conditions to relax to
obtain a solution. We further study computational issues, and give a characterization
of the computational complexity of computing the semantic measures.

Keywords Action domain descriptions - Semantic preferences - Transition diagrams

Mathematics Subject Classifications (2000) 68T30.68T27

T. Eiter (X) - M. Fink - J. Senko
Institute of Information Systems, Vienna University of Technology, Vienna, Austria
e-mail: eiter@kr.tuwien.ac.at

M. Fink
e-mail: michael@kr.tuwien.ac.at

J. Senko
e-mail: jan@kr.tuwien.ac.at

E. Erdem
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
e-mail: esraerdem@sabanciuniv.edu

@ Springer

274 T. Eiter et al.

1 Introduction

Action languages [1] have been introduced for representing knowledge about actions
(including their effects) by means of action descriptions, which consist of sentences
in a logic whose meaning can be represented by transition diagrams — directed graphs
whose nodes correspond to states and whose edges correspond to transitions caused
by occurrences and non-occurrences of actions. They provide a domain-independent
tool for expressing this knowledge in a highly declarative manner, on which various
reasoning tasks (including planning) can be carried out. However, a particular action
description is always a (more or less) accurate model of a domain, in the sense that
it is a correct abstraction of the modeled world, but as such never “complete,” i.e.,
different such descriptions are possible.

This raises the issue of how to compare different action descriptions. This task is
important for applications where certain descriptions are more preferred than others.
One such application is the action description update problem [2—4]: when updating
an action description with respect to some given information, usually several possibil-
ities exist and one has to choose one of these action descriptions. Another application
is related to representing an action domain in a more elaboration tolerant way [4—
6]. Recall that, according to McCarthy [5], a “formalism is elaboration tolerant to
the extent that it is convenient to modify [...] the formalism to take into account
new phenomena or changed circumstances.” Applied to action descriptions, this
problem can be expressed as the task of identifying among several action descriptions
representing the same action domain, which one is the most elaboration tolerant one,
with respect to some given conditions describing possible elaborations?

The preference of an action description may be based on a syntactic measure,
such as the number of formulas: the less the number of formulas contained in an
action description, the more preferred it is. A syntactic measure can be defined also
in terms of set containment with respect to a given action description D: an action
description is more preferred if it is a maximal set, among others, that is contained
in D. For instance, according to the syntactic measure used in [2] for updating an
action description D with some new knowledge Q, an action description D’ is more
preferred if D’ is a maximal set, among others, containing D and containedin D U Q.

In this paper, we describe the preference of an action description on a semantic
basis, with respect to some given conditions. The idea is to describe a semantic
measure by assigning weights (i.e., real numbers) to action descriptions, with respect
to their transition diagrams and some given conditions; then, once the weights of
action descriptions are computed, to compare two descriptions by comparing their
weights.

We consider action descriptions in a fragment of the action language C [7], which
consists of “causal laws.” For instance, consider a (simplified) TV system with the
possible actions of pushing the power button on the TV, or pushing the power button
of a remote control. In this domain, the causal law

caused PowerON after PushPBry A —PowerON, (1)

expresses that the action PushPBry causes the value of the fluent PowerON to
change from f (false) to ¢ (true); such causal laws describe direct effects of actions.
The causal law

caused 7vON if PowerON, ()
@ Springer

Comparing action descriptions based on semantic preferences 275

Fig. 1 A transition diagram 0O {PushPBrc} {PushPBrc} 0O
{PushPBTV B PuShPBRC }

PowerON {PushPBry} —PowerON
&—/
TvON {PushPBry} -TvON

{PushPBrv, PushPBRrc}

expresses that if the fluent PowerON is caused to be true, then the fluent 7vON is
caused to be true as well; such causal laws describe state constraints. The meaning of
an action description D can be represented by a transition diagram, like in Fig. 1. In
this transition diagram, the nodes of the graph (shown by boxes) denote the states of
the world: (s) one where both the power and the TV is on, and (s’) the other where
both the power and the TV is off. The edges denote action occurrences. For instance,
the edge from s to s’ labeled by the action of pushing the power button on the TV
describes that executing this action at s leads to s’. The edges labeled by the empty
set are due to the law of inertia.

Suppose that we are given another action description D" describing the domain
above; and that the transition diagram of D’ is almost the same as that of D, except
that there is no outgoing edge from the state {PowerON, TvON} with the label
{PushPBpgc}. Which action description should be preferred? To answer this question,
we assign weights to these two action descriptions, based on their transition diagrams,
and given conditions (observations, assertions, etc.).

We describe conditions in an action query language, like in [1], by means of
“queries.” For instance,

ALWAYS \/A N executable A, 3)
€

where 24 denotes the set of all actions, expresses that, at every state, there is some
action executable. The query

SOMETIMES evolves PowerON; {PushPBgc}; PowerON 4)

expresses that, at some state when the power is on, pushing the power button on the
remote control does not turn the power off. Then we can define the weight of an
action description as the number of queries it entails. For instance, according to the
transition diagram of D, (3) and (4) are entailed, so the weight of D is 2; according to
the transition diagram of D', only (3) is entailed, so the weight of D’ is 1. Therefore,
D is preferred over D'.

The main question we study is the following: Given a set D of action descriptions
and a set C of queries, which action description in D is a most preferred one with re-
spect to C? We address this question taking a semantically-oriented stance, that is by
assigning weights to action descriptions in D, based on their transition diagrams and
the given conditions. Providing different means for expressing preference by means
of weights over the essential elements, i.e., states, possible transitions, and conditions,
we obtain four different approaches which are convenient in different scenarios.
Mirroring the respective focus of preference assignment, they are intuitively suited
for situations where the dynamics of a system is disregarded and static requirements
dominate, for situations where dynamic aspects come to the fore and are assessed
by the probability of transitions and sequences thereof (i.e., trajectories), or for

@ Springer

276 T. Eiter et al.

situations where the given conditions are central, serving the purpose of a system
specification, respectively. We apply these approaches to the problem of updating an
action description, as well as to the problem of identifying more elaboration tolerant
action descriptions, and observe the following two benefits. First, if a problem has
many solutions with the syntactic approach of [2], a semantic approach can be used to
further prune the set of admissible solutions and may, eventually, allow to pick one.
Second, if a problem does not have any solution with any of the approaches, due to
too strong conditions, a semantic approach can be used to identify which conditions
could be relaxed in order to find a solution.

As for the organization of the remainder of this article, in the next two sections we
briefly introduce the languages — syntax and semantics — we use to encode an action
domain by means of an action description, respectively to express conditions on such
an action description by means of action queries. In Section 4 we introduce weights
for encoding semantic preference of action descriptions, which thus give us a means
for semantic comparison. The subsequent Section 5 addresses applications of this
approach, while in Section 6 formal results on computational aspects are collected.
Section 7 concludes the paper.

2 Transition diagrams and action descriptions

We consider a (propositional) action signature that consists of a set F of fluent names,
and a set A of action names. Moreover, let t and f denote the truth values True and
False, respectively. An action is a truth-valued function on A, denoted by the set of
action names that are mapped to t. A (propositional) transition diagram of an action
signature £ = (F, A) consists of a set S of states, a function V : Fx § — {f,},and a
subset R C S x 24 x S of transitions. We say that V (P, s) is the value of fluent Pin s.
The states s’ such that (s, A, s’) € R are the possible results of the execution of the
action A in the state s. We say that A is executable in s, if at least one such state s’
exists.

A transition diagram can be thought of as a labeled directed graph. Every state s
is represented by a vertex labeled with the function P+ V(P,s) from fluent names
to truth values. Every triple (s, A,s’) € R is represented by an edge leading from s
to s’ and labeled A. An example of a transition diagram is shown in Fig. 1.

We consider a subset of the action description language C[7] that consists of two
kinds of expressions (called causal laws): static laws of the form

caused L if G, (5)

where L is a fluent literal (an expression of the form P or —P, where P is a fluent
name) and G is a fluent formula, (a propositional combination of fluent names), and
dynamic laws of the form

caused L if G after U, (6)

where L and G are as above, and U is a formula (a propositional combination of
fluent names and action names). In both cases the part if G can be dropped if G is
True. An action description is a set of causal laws. For instance, the action description
consisting of the causal laws given in Fig. 2 encodes how a TV system operates;
inertial L, ..., L stands for caused L; if L; after L; (1 <i < k).

@ Springer

Comparing action descriptions based on semantic preferences 277

Fig. 2 An action description caused PowerON after PushPBry A —-PowerON
encoding a TV domain caused —PowerON after PushPBrv N PowerON
caused TvON if PowerON
caused ~TvON if —PowerON
inertial PowerON,—PowerON, TvON,—~TvON.

The fragment of C we consider, where L is restricted to a fluent literal in
causal laws of the form (5) and (6) rather than allowing fluent formulas, allows
to express definite causal theories [7]. This means, one can state elementary causal
effects, i.e., causation wrt. a particular fluent, but nondeterminism in the attri-
bution of causation is prohibited. For example, in our TV setting we could not
express the following nondeterministic causal effect of replacing a broken fuse:
caused TvON Vv —PowerON after ReplaceFuse. Note that we could rewrite the law
into definite laws that are equivalent on our example TV domain. In general,
however, such a rewriting would require a semantic reconstruction and thus cannot
be done efficiently (i.e., cause an exponential blow-up).

