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Abstract

Different notions of equivalence, such as the prominent notions of strong and uniform equivalence,
have been studied in Answer-Set Programming, mainly for thepurpose of identifying programs that
can serve as substitutes without altering the semantics, for instance in program optimization. Such
semantic comparisons are usually characterized by variousselections of models in the logic of Here-
and-There (HT). For uniform equivalence however, correct characterizations in terms of HT-models
can only be obtained for finite theories, respectively programs. In this article, we show that a selection
of countermodels in HT captures uniform equivalence also for infinite theories. This result is turned
into coherent characterizations of the different notions of equivalence by countermodels, as well as
by a mixture of HT-models and countermodels (so-called equivalence interpretations). Moreover,
we generalize the so-called notion of relativized hyperequivalence for programs to propositional
theories, and apply the same methodology in order to obtain asemantic characterization which is
amenable to infinite settings. This allows for a lifting of the results to first-order theories under a very
general semantics given in terms of a quantified version of HT. We thus obtain a general framework
for the study of various notions of equivalence for theoriesunder answer-set semantics. Moreover, we
prove an expedient property that allows for a simplified treatment of extended signatures, and provide
further results for non-ground logic programs. In particular, uniform equivalence coincides under
open and ordinary answer-set semantics, and for finite non-ground programs under these semantics,
also the usual characterization of uniform equivalence in terms of maximal and total HT-models of
the grounding is correct, even for infinite domains, when corresponding ground programs are infinite.

To appear in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: answer-set programming, uniform equivalence, relativized equivalence, knowledge
representation.

1 Introduction

Answer-Set Programming (ASP) is a fundamental paradigm fornonmonotonic knowledge
representation (Baral 2003) that encompasses logic programming under the answer-set se-
mantics. It is distinguished by a purely declarative semantics and efficient solvers, such
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as, e.g., DLV (Leone et al. 2006), Smodels (Simons et al. 2002), clasp (Gebser et al. 2007),
GnT (Janhunen and Niemelä 2004), and ASSAT (Lin and Zhao 2004). Initially providing
a semantics for rules with default negation in the body, the answer-set semantics (or stable-
model semantics) (Gelfond and Lifschitz 1991) has been continually extended in terms of
expressiveness and syntactic freedom. Starting with disjunctive rules, allowing for disjunc-
tions in rule heads, negation in rule heads was considered and the development continued
by allowing nested expressions, i.e., implication-free propositional formulas in the head
and the body. Eventually, arbitrary propositional theories were given a non-classical min-
imal model semantics as their answer sets, which has recently been lifted to a general
answer-set semantics for first-order theories (Ferraris etal. 2007).

In a different line of research, the restriction to Herbranddomains for programs with
variables, i.e., non-ground programs, has been relaxed in order to cope with open do-
mains (Heymans et al. 2007), which is desirable for certain applications, e.g., in concep-
tual modelling and Semantic Web reasoning. The resulting open answer-set semantics has
been further generalized by dropping the unique names assumption (Heymans et al. 2008)
for application settings where it does not apply, for instance, when combining ontologies
with nonmontonic rules (de Bruijn et al. 2007).

As for a logical characterization of the answer-set semantics, the logic of Here-and-
There (HT), a nonclassical logic extending intuitionisticlogic, served as a basis. Equilib-
rium Logic selects certain minimal HT-models for characterizing the answer-set seman-
tics for propositional theories and programs. It has recently been extended to Quantified
Equilibrium Logic (QEL) for first-order theories on the basis of a quantified version of
Here-and-There (QHT) (Pearce and Valverde 2006; Pearce andValverde 2008). Equilib-
rium Logic serves as a viable formalism for the study of semantic comparisons of theories
and programs, like different notions of equivalence (Eiteret al. 2005; Lifschitz et al. 2007;
Woltran 2008; Faber and Konczak 2006; Faber et al. 2008; Inoue and Sakama 2004). The
practical relevance of this research originates in programoptimization tasks that rely on
modifications that preserve certain properties (Eiter et al. 2006; Lin and Chen 2007; Janhunen et al. 2009;
Janhunen 2008; Sakama and Inoue 2009).

In previous work (Fink 2008), we complemented this line of research by solving an
open problem concerning uniform equivalence of propositional theories and programs. In-
tuitively, two propositional logic programs are uniformlyequivalent if they have the same
answer sets under the addition of an arbitrary set of atoms toboth programs. Former char-
acterizations of uniform equivalence, i.e., selections ofHT-models based on a maximality
criterion (Eiter et al. 2007), failed to capture uniform equivalence for infinite propositional
programs—a problem that becomes relevant when turning to the non-ground setting, re-
spectively first-order theories, where infinite domains, such as the natural numbers, are
encountered in many application domains. In (Fink 2008), this has been remedied resort-
ing to countermodels in HT.

In this article, we extend the former work beyond the basic notions of strong and uniform
equivalence. So-called relativized notions thereof have been considered in order to capture
more fine-grained semantical comparisons (see e.g., (Eiteret al. 2007; Pearce et al. 2007)).
Intuitively, these notions restrict the alphabet to be considered for potential additions, i.e.,
programs or sets of facts, respectively. A further refinement distinguishes the alphabet for
atoms allowed in rule heads of an addition from the alphabet for atoms allowed in rule
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bodies (Woltran 2008). The various notions of equivalence that can be formalized this way
have recently been calledrelativized hyperequivalence(Truszczynski and Woltran 2008a;
Truszczynski and Woltran 2008b).

Similarly as for uniform equivalence, semantic characterizations of relativized hyper-
equivalence have been obtained by means of a maximality criterion so far, and only for
finite propositional settings. We address this issue and apply the same methods as for uni-
form equivalence in order to obtain alternative characterizations. They can be stated with-
out any finiteness restrictions and easily lift to first-order settings over infinite domains.

The new contributions compared to (Fink 2008) can be summarized as follows:

• We provide full proofs for the characterizations of uniformequivalence, but also
classical equivalence, answer-set equivalence, and strong equivalence, in terms of
countermodels in HT, respectively in terms ofequivalence interpretations, devel-
oped in (Fink 2008).
• We extend these ideas to relativized settings of equivalence and generalize the no-

tion of relativized hyperequivalence to propositional theories. Abstracting from the
notions of rule head and rule body, we obtain respective notions of relativization
for theories. We provide novel semantical characterizations in terms of equivalence
interpretations for this generalized setting, again without any finiteness restrictions.
• We lift these results to first-order theories by means of QHT,essentially introduc-

ing, besides uniform equivalence, relativized hyperequivalence for first-order theo-
ries under the most general form of answer-set semantics currently considered.
• We correct an informal claim that has been made in connectionwith a property

which allows for a simplified treatment of extended signatures and holds for QHT
countermodels. Based on an erroneous example (Example 5 in (Fink 2008)), it was
claimed that this property does not hold for QHT-models, which is not the case.
• Eventually, we reconsider logic programs and prove, using the established character-

ization, that uniform equivalence coincides for open and ordinary answer-set seman-
tics, as well as other results which have been stated withoutproof in (Fink 2008).

Our results provide an elegant, uniform model-theoretic framework for the characteri-
zation of the different notions of equivalence considered in ASP. They generalize to first-
order theories without finiteness restrictions, and are relevant for practical ASP systems
that handle finite non-ground programs over infinite domains.

