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Abstract. Hybrid theories arise out of the combination of ontologies with non-
monotonic rules and are receiving increasing attention in KR. Popular semantics
for such theories are those based on answer set programming (ASP). The present
paper is a preliminary attempt to combine some concepts of equivalence from the
two areas (ontologies and ASP) in order to initiate the study of equivalence and
modularity for hybrid theories.

1 Introduction

A growing field of research in knowledge technologies concerns the ways and means
of amalgamating description logics and nonmonotonic programs in order to combine
rule-based reasoning with ontologies. There have been several different proposals for
merging these languages into a more tightly or a more loosely integrated semantical
framework. The best known methods are probably those based on stable model se-
mantics or answer set programming (ASP); these have given rise to HEX-programs,
dl-programs and DL+log or hybrid knowledge bases. The idea of hybrid knowledge
base was introduced by [21] and further developed in [22, 23, 12]; for dl-programs see
eg. [5]. The practical importance of such hybrid systems is also underlined by their
current use in major European research projects.3

If hybrid systems are to become a successful, practical tool in knowledge based
reasoning, it is essential that modularity and related notions are addressed. Knowing for
instance in which contexts one hybrid theory can be replaced by another without loss is
important for formalising knowledge and for transforming and simplifying theories. For
each of the relevant underlying technologies, modularity is an active area of study. For
example, there has been a strong interest recently in developing logical treatments of
modularity for ontologies reconstructed in description logics (DL). An approach based
on conservative extensions and entailment and difference concepts can be found in [10,
11, 9]. In this case a concept of equivalence and relativised equivalence between DL
ontologies is obtained as a limiting case when the difference relation is zero.

On the other hand, in nonmonotonic logic programming, in particular in ASP, work
on (strong) equivalence relations between programs began already in [13], and the study
of variations of this basic concept has formed a very active area of research since, espe-
cially as a tool for program transformation and optimisation. Recently focus has turned
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3 See for instance the ONTORULE integrated FP7 project: http://ontorule-project.eu/.



from propositional programs to theories and programs in first-order logic [8, 14]. This
is important for the study of hybrid theories where first order languages are needed.

We use the term hybrid theory to refer to any of the standard approaches to com-
bining classical theories and ontologies with rules. In this paper, we focus on two types
of hybrid theories: those we call hybrid knowledge bases (HKBs) following [21], and
those known as dl-programs [5], both kinds of theories being interpreted under answer
set semantics. While notions of equivalent theory are studied both in ASP and in the
area of ontologies, it is clear that additional degrees of freedom arise when we consider
logical relations between hybrid theories. In the case of HKBs we define several differ-
ent equivalence concepts and provide semantical characterisations of them. In the case
of dl-programs, semantic integration between the different components is looser, and as
a result strong logical relations between theories appear harder to characterise. Never-
theless we take some initial steps towards combining some of the different equivalence
concepts that have been defined for ontologies and for logic programs.

2 Review of Quantified Equilibrium Logic and Answer Sets

In this paper we deal with function-free first order languagesL = 〈C,P 〉 built over a set
of constant symbols,C, and a set of predicate symbols, P . We assume a single negation
symbol, ‘¬’, together with the usual connectives and quantifiers, ∧,∨,→,∃,∀. We shall
also assume that L contains the constants > and ⊥ and, where convenient, we regard
¬ϕ as an abbreviation for ϕ → ⊥. In other respects we follow the treatment of [19].
The sets of L-formulas, L-sentences and atomic L-sentences are defined in the usual
way. We work in a non-classical logic called Quantified Here-and-There Logic with
static domains and decidable equality. For reasons of space we give here just a short
summary. A complete axiomatisation and more detailed description of this logic can
be found in [14] where the logic is denoted by SQHT=. In terms of satisfiability and
validity this logic is equivalent to the logic previously introduced in [18]. To simplify
notation we drop the labels for static domains and equality and refer to this logic simply
as quantified here-and-there, QHT.

The semantics of QHT is given in terms of intuitionistic Kripke models, see [3],
with two notable exceptions. One concerns equality: we regard equality as decidable
and as satisfying the axiom ∀x∀y((x = y) ∨ ¬(x = y)). Furthermore, we suppose a
logic with constant or static domains; in other words within a given Kripke model the
same set of individuals populates each world. In addition, QHT is complete for very
simple Kripke models, those possessing just two worlds, sometimes labelled h (“here”)
and t (“there”), ordered by h ≤ t.