The meaning of an action description can be represented by a transition diagram.
Let the interpretation of a state be given by the truth assignment to fluent names as
induced by the respective fluent values under V. Note that the general definition of
a transition diagram as introduced above, allows for different, i.e. distinguishable,
states in our domain to yield equal interpretations. However, since such states are
indistinguishable by the properties, i.e. fluents, chosen to model the domain, we
further on do not distinguish between them. Therefore, let D be an action description
with a signature £ = (F, A). The transition diagram (S, V, R)! described by D is
defined as follows: S is the set of all interpretations s of F such that, for every static
law (5) in D, s satisfies G D L; V(P,s) = s(P); and R is the set of all triples (s, A, s')
such that s” is the only interpretation of F which satisfies the heads L of all static
laws (5) in D for which s’ satisfies G, and dynamic laws (6) in D for which s’ satisfies G
and s U A satisfies U. For example the transition diagram described by the action
description of Fig. 2 is shown in Fig. 1. Note that every action description D describes
a unique transition diagram, which we denote by 7'(D). We call an action description
D consistent, if T(D) has a nonempty state set, and finally remark that checking for
consistency is already intractable (see also Section 6). Thus, computing 7'(D) given
D is also not polynomial.

3 Action queries
To talk about observations of the world, or assertions about the effects of the
execution of actions, we use an action query language consisting of queries described

as follows.

Definition 1 A basic query is (a) a static query of the form

holds F, (7

INote that, by this definition V actually is redundant (but kept for conformity).

@ Springer

278 T. Eiter et al.

where F is a fluent formula; (b) a dynamic query of the form

necessarily O after A;; ...; A,, (8

where Q is a basic query and each A; is an action; or (c) a propositional combination
of basic queries.
An existential query is an expression of the form

SOMETIMES O, 9)

where Q is a basic query; a universal query is of the form

ALWAYS O, (10)

where Q is a basic query.
A query is a propositional combination of existential and universal queries.

As for the semantics, let 7 = (S, V, R) be a transition diagram, with a set S of
states, a value function V mapping, at each state s, every fluent P to a truth value,
and a set R of transitions. A history of T of length n is a sequence

80, A1, 815, Sn—1, An, Sn (11)

where each (s;, A;;1, Sii) (0 <i<n)isin R.

Definition 2 A state s € S satisfies a basic query g relative to a transition diagram
T =(S,V, R),denoted T, s = q, if

— g is of the form (7) and the interpretation P > V(P,s) satisfies F;

— g is of the form (8) and, for every history s = s9, Ay, 1, ..., 81, Ap, s, of T of
length n, basic query Q is satisfied at state s,;

— q is of the form —Q and T,s [~ Q; g is of the form Q A O, and T,s = Q and
T,s= Q;orgisoftheform Qv Q',and T,s = Qor T,s = Q'.

Note that, for every state s and for every fluent formula F, T, s = holds F iff T,
s = —holds —F. And since satisfaction of basic queries is defined only wrt. par-
ticular states, for every state s, every fluent formula F, and every action se-

quence Ay, ..., A, (wheren > 1),ifitholds that 7, s = necessarily (holds F) after
Ay;...; A, then symmetrically it holds that 7, s = —necessarily (—holds F) after
Al A,

Definition 3 A transition diagram 7 = (S, V, R) entails a query g, denoted T = g, if
one of the following holds:

— g isan existential query (9) and 3Is € S (T, s = Q);

— gqisauniversal query (10) and Vs € S (T, s = Q);

— gqisoftheform—Qand T & Q;qgisoftheform OA Q',and T = Qand T = O’
orgisoftheform Qv Q',and T = Qor T = Q.

Note that, 7 = SOMETIMES Q iff 7 = —-ALWAYS —Q, for any basic query Q.
We say that T entails a set of queries C, denoted T=C,if T = g for every g € C.

Satisfaction and entailment of queries by action descriptions is now naturally
defined as follows.

@ Springer

Comparing action descriptions based on semantic preferences 279

Definition 4 An action description D satisfies a basic query ¢ at a state s, denoted
D,s = q, if T(D),s = g; it entails a query g, denoted D = q, if T(D) = g; and, it
entails a set of queries C, denoted D = C,if T(D) = C.

Example 1 Consider the action description in Fig. 2 encoding how a TV system
operates; inertial L1, ..., L, stands for caused L; if L; after L; (1 < i < k). This action
description does not entail any set of queries containing

ALWAYS necessarily (holds =7vON) after { PushPBgc}

because this query is not satisfied at the state {TvON, PowerON}; but, it entails the
queries:

ALWAYS holds PowerON = TvON,

ALWAYS holds PowerON A TvON D
—necessarily (holds 7vON) after {PushPB7y}. (12)

In the rest of the paper, an expression of the form

possibly O after A;;...; A,,
where Q is a basic query and each A; is an action, stands for the dynamic query
—necessarily — QO after A;; ...; A,; an expression of the form
evolves Fo; Ay; Fi;...; Fu_y; Ay Fr, (13)

where each F; is a fluent formula, and each A; is an action, stands for holds F, A
possibly (holds F; A possibly (holds F> A ...) after A,) after A;; and an expression of
the form

executable A;...; A,,

stands for the dynamic query possibly True after A;;...; A,. We sometimes drop
holds from static queries appearing in dynamic queries.

Intuitively, satisfaction of a query by an action description reduces to satisfaction
of respective basic queries at certain states of the transition diagram. Thereby, static
queries require a (static) condition to hold in these states, while dynamic queries
require particular (sequences of) transitions to emanate from these states. Existential
and universal quantification naturally express whether existence of such a state is
sufficient for satisfaction or whether the respective basic queries have to hold at all
states.

Queries allow us to express various pieces of knowledge about the domain.
For instance, we can express the existence of states where a formula F holds by
SOMETIMES holds F. Similarly, we can express the existence of a transition from
some state where a formula F holds to another state where a formula F’ holds, by
the execution of an action A:

SOMETIMES holds F A possibly F' after A.

In general, the existence of a history (11) such that, for each s;, the interpretation
P — V(P,s;) satisfies some formula F; can be expressed by the query:

SOMETIMES evolves Fy; Ay; Fy;...; F,_1; A, F,. (14)
@ Springer

280 T. Eiter et al.

For instance, query

SOMETIMES evolves PowerON; {PushPB vy };

—PowerON; {PushPBry}; PowerON. (13)
describes the presence of the following history in Fig. 1:
{PowerON, TvON}, {PushPBry}, {—PowerON, (16)

—TvON}, {PushPB7y}, {PowerON, TvON}.

Also we can express that there is no transition from any state where a formula F
holds:

ALWAYS holds F D /\A N necessarily False after A.
€

Like in [2], we can express, given an action sequence Ay, ..., A, (n > 1), executabil-
ity of it at every state by

ALWAYS executable A;;...; A,;

mandatory effects of it in a given context by

ALWAYS holds G D necessarily F after A;...; Ay;

and possible effects of it in a context by

ALWAYS holds G D possibly F after A;;...; A,.

In the last two queries, F describes the effects and G the context.

4 Weight assignments for action descriptions

There are many possibilities for comparing action descriptions. A generic method
is to use a preference relation, i.e., a preorder <, which describes for each pair of
actions descriptions D and D’ whether D is preferable to D’, in symbols D < D'.
The preorder < can be defined in various ways, and may depend on syntactic and/or
semantic properties of the action descriptions D and D’'.

One particular way is to compare action descriptions on the basis of a numeric
weight assigned to them, such that preference of an action description D over
D’ is determined by comparing weight(D) and weight(D’), where weight(D) and
weight(D’) are the weights assigned to D and D’, respectively. To this end we present
in this section four weight assignments, which assign to each action description D a
numeric weight, based on the transition diagram of D and a given set of conditions.
Each of the weight assignments aims at valuing some particular aspect of the action
description, but without an a priori epistemic meaning. Briefly, the four weight
assignments and their aims are as follows:

— Weighted states: to value preference over states, e.g., in situations where the
dynamics of a system is disregarded and static requirements dominate.

@ Springer

Comparing action descriptions based on semantic preferences 281

— Weighted queries: to value preference over conditions in a generic way, i.e., with-
out resorting to the transition diagram in detail. This applies, e.g., in situations
where the conditions serve the purpose of a specification for some behavior of
a dynamic system and an action description amounts to a syntactic realization
attempt.

— Weighted histories: to value preference over trajectories, i.e., sequences of transi-
tions, by taking into account the probability at which they occur. This is needed
in situations where dynamic aspects are central.

— Weighted queries relative to weighted states: to value a combination of the
approaches above, e.g., in situations where static requirements also need to be
taken into account when assessing dynamic requirements of a system.

These four assignments are by no means exhaustive, and many others are conceiv-
able. However, they allow to specify preferences over the main semantic constituents
of an action description with respect to an action domain — states, transitions,
and queries (which allow to express desirable properties and axioms), as well as a
combination thereof. Furthermore, the corresponding preference orders are total
and, unlike arbitrary preference orders, beneficial with respect to discrimination of
choices or component-wise comparability; this will be discussed in more detail in
Section 7. After presenting the assignments in detail, we will consider possible usage
scenarios for them in Section 4.5.

4.1 Weighted states

Consider two descriptions of an action domain that involves consumption of some
resource, such as money. Although some reasoning tasks, such as finding a plan to
do shopping, can be performed well with respect to either description, one might
prefer finding/executing the plan with respect to the description according to which
the number of possible world states where resource consumption is less than some
given value. Such a preference over states of a transition diagram 7 = (S, V, R) can
be modelled by assigning a weight to each state in S, by means of a function g. Such
a function assigning real numbers to states of the world can be considered as a utility
function, as in decision theory. If one state of the world is preferred to another state
of the world then it has higher utility for the agent; here “utility” is understood as
“the quality of being useful” as in [8]. Alternatively, the function g can be viewed
as a reward function: being at a state s will give a reward of g(s) to the agent. For
instance, in the example above, g(s) could be the amount of money the agent has at
state s. In this case, g(s) can be understood as a utility/reward function.