In particular relativized notions of equivalence are relevant in practice. For instance, pro-
gram composition from modular parts is an issue of increasing interest in ASP (Dao-Tran et al. 2009;
Janhunen et al. 2009). It usually hinges on semantic properties specified for an interface
(input/output for ‘calling’ or connecting modules), i.e.,properties that require compliance
on a subset of the underlying language. Our results might be exploited to provide correct-
ness guarantees for specific compositions.

Another benefit comes with the generalization to first-ordertheories. It facilitates and
simplifies the study of combinations of ASP with other formalisms, or means for external
data access, in a unifying formalism. Especially the combination of nonmonotonic rules
with description logics is a highly relevant instance of such a combination. Our results can
initiate or reduce difficulties in the study of modularity and optimization for such combined
settings. (cf. (Fink and Pearce 2009) for preliminary work in this direction).
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For the sake of presentation, the technical content is splitinto two parts, discussing
the propositional case first, and addressing first-order theories and nonground programs
in a second part. In particular, the organization is as follows: Section 2 introduces essen-
tial preliminaries for the treatment of the propositional case. In Section 3, we develop a
characterization of uniform equivalence by means of countermodels in HT, and proceed
with an alternative characterization in terms of equivalence interpretations, before we turn
to generalizing and characterizing relativized hyperequivalence for propositional theories.
After some introductory background on quantified HT, Section 4 deals with generaliza-
tions of previous results to first-order theories under generalized answer-set semantics. In
Section 5, we apply our characterization of uniform equivalence to logic programs under
various extended semantics in comparison with the traditional semantics over Herbrand
domains, before we draw some conclusions in Section 6.

2 Preliminaries

We start with the propositional setting and briefly summarize the necessary background.
Corresponding first-order formalisms will be introduced when discussing first-order theo-
ries, respectively non-ground logic programs.

2.1 Propositional Here-and-There

In the propositional case we consider formulas of a propositional signatureL, i.e., a set of
propositional variables, and the connectives∧, ∨,→, and⊥ for conjunction, disjunction,
implication, and falsity, respectively. Furthermore we make use of the following abbrevia-
tions:φ ≡ ψ for (φ → ψ) ∧ (ψ → φ); ¬φ for φ → ⊥; and⊤ for ⊥ → ⊥. A formula is
said to befactual1 if it is built using∧, ∨,⊥, and¬ (i.e., implications of the formφ→ ⊥),
only. A theoryΓ is factual if every formula ofΓ has this property.

The logic of here-and-there is an intermediate logic between intuitionistic logic and clas-
sical logic. Like intuitionistic logic it can be semantically characterized by Kripke models,
in particular using just two worlds, namely “here” and “there” (assuming that thehere
world is ordered before thethereworld). Accordingly, interpretations (HT-interpretations)
are pairs(X,Y ) of sets of atoms fromL, such thatX ⊆ Y . An HT-interpretation istotal
if X = Y . The intuition is that atoms inX (theherepart) are considered to be true, atoms
not inY (thetherepart) are considered to be false, while the remaining atoms (fromY \X)
are undefined.

We denote classical satisfaction of a formulaφ by an interpretationX , i.e., a set of atoms,
asX |= φ, whereas satisfaction in the logic of here-and-there (an HT-model), symbolically
(X,Y ) |= φ, is defined recursively:

1. (X,Y ) |= a if a ∈ X , for any atoma,
2. (X,Y ) 6|= ⊥,
3. (X,Y ) |= φ ∧ ψ if (X,Y ) |= φ and(X,Y ) |= ψ,

1 When uniform equivalence of theories is considered, then factual theories can be considered instead of facts—
hence the terminology—see also the discussion at the end of this section.
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4. (X,Y ) |= φ ∨ ψ if (X,Y ) |= φ or (X,Y ) |= ψ,

5. (X,Y ) |= φ→ ψ if ( i) (X,Y ) 6|= φ or (X,Y ) |= ψ, and (ii) Y |= φ→ ψ2.

An HT-interpretation(X,Y ) satisfies a theoryΓ, iff it satisfies all formulasφ ∈ Γ. For
an axiomatic proof system see, e.g., (Lifschitz et al. 2007).

A total HT-interpretation(Y, Y ) is called anequilibrium modelof a theoryΓ, iff (Y, Y ) |=

Γ and for all HT-interpretations(X,Y ), such thatX ⊂ Y , it holds that(X,Y ) 6|= Γ. An
interpretationY is ananswer setof Γ iff (Y, Y ) is an equilibrium model ofΓ.

We will make use of the following simple properties: if(X,Y ) |= Γ then(Y, Y ) |= Γ;
and(X,Y ) |= ¬φ iff Y |= ¬φ; as well as of the following lemma.

Lemma 1(Lemma 5 in (Pearce and Valverde 2004))

If φ is a factual propositional formula,(X,Y ) |= φ, andX ⊆ X ′ ⊆ Y , then(X ′, Y ) |= φ.

2.2 Propositional Logic Programming

A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn, (1)

wherea1, . . . , al, b1, . . . , bn are atoms of a propositional signatureL, such thatl ≥ k ≥ 0,
n ≥ m ≥ 0, and l + n > 0. We refer to “¬” as default negation. The headof r is
the setH(r) = {a1, . . . , ak,¬ak+1, . . . ,¬al}, and thebodyof r is denoted byB(r) =

{b1, . . . , bm, ¬bm+1, . . . , ¬bn}. Furthermore, we define the setsH+(r) = {a1, . . . , ak},
H−(r) = {ak+1, . . . , al}, B+(r) = {b1, . . . , bm}, andB−(r) = {bm+1, . . . , bn}. A pro-
gramΠ (overL) is a set of rules (overL).

An interpretationI, i.e., a set of atoms, satisfies a ruler, symbolicallyI |= r, iff I ∩
H+(r) 6= ∅ orH−(r) 6⊆ I, if B+(r) ⊆ I andB−(r)∩I = ∅. Adapted from (Gelfond and Lifschitz 1991),
thereductof a programΠ with respect to an interpretationI, symbolicallyΠI , is given by
the set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,

obtained from rules inΠ, such thatH−(r) ⊆ I andB−(r) ∩ I = ∅.
An interpretationI is called ananswer setof Π iff I |= ΠI and it is subset minimal

among the interpretations ofL with this property.

2.3 Notions of Equivalence

For any two theories, respectively programs, and a potential extension byΓ, we con-
sider the following notions of equivalence which have been shown to be the only forms
of equivalence obtained by varying the logical form of extensions in the propositional case
in (Pearce and Valverde 2004).

2 That is,Y satisfiesφ → ψ classically.
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Definition 1
Two theoriesΓ1,Γ2 overL are called

• classically equivalent,Γ1 ≡c Γ2, if and only if they have the same classical models;
• answer-set equivalent, Γ1 ≡a Γ2, if and only if they have the same answer sets, i.e.,

equilibrium models;
• strongly equivalent, Γ1 ≡s Γ2, if and only if, for any theoryΓ overL′ ⊇ L, Γ1 ∪ Γ

andΓ2 ∪ Γ are answer-set equivalent;
• uniformly equivalent,Γ1 ≡u Γ2, if and only if, for any factual theoryΓ overL′ ⊇ L,
Γ1 ∪ Γ andΓ2 ∪ Γ are answer-set equivalent.