We use the following notation. If D is a non-empty set, we denote by At(D,P ) the
set of ground atomic sentences of 〈D,P 〉. By an L-interpretation I over a set D we
mean a subset of At(D,P ). A QHT(L)-structure can therefore be regarded as a tuple
M = 〈(D,σ), Ih, It〉 . where Ih, It are L-interpretations over D such that Ih ⊆ It
and σ : C ∪ D → D is a mapping, called the assignment, such that σ(d) = d for all
d ∈ D. Evidently, 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures. Given an
interpretation we let σ|C denote the restriction of the assignment σ to constants in C.



For a QHT(L)-structureM = 〈(D,σ), Ih, It〉 and L′ ⊂ L, we denote the restriction
ofM to the sublanguage L′ byM|L′ = 〈(D,σ|L′), Ih|L′ , It|L′〉.

The truth relation for QHT is denoted by ‘|=’ and truth of a sentence in a model
is defined as follows:M |= ϕ iffM, w |= ϕ for each w ∈ {h, t}. A sentence ϕ is a
consequence of a set of sentences Γ , denoted Γ |= ϕ, if every model of Γ is a model of
ϕ. In a modelM we also use the symbols H and T , possibly with subscripts, to denote
the interpretations Ih and It respectively; so, an L-structure may be written in the form
〈U,H, T 〉, where U = (D,σ). A structure 〈U,H, T 〉 is called total if H = T , whence
it is equivalent to a classical structure.

An answer semantics for arbitrary first-order formulas can be defined using the
quantified variant of equilibrium logic [15, 16] that we denote by QEL. As in the propo-
sitional case, this is based on a suitable notion of minimal model as follows.

Definition 1 ([17, 18]). Let Γ be a set of L-sentences. An equilibrium model or answer
set of Γ is a total modelM = 〈(D,σ), T, T 〉 of Γ such that there is no model of Γ of
the form 〈(D,σ), H, T 〉 where H is a proper subset of T .

2.1 Hybrid Knowledge Bases

Hybrid knowledge bases combine classical theories with nonmonotonic rules inter-
preted under answer set semantics. Formally, a hybrid knowledge base K = (T ,P)
over the function-free language L = 〈C,PT ∪ PP〉 consists of a classical first-order
theory T (also called the structural part of K) over the language LT = 〈C,PT 〉 and a
program P (also called rules part ofK) over the language L, where PT ∩PP = ∅, i.e. T
and P share a single set of constants, and the predicate symbols allowed to be used in
P are a superset of the predicate symbols in LT . Intuitively, the predicates in LT are
interpreted classically, whereas the predicates in LP are interpreted nonmonotonically
under a generalised form of answer set semantics. With LP = 〈C,PP〉 we denote the
restricted language of P .

There are several distinct variants of hybrid knowledge bases [21–23, 12]. Their dif-
ferences depend mainly on what kind of nonmonotonic rules are allowed in P and what
safety conditions are imposed in order to ensure decidability. However the semantics
of these different variants is quite similar in each case. Essentially classical models of
T are used as candidate interpretations for the LT predicates appearing in P . Using
these models, P is then preprocessed by reduction to a program without LT predicates,
converted into ground form and its answer sets computed. A uniform stability condition
on the two components, classical and nonmonotonic, defines the semantics or intended
models.

Equilibrium models define an equivalent semantics for hybrid knowledge bases in a
simpler and more direct fashion. Given a hybrid KBK = (T ,P) we call T ∪P∪st(T )
the stable closure of K, where st(T ) = {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }.

Definition 2. Let K = (T ,P) be a hybrid knowledge base. M = 〈U, T, T 〉 is said
to be an equilibrium model of K = (T ,P) if it is an equilibrium model of the stable
closure of K, ie. of T ∪ P ∪ st(T ).



The appropriateness of this definition is established in [1] where it is shown that when
K = (T ,P) is a g-hybrid knowledge base in the sense of [12] or an r+-hybrid knowl-
edge base in the sense of [22], Definition 2 yields an equivalent semantics. Other se-
mantic variants from [21, 23] can also be modelled easily in this framework.

3 Some equivalence concepts for hybrid knowledge bases

As usual, we say that two first-order theories Π1 and Π2 are classically equivalent,
in symbols Π1 ≡c Π2, if and only if their classical models coincide. They are called
answer-set equivalent, symbolically Π1≡aΠ2, if and only if they have the same equi-
librium models, i.e., answer sets.