Given a utility function for a set S of states, we can identify the highly preferred
states relative to a given number [: a state with the weight greater than / is highly
preferred.

Definition 5 The weight of an action description D relative to g and [is defined as:

weight,(D) = |{s:s€ S, T(D)=(S,V, R), g(s) > [}].

With respect to this definition, the more the number of states that are highly
preferred by the agent, the more preferred the action description is.

@ Springer

282 T. Eiter et al.

Example 2 Consider the transition diagram in Fig. 1 described by D. Take, for each
ses,

2 if PowerON € s
1 otherwise.

5(s) = { (17)

Take [= 1. Then weight,(D) = 1.

4.2 Weighted queries

Using weighted states we can express static preferences over action descriptions.
Most often, however, action descriptions serve to model dynamic systems, where
certain specifications have to be met, that do not just depend on the different system
states. One possibility to account for the dynamic behaviour in comparing action
descriptions is by checking whether they satisfy some given conditions (e.g., some
“soft” constraints), possibly of different importance. For instance, one condition
might be concurrence of at most three actions, and another condition might be
the executability of some particular action; and the first condition might be more
important for one sort of planning tasks because the execution of more than three
actions is often problematic. Such a preference over conditions can be specified by
assigning weights to the queries describing these conditions. Based on such weighted
queries, we can define the weight of an action description D as follows.

Definition 6 Let C be a set of queries, along with a weight function f mapping each
condition in C to a real number. The weight of D (relative to C and f) is

weighty(D) = ZCEC.D):C f(o).
Intuitively, the weight of an action description defined relative to the weights of
queries shows how much the set C of given preferable queries are satisfied. With this
definition, the more the highly preferred queries are satisfied, the more preferred the
action description is.

Example 3 Suppose that C consists of (15) and
ALWAYS executable {PushPBgc}, (18)

with weights 1 and 2 respectively. For the description D with the transition diagram
in Fig. 1, weight, (D) = 3.

4.3 Weighted histories

A major field of application for action descriptions is in representing planning
problems. In this context the focus is on how a state evolves by the execution of a
sequence of actions. This motivates the comparison of different action descriptions
by assigning weights to such “histories,” rather than just states/conditions, and to
accumulate them. Informally, this can be achieved as follows.

For a query c¢ of form (14), we value any history w which satisfies ¢, as a
“desired” witness of this query, in terms of the utility u(w) of w, which is recursively

@ Springer

Comparing action descriptions based on semantic preferences 283

determined by a state reward function g(s) and probability distribution m((s, A, s))
on the transitions. We then accumulate all these values. Intuitively, the more and
the higher desired the histories which satisfy the query are, the more will the action
description be preferred. For handling several queries and discriminating between
them, weighted sums of history utilities using query weights f(c) are calculated and
accumulated. So intuitively, a high weight (and thus preference) is assigned to action
descriptions in which ‘important” queries are (often) satisfied by desired histories.

More formally, the weight assignment is defined as follows. In a transition diagram
T = (S, V, R), we say that a history (11) of length n is desired with respect to a given
query (14), if, for each i, the interpretation P — V(P,s;) satisfies F;.

Let D be an action description, and 7(D) = (S, V, R). Let C be a set of queries,
along with a weight function f mapping each condition in C to a number. Let Hc¢
be the set of pairs (w, ¢) such that w is a desired history in 7'(D) with respect to the
query c of form (14) in C. Let us denote by st(w) the starting state sy of a history w of
form (11). We define a function # mapping each desired history w appearing in H¢
to a real number, in terms of the utility u(w) of state st(w) with respect to w:

h(w) = u(w) x Y f(o).

(w,c)eHe

The function u mapping a history w of form (11) to a real number can be defined in
terms of a sequence of functions u;. Given a utility function (or a reward function)
g mapping each state in S to a real number, and a transition model m mapping each
transition (s, A,s’) in R to a probability (i.e., the probability of reaching s’ from s
after execution of A):

up(w) = g(Sn)
wj(w) = g(s;) + m({s;, Aiy1, Six1)) X i1 (w) (0 <i < n)
u(w) = up(w).

These equations are essentially obtained from the equations used for value determi-
nation in the policy-iteration algorithm described in [8, Chapter 17]: take {so, .. ., s,}
as the set of states, (s;, A;11, Si+1) as the possible transitions, the mapping s; —> A
as the fixed policy, U as u, U; as u;, R as g, and M as m.

Definition 7 The weight of D in terms of the weights of desired histories wy, ..., w;
appearing in Hc is defined as

weight,(D) = Z;l h(w;).

The more the utilities of desired histories (or trajectories) satisfied by the action
description, the more preferred the action description is.

Example 4 Suppose that C consists of query (15), with weight 3. Consider the
transition diagram 7 = (S, V, R) in Fig. 1. Let us denote history (16) by w, and

@ Springer

284 T. Eiter et al.

query (15) by c¢. Then H¢ contains (w, ¢). Take g(s) as in (17). Take / = 1. Suppose
that, for each transition (s, A, s’) in R,

ny _] 0.5if s = {PowerON, TvON} A |A| =1
m(ls, 4,) = { 1 otherwise. (19)
Then w(w)=3.5 and h(w)=u(w)x Y, ep. f(€) =35x3=10.5. Hence
weight;, (D) = 10.5. '

4.4 Weighted queries relative to weighted states

The three approaches above can be united by also considering to what extent each
universal query in C is entailed by the action description. The idea is to take, while
computing the weight of a description relative to weighted queries, also the states
into account at which these queries are satisfied.

To this end, the reward g(s) of a state s is redefined if it is the starting point
of a history which satisfies some existential query of form (14), to its accumulated
utility in this respect. The given weight f(g) of such a query g is then scaled with
the average reward of the states in the transition diagram which witness the query.
Thus intuitively, few strong (highly desired) witness states are valued higher than
many weak (less desired) ones. We may then similarly measure to what extent a
universal query of form ALWAYS Q dual to form (14) is satisfied, and can extended
the measure to disjunctions of universal and existential queries.

More formally, the weight assignment is as follows. Let D be an action description.
Let T(D) = (S, V, R), along with a weight function g mapping each state in 7'(D) to
areal number. Let C be a set of queries such that every query ¢ in C is an existential
query, a universal query, or a disjunction of both.

First, for each state s in .S, we compute its new weight g’(s), taking into account
utilities of the desired histories starting with s. Let H¢ be the set of pairs (w, c¢) such
that w is a desired history in 7'(D) with respect to the query c of form (14) in C. Let
W be the set of histories that appear in H¢. Let u be a function mapping a history
w to a real number, describing the utility of state s with respect to w. Then the new
weight function g’ is defined as follows:

I B4 if Aw(w € W Ast(w) =s)
§() = Y weW.si(w)—s 4(w) otherwise.

Next, for each query ¢ in C, we compute its new weight f'(c). Let f be a function
mapping each condition in C to a real number. We will denote by Sp(B) the set of
states s such that D, s = B. Then we define f” as follows:

f/(q/) + f/(q//) ifq — q/ \/q//
B if g = ALWAYS B
Faa=y, if ¢ = SOMETIMES B A |Sp(B)| > 0
0 if ¢ = SOMETIMES B A |Sp(B)]| = 0,

where B = f(q) X Y cs,3 &6 ¥ = (@) X [(Xses, 3 & $))/1Sp(B)]]. Intuitively,
f’ describes to what extent each preferable query q is satisfied.

@ Springer

Comparing action descriptions based on semantic preferences 285

Definition 8 The weight of D (relative to C and f) is defined by the sum

weightyy(D) =3 f'(@.

Intuitively, it describes how much and to what extent the given preferable queries
are satisfied.

Example 5 Suppose that C consists of three queries:

ALWAYS executable { PushPB7y}, (20)
SOMETIMES —executable {PushPBgc, PushPBpy}, (21)

and query (15), denoted by ci, ¢; and ¢z respectively. Consider an action descrip-
tion D, with the transition diagram in Fig. 1. Let us denote history (16) by w;
then H¢ = {(w, ¢c3)}. Take the utility function g as (17), and the transition model
m as (19). Take f(c;) =1, f(c2) =2, f(c3) =3. Then, we obtain g’ ({PowerON,
TvON})=3.5, g ({—PowerON,—~TvON})=1,as well as f'(c;)=4, f'(c2)=4, f'(c;)=
10.5. Therefore, weighty (D) = 18.5.

4.5 Usage

As pinpointed at the beginning of this section, there are other possibilities of defining
a weight function for action descriptions; and as hinted above by examples, deciding
for a weight function depends on particular reasoning task and/or what the user
is concerned about the most. Let us briefly compare distinguishing qualities of the
weights introduced above and deflect some usage scenarios upon this.

One dimension along which the weights can be differentiated is to what extent
they respond to details of the model, that is to the transition diagram. Weighted
states, for example, just aggregate over preferred states, neglecting any transitions.
Thus, they provide an abstract ‘static view’ on the model. If one is more interested
in prediction and has concerns about the values of some fluents, then one would
probably assign weights to action descriptions with respect to the weights of states.
This may serve to identify points of failure or sources of error, however, without
revealing information on the structure of the error.

By means of weighted queries, not only static but also dynamic requirements
that are expected to hold on the transition diagram of an action description can be
expressed in a temporal logic like language. Nevertheless, it is also an extensional
view on the model that does not account for the particular structure, i.e. the number
of violations. It therefore provides a ‘specification view’ on the model, similar as in
model checking: One is interested in a model that satisfies the specification but not
in how it does. So, if the major concern is that an action description satisfies a formal
system specification, then one may resort to weighted queries to enforce it.