Emanating from a logic programming setting, uniform equivalence is usually understood
wrt. sets offacts(i.e., atoms). Obviously, uniform equivalence wrt. factual theories implies
uniform equivalence wrt. sets of facts. The converse direction has been shown as well for
general propositional theories (cf. Theorem 2 in (Pearce and Valverde 2004)). Therefore,
in general there is no difference whether uniform equivalence is considered wrt. sets of
facts or factual theories. The latter may be regarded as facts, i.e., rules with an empty body,
of so-called nested logic program rules. One might also consider sets of disjunctions of
atomic formulas and their negations (i.e., clauses), accounting for facts according to the
definition of program rules in this article. Note that clauses constitute factual formulas
and the classical transformation of clauses into implications is not valid under answer set
semantics (respectively in HT).

3 Equivalence of Propositional Theories by HT-Countermodels

Uniform equivalence is usually characterized by so-calledUE-models, i.e., total and max-
imal non-total HT-models, which fail to capture uniform equivalence for infinite proposi-
tional theories.

Example 1((Eiter et al. 2007))
LetΓ1 andΓ2 overL = {ai | i ≥ 1} be the following propositional theories

Γ1 = {ai | i ≥ 1}, and Γ2 = {¬ai → ai, ai+1 → ai | i ≥ 1}.

Both,Γ1 andΓ2, have the single total HT-model(L,L). Furthermore,Γ1 has no non-total
HT-model(X,L), i.e, such thatX ⊂ L, while Γ2 has the non-total HT-models(Xi,L),
whereXi = {a1, . . . , ai} for i ≥ 0. Both theories have the same total and maximal non-
total (namely none) HT-models. But they are not uniformly equivalent as witnessed by the
fact that(L,L) is an equilibrium model ofΓ1 but not ofΓ2.

The reason for this failure is the inability of the concept ofmaximality to capture differ-
ences exhibited by an infinite number of HT-models.

3.1 HT-Countermodels

The above problem can be avoided by taking HT-countermodelsthat satisfy a closure
condition instead of the maximality criterion.
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Definition 2

An HT-interpretation(X,Y ) is anHT-countermodelof a theoryΓ if (X,Y ) 6|= Γ. The set
of HT-countermodels of a theoryΓ is denoted byCs(Γ).

Intuitively, an HT-interpretation fails to be an HT-model of a theoryΓ when the theory
is not satisfied at one of the worlds (hereor there). Note that satisfaction at thethereworld
amounts to classical satisfaction of the theory byY . A simple consequence is that ifY 6|=
Γ, then(X,Y ) is an HT countermodel ofΓ for anyX ⊆ Y . At the hereworld, classical
satisfaction is a sufficient condition but not necessary. For logic programs, satisfaction at
thehereworld is precisely captured by the reduct of the programΠ wrt. the interpretation
at thethereworld, i.e., ifX |= ΠY .

Definition 3

A total HT-interpretation(Y, Y ) is total-closedin a setS of HT-interpretations if(X,Y ) ∈

S for everyX ⊆ Y . We say that an HT-interpretation(X,Y ) is

• closedin a setS of HT-interpretations if(X ′, Y ) ∈ S for everyX ⊆ X ′ ⊆ Y .

• there-closedin a setS of HT-interpretations if(Y, Y ) 6∈ S and(X ′, Y ) ∈ S for
everyX ⊆ X ′ ⊂ Y .

A setS of HT-interpretations is total-closed, if every total HT-interpretation(Y, Y ) ∈ S

is total-closed inS. By the remarks on the satisfaction at thethereworld above, it is ob-
vious that every total HT-countermodel of a theory is also total-closed inCs(Γ). Conse-
quently,Cs(Γ) is a total-closed set for any theoryΓ. By the same argument, if(X,Y ) is
an HT-countermodel such thatX ⊂ Y andY 6|= Γ, then(X,Y ) is closed inCs(Γ). The
more relevant cases concerning the characterization of equivalence are HT-countermodels
(X,Y ) such thatY |= Γ.

Example 2

Consider the theoryΓ1 in Example 1 and a non-total HT-interpretation(X,L). Since
(X,L) is non-total,X ⊂ L holds, and therefore(X,L) 6|= ai, for someai ∈ L. Thus,
we have identified a HT-countermodel ofΓ1. Moreover the same argument holds for any
non-total HT-interpretation of the from(X ′,L) (in particular such thatX ⊆ X ′ ⊂ Y ).
Therefore,(X,L) is there-closed inCs(Γ1).

The intuition that, essentially, there-closed countermodels can be used instead of max-
imal non-total HT-models for characterizing uniform equivalence draws from the follow-
ing observation. If(X,Y ) is a maximal non-total HT-model, then every(X ′, Y ), such
that X ⊂ X ′ ⊂ Y , is a there-closed HT-countermodel. However, there-closed HT-
countermodels are not sensitive to the problems that infinite chains cause for maximality.

Given a theoryΓ, letCu(Γ) denote the set of there-closed HT-interpretations inCs(Γ).

Theorem 1

Two propositional theoriesΓ1, Γ2 are uniformly equivalent iff they have the same sets of
there-closed HT-countermodels, in symbolsΓ1 ≡u Γ2 iff Cu(Γ1) = Cu(Γ2).
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Proof
For the only-if direction, assume that two theories,Γ1 andΓ2, are uniformly equivalent.
Then they are classically equivalent, i.e., they coincide on total HT-models, and therefore
also on total HT-countermodels. Since a total HT-interpretation(Y, Y ) is there-closed in
Cs(Γ) if (Y, Y ) 6∈ Cs(Γ), i.e., if (Y, Y ) is an HT-model ofΓ, this proves thatΓ1 and
Γ2 coincide on total HT-interpretations that are there-closed in Cs(Γ1), respectively in
Cs(Γ2).

To prove our claim, it remains to show thatΓ1 andΓ2 coincide on non-total there-
closed HT-countermodels(X,Y ), i.e., such that(Y, Y ) is an HT-model of both theories.
Consider such a there-closed HT-countermodel ofΓ1. Then,(Y, Y ) is a total HT-model
of Γ1 ∪ X and noX ′ ⊂ Y exists such that(X ′, Y ) |= Γ1 ∪ X , either because it is an
HT-countermodel ofΓ1 (in caseX ⊆ X ′ ⊂ Y ) or of X (in caseX ′ ⊂ X). Thus,Y
is an answer set ofΓ1 ∪ X and, by hypothesis sinceX is factual, it is also an answer
set ofΓ2 ∪ X . The latter implies for allX ⊆ X ′ ⊂ Y that (X ′, Y ) 6|= Γ2 ∪ X . All
these HT-interpretations are HT-models ofX . Therefore we conclude that they all are HT-
countermodels ofΓ2 and hence(X,Y ) is a there-closed HT-countermodel ofΓ2. Again by
symmetric arguments, we establish the same for any there-closed HT countermodel(X,Y )

of Γ2 such that(Y, Y ) is a common total HT-model. This proves thatΓ1 andΓ2 have the
same sets of there-closed HT countermodels.