The study of strong equivalence for logic programs and nonmonotonic theories was
initiated in [13]. It has since become an important tool in ASP as a basis for program
transformation and optimisation. In equilibrium logic two (first-order) theories Π1 and
Π2 are strongly equivalent, Π1 ≡s Π2, if and only if for any theory Π , Π1 ∪ Π and
Π2 ∪Π have the same equilibrium models [14, 19]. Under this definition we have:

Theorem 1 ([14, 19]). Two (first-order) theories Π1 and Π2 are strongly equivalent if
and only if they are equivalent in QHT.

Let us say that two HKBs, K1 and K2, are equivalent, in symbols K1 ≡ K2 iff
they have the same equilibrium models. Following this we can introduce three differ-
ent concepts of strong equivalence. We make the restriction that these concepts apply
to knowledge bases sharing the same structural language; this assumption will be left
implicit throughout.4 First, we say that K1 and K2 are strongly equivalent, if for any
K = (T ,P),K1∪K ≡ K2∪K, where union is defined in the obvious way as the unions
of the structural and the program parts. Two special cases of strong equivalence arise if
we restrict attention to just one of the components. Let us say that K1 and K2 are P-
equivalent if for all P ,K1∪P ≡ K2∪P , and T -equivalent if for T ,K1∪T ≡ K2∪T .
Evidently, since we assume thatK1 andK2 share the same structural language, this will
also be true of their extensions by new KBs, theories or programs. Our main goal is to
give logical characterisations of P-equivalence and T -equivalence.

3.1 P-equivalence

Let us first analyse these concepts for the case that no syntactic restrictions are imposed
on the theories and programs in K1, K2 and their extensions. Evidently, if two knowl-
edge bases are strongly equivalent, they are also P-equivalent and T -equivalent. In the
former case we can strengthen this observation.

Proposition 1. Two hybrid KBs. K1 and K2, are strongly equivalent if and only if they
are P-equivalent.

4 Intuitively the reason for this is that the structural languageLT associated with a hybrid knowl-
edge base K = (T ,P) is part of its identity or ‘meaning’. Precisely the predicates in LT are
the ones treated classically. Without the assumption of a common structural language, the nat-
ural properties expressed in Corollary 1 (a) and (1) below would no longer hold.



Evidently this holds because we impose no restrictions on the syntax of the nonmono-
tonic part. Another straightforward consequence is that two strongly equivalent logic
programs cannot be separated by adding any structural knowledge component.

Proposition 2. Suppose P1 and P2 are strongly equivalent programs. Then for any T ,
(T ,P1) and (T ,P2) are equivalent HKBs. Hence they are also strongly equivalent.

Until further notice, let us suppose that K1 = (T1,P1) and K2 = (T2,P2) are hybrid
KBs sharing a common structural language L.

Proposition 3 ([2]). K1 and K2 are strongly equivalent if and only if T1 ∪ st(T1)∪P1

and T2 ∪ st(T2) ∪ P2 are logically equivalent in QHT.

We mention some conditions to test for strong equivalence and non-equivalence.

Corollary 1 ([2]). (a) K1 and K2 are strongly equivalent if T1 and T2 are classically
equivalent and P1 and P2 are equivalent in QHT. (b) K1 and K2 are not strongly
equivalent if T1 ∪ P1 and T2 ∪ P2 are not equivalent in classical logic.

Special cases of strong equivalence arise when hybrid KBs are based on the same clas-
sical theory, say, or share the same rule base. That is, (T ,P1) and (T ,P2) are strongly
equivalent if P1 and P2 are QHTs

=-equivalent. Analogously:

(T1,P) and (T2,P) are strongly equivalent if T1 and T2 are classically equivalent. (1)

3.2 T -equivalence

To study T -equivalence we make use of the notion of uniform equivalence, which has
been characterised for first-order theories in [8]. Let us say that an L- sentence ϕ is
factual if it contains no occurrences of implication, other than possibly in the form
α → ⊥. Then, two theories Π1 and Π2 are called uniformly equivalent, symbolically
Π1≡uΠ2, if and only if for any factual theory Π Π1 ∪Π and Π2 ∪Π have the same
equilibrium models.