The intention of weighted histories is to allow for a qualitative assessment of
certain actions, respectively sequences of actions (trajectories, runs). They thus allow
for an ‘agent view’ on the model building on utilities of states and probabilities for
transitions. For instance, if one is interested in planning, and has some preferences
over executions of sequences of actions, then one would assign weights to a descrip-
tion with respect to these histories.

@ Springer

286 T. Eiter et al.

Eventually, the idea of weighted queries relative to weighted states is to extend the
qualitative assessment to queries in general, that is, taking state utilities into account
when weighing queries. This weight thus allows to combine the above approaches,
yielding a more generic approach: one can express different, and more sophisticated
views on the model — sometimes perhaps at the cost of clarity and ease of use.

Further examples of the weight measures are given in Appendices.

5 Applications

We now turn to applications of the approach introduced in the previous section, that
is, using semantic weights for comparing action descriptions. We illustrate how it
can be applied for updating action descriptions, as well as for identifying elaboration
tolerant action descriptions, and discuss benefits that can be achieved in comparison
to syntactic approaches.

5.1 Updating an action description

Suppose that an action description D consists of two parts: D, (unmodifiable causal
laws) and D,,, (modifiable causal laws); and a set C of conditions is partitioned into
two: C, (obligatory) and C, (preferable). We define an Action Description Update
(ADU) problem by an action description D = (D,, D,,), a set Q of causal laws, a
set C = (C,, C)p) of queries, all with the same signature, and a weight function weight
mapping an action description to a number. The weight function can be defined
relative to a set of queries, a utility function, or a transition model, as seen in the
previous section. We say that a consistent action description D’ is a solution to the
ADU problem (D, Q, C, weight) if

(1) QuD,cD cSDUQ,

2) D E=C,,

(3) there is no other consistent action description D” such that QU D, € D" C
DU Q, D" = C,, and weight(D") > weight(D’).

The definition of an ADU problem in [2] is different from the one above mainly
in two ways. First, C, = . Second, instead of (3) above, the following syntactic
condition is considered: there is no consistent action description D” such that D’ C
D’"C DUQ,and D" = C.

The semantic approach above has mainly two benefits, compared to the syntactic
approach of [2]. First, there may be more than one solution to some ADU problems
with the syntactic approach. In such cases, a semantic approach can be applied to
further prune the set of admissible solutions and may, eventually, allow to pick one
of these solutions. Example 6 illustrates this benefit. Second, for an ADU problem,
if no consistent action description D’ satisfying (1) satisfies the obligatory queries
(Cy,), there is no solution to this problem with either syntactic or semantic approach.
In such a case, we can use the semantic approach with weighted queries, to relax
some obligatory queries in C, (e.g., move them to C,). The idea is first to solve the
ADU problem ((D,,, D), O, (8, C,), weight), where C,’ is obtained from C, by

@ Springer

Comparing action descriptions based on semantic preferences 287

complementing each query, and where the weights of queries in C,” are equal to
some very small negative integer; and then to identify the queries of C,’ satisfied in
a solution and add them to C,,, with weights multiplied by -1. This process of relaxing
some conditions of C, to find a solution is illustrated in Example 7.

Example 6 Consider, for instance, the action description D given in Fig. 2 as D =
(D, D,), where D,, = {(1), (2)} (and thus D, = D\ D,,), that describes a TV
system with a remote control. Suppose that, later the following information, Q, is
obtained:

caused 7vON after PushPBrc N PowerON A —=TvON
caused —7vON after PushPBrc A TvON.

Suppose that we are given the set C = (C,, C,) of queries where C, consists of the
queries (3) and

SOMETIMES evolves =TvON; {PushPB7y}; =TvON, (22)

and C, consists of the queries (4), (15), (18), (20), (21), denoted by ¢y, ..., ¢s
respectively. When Q is added to D, the meaning of D U Q can be represented by
a transition diagram almost the same as that of D (Fig. 1), except that there is no
outgoing edge from the state {PowerON, TvON} with the label {PushPBgrc}; thus
only (3), (15) and (22) in C are entailed by D U Q. The question is how to update
D by QO such that the obligatory conditions, C,, are satisfied, and the preferable
conditions, C,, are satisfied as much as possible.

The consistent action descriptions for which (1) holds are

DV =DpuUQ,

D® =D, U QU{(2)},

D® = D, U QU{(},

D® = D, U Q.
With the syntactic approach of [2], we have to choose between D® and D®, since
they have more causal laws. Consider the semantic approach based on weighted
histories (i.e., weight = weight;,), with (17) as the utility function g, (19) as the
transition model m, and

flen) =3, flc) =1, f(c3) =4, flca) =3, f(c5) =2.
Let us consider the states
so = {PowerON, TvON},
s1 = {PowerON, =TvON},
s, = {mPowerON, =TvON};

and the histories

wo = S, {PushPBgc}, s1,
wy = 81, {PushPBgc}, so,
wy = 8o, {PushPBrtv}, s>, {PushPBry}, s,
w3 = 51, {PushPBrtv}, 52, {PushPBry}, s

@ Springer

288 T. Eiter et al.

Fig. 3 Transition diagram of {3 {PushPBrv, PushPBgrc} }
D?® =D, U QuU{((2)} {PushPBRrc}
{PushPBrvy}

PowerON)| {PushPBrvy, PushPBrc} —PowerON

TvON {PushPBrv} -TvON

whose utilities, u(w;) = uy(w;), can be computed as follows:

w I uj(w)

wy 1 gls)=2

wo 0 g(so) +m((so, {PushPBgrc}, s1)) X u1(wp) =3
wy 1 gso) =2

wr 0 g(s1) +m((s1, {PushPBgrc}, s0)) x uj(wy) = 4
wyo 2 g(Sl) =2

wy 1 g(s2) +m((sy, {PushPBry}, 1)) X ua(wp) =3
wy 0 g(so) +m({so, {PushPBry}, s2)) X uj(wy) = 3.5
wy 2 gs) =2

w3 1 g(s2) +m((s2, {PushPBrv}, 1)) X ua(w3) =3
ws 0 g(s1) +m((s1, {PushPBry}, 52)) X u(w3) =5

That is,
u(wo) = 3, u(wy) =4, u(wy) = 3.5, u(ws) = 5.

For D@ (see Fig. 3), since Hc, = ¥, weight;,(D?) = 0.
For D® (see Fig. 4), since H¢, contains (wy, ¢s), (w1, ¢s), (w2, ¢3), and (w3, ¢3),

weighty(D®) = u(wo) x f(cs) + u(wy) x f(cs)
+u(wy) x fe3) +u(ws) x f(c3)
=3x2+4x2+35x4+5x4=48.

Thus D® is the solution.

Fig. 4 Transition diagram {PushPBRrc}
of D® = D, U QU (1)} 0 O {}
PushPB , PushPB
PowerON {Pus {P?LZZPBZQV} re} —PowerON
TvON —TvON

PushPBpgrc}

{P’LLShPBTv}

{PushPBgrc}
PowerON|,,/\PushPBry, PushPBrc}

-TvON

Q{}

@ Springer

Comparing action descriptions based on semantic preferences 289

Example 7 Take D, Q, C,, and DW-D® as in Example 6, and C, as the set
consisting of the queries

SOMETIMES — \/A » executable A, (23)
€

ALWAYS —evolves ~TvON; {PushPBry}; =TvON, (24)

denoted by ¢, and ¢, respectively. None of the descriptions DV — D@ entails C,,.
Therefore, there is no solution to the ADU problem above with either the syntactic
approach of [2] or any of the semantic approaches above. To identify which queries
in C, we shall move to C,, first we obtain C;, from C, by negating each query in C,
and assigning a very small negative integer, say -100, as their weights. So C, consists
of the queries (3) and (22), denoted by ¢ and ¢}, with weights -100. With the semantic
approach based on weighted queries (i.e., weight = weight,),

weight, (D) = f (¢]) = —100,
weight,(D®) = weight,(D®) = f(c}) + f(c5) = —200,
weighty(DW) = f(c]) + f(c;) = —200,

the description D" then is the preferred solution to the ADU problem
((Dy, D), Q, (@, C;), weight,). This suggests relaxing the obligatory query (23) (i.e.,
adding the query (23) to C,, with the weight 100) and solving the new ADU problem,
((Dy, D), Q, {(24)}, C,U {(23)}, weight,), for which the description D, U Q is the
solution.

5.1.1 Other semantic approaches to action description updates

Given a consistent action description E, condition (3) of an ADU problem
(D, Q, C, weight) can be replaced by

(3)’ there is no other consistent action description D” such that QU D, € D" C
DU Q, D" = C,, and |weight(D") — weight(E)| < |weight(D’) — weight(E)|

to express that, among the consistent action descriptions D’ for which (i) and (ii)
hold, an action description that is “closest” to (or most “similar” to) E is picked.
Here, for instance, E may be D U Q, to incorporate as much of the new information
as possible, although DU Q may not entail C. What is meant by closeness or
similarity is based on the particular definition of the weight function. For instance,
based on the weights of states only, with g(s) = 1 if s is a state of E, and 0 otherwise,
the closeness of an action description to E is defined in terms of the common
world states.