For the if direction, assume that two theories,Γ1 andΓ2, have the same sets of there-
closed HT-countermodels. This implies that they have the same total HT-models (since
these are there-closed). Consider any factual theoryΓ′ such thatY is an answer set of
Γ1 ∪ Γ′. We show thatY is an answer set ofΓ2 ∪ Γ′ as well. Clearly,(Y, Y ) |= Γ1 ∪ Γ′

implies(Y, Y ) |= Γ′ and therefore(Y, Y ) |= Γ2 ∪ Γ′. Consider anyX ⊂ Y . SinceY is an
answer set ofΓ1 ∪ Γ

′, it holds that(X,Y ) 6|= Γ1 ∪ Γ
′. We show that(X,Y ) 6|= Γ2 ∪ Γ

′. If
(X,Y ) 6|= Γ′ this is trivial, and in particular the case if(X,Y ) |= Γ1. So let us consider the
case where(X,Y ) 6|= Γ1 and(X,Y ) |= Γ′. By Lemma 1 we conclude from the latter that,
for anyX ⊆ X ′ ⊂ Y , (X ′, Y ) |= Γ′. Therefore,(X ′, Y ) 6|= Γ1, as well. This implies that
(X,Y ) is a there-closed HT-countermodel ofΓ1. By hypothesis,(X,Y ) is a there-closed
HT-countermodel ofΓ2, i.e.,(X,Y ) 6|= Γ2. Consequently,(X,Y ) 6|= Γ2 ∪ Γ′. Since this
argument applies to anyX ⊂ Y , (Y, Y ) is an equilibrium model ofΓ2 ∪ Γ′, i.e.,Y is an
answer set ofΓ2 ∪ Γ′. The argument withΓ1 andΓ2 interchanged, proves thatY is an
answer set ofΓ1 ∪Γ′ if it is an answer set ofΓ2 ∪Γ′. Therefore, the answer sets ofΓ1 ∪Γ′

andΓ2 ∪ Γ′ coincide for any factualΓ′, i.e.,Γ1 andΓ2 are uniformly equivalent.

Example 3
Reconsider the theories in Example 1. Every non-total HT-interpretation(Xi,L) is an HT-
countermodel ofΓ1, and thus, each of them is there-closed inCs(Γ1). On the other hand,
none of these HT-interpretations is an HT-countermodel ofΓ2. Therefore,Γ1 andΓ2 are
not uniformly equivalent.

Countermodels have the drawback however, that they cannot be characterized directly
in HT itself, i.e., as the HT-models of a ‘dual’ theory. The usage of “dual” here is non-
standard compared to its application to particular calculior consequence relations, but it
likewise conveys the idea of a dual concept. In this sense HT therefore is non-dual:
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Proposition 1
Given a theoryΓ, in general there is no theoryΓ′ such that(X,Y ) is an HT-countermodel
of Γ iff it is a HT-model ofΓ′, for any HT-interpretation(X,Y ).

Proof
As observed in (Cabalar and Ferraris 2007), any theory has a total-closed set of counter-
models. Consider the theoryΓ = {a} and suppose there exists a theoryΓ′, such that
(X,Y ) is an HT-countermodel ofΓ iff it is an HT-model ofΓ′. Then, vice versa,(X,Y )

is an HT-countermodel ofΓ′ iff it is an HT-model ofΓ. Since forY = {a}, (Y, Y ) is an
HT-model ofΓ, we conclude that(Y, Y ) is an HT-countermodel ofΓ′. Because any theory
has a total-closed set of countermodels, it follows that(∅, Y ) is an HT-countermodel ofΓ′,
hence, an HT-model ofΓ. Contradiction.

3.2 Characterizing Equivalence by means of Equivalence Interpretations

The characterization of countermodels by a theory in HT essentially fails due to total HT-
countermodels. However, total HT-countermodels of a theory are not necessary for char-
acterizing equivalence, in the sense that they can be replaced by total HT-models of the
theory for this purpose.

Definition 4
An HT-countermodel(X,Y ) of a theoryΓ is called ahere-countermodelof Γ if Y |= Γ.

Definition 5
An HT-interpretation is anequivalence interpretationof a theoryΓ if it is a total HT-model
of Γ or a here-countermodel ofΓ. The set of equivalence interpretations of a theoryΓ is
denoted byEs(Γ).

Theorem 2
Two theoriesΓ1 andΓ2 coincide on their HT-countermodels iff they have the same equiv-
alence interpretations, symbolicallyCs(Γ1) = Cs(Γ2) iff Es(Γ1) = Es(Γ2).

Proof
For the only-if direction, assume that two theories,Γ1 andΓ2, have the same sets of HT-
countermodels. This implies that they have the same here-countermodels. Furthermore,
since the total HT-countermodels are equal, they also coincide on total HT-models. Con-
sequently,Γ1 andΓ2 have the same equivalence interpretations.

For the if direction, assume that two theories,Γ1 andΓ2, coincide on their equivalence
interpretations. Then they have the same total HT-models and hence the same total HT-
countermodels. Since total HT-countermodels of every theory are total-closed in the set
of HT-countermodels, the sets of HT-countermodels coincide on all HT-interpretations
(X,Y ) such that(Y, Y ) is a (total) HT countermodel. All remaining HT-countermodels are
here-countermodels and therefore coincide by hypothesis and the definition of equivalence
interpretations. This proves the claim.
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As a consequence of this result, and the usual relationshipson HT-models, we can char-
acterize equivalences of propositional theories also by selections of equivalence interpre-
tations, i.e., a mixture of non-total here-countermodels and total HT-models, such that the
characterizations, in particular for uniform equivalence, are also correct for infinite theo-
ries.

Definition 6
Given a theoryΓ, we denote by

• Cc(Γ), respectivelyEc(Γ), the restriction to total HT-interpretations inCs(Γ), re-
spectively inEs(Γ);
• Ca(Γ) the set of there-closed HT-interpretations of the form(∅, Y ) in Cs(Γ), and by
Ea(Γ) the set of total-closed HT-interpretations inEs(Γ) (i.e., equilibrium models);
• Eu(Γ) the set of closed HT-interpretations inEs(Γ).

By means of the above sets of HT-countermodels, respectively equivalence interpreta-
tions, equivalences of propositional theories can be characterized as follows.

Corollary 1
Given two propositional theoriesΓ1 andΓ2, the following propositions are equivalent for
e ∈ {c, a, s, u}:

(1) Γ1 ≡e Γ2; (2) Ce(Γ1) = Ce(Γ2); (3) Ee(Γ1) = Ee(Γ2).

Example 4
In our running example,Cu(Γ1) 6= Cu(Γ2), as well asEu(Γ1) 6= Eu(Γ2), by the remarks
on non-total HT-interpretations in Example 3.

Since equivalence interpretations do not encompass total HT-countermodels, we attempt
a direct characterization in HT.

Lemma 2
For any HT-interpretation(X,Y ) of signatureL andτǫ = {¬¬a → a | a ∈ L}, it holds
that(X,Y ) |= τǫ iff X = Y .

Proof
(X,Y ) |= τǫ for all a ∈ L iff (X,Y ) |= ¬¬a → a for all a ∈ L iff, for every a ∈ L, it
holds that(X,Y ) 6|= ¬¬a or (X,Y ) |= a, andY |= ¬¬a → a. The latter is a tautology,
and(X,Y ) 6|= ¬¬a iff a 6∈ Y . We conclude that(X,Y ) |= τǫ iff (X,Y ) |= a for all
a ∈ Y , i.e., iff X = Y .

By means of this lemma, we can use formulas of the form¬¬a → a to ensure for a
given formulaφ of Γ that if (X,Y ) |= φ thenX = Y , i.e., that the HT-interpretation is
total.