Uniform equivalence for theories is characterised in terms of countermodels: An
L-structureM = 〈U,H, T 〉 is called an L-countermodel of a theory Π if and only if
M 6|= Π; it is called total if H = T . Furthermore, a total L-structureM = 〈U, T, T 〉
is called total-closed in a set S of L-structures if 〈U,H, T 〉 ∈ S for every H ⊆ T . An
L-structureM = 〈U,H, T 〉 is there-closed in a set S of L-structures if 〈U,H ′, T 〉 ∈ S
for every H ⊆ H ′ ⊂ T , respectively for H = H ′ = T .

Total models and non-total countermodels are joined to form so-called equivalence
structures. AnL-countermodel 〈U,H, T 〉 of a theoryΠ is called a hereL-countermodel
of Π if 〈U, T 〉 is a classical model of Π . An L-structure 〈U,H, T 〉 is an equivalence
L-structure of a theory Π , if it is a total model of Π or a here L-countermodel.

By means of equivalence structures, the relevant notions of equivalence can be char-
acterised uniformly. Given a theory Π over L, let Es(Π) denote the set of its equiv-
alence L-structures, and let Ec(Π) be the total L-structures in Es(Π). Furthermore,
Ea(Π) is the set of total-closed L-structures in Es(Π), and Eu(Π) is the set of there-
closed L-structures in Es(Π).



Lemma 1 (Corollary 2 in [8]). Let Π1 and Π2 be first-order theories over L, then
Π1 ≡e Π2 iff Ee(Π1) = Ee(Π2) for e ∈ {c, a, s, u}.

As for strong equivalence, we aim at a characterisation of T -equivalence between
HKBs by reference to their stable closures. A simple first observation is the following:

Lemma 2. Let K = (T ,P) be a HKB, and let M = 〈U,H, T 〉 be an L-structure.
Then,M |= st(T ) if and only if H|LT = T |LT .

Due to stable closure, it is sufficient to consider L-structures such that H|LT = T |LT .
In order to decide whether such L-structures are models of the structural part together
with the stable closure, it is sufficient to consider the respective total model.

Lemma 3. LetK = (T ,P) be a HKB, and letM = 〈U,H, T 〉 be an L-structure, such
that H|LT = T |LT . Then,M |= T ∪ st(T ) if and only if 〈U, T, T 〉 |= T ∪ st(T ).

Due to the classical interpretation of the structural theory in hybrid KBs, T -equivalence
amounts to a particular form of uniform equivalence between the respective stable clo-
sures, similar to relativised notions of equivalence. Rather than relativising to a sublan-
guage, due to the stable closure, it is sufficient to consider L-structures such that H and
T coincide on atoms over predicates from L appearing in H .

Definition 3. Given a HKB, K = (T ,P), let ELu (K) = {〈U,H, T 〉 | 〈U,H, T 〉 ∈
Eu(T ∪P∪st(T )), H = T |LH

}, whereLH = (C,PH) and PH = {p | p(t1, . . . , tn) ∈
H}.

Then, T -equivalence between HKBs can be characterised as follows.

Proposition 4. Two HKBs, K1 and K2, are T -equivalent if and only if ELu (K1) =
ELu (K2).

4 Some remarks on dl-programs

We consider dl-programs [5, 6], without restricting the classical part, which is com-
bined with logic program rules, to be a description logic. Rather we consider arbitrary
function-free first-order theories and allow for arbitrary formulas as queries. Moreover,
disjunction is allowed in rule heads, whereas, like for hybrid knowledge bases, we re-
quire that the classical theory and the logic program share a single set of constants.

Again let LT = 〈C,PT 〉 and LP = 〈C,PP〉 be function-free first-order languages,
such that PT ∩ PP = ∅. Symbols in PT , respectively in PP , are called classical predi-
cates and rule predicates, respectively. A dl-atom is of the form

DL[S1op1p1, . . . , Smopmpm; Q](t1, . . . , tn), (2)

where Si ∈ PT and pi ∈ PP are k-ary predicate symbols, opi ∈{], −∪, −∩}, Q is an
n-ary classical predicate or a formula in LT with n free variables, and t1, . . . , tn are
terms. A dl-rule is like a logic program rule of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 . . .¬ ∧ ¬bn → h1 ∨ . . . ∨ hl



with the restriction that head atoms h1, . . . , hl are equality-free atoms of LP , and body
atoms b1, . . . , bn are either atoms of LP or dl-atoms. The positive body {b1, . . . , bm}
and the negative body {bm+1, . . . , bn} of a dl-rule r are denoted by B+(r) and B−(r),
respectively. A dl-program over L = 〈C,PT ∪ PP〉 is a pair D = (T ,P), where T is
a finite first-order theory over LT and P is a set of dl-rules.