5.2 Elaboration tolerance

Suppose that we are given a set D of action descriptions; and a set C of conditions,
each describing a possible elaboration. We say about two action descriptions D and
D’ in D that D is more elaboration tolerant than D' with respect to C, if weight(D) >

@ Springer

290 T. Eiter et al.

weight(D'"), where weight is defined relative to C among other things (e.g., weight can
be weight,, weight),, or weight,). The question we are interested in is which action
description in D is the most elaboration tolerant with respect to C.

Weight functions defined relative to possible elaborations, which might also take
into account the significance of those elaborations, are reasonable measures of
difficulty of modifying the action descriptions to entail possible elaborations: if an
action description entails higher number of elaborations, then it is more tolerant to
elaborations; in other words, if an action description does not entail a lower number
of elaborations, then it is easier to modify it by adding or modifying its causal laws
(e.g., like in [9]).

The following is a variation of the example in [6].

Example 8 Consider the following two action descriptions D and D’, that contain
the laws caused F'if F and caused —F if —F, for every fluent F € {Cold, Cloudy,
Sunny, Wet, Winter, Tropical}, together with the laws below describing how the
weather changes when it rains.

D: D'

caused Cold after Rain caused Wer after Rain

caused Wet after Rain caused L after Rain A —=Cloudy

caused L after Rain A —Cloudy caused —Sunny after Sunset

caused —~Sunny after Sunset caused —Sunny if Cloudy

caused —~Sunny if Cloudy caused Cold if —Sunny v (Wet A Cold)

Consider also the following possible elaborations on how the weather changes
relative to seasons and regions:

e; : ALWAYS holds Winter O necessarily Cold after Sunset
e, : SOMETIMES evolves Tropical; {Rain}; —~Cold
e3 : ALWAYS holds —Winter O possibly Cold after Rain.

Suppose that weight = weightq, and f(e)) = f(e3) =3, f(ex) =2 (because, e.g.,
if someone does not travel much, then elaborations relative to seasons are
more important for her). Then D’ is more elaboration tolerant than D because
weightq(D) = 3 whereas weightq(D/) = 8.

Amir compares in [6] two axiomatic theories ¥ and X’ with respect to a target
axiomatic theory 44, in terms of a syntactic transformation (e.g., the number
of additions and deletions of sentences). This idea might be captured with respect
to a semantic measure, by means of comparing how similar/diverse the action
descriptions are as discussed at the end of Section 5.1. On the other hand, we
usually do not know the target theory (resp., the most elaboration tolerant action
description), but may have an idea of possible elaborations based on our observations
in different circumstances (as in the example above). In such cases, it is reasonable
to decide which action description in D is the most elaboration tolerant one, by
comparing action descriptions semantically with respect to some weight function that
takes into account C.

@ Springer

Comparing action descriptions based on semantic preferences 291

6 Computational aspects

We confine here to discuss the complexity, in order to shed light on the cost of
computing the weight measures. To this end, we define:

Definition 9 A weighted action domain, D,, ,is a quintuple (D, C, g, f, m), of

— An action description D,

— Asset C of queries,

— A function g mapping every state to a real number,

— A function f mapping every query in C to a real number, and
— A function m mapping every transition to a probability.

We furthermore assume that the basic functions, that is, g(s), f(g), and
m((s, A, s’)) are computable in polynomial time, and define

- weight (D,) = weight (D) relative to g,

- weightq Dy) = weightq(D) relative to C and f,

- weight,(D,,) = weight, (D) relative to C, f, g and m,
- weightqs(’Dw) = weightqs(D) relative to C, f, g and m.

For a background on complexity, we refer to the literature (see e.g. [10]).2

Apparently, none of the different weights above is polynomially computable from
an input action description D and a set C of queries in general. Indeed, deciding
whether S has any states is easily seen to be NP-complete, thus intractable: Given a
propositional formula f = A, ¢; in conjunctive normal form (CNF), let G; = —¢;,
1 <i < n, denote the conjunction that is obtained by negating the clause ¢;, and
consider the action description consisting of the static laws caused G; if False, for
1 <i < n. It is easily verified that for this action description S is nonempty if and
only if fis satisfiable.

Furthermore, evaluating arbitrary queries g on D (deciding D = q) is a PSPACE-
complete problem. Indeed, g can be evaluated on D in polynomial space. On the
other hand, evaluating quantified boolean formulas (QBFs), which is PSPACE-
complete, can be reduced to deciding D = g. (See, e.g., p.142 in [10] for the class
PSPACE, p.455 for the definition QBFs and the corresponding satisfiability problem
—termed QSAT there — and Theorem 19.1 on p.456 for its PSPACE-completeness.)

Proposition 1 Given an action description D and a query q, the problem of deciding
whether D = q is PSPACE-complete.

Proof Both checking whether a static query (7) holds at a state s, and whether
a sequence (11) is a history of T(D) is feasible in polynomial time (indeed, note
that given s, A, s’ and D, deciding whether (s, A, s’) € R, where T(D)=(S, V, R), is
polynomial). Hence, a recursive procedure for deciding D, sk= Q given D,s, and a
basic query Q in polynomial space (by exploring all possible histories), is straightfor-
ward. Consequently, deciding D = g where g is an existential or a universal query, or

2See also http://qwiki.caltech.edu/wiki/Complexity_Zoo.
@ Springer

http://qwiki.caltech.edu/wiki/Complexity_Zoo

292 T. Eiter et al.

any propositional combination of such queries, is also feasible in polynomial space.
This shows membership in PSPACE.

To show PSPACE-hardness, we reduce QSAT, i.e., deciding whether a given QBF
is true, to this problem. Let f = Q; X; ... O, X, E be a QBF on propositional atoms
X ={x1,...,x,}, where Xj,..., X, is a partitioning of X, Q; € {3,V}, and E is a
propositional formula on X. Take X as the set of fluents and Ay, ..., A,, as action
symbols in an action description D consisting of statements

caused xif x after A;,
caused —x if —x after A;,
caused Xx;after A; A x;,
caused —x; after A; A —x;,
for1 <i<n,x e X;,and x; ¢ X;. Let furthermore

q = SOMETIMES N, (... (N, E after A,)...) after A;, (25)

where N; = necessarily if O; =V and N; = pessibly otherwise, for 1 <i < n. Then,
the QBF f is true iff D = g. This is seen easily, noting that the transition diagram
T (D) contains all (consistent) truth assignments to the propositional variables as
states, and a transition (s, A;, s’) iff s and s” coincide on all fluents not in X, i.e., on
all propositional variables not bound by quantifier Q;. O

6.1 Computation given D and C

As it turns out, all four weights are computable in polynomial space. This is because
each weight is a sum of (in some cases exponentially many) terms, each of which
can be easily computed in polynomial space, using exhaustive enumeration. In
some cases, the computation is also PSPACE-hard, but in others supposedly easier.
Completeness results are wrt. logarithmic space reductions (see, e.g., Def. 8.1, p.160
in [10]).

Theorem 1 Let D, = (D, C, g, f, m) be a weighted action domain. Then the follow-
ing hold:

(1) Computing weight (D,,) is #P-complete;

(2) Computing weight,(D,,) is FPSPACE-complete;

(3) Computing weight,(D,,) is (modulo some normalization) #P-complete, if the
range of f and g are nonnegative numbers, and GapP-complete for arbitrary
fand g

(4) Computing weight (D) is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P (cf. Def. 18.1,
p-441 in [10]) is the class of problems where the output is an integer that can be
obtained as the number of runs of an NP Turing machine which accepts the input;
problems polynomially solvable with an #P oracle are believed not to be PSPACE-
hard. GapP [11, 12] is the closure of #P under subtraction (equivalently, it contains
the functions which are expressible as number of accepting computation minus the
number of rejecting computations of an NP Turing machine).

@ Springer

Comparing action descriptions based on semantic preferences 293

Table 1 Complexity of computing weights (completeness)

Input / Weight weight, weight, weight), weight
D,C #P FPSPACE GapP * FPSPACE
D,C, S polynomial polynomial polynomial polynomial
D", C in FPIHVP in FPﬁVP in FP}‘\’P in FPTP

*#P for non-negative g(s), f(q);

**18] is polynomially bounded

Proof LetD,, = (D, C,g, f,m) be a weighted action domain.

ey

(@)

©)

Computing weight (D,,) amounts to counting the number of states s such that
g(s) > [. This problem is thus easily seen to be in #P. Moreover, it is also
#P-complete, since the canonical #P-complete problem #SAT of counting the
models of a propositional formula is readily reduced to it: consider an action
description that entails for each clause c the static causal law caused L if —c, let
g(s) = 1, for all states s, and / = 0.

As for weight, (D,), we must evaluate each query g € C on D and then
take a sum. As testing Di=q is PSPACE-complete, computing weight, (D) is
in FPSPACE, i.e., the class of functions computable in polynomial space.?
Moreover, the problem can also be shown to be hard for this class. Consider
any function f € FPSPACE . For a given input x, to decide whether the i-th
bit of f(x) is 1, is a PSPACE problem and can be reduced to deciding D = g
as in Proposition 1. Since f(x) is polynomial, a polynomial number of queries
of form (25) is needed to decide each bit of f(x). Moreover, w.l.o.g., the same
action description D can be used for each of these queries. Let f(q) = 2, for ¢
deciding the i-th bit of f(x), then weightq(D) = f(x).

Computing weight,;, (D,,) modulo some normalization (which casts the problem
to one with integer values), can like computing weight (D,,) be seen to be in #P,
if the functions g(s) and f(q) are non-negative. Indeed, each relevant history w
can be nondeterministically generated in polynomial time, and u(w) and h(w)
are easily computed from w; to account for A(w), simply that many accepting
computation branches are nondeterministically generated. On the other hand,
#SAT is reducible to computing weight,,(D,,).