Proposition 2
LetM be an HT-interpretation overL. Then,M ∈ Es(Γ) for a theoryΓ iff M |= Γφ for
someφ ∈ Γ, whereΓφ = {¬¬ψ | ψ ∈ Γ} ∪ {φ→ (¬¬a→ a) | a ∈ L}.
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Proof
For the only-if direction, assume(X,Y ) is an equivalence interpretation ofΓ. ThenY |= ψ

for all ψ ∈ Γ and therefore(X,Y ) |= ¬¬ψ for all ψ ∈ Γ. If X = Y , then by Lemma 2,
(X,Y ) also satisfies¬¬a → a for all a ∈ L. In this case,(X,Y ) |= Γφ for all φ ∈ Γ.
We continue with the case whereX ⊂ Y . Then,(X,Y ) is a here-countermodel ofΓ, i.e.,
there existsφ ∈ Γ such that(X,Y ) 6|= φ. This implies that(X,Y ) |= φ → (¬¬a → a)

for all a ∈ L, i.e.,(X,Y ) |= Γφ. This proves the claim forX ⊂ Y .
For the if direction, assume that(X,Y ) |= Γφ for someφ ∈ Γ. Then,(X,Y ) |=

¬¬ψ for all ψ ∈ Γ, which impliesY |= ψ for all ψ ∈ Γ. Consequently,(X,Y ) is an
equivalence interpretation ofΓ if X = Y . If X ⊂ Y , we conclude that(X,Y ) does not
satisfy¬¬a → a for somea ∈ L by Lemma 2. However,(X,Y ) |= Γφ for someφ ∈ Γ,
hence(X,Y ) |= φ → (¬¬a → a) for all a ∈ L. Therefore,(X,Y ) 6|= φ must hold for
someφ ∈ Γ. This proves, sinceX ⊂ Y , that(X,Y ) is a here-countermodel ofΓ, i.e., an
equivalence interpretation ofΓ.

For infinite propositional theories, we thus end up with a characterization of equivalence
interpretations as the union of the HT-models of an infinite number of (infinite) theories. At
least for finite theories, however, a characterization in terms of a (finite) theory is obtained
(even for a potentially extended infinite signature).

If L′ ⊃ L andM = (X,Y ) is an HT-interpretation overL′, thenM |L denotes the
restriction ofM toL: M |L = (X |L, Y |L). The restriction istotality preserving, if X ⊂ Y
impliesX |L ⊂ Y |L.

Proposition 3
Let Γ be a theory overL, let L′ ⊃ L, and letM an HT-interpretation overL′ such that
M |L is totality preserving. Then,M ∈ Cs(Γ) impliesM |L ∈ Cs(Γ).

Proof
LetM = (X ′, Y ′),M |L = (X,Y ), and assumeM 6|= Γ. First, supposeM is total, hence,
Y ′ 6|= Γ. Then,Y 6|= Γ, because otherwiseY ′ |= Γ would hold, sinceΓ is overL. This
proves the claim for total HT-countermodels, and since HT countermodels are total-closed,
for any HT-countermodelM = (X ′, Y ′), such thatY ′ 6|= Γ.

We continue with the case thatY ′ |= Γ. ThenX ′ ⊂ Y ′ holds, which means thatM
is an equivalence interpretation ofΓ. Therefore,M 6|= φ for someφ ∈ Γ. Additionally,
M |= ¬¬ψ for all ψ ∈ Γ (recall thatY ′ |= Γ). This impliesM |= Γφ, whereΓφ =

{¬¬ψ | ψ ∈ Γ} ∪ {φ → (¬¬a → a) | a ∈ L}. Therefore,M |L |= Γφ, i.e.,M |L
is an equivalence interpretation ofΓ. Since the restriction is totality preserving,M |L is
non-total. This provesM |L 6|= Γ.

This eventually enables the characterization of the HT-countermodels of a finite theory
by another finite theory, as stated in the next result.

Theorem 3
Let Γ be a finite theory overL, and letM be an HT-interpretation. Then,M ∈ Es(Γ) iff
M |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ, andM |L is totality preserving.
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Proof
For the only-if direction letM ∈ Es(Γ). If M is total thenM |L is total andM |= Γ implies
M |L |= Γ. Hence,M |L ∈ Es(Γ) andM |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ. So letM be non-total. We
show thatM |L is totality-preserving. Towards a contradiction assume the contrary. Then,
M |L is total. FromY |= Γ we concludeY |L |= Γ and the same forX |L byX |L = Y |L.
BecauseΓ is overL,X |= Γ follows, henceM |= Γ, which is a contradiction. Thus,M |L
is totality-preserving. ThenM |L is also non-total and inCs(Γ). ThereforeM |L ∈ Es(Γ),
which impliesM |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ.
For the if direction, consider any HT-interpretationM such thatM |L satisfies the theory

∨
φ∈Γ

∧
ψ∈Γφ

ψ andM |L is totality preserving. IfM is total thenM |L is total andM |L |=
Γ, which impliesM |= Γ, sinceΓ is overL. If M is non-total thenM |L is non-total and
M |L 6|= Γ, which impliesM 6|= Γ.

Example 5
Let Γ = {a} overL = {a} and recall what the proof of Proposition 1 established: There
is no theoryΓ′ such that(X,Y ) is an HT-model ofΓ′ iff it is an HT-countermodel of
Γ. According to Theorem 3 however, we can characterizeEs(Γ) by means of totality-
preserving HT-models of the theoryΓ′ = {¬¬ a ∧ (a → (¬¬a → a))}. Consider any
HT-interpretation(X,Y ) overL′ ⊃ L. It is easily verified that(X,Y ) |= Γ′ iff a ∈ Y . If
additionallya ∈ X andX ⊂ Y , then(X |L, Y |L) is not totality preserving. Thus,(X,Y )

is a totality-preserving HT-model ofΓ′ iff a ∈ Y and eitherX = Y or a 6∈ X . These
interpretations respectively correspond to the total models and the here-countermodels,
i.e., the equivalence interpretations ofΓ overL′.

3.3 Relativized Hyperequivalence for Propositional Theories

We now turn to the notion of relativized hyperequivalence. The term ‘hyperequivalence’
has been coined in the context of ASP, as a general expressionfor different forms of equiv-
alence, which guarantee that the semantics is preserved under the addition of arbitrary pro-
grams (calledcontexts) from a particular class of programs (Truszczynski and Woltran 2008a).
Relativized hyperequivalence emanates from the study of relativized notions of equiva-
lence by restricting contexts to particular alphabets (seee.g., (Eiter et al. 2007; Pearce et al. 2007)).
It has been generalized to the setting, where possibly different alphabets are used to restrict
the head atoms and the body atoms allowed to appear in contextrules (Woltran 2008).

While up to now relativized hyperequivalence has only been studied for finite programs,
we aim at a generalization of relativized hyperequivalencefor propositional theories un-
der the answer-set semantics, without any finiteness restrictions. For this purpose, we first
generalize the notions of ‘head atom’ and ‘body atom’ for theories.

The occurrence of an atoma in a formulaφ is calledpositiveif φ is implication free, if
a occurs in the consequent of an implication inφ, or if φ is of the form(φ1 → φ2) → φ3

anda occors inφ1. An occurrence ofa is callednegativeif a occurs in the antecedent of an
implication. The notion of positive and negative occurrence is extended to (sub-)formulas
in the obvious way. Note that any occurrence under negation therefore is a negative occur-
rence, and that the occurrence of an atom or subformula may beboth positive and negative,
for instance the occurrence ofb in a→ (b→ ⊥), viz. a→ ¬b.
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A propositional theoryΓ overA+ ∪ A−, whereA+ andA− are sets of propositional
variables, is called anA+-A−-theory if every formula inΓ has positive occurrences of
atoms fromA+, and negative occurrences of atoms fromA−, only. Note that⊥ is always
allowed to appear both, positively and negatively. AnA+-A−-theory is calledextended, if
additionally factual formulas overA+ are permitted.

By means of these notions, relativized hyperequivalence for propositional theories can
be expressed as follows, which is a proper generalization ofthe logic programming setting.

Definition 7
Two propositional theoriesΓ1,Γ2 overL are calledrelativized hyperequivalent wrt.A+

andA−, symbolicallyΓ1
A+

A−≡ Γ2, iff for anyA+-A−-theoryΓ overL′ ⊇ L, Γ1 ∪ Γ and
Γ2 ∪ Γ are answer-set equivalent.

Towards a characterization of relativized hyperequivalence, our goal is to follow the
same methodology that we used to characterize uniform equivalence, i.e., resorting to HT-
countermodels and respective closure conditions. However, while in the logic program-
ming setting such closure conditions may be obtained from certain monotonicity properties
of the program reduct, we first have to establish corresponding properties for theories. A
first property in this respect is the following. Note that although the next result is stated
for extendedA+-A−-theories (for reasons which will become clear later), it trivially also
holds for any (non-extended)A+-A−-theory.

Proposition 4
Consider an extended propositionalA+-A−-theoryΓ, and an HT-interpretation(X,Y ).
Then,(X,Y ) |= Γ implies (X ′, Y ) |= Γ, for all X ′ ⊆ Y such thatX |A+ ⊆ X ′|A+ and
X ′|A− ⊆ X |A− .

Proof
Consider anyA+-A−-formulaφ in Γ, i.e., any formula that has positive occurrences of
atoms fromA+, and negative occurrences of atoms fromA−, only. We show by induction
on the formula structure ofφ, that for allX ′ ⊆ Y such thatX |A+ ⊆ X ′|A+ andX ′|A− ⊆

X |A− :

(a) (X,Y ) |= φ implies(X ′, Y ) |= φ if φ is a positive occurrence; and
(b) (X,Y ) 6|= φ implies(X ′, Y ) |= φ if φ is a negative occurrence.

For the base case, consider any atomic formulaφ, and suppose first that (a) the occur-
rence ofφ is a positive occurrence. Then,(X,Y ) |= φ implies thatφ is not⊥, and thus is
an atoma fromA+ such thata ∈ X . SinceX |A+ ⊆ X ′|A+ for allX ′ under consideration,
we conclude thata ∈ X ′. Hence,(X ′, Y ) |= φ. Suppose (b)φ is a negative occurrence. If
(X,Y ) 6|= φ, then eitherφ is⊥, and(X ′, Y ) 6|= φ follows trivially. Otherwise,φ is an atom
b fromA−, such thatb 6∈ X |A− . SinceX ′|A− ⊆ X |A− for all X ′ under consideration, we
conclude thatb 6∈ X ′, i.e.,(X ′, Y ) 6|= φ. This proves (a) and (b) for atomic formulas.

For the induction step, assume that (a) and (b) hold for anyA+-A−-formula of connec-
tive nesting depthn−1, and letφ be a formula of connective nesting depthn. Consider the
case whereφ is of the formφ1 ∧φ2, respectivelyφ1 ∨φ2. If φ is a positive occurrence (a),
then so areφ1 andφ2, both of connective nesting depth depthn− 1. From(X,Y ) |= φ we
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conclude(X,Y ) |= φ1 and (or)(X,Y ) |= φ2. The induction hypothesis applies, proving
(X ′, Y ) |= φ1 and (or)(X ′, Y ) |= φ2, for all X ′ ⊆ Y such thatX |A+ ⊆ X ′|A+ and
X ′|A− = X |A− , i.e., (X ′, Y ) |= φ for all X ′ under consideration. In caseφ is a nega-
tive occurrence (b), then so areφ1 andφ2, both of connective nesting depthn − 1. Then,
(X,Y ) 6|= φ implies (X,Y ) 6|= φ1 or (and)(X,Y ) 6|= φ2, and the same holds for any
(X ′, Y ) under consideration by induction hypothesis. This proves(X,Y ) 6|= φ implies
(X ′, Y ) |= φ.

Finally, let φ be of the formφ1 → φ2. Then, independent of whetherφ occurs pos-
itively or negatively,φ1 is a negative occurrence andφ2 is a positive occurrence, both
of connective nesting depthn − 1. First, suppose thatφ is a positive occurrence (a), as
well as that(X,Y ) |= φ. Towards a contradiction assume that there existsX ′ ⊆ Y

such thatX |A+ ⊆ X ′|A+ , X ′|A− ⊆ X |A− , and(X ′, Y ) 6|= φ. Since(X,Y ) |= φ im-
plies thatY |= φ, we conclude that both,(X ′, Y ) |= φ1 and(X ′, Y ) 6|= φ2, hold. From
the latter, sinceφ2 is a positive occurrence of connective nesting depthn − 1, it follows
that (X,Y ) 6|= φ2 (otherwise by induction hypothesis (a)(X ′, Y ) |= φ2). This implies
(X,Y ) 6|= φ1 since(X,Y ) |= φ. However,φ1 is a negative occurrence of connective
nesting depthn − 1, thus by induction hypothesis (b) we conclude that(X ′, Y ) 6|= φ1,
a contradiction. Therefore,(X ′, Y ) |= φ for all X ′ under consideration, which proves
(a). For (b), letφ be a negative occurrence and suppose(X,Y ) 6|= φ. If Y 6|= φ, then
also (X ′, Y ) 6|= φ for all X ′ under consideration. In caseY |= φ, we conclude that
(X,Y ) |= φ1 and(X,Y ) 6|= φ2. Sinceφ is a negative occurrence, not onlyφ1 but alsoφ2
is a negative occurrence, both of connective nesting depthn − 1. Therefore, by induction
hypothesis (b) we conclude that(X ′, Y ) 6|= φ2. Moreover, also becauseφ is a negative
occurrence,φ1 is a positive occurrence as well. Hence, by induction hypothesis (a) we
conclude(X ′, Y ) |= φ1 from (X,Y ) |= φ1, viz. (X ′, Y ) 6|= φ, for all X ′ under consider-
ation. This concludes the inductive argument and proves (a)and (b) forA+-A−-formulas
of arbitrary connective nesting.

Next, we turn to factual formulasψ in Γ, and prove by induction on the formula structure
of ψ, that

(c) (X,Y ) |= ψ implies (X ′, Y ) |= ψ, for all X ′ ⊆ Y such thatX |A+ ⊆ X ′|A+ and
X ′|A− ⊆ X |A− ; and

(d) (Y, Y ) 6|= ψ implies(X ′, Y ) 6|= ψ, for allX ′ ⊆ Y .

For the base case, consider any atomic formulaψ, and suppose first that (c)(X,Y ) |= ψ.
Then,ψ is not⊥, but an atoma fromA+ such thata ∈ X . SinceX |A+ ⊆ X ′|A+ for all
X ′ such thatX |A+ ⊆ X ′|A+ andX ′|A− ⊆ X |A− , we conclude thata ∈ X ′. Hence,
(X ′, Y ) |= ψ. For (d), assume(Y, Y ) 6|= ψ. Thenψ is ⊥ or ψ is a an atom not inY . In
the former case,(X ′, Y ) 6|= ψ follows trivially for all X ′ ⊆ Y . In the latter case, the atom
also cannot be a member of anyX ′ such thatX ′ ⊆ Y . Therefore,(X ′, Y ) 6|= ψ, for all
X ′ ⊆ Y . This proves (c) and (d) for atomic formulas.

For the induction step, assume that (c) and (d) hold for any factual formula of connective
nesting depthn−1, and letψ be a factual formula of connective nesting depthn. Consider
the case whereψ is of the formψ1 ∧ ψ2, respectivelyψ1 ∨ ψ2. Sinceψ is factual, so are
ψ1 andψ2, both of connective nesting depth depthn − 1. In case (c), from(X,Y ) |= ψ

we conclude(X,Y ) |= ψ1 and (or)(X,Y ) |= ψ2. The induction hypothesis applies,
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proving(X ′, Y ) |= ψ1 and (or)(X ′, Y ) |= ψ2, for all X ′ ⊆ Y such thatX |A+ ⊆ X ′|A+

andX ′|A− ⊆ X |A− , i.e., (X ′, Y ) |= ψ for all X ′ under consideration. Assume (d), i.e.,
(Y, Y ) 6|= ψ. As a consequence,(Y, Y ) 6|= ψ1 or (and)(Y, Y ) 6|= ψ2, hence by induction
hypothesis, for allX ′ ⊆ Y , it holds that(X ′, Y ) 6|= ψ1 or (and)(X ′, Y ) 6|= ψ2. Therefore,
(X ′, Y ) 6|= ψ, for allX ′ ⊆ Y .

Finally, letψ be of the formψ1 → ⊥. Then,ψ1 is factual and of connective nesting depth
depthn − 1. In case (c), if(X,Y ) |= ψ, thenY |= ψ, henceY 6|= ψ1, i.e.,(Y, Y ) 6|= ψ1

and by induction hypothesis (d), the same holds for any(X ′, Y ) such thatX ′ ⊆ Y . Thus,
in particular forX ′ ⊆ Y such thatX |A+ ⊆ X ′|A+ andX ′|A− ⊆ X |A− , it follows that
(X ′, Y ) 6|= ψ1. Moreover,Y |= ψ, and therefore(X ′, Y ) |= ψ → ⊥, for all X ′ ⊆ Y such
thatX |A+ ⊆ X ′|A+ andX ′|A− ⊆ X |A− . For (d), assume(Y, Y ) 6|= ψ. Consequently
Y 6|= ψ, and this implies(X ′, Y ) 6|= ψ, for allX ′ ⊆ Y . This concludes the inductive argu-
ment and proves (c) and (d) for factual formulas overA+ of arbitrary connective nesting.

Concerning the claim of the proposition, since(X,Y ) |= Γ implies (X,Y ) |= φ and
(X,Y ) |= ψ, for everyA+-A−-formula φ in Γ and every factual formulaψ in Γ, we
conclude that(X ′, Y ) |= φ and(X ′, Y ) |= ψ, for all X ′ ⊆ Y such thatX |A+ ⊆ X ′|A+

andX ′|A− ⊆ X |A− . This proves(X ′, Y ) |= Γ, for allX ′ under consideration.

Complementary to this result, given a total HT-model of an (extended)A+-A−-theory,
we can infer its satisfaction for the following class of non-total HT-interpretations.

Proposition 5
Consider an extended propositionalA+-A−-theoryΓ, and a total HT-interpretation(Y, Y ).
Then,(Y, Y ) |= Γ implies(X ′, Y ) |= Γ, for allX ′ ⊆ Y such thatX ′|A+ = Y |A+ .

Proof
Consider anyA+-A−-formulaφ in Γ, i.e., any formula that has positive occurrences of
atoms fromA+, and negative occurrences of atoms fromA−, only. We show by induction
on the formula structure ofφ, that for allX ′ ⊆ Y such thatX ′|A+ = Y |A+ :

(a) (Y, Y ) |= φ implies(X ′, Y ) |= φ if φ is a positive occurrence; and
(b) (Y, Y ) 6|= φ implies(X ′, Y ) 6|= φ if φ is a negative occurrence.

For the base case, consider any atomic formulaφ, and suppose first (a) thatφ is a positive
occurrence such that(Y, Y ) |= φ. Thenφ is not⊥, and thus is an atoma fromA+ such that
a ∈ Y . SinceX ′|A+ = Y |A+ for all X ′ under consideration, we conclude thata ∈ X ′.
Hence,(X ′, Y ) |= φ. Suppose (b)φ is a negative occurrence. If(Y, Y ) 6|= φ, thenφ is
either⊥, or an atomb fromA−, such thatb 6∈ Y . SinceX ′ ⊆ Y impliesX ′|A− ⊆ Y |A−

for all X ′ under consideration, we conclude thatb 6∈ X ′. Hence,(X ′, Y ) 6|= φ.
For the induction step, assume that (a) and (b) hold for anyA+-A−-formula of connec-

tive nesting depthn − 1, and letφ be a formula of connective nesting depthn. Consider
the case whereφ is of the formφ1 ∧ φ2, respectivelyφ1 ∨ φ2. If φ is a positive occurrence
(a), then so areφ1 andφ2, both of connective nesting depth depthn− 1. From(Y, Y ) |= φ

we conclude(Y, Y ) |= φ1 and (or)(Y, Y ) |= φ2. The induction hypothesis applies, prov-
ing (X ′, Y ) |= φ1 and (or)(X ′, Y ) |= φ2, for all X ′ ⊆ Y such thatX ′|A+ = Y |A+ ,
i.e., (X ′, Y ) |= φ for all X ′ under consideration. In caseφ is a negative occurrence (b),
then so areφ1 andφ2, both of connective nesting depthn− 1. Then,(Y, Y ) 6|= φ implies
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(Y, Y ) 6|= φ1 or (and)(Y, Y ) 6|= φ2, and the same holds for any(X ′, Y ) under consid-
eration by induction hypothesis. This proves(X ′, Y ) 6|= φ. Finally, letφ be of the form
φ1 → φ2. Then, independent of whetherφ occurs positively or negatively,φ1 is a negative
occurrence andφ2 is a positive occurrence, both of connective nesting depthn − 1. First,
suppose(Y, Y ) |= φ. Towards a contradiction assume that there existsX ′ ⊆ Y such that
X ′|A+ = Y |A+ and(X ′, Y ) 6|= φ. Since(Y, Y ) |= φ implies thatY |= φ, we conclude
that both,(X ′, Y ) |= φ1 and(X ′, Y ) 6|= φ2, hold. From the latter, sinceφ2 is a positive
occurrence of connective nesting depthn − 1, it follows that(Y, Y ) 6|= φ2 (otherwise by
induction hypothesis (a)(X ′, Y ) |= φ2). This implies(Y, Y ) 6|= φ1 since(Y, Y ) |= φ.
However,φ1 is a negative occurrence of connective nesting depthn− 1, thus by induction
hypothesis (b) we conclude that(X ′, Y ) 6|= φ1, a contradiction. Therefore,(X ′, Y ) |= φ

for all X ′ under consideration, which proves (a). For (b), letφ be a negative occurrence
and suppose(Y, Y ) 6|= φ. ThenY 6|= φ, hence also(X ′, Y ) 6|= φ for allX ′ under consider-
ation. This concludes the inductive argument and proves (a)and (b) forA+-A−-formulas
of arbitrary connective nesting.

Next, we turn to factual formulasψ in Γ, and prove by induction on the formula structure
of ψ, that(Y, Y ) |= ψ implies(X ′, Y ) |= ψ, for allX ′ ⊆ Y such thatX ′|A+ = Y |A+ .