Turning to the semantics of dl-programs, let us denote the set of dl-atoms in a rule
r, respectively in a set of rules P , by DL(r) and DL(P), respectively.

A Herbrand structure M = 〈U, I〉 (with U = (D,σ)) is a model of a literal l
under T if l ∈ I . It is a model of a ground dl-atom of the form (2) under T if T ∪⋃m
i=1Ai(I) |= Q(t1, . . . , tn), where

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ],
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪,
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩,

and e = e1, . . . , en are ground terms.
As usual, M is a model of a ground dl-rule r under T if M is a model of some

hi ∈ {h1, . . . , hl} under T , whenever M is a model of all bi ∈ {b1, . . . , bm} under
T and it is no model of anyci ∈ {c1, . . . , cn} under T .M is a model of a dl-program
D = (T ,P) ifM is a model of every r ∈ grU (P) under T .

Furthermore, given a dl-program D = (T ,P), the weak dl-transform of P relative
to T and a modelM of P , denoted wPMT , is the logic program obtained from grU (P)
by deleting

– each r∈ grU (P) such that eitherM is not a model of some α∈ B+(r)∩DL(r),
or a model of some α∈B−(r), and

– all literals in B−(r) ∪ (B+(r) ∩DL(r)) from each remaining r ∈ grU (P).

IfM is an answer set of the logic program wPMT , thenM is a weak answer set of D.
Now assume that, D = (T ,P) has an associated set of ground dl-atoms DL+(P)

known to be monotonic, and for any ground rule r, let DL?(r) = DL(r) \DL+(P).
The strong dl-transform of P relative to T and a modelM of P , denoted sPMT , is the
logic program obtained from grU (P) as before replacing DL(r) by DL?(r).

IfM is the least model of (T , sPMT ), thenM is a strong answer set of D.

4.1 Equivalence for dl-programs

The study of strong equivalence concepts for dl-programs appears harder than in the
case of HKBs. The main problem is that we do not yet have a unifying semantics like
equilibrium logic. A good feature of dl-programs is that most (though not quite all)
concepts of inseparability, equivalence and modularity for DL-ontologies are defined in
syntactic (proof theoretic) terms. A difficulty of dl-programs, however, is the semantics
of dl-atoms which depends on the ontology but also on the current candidate model.
Nevertheless, we can start to make some simple observations.

A first point to note is that if two ordinary answer set programs are strongly equiv-
alent they cannot be separated by additional dl-rules.



Proposition 5. Let Π1.Π2 be two strongly equivalent logic programs. Let r be any dl-
rule and let (T ,P), (T ,R) be dl-programs where P = Π1 ∪ {r} and R = Π2 ∪
{r}. Then (T ,P) and (T ,R) are equivalent under the weak and the strong answer set
semantics for dl-programs.

The property continues to hold in the first order case and evidently for any set of
additional dl-rules. Let us now consider an equivalence concept drawn from the area of
ontologies reconstructed in description logics (DL). We assume the reader is familiar
with the standard notions of TBox and ABox. In the papers [10, 11, 9] on modular on-
tologies there are several slightly different terminologies and notations. However, basi-
cally these works consider an ontology to be represented by a TBox, while a knowledge
base is a combination of a TBox together with an ABox. We state here is a definition
from [9]. To simplify notation we assume that some DL is given, while Σ is a language
or vocabulary. Let T1 and T2 be TBoxes.

Definition 4. The Σ-query difference between T1 and T2, in symbols DiffΣ(T1, T2),
is the set of pairs (A, q(x)) where A is an ABox and q(x) ∈ Σ is a query such that
(T1,A) 6|= q(a) and (T2,A) |= q(a), for some tuple a of object names from A. We say
that T1 Σ-query entails T2 if DiffΣ(T1, T2) = ∅.

By obvious extension we can say that T1 and T2 areΣ-query equivalent if eachΣ-query
entails the other. So they are equivalent for all ABoxes and Σ-queries. Let us turn to
dl-programs and let us suppose for the moment that their classical part comprises an
ontology or TBox, so a dl-program has the form (T , P ) for some TBox, T . Now the
way in which a ground dl-atom is evaluated in an Herbrand interpretation I is similar to
the effect of adding an ABox A to T and then checking whether a ground query q(a)
follows from (T ,A). This yields the following property.