We give a simple reduction, which is as follows. Let E be a SAT instance on
propositional atoms xi, ..., x,, which without loss of generality is not satisfied
if all atoms are assigned false. We let xy, ..., x,, be the fluents and a the single
action symbol in an action description D, which consists of all statements

caused x;if x; after T,

caused —x; if —x; after T,

3Note that the output has to be generated on the working tape (and thus is of polynomial size), i.e.,
we consider machines that do not have an extra output tape. Sometimes this class is also denoted
FPSPACE(poly) = #PSPACE = #PPSPACE |

@ Springer

294 T. Eiter et al.

where T stands for a tautology, and let C consist of the single query

n
¢ = evolves /\ —x;;0; T.

i=1

Informally, the transition diagram of D for the empty action ¢ is the complete
graph whose nodes are given by all truth assignments to x, ..., x,. Note also,
that c captures the transitions from the assignment in which all atoms are false to
some arbitrary assignment via the empty action ¥J. Now we define that g(s) = 2"
if s satisfies E, and g(s) = 0 if s does not satisfy E, for each s. Furthermore,
we define that transitions have uniform probability, i.e., m({(s, A, s")) = 1/2" for
each transition (s, A, s’) in T(D). Let f(c) = 1.

It is easy to see that H¢ contains all pairs (w, ¢) where w = s¢, @, s; such that
so is the state in which all x; are false and s, is an arbitrary state: A history w is
desired wrt. c, iff it is of length n = 2 and the only action involved is the empty
action #, thatis w = 5o, @, 51, such that the interpretation of s, satisfies /\?:l —X;,
and the interpretation of s; satisfies T. Furthermore, A(w) = 1 if s; satisfies
E and h(w) = 0 otherwise. Therefore, weight, (D) is the number of satisfying
assignments of E. Since D, C, m, f, and g are obviously constructible in
polynomial time, and since moreover m, f, and g are computable in polynomial
time, we obtain #P-hardness of computing weight,, (D,,).

In case of arbitrary (possibly negative) g(s) and f(q), weight, (D,,) is computable
as the difference of two #P functions. Therefore, computing weight, (D,,) is in
the class GapP. Indeed, we have that

weighty(D) = Y u(w) x f(©) — Y —u(w) x f(o),

(w,0)eHE (w,c)inHg

where Hé’ contains all pairs (w,c) from H¢ such that u(w) x f(c) is non-
negative and H_ contains all pairs (w, ¢) from H¢ such that u(w) x f(c) is nega-
tive. Both 3, oy te(w) x f(c) and 3, - —u(w) x f(c) can be computed
in #P. On the other hand, computing the difference f; — f, of two #P functions
fi and f> can be polynomially reduced to computing weight, (D,,) for some
weighted action domain D,, in polynomial time. More precisely, with a slight
adaption of the above construction, we can reduce computing the difference of
the number of satisfying assignments #(£;) and #(E,) of two SAT instances E;
and E, on atoms x, ..., x,, respectively, (which is GapP-hard) to computing
weight, (D,,). For this, we assume without loss of generality that both E; and E,
are not satisfied if all atoms x; are false, and redefine g(s) to

2" if s satisfies E1 A = E5,
g(s) = { —2" if s satisfies = E; A E,,
0 otherwise.

This has the effect that any history w = s, A, s; where (w, ¢) € C, will con-
tribute zero to weight, (D) if E| and E, have the same value for the assignment
s1, and contribute h(w) x f(c) =1 (resp., h(w) x f(c) = —1) if E, is satisfied
but not E, (resp. E is satisfied but not E;). In total, weight, (D) amounts then
to #(E,) — #(E»). As consequence, computing weight, (D,,) for general f and g
is (modulo some normalization) complete for GapP.

@ Springer

Comparing action descriptions based on semantic preferences 295

(4) Computing weight, (D) is more involved than computing weighted histories,
that is, computing weight, (D,,). Here, we must take modified state rewards
g'(s) into account and normalize with |Sp(B)| for certain queries. However,
both values are computable in polynomial space, and thus also f’(g) for each
query g. Consequently, computing weight, (D,) is in FPSPACE. Like comput-
ing weight (D), it is also FPSPACE-complete. Note that in order to obtain
FPSPACE-hardness, we just require queries of the form (25). For such queries,
setting g(s) = 1, for all states s, we get f'(q) = f(q) if the query is satisfied,
and f’(g) = 0 otherwise. This implies that weightqs(Dw) is a generalization of
weightq (D,,), and they coincide on instances, where g(s) = 1, for all states s, and
where ¢ € C implies c is of form (25).]

In comparison, weight,(D,,) and weight,(D,,) are of the same computational
degree of difficulty, while weightq(Dw) and weighth(Dw) are harder under common
complexity hypotheses. For queries where nesting of formulas is bounded by a
constant, the complexity drops below FPSPACE.

6.2 Computation given D, C, and states S of D

Informally, a source of complexity is that D may specify an exponentially large
transition diagram 7'(D). If T(D) is given, then each of the four weights can be
calculated in polynomial time. In fact, not the whole transition diagram is needed,
but only a relevant part, denoted T¢ (D), which comprises all states and all transitions
that involve actions appearing in C.

Now if the state set S is known (e.g., after computation with ccarc [13]) or
computable in polynomial time, then T¢(D) is constructible in polynomial time.
Indeed, for all states s, s’ € S and every action A occurring in some query, we can
test in polynomial time whether (s, A, s’) is a legal transition with respect to D; the
total number of such triples is polynomial in | S|. Then the following result (the second
row of Table 1) holds.

Theorem 2 Let D, = (D, C, g, f, m) be a weighted action domain, and suppose we
are given the set S of states described by D. Then weight,(D,,) can be computed in
polynomial time, for p € {s, q, h, gs}.

Proof Obviously, computing weight (D,,) on T¢(D) is polynomial. Similarly, com-
puting weight, (D, is polynomial since for each query g, testing D [= ¢ is polynomial
on T¢(D): label each state s € S bottom up with the subformulas ¢’ of g that are true
at s, and evaluate every dynamic query of form (8) by considering all reachable nodes
at distance n.

For computing weight,(D,,), we can also exploit a labeling technique to avoid
considering exponentially many paths in T¢(D) explicitly. First, for a query g of form
(14), we label all states s with p;,i € {0, ..., n}, such that s = s; for some history w =
S0, A1, 81, ..., Ay, sy satisfying g, in polynomial time. An algorithm for labeling states
in this way is given in Fig. 5. It implements a two pass procedure as follows:

1) First label, for each state s, all states s’ at distance i =0, 1,...,n with r] that
respect the prefix of some w desired with respect to g such that s = sy and s’ = s;.

@ Springer

296 T. Eiter et al.

Algorithm LABEL(D, S, q) : L(q)

Input: An action description, D, its set of states, .S,
and a query, g, of form (14).
Output: A set, L(q), of states labeled wrt. g.

R((] §<97T8> |S€S7S':F()};

for i z ton do

R(q) := R(q) U{(s,17%,) € R(q), (s, Ai,s') € R,s' |= Fi};
L(q) == {{s,pn) [(s,72°) € R(q) };
forz::n—ltoOdo

L((I) = L(q) U {< 9()) € R() (/7p1'+1> S L((I)7 <87Ai+178/> S R}7

return L(q);

Fig. 5 An algorithm for labeling states

2) Then going backwards from states labeled with r, turn each r} (i=n,n—
.,0) into p;.

Now fori =n,n — 1, ...,0and each state s labeled with p;, we can easily compute
the sum of the utilities u(w’) of all suffixes w’ =s;, Ai11, Siv1,..., Ay, s, of some
history w satisfying ¢ such that s; = s. In particular, u(s) is the sum of all utilities
u(w) of histories that start at s and satisfy g. Exploiting this, weight,, (D) is then readily
computed by rearranging the sum of its definition: For each relevant query ¢ of form
(14), sum up the uf(-) values at all states and multiply the result with f(c). This gives
one summand of a sum to build over all relevant queries [i.e., queries of form (14)].
This algorithm to compute weight,(D,,) is depicted in Fig. 6. Note that, for each
decision problem of the form (s, A,s’) € R, s and A are fixed. Hence, it is solvable in
polynomial time.

Algorithm WEIGHTy (D, S) : wy,

Input: A weighted action domain, D,,, and its set of states, S.
Output: The weight wy, = weight; (D).

wp, = 0;
for g € C such that g of form (14) do
L(q) := LABEL(D, S, q);
Ulq) := {(un(s),9(s)) | {s,pn) € L(@)};
for i:=n—1to0do
for (s,pi) € L(q) do
tr(s) = {(f vy |t = (s, Ais1,s") € R, (ui1(s"),v) € U(q)};
U(g) = Ul) U {(ui (), 03} | 05 = Sercmyg(s) + m(t) x v}
Wh+= f(Q) X E(uo(s),u)EU(q)”
return wy;

Fig. 6 An algorithm for computing weight; (D), given S

@ Springer

Comparing action descriptions based on semantic preferences 297

Using the same techniques as for weight,,(D,,), we can compute g'(s) for each state
s in polynomial time on T¢(D) and also |Sp(B)|. Therefore, also weighth(Dw) is
computable in polynomial time in this case. O

Example 9 Consider, for instance, the action description D™ (Fig. 4) in Example 6;
take so and s, as specified in Example 6. For query (4), in the first pass of the labeling
process, state sy is labeled with ry, r}'; and state s, is labeled with r', r)’; in the second
pass, both states sy and s; are labeled with py and p;. Given the utility function and
transition model as in Example 6 (i.e., as (17) and as (19), respectively), and assuming

a weight of f(c) = 3 for the query, summing up we obtain:

uj(so) = g(so) = 2,
uy(s1) = gls)) =2,
uy(so) = g(so) + m((so, {PushPBgc}, s1)) x uj(s1) = 3,
ug(s1) = g(s1) +m((s1, {PushPBgc}, so)) x uj(so) = 4.