For the base case, consider any atomic formulaψ, and suppose that(Y, Y ) |= ψ. Then,
ψ is not⊥, but an atoma fromA+ such thata ∈ Y . SinceX ′|A+ = Y |A+ for allX ′ under
consideration, we conclude thata ∈ X ′. Hence,(X ′, Y ) |= ψ, for all X ′ ⊆ Y such that
X ′|A+ = Y |A+ .

For the induction step, assume that the claim holds for any factual formula of connective
nesting depthn−1, and letψ be a factual formula of connective nesting depthn. Consider
the case whereψ is of the formψ1 ∧ ψ2, respectivelyψ1 ∨ ψ2. Sinceψ is factual, so are
ψ1 andψ2, both of connective nesting depth depthn − 1. From(Y, Y ) |= ψ we conclude
(Y, Y ) |= ψ1 and (or)(Y, Y ) |= ψ2. The induction hypothesis applies, proving(X ′, Y ) |=

ψ1 and (or)(X ′, Y ) |= ψ2, for all X ′ ⊆ Y such thatX ′|A+ = Y |A+ , i.e.,(X ′, Y ) |= ψ

for all X ′ under consideration. Finally, letψ be of the formψ1 → ⊥. Then,ψ1 is factual
and of connective nesting depth depthn− 1. If (Y, Y ) |= ψ, thenY |= ψ, henceY 6|= ψ1,
i.e., (Y, Y ) 6|= ψ1 and by Case (d) in the proof of Proposition 4, the same holds for any
(X ′, Y ) such thatX ′ ⊆ Y . Thus, in particular forX ′ ⊆ Y such thatX ′|A+ = Y |A+ , it
follows that(X ′, Y ) 6|= ψ1. Moreover,Y |= ψ, and therefore(X ′, Y ) |= ψ → ⊥, for all
X ′ ⊆ Y such thatX ′|A+ = Y |A+ . This concludes the inductive argument and proves the
claim for factual formulas overA+ of arbitrary connective nesting.

Concerning the claim of the proposition, since(Y, Y ) |= Γ implies (Y, Y ) |= φ and
(Y, Y ) |= ψ, for everyA+-A−-formula φ in Γ and every factual formulaψ in Γ, we
conclude that(X ′, Y ) |= φ and(X ′, Y ) |= ψ, for all X ′ ⊆ Y such thatX ′|A+ = Y |A+ .
This proves(X ′, Y ) |= Γ, for allX ′ under consideration.

Having established these properties ofA+-A−-theories, we can state respective closure
conditions for HT-interpretations referring to countermodels, or which we consider more
convenient here, referring to equivalence interpretations.

Definition 8
Given a propositional theoryΓ overL, sets of propositional variablesA+ ⊆ L′,A− ⊆ L′,
L′ ⊇ L, and an HT-interpretation(X,Y ), we say that



Equivalences in ASP by Countermodels in the Logic of Here-and-There 17

• (Y, Y ) isA+-total iff (Y |A+ , Y ) is closed inEs(Γ);
• (X,Y ) is A+-closed in Es(Γ) iff (X ′, Y ) ∈ Es(Γ), for all X ′ ⊆ Y such that
X |A+ ⊆ X ′|A+ andX ′|A− ⊆ X |A− .

With these concepts, a semantic characterization of relativized hyperequivalence for
propositional theories can be established by means of the following characteristic equiva-
lence interpretations.

Definition 9
An HT-interpretation(X,Y ) is anHT-hyperequivalence interpretation wrt.A+ andA−

of a propositional theoryΓ iff (Y, Y ) is A+-total and there exists an HT-interpretation
(X ′, Y ) such thatX = X ′|A+∪A− and(X ′, Y ) isA+-closed inEs(Γ).
The set of HT-hyperequivalence interpretations wrt.A+ andA− of a propositional theory
Γ is denoted byEA

+

A− (Γ).

This definition intuitively generalizes the characterization of Woltran (2008) for the logic
programming setting to propositional theories. Note however, that rather than resorting to
HT-models and a maximality criterion, the above definition refers to equivalence interpre-
tations (i.e., HT-countermodels in case of non-totality) and respective closure conditions.
As in the case of uniform equivalence, this not only simplifies the definition, but also
avoids difficulties in infinite settings. The next result establishes that HT-hyperequivalence
interpretations precisely characterize relativized hyperequivalence.

Theorem 4
Two propositional theoriesΓ1,Γ2 are relativized hyperequivalent wrt.A+ andA− if and
only if they coincide on their HT-hyperequivalence interpretations wrt.A+ andA−, sym-
bolicallyΓ1

A+

A−≡ Γ2 iff EA
+

A− (Γ1) = EA
+

A− (Γ2).

Proof
In the following, we will use the following notational simplification: For any set of atoms
X , we writeX+ for X |A+ , andX− forX |A− .

For the only-if direction supposeΓ1
A+

A−≡ Γ2 and towards a contradiction assume that

EA
+

A− (Γ1) 6= EA
+

A− (Γ2). W.l.o.g. let(X,Y ) ∈ EA
+

A− (Γ1) and(X,Y ) 6∈ EA
+

A− (Γ2) (the other

case is symmetric). Note that(X,Y ) ∈ EA
+

A− (Γ1) implies that(Y, Y ) is A+-total, i.e.,

(Y+, Y ) is closed inEs(Γ1). This implies that(Y+, Y ) is in EA
+

A− (Γ1). Suppose(Y+, Y )

is not inEA
+

A− (Γ2). Then, either(Y, Y ) 6|= Γ2, or there existsY+ ⊆ X ′ ⊂ Y such that
(X ′, Y ) |= Γ2. Let Γ = Y+ and observe that in both casesY is not an answer set of
Γ2 ∪ Γ. In the former case because(Y, Y ) 6|= Γ2 ∪ Γ, in the latter becauseX ′ ⊂ Y

and (X ′, Y ) |= Γ2 ∪ Γ (note that(X ′, Y ) |= Γ by Proposition 5). However,Y is an
answer set ofΓ1 ∪ Γ. Indeed,(Y+, Y ) is closed inEs(Γ1). And for anyX ′ ⊂ Y such that
Y+ 6⊆ X ′

+, obviously(X ′, Y ) is a non-total HT-countermodel ofΓ. Consequently(Y, Y )

is total-closed inEs(Γ1∪Γ). BecauseΓ is anA+-A−-theory, this contradictsΓ1
A+

A−≡ Γ2.

Thus, we conclude that(Y+, Y ) ∈ EA
+

A− (Γ2). Note that therefore(Y, Y ) is A+-total for

Γ2, which implies that(Y |A, Y ) is inEA
+

A− (Γ2), henceX ⊂ Y |A andX+ ⊂ Y+. Consider
the following theoryΓ = X+ ∪ {α → β | α ∈ Y− \X−, β ∈ Y+ \X+}. We show that
Y is an answer set ofΓ1 ∪ Γ. Obviously,Y |= Γ becauseX+ ⊂ Y+ andβ ∈ Y for every
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β ∈ Y+ \ X+. Therefore,(Y, Y ) |= Γ1 ∪ Γ. Towards a contradiction, assume that there
existsX ′ ⊂ Y such that(X ′, Y ) |= Γ1 ∪ Γ. From(X ′, Y ) |= Γ, we conclude that either
X ′

+ = Y+, or thatX