Proposition 6. Suppose that T1 and T2 are Σ-query equivalent TBoxes. Let P be any
set of dl-rules all of whose dl-atoms are inΣ. Then the dl-programs (T1, P ) and (T2, P )
are equivalent under the weak and under the strong answer set semantics.

We make the assumption above that the same syntactic class of queries is allowed
in each case of TBoxes and dl-programs, for example arbitrary queries, conjunctive
queries or some intermediate class.

Let us also ignore for the moment the two different answer set semantics. Let us
simply say that (T1, P ) and (T2, P ) are equivalent if they have the same answer sets,
and let us say they are strongly T -equivalent relative to a vocabulary Σ if, for any Σ-
theory T , (T1∪T , P ) and (T2∪T , P ) are equivalent. We can relate this to the concept of
strong query entailment from [9]. The strong Σ-query difference between T1 and T2, in
symbols sDiffΣ(T1, T2), is the set of triples (T ,A, q(x)) such that T is a Σ-TBox and
(A, q(x)) ∈ DiffΣ(T1, T2). Then T1 stronglyΣ-query entails T2 if sDiffΣ(T1, T2) = ∅,
and T1 and T2 are strongly Σ-equivalent if each strongly Σ entails the other.

We can make the following observation.

Proposition 7. Suppose that T1 and T2 are strongly Σ-query equivalent TBoxes. Let P
be any set of dl-rules all of whose dl-atoms are in Σ. Then the dl-programs (T1, P ) and
(T2, P ) are strongly T -equivalent relative to Σ.



An interesting result of [9] is that in some DLs, such as DL-Litebool, query and strong
query equivalence coincide and are equivalent to the notion of strong concept equiva-
lence (also defined there). In that case we would have the consequence that if T1 T2 are
query equivalent then the dl-programs (T1, P ) and (T2, P ) are strongly T -equivalent.
[9] shows how to characterise properties like Σ-query entailment and equivalence, but
as expected they are very strong conditions.

Evidently we can now also start to put Propositions 5 and 6 together. Let us say
that a dl-rule is proper if it contains a dl-atom, ordinary otherwise. If (T , P ) is a dl-
program, let’s denote by P p the set of proper rules of P and P o the remaining, ordinary
rules. Now consider dl-programs that contain the same proper rules but where other
components may vary. Furthermore, suppose we are dealing with a DL such as DL-
Litebool with the properties established in [9].

Corollary 2. Let (T1, P1) and (T2, P2) be two dl-programs based on the same set of
proper rules.; ie. P p1 = P p2 . If T1 and T2 are Σ-query equivalent and P o1 is strongly
equivalent to P o2 , then (T1, P1) and (T2, P2) are strongly equivalent with respect to Σ
in the sense that for any Σ-theory T and set of rules P , (T1 ∪T , P1 ∪P ) is answer set
equivalent to (T2 ∪ T , P2 ∪ P ).

Though rather straightforward, this kind of observation may nevertheless be useful. It
says that if we start with two equivalent ontologies and pair them singly together with
one or other of two (strongly) equivalent logic programs, then whatever dl-programs
we construct on top using a given (single) set of proper dl-rules, we will always obtain
equivalent dl-programs.

5 Conclusion

We have provided some initial results characterising concepts of equivalence for hy-
brid theories. In particular, we first considered hybrid knowledge bases and generalised
the concept of strong equivalence for nonmonotonic theories to this setting. Restricting
extensions to just one part of the HKBs, either the (classical) theory part or the rule
part, the special cases of T -equivalence and P-equivalence are obtained, for which we
gave precise model-theoretic characterisations. As a second hybrid formalism, we have
considered dl-programs which provide a loose coupling by means of an inference in-
terface and thus lack a unifying semantics. In this setting, the characterisation of strong
equivalence is less obvious. However, we have given some preliminary results using the
concept of (strong) Σ-query equivalence for DL TBoxes.

Our main objective was to initiate the study of equivalence and modularity for hy-
brid theories. Our results reveal that characterisations of logical relations between hy-
brid theories in general are not straightforward compositions of respective character-
isations on the components of the theory, even in case of a unifying semantics; the
particular interplay of the components has to be taken into account. Consequently, our
results are not intended to be exhaustive and, besides more precise characterisations of
strong equivalence concepts for dl-programs, many issues remain for further research,
including the investigation of more specific and relativised notions of equivalence, the
study of computational properties and algorithmic aspects, a detailed analysis of the
computational complexity and syntactic fragments, to mention just a few.
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