And in total

f(0) x (ug(s0) + ug(s1)) = 21,

as the summand for the query, ¢, considered (and therefore as the value for
weight,,(D®) since c is the only query considered in this example).

Finally, if the state space S is not large, i.e., |.S] is polynomially bounded, S can be
computed with the help of an NP-oracle in polynomial time; in fact, this is possible
with paralle]l NP oracles queries, and thus computing S is in the respective class FPﬂIP .
The following theorem summarizes these results (the third row of Table 1):

Theorem 3 Given a weighted action domain D,, = (D, C, g, f,m), and the set S
of states described by D, such that |S| is polynomially bounded. Then computing
weight ,(D,,) is in FP}*, for p € {s. q. h, gs).

On the other hand, it is unlikely that any of the weight functions is tractable if
|S] is polynomially bounded. Indeed, solving SAT under the assertion that the given
formula has at most one model (which is still considered to be intractable, cf. [10]) is
reducible to computing weight,(D,), for each p € {s, q, h, gs}.

7 Discussion and conclusion

In this paper, we have considered the issue of assigning weights to action descriptions,
so that one can compare action descriptions by means of their weights. To this
end, we have presented four different weights which are defined for the semantics
of action descriptions in terms of their transition diagrams, based on preferences
over states and transitions, on preferences over conditions, and on probabilities of
transitions. We have then illustrated the usefulness of such a semantically oriented
approach of comparing action descriptions, for the problem of updating an action

@ Springer

298 T. Eiter et al.

description, in comparison with the syntactic approach of [2], and for the problem
of elaboration tolerance. Finally, we have studied computational aspects of the
measures, and we have characterized their computational complexity in terms of
well-known classes from the literature.

The use of weights for expressing preferences among different solutions to a
problem is ubiquitous in Al and has been used in various domains, including
configuration, planning, diagnosis, knowledge base integration, abductive reasoning,
and agent decision making cf. [8, 14-16]. The desire for expressing preferences in
this way also led to generic formalisms and tools for KR which offer this capa-
bility, including weighted CSP, optimal answer set engines, and (weighted) MAX-
SAT solvers [17-20]. However, to our knowledge, no weight-based approaches for
assessing action descriptions had been proposed so far. The semantic view which
we have taken here brings in a static and a dynamic component, in terms of states
and (sequences of) transitions, which is more complex than in other problems like
configuration or diagnosis, where usually only a static component plays a role.
Although we have restricted ourselves to a fragment of action language C, since
every transition diagram can be represented, the approach equally applies to (richer)
action languages with transition diagram semantics. Considering the full language C
will increase the complexity of computing the weights in some cases (like, e.g., in
the case of the second row of Table 1, where D, C, and S are part of the input);
note that verifying whether a given transition belongs to the transition diagram of a
given action description is no longer polynomial for full C (in fact, this is coNP-hard).
However, in other cases our proofs can be suitably adapted to establish a similar
result for full C (like, e.g., computing weight, and weight, in the case of the first row
of Table 1, where D and C are part of the input). A detailed study of the full language
C and further fragments of it remains for future work.

A more general approach to comparing action descriptions would be in terms of
a preference relation (i.e., a reflexive and transitive binary relation) < on the set of
action descriptions for a given action signature, and to single out the desired action
descriptions D as the most preferred ones, such that no action description D’ exists
where D < D' but D' £ D. Weight-based comparison as in the update approach
can then be modeled (on a restricted set of elements) by D < D’ iff weight(D) <
weight(D’). However, under a general preference relation, many action descriptions
D and D’ may be incomparable, and thus intuitively many action descriptions might
be most preferred. In particular, this may happen if < is pointwise composed of
several “local” preference relations <, ..., <, which do not break ties between
different alternatives; in this case, 2" many most preferred action descriptions may
emerge. On the other hand, weight-based comparison induces a modular ordering of
the action descriptions, where each pair D, D’ of action descriptions is comparable.
Therefore, weight-based comparison is intuitively more discriminative, and yields
less most preferred action descriptions.

Several issues remain for future work. The manual computation of the weights
above quickly becomes cumbersome, and an implementation, which can be based
on the complexity characterizations and algorithms which we have outline here, will
be useful. It will enable a study of the measures on larger actions descriptions, and
to gain experience about their behavior under different parameter settings. To this
end, an interactive tool for defining and evaluating the weight measures would be

@ Springer

Comparing action descriptions based on semantic preferences 299

desirable. Other issues concern efficient algorithms for restricted problem classes,
and to search for further weight measures.

Acknowledgements This work has been supported by the Austrian Science Fund (FWF) grant
P16536-N04 and the European Commission grant FET-2001-37004 WASP. We are grateful to the
reviewers (also of preliminary versions) of this paper for their constructive and helpful comments.

Appendices
Appendix 1: Example Yale shooting domain

Consider the following three formalizations of the Yale shooting domain [21]:

D1 :

caused Loaded after Load

caused —Loaded after Shoot

caused —Alive after Shoot A Loaded
caused False after Shoot A Load

inertial Loaded, —Loaded, Alive, —Alive

Dz : D3 .

caused Loaded after Load caused Loaded if Loaded after Loaded
caused —Loaded after Shoot caused —Loaded after Shoot

caused —Alive after Shoot caused —Alive after Shoot

caused False after Shoot A —Loaded caused False after Shoot A —Loaded
caused False after Load N Loaded caused False after Load N Loaded

inertial Loaded, —Loaded, Alive, —Alive inertial Loaded, —Loaded, Alive, —Alive

and the following set C of queries:

¢ : SOMETIMES evolves Load; True; Shoot; True; Load; Loaded
¢; : ALWAYS holds Loaded D necessarily False after Load

where f(c;) =5 and f(c;) = —10. The first query expresses a desired property: after
loading the gun, shooting, and loading again, the gun is loaded. The second query
above expresses an undesired property: the gun can not be loaded when it is already

loaded.
Take weight = weight . Consider the following utility function g:

s) = 3if Alive e s
9= 1 otherwise,
for every state s. Suppose that for each transition (s, A, s’) in R,

0.5 if Alive € s and Shoot ¢ A
0.3 otherwise.

m((s, A,s')) = {

Let us denote by sy, . .., s3 the following states:

so = {Alive, Loaded}, sy = {Alive, —Loaded},
s, = {—Alive, Loaded}, s3 = {—Alive, —=Loaded};

@ Springer

300 T. Eiter et al.

and wy, ..., ws the following histories:

wo = 8o, Load, sy, Shoot, s3, Load, s,
wy =51, Load, sy, Shoot, s5, Load, s,
wy = 8o, Load, s,, Shoot, 55, Load, s,
w3z = 53, Load, s,, Shoot, 53, Load, s
wy = 51, Load, sy, Shoot, s3, Load, s3

for which the utilities are computed as follows:

w i u;(w)
wo 3 g(s2) =1

2 g(s3) + m((s3, {Load}, s7)) x uz(wy) =1 +03=1.3

1 g(so) + m({sg, {Shoot}, s3)) x ur(wy) =3 +0.3x 1.3 =6.9

0 g(so) + m({so, {Load}, so)) x u;(wy) =3 +0.5x6.9 =6.45
wi 3 g(s) =1

2 g(s3) + m((s3, {Load}, s7)) x uz(wy) =1 +03 =13

1 g(so) + m({so, {Shoot}, s3)) x up(wp) =3 +0.3x 1.3 =6.9

0 g(s1) + m({so, {Load}, so)) x uj(wy) =3 +0.5x6.9 =6.45
wo 3 g(SQ) =1

2 g(s3) + m((s3, {Load}, s;)) x uz(wg) = 1+03 =1.3

1 g(s2) + m((s2, {Shoot}, s3)) x us(wg) =1 +0.3x 1.3 =49

0 g(s2) + m({s2, {Load}, s7)) x uj(wo) =1 +0.3x4.9 =247
w3 3 g(s2) =1

2 g(s3) + m((s3, {Load}, s7)) x uz(wy) =1 +03=1.3

1 g(s2) + m((s2, {Shoot}, s3)) x ur(wg) =1 +0.3x 1.3 =49

0 g(s3) + m((s3, {Load}, s)) x uj(wy) =1 +0.3x4.9 =247
wy 3 g(s3) =1

2 g(s3) + m({s3, {Load}, s3)) x uz(wy) =1 +03=1.3

1 g(so) + m({so, {Shoot}, s3)) x up(wp) =3 +0.3x 1.3 =6.9

0 g(s1) + m((s1, {Load}, so)) x uj(wy) =3 +0.5%6.9 =6.45
That is,

u(wy) = u(wy) = u(wy) = 6.45, u(w,) = u(wsz) = 2.47.

For Dy, Hc = {(wy, 1), (w1, ¢1), (wa, 1), (w3, ¢;)}. Then, the new utility function
g’ can be computed as follows:

g(so) =645 g'(s)) =6.45 g'(s5) =247 g'(s3) =247;
and the new weights f” of queries are computed as follows:

() = fler) x (8/(s0)+g (s1)+8 (s2)+g(53)) /4=5x 17.84/4=22.3
fi(e) = f(e) x0=0.

Then weighth(Dl) =22.3.

@ Springer

Comparing action descriptions based on semantic preferences 301

For D,, Hc = {(wy, ¢1), (w3, c1)}. Then, the new utility function g’ can be com-
puted as follows:

gs0) =3 gs1)=645 g(sa) =1 g(s3) =247,
and the new weights f” of queries are computed as follows:

f'(er) = flen) x (g(s1) + g(53))/2 =5x4.46 =22.3
f(c2) = flea) x (8 (s0) + &'(52)) = —10 x 4 = —40.

Then weighth(Dz) =-17.7.
For D3, He = {(wy, 1), (w3, ¢1), (wy, c1)}. Then, the new utility function g’ can be
computed as follows:

g(s0)=3 g(s1)=645+247=892 g'(s0) =1 g'(s3) =247,
and the new weights f” of queries are computed as follows:

fller) = fler) x (g(s1) + g(s3))/2 =5 x (8.92+2.74)/2 = 5 x 5.83=29.15
f'(e2) = f(e2) x (g'(s0) + &'(52)) = =10 x 4 = —40.

Then weightqs(D3) = —10.85. Therefore, D, is more preferable than D, and Ds.
Indeed, although these descriptions satisfy the desired property (c;) to some extent,
only D, does not satisfy the undesired property.

caused Af(Robot ,r) after Walk(r)
caused IsHolding(b, g) after PickUp(b, g) A =V, IsHolding(bi, g)

caused —IsHolding(b, g) after Drop(b, g) A IsHolding(b;, g)
caused OnFloor(b) after Drop (b, g)

caused Color (b, c) after PaintBall(b, c) A At(Robot , Room 3) A At(b, Room 3)
caused OnFloor(b) if OnFloor(b)

caused —Az(o,r;) if At(o,r) (r#£rr)

caused —Color (b, c;) if Color(b,c) (c#¢p)

caused False if —\/, At(o,r)

caused Falseif —\/_ At(b,c)

inertial At(o,r), Color (b, ¢), IsHolding(b, g), —~IsHolding(b, g)

caused False after a A a; (a < ay)

Fig.7 A description for the grippers domain (D)

@ Springer

302 T. Eiter et al.

caused At(Robot,r) after Walk(r)
caused False after Walk(r) A At(Robot,r)

caused [sHolding(b, g) after PickUp(b, g)
caused False after PickUp(b,g) AV, IsHolding(b,g)
caused False after PickUp(b, g) A =(V .(At(Robot,r) A At(b,T)))

caused —IsHolding(b, g) after Drop(b,g)
caused Fualse after Drop(b,g) A —1sHolding(b1, g)

caused Color(b,c) after PaintBall(b,c)
caused False after PaintBall(b,c) A —=(At(Robot, Room3) A At(b, Room3))

caused OnFloor(b) if OnFloor(b)
caused —OnFloor(b) if \/ IsHolding(b, g)

caused —At(o,r1) if At(o,r) (r #m)
caused —~At(b,r) if At(Robot,r) A\ IsHolding(b,g)

caused —Color(b,c1) if Color(b,c) (¢ # 1)

caused Fualse if —\/ At(o,r)
caused Fualse if —=\/_ At(b,c)

inertial At(o,r), Color(b,c), IsHolding(b, g), ~IsHolding (b, g)
caused False after a A a; (a < ar)

Fig. 8 Another description for the grippers domain (D>)

Appendix 2: Example gripper domain

Consider the following variation of the gripper domain [22]. There are three balls,
each located in one of three rooms. There is a robot with two grippers. It can carry a

caused At(Robot,r) after Walk(r) A = At(Robot,r)

caused IsHolding(b, g) after PickUp(b,g) A =\, IsHolding(b1,g)
caused Fulse after PickUp(b, g) A =(V ,.(At(Robot,r) A At(b,T)))

caused —/sHolding(b, g) after Drop(b,g)
caused False after Drop(b,g) A —IsHolding(b1, g)

caused Color(b, c) after PaintBall(b,c)
caused False after PaintBall(b,c) A =(At(Robot, Room3) A At(b, Room3))

caused OnFloor(b) if OnFloor(b)
caused ~OnFloor(b) if \/, IsHolding(b,)

caused —At(o,r1) if At(o,r) (r #m)
caused ~At(b,r) if At(Robot,r) A\, IsHolding(b,g)

caused —Color(b,c1) if Color(b,c) (¢ # 1)

caused False if ~\/ At(o,r)
caused False if =\/_At(b,c)

inertial At(o,r), Color(b,c), IsHolding(b, g), ~IsHolding(b, g)
caused False after aNa1 (a < a1)

Fig.9 Yet another description for the grippers domain (D3)
@ Springer

Comparing action descriptions based on semantic preferences 303

ball in each. The available actions are picking up, dropping, and painting balls, and
moving between rooms. Suppose that the paint is available only in Room;. Consider
the descriptions Dy, D,, D3 of this domain shown in Figs. 7-9, which use schematic
variables that range over constants as follows:

Variable ‘ Constants

0 Robot, Bally, Ball>, Ballz
b,by Ball;, Ball,, Ball;

8 81 Gripper;, Gripper
rri,rn Roomj, Room,, Rooms
¢, Cy Red, White, Blue.

Consider a set C consisting of the following queries:

D1 : ALWAYS A, (holds At(Robot,r) D
necessarily —Az(Robot, r) after Walk(r))

P> : SOMETIMES /\b,g(holds —IsHolding(b, g)A
possibly True after Drop(b))

D3 : ALWAYS holds A\, (At(b, Room;) A Color(b, White) A OnFloor(b)) A
At(Robot, Room3s) D
necessarily /\, (At(b, Room,) A At(Robot, Rooms)) A
\/}, Color(b, Red) A\/, Color(b, White) A\/, Color(b, Blue)
after Walk(Room;); PickUp(Ball;, Gripper;); PickUp(Balls, Gripper»);
Walk(Roomy); Drop(Ball;, Gripper;); Walk(Roomy);,
PickUp(Ball,, Gripper;); Walk(Rooms); PaintBall(Ball,, Blue);
PaintBall(Ball;, Red); Walk(Room;); Drop(Ball,, Gripper;);
Drop(Balls, Gripper,); Walk(Rooms),

where f(p1) =2, f(p2) = —3,and f(p3) = 1. The first query expresses that after the
robot walks to some location, it is not at its current location anymore. The second
one expresses that the action of dropping a ball is possible even when the robot is
not holding that ball. The third one expresses the presence of a trajectory. The first
and the third condition are desired while the second is not.

With the semantic approach based on weighted queries (taking weight = weight,),
the weights of the action descriptions are computed as follows:

weight, (D)) = f(p) = 3
weight (D) = f(p1) + f(p3) =2+1=3
weight,(D3) = f(p;) = 1.

Therefore, D, is the most preferable description. Indeed, it is the only description
that entails both desired queries and does not entail the undesired one.

References

1. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3, 195-210 (1998)
2. Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 418-423 (2005)

@ Springer

304 T. Eiter et al.

3. Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action description updates.
In: Proceedings Computational Logic in Multi-Agent Systems (CLIMA V). LNCS, vol. 3487,
pp- 52-77. Springer (2004)

4. Herzig, A., Perrussel, L., Varzinczak, I.: Elaborating domain descriptions. In: Brewka, G., et al.
(eds.) Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 397-401.
10S Press (2006)

5. McCarthy, J.: Elaboration tolerance. In: Proceedings of the Symposium on Logical Formaliza-
tions of Commonsense Reasoning (CommonSense) (1998)

6. Amir, E.: Towards a formalization of elaboration tolerance: adding and deleting axioms. In:
Frontiers of Belief Revision. Kluwer (2000)

7. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: preliminary

report. In: Proceedings of the National Conference on Al (AAAI), pp. 623-630 (1998)
. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn Prentice Hall (2002)
9. Eiter, T., Erdem, E., Fink, M., Senko, J.: Resolving conflicts in action descriptions. In Brewka,
G., et al. (eds.) Proceedings ECALI, pp. 367-371. IOS Press (2006)

10. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)

11. Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. J. Comput. Syst. Sci. 48,
116-148 (1994)

12. Gupta, S.: Closure properties and witness reduction. J. Comput. Syst. Sci. 50, 412—432 (1995)

13. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artif. Intell. 153, 49-104 (2004)

14. Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83, 363-378 (1996)

15. Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. ACM Journal 42, 3-42 (1995)

16. Stroe, B., Subrahmanian, V.S., Dasgupta, S.: Optimal status sets of heterogeneous agent pro-
grams. In: Dignum, F., et al. (eds.) Proceedings of the 4rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). pp. 709-715 (2005)

17. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159,
1-26 (2004)

18. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system
for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499-562 (2006)

19. Syrjénen, T., Niemeld, 1.: The Smodels system. In: Eiter, T., et al. (eds.): Proceedings of the
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
LNCS, vol. 2173, pp. 434-438. Springer (2001)

20. Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satisfiabil-
ity. Artif. Intell. 164, 47-80 (2005)

21. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artif. Intell. 33,
379-412 (1987)

22. McDermott, D.: AIPS-98 planning competition results. (1998)

(o]

@ Springer

	Comparing action descriptions based on semantic preferences
	Abstract
	Introduction
	Transition diagrams and action descriptions
	Action queries
	Weight assignments for action descriptions
	Weighted states
	Weighted queries
	Weighted histories
	Weighted queries relative to weighted states
	Usage

	Applications
	Updating an action description
	Other semantic approaches to action description updates

	Elaboration tolerance

	Computational aspects
	Computation given D and C
	Computation given D, C, and states S of D

	Discussion and conclusion
	Appendices
	Appendix 1: Example Yale shooting domain
	Appendix 2: Example gripper domain

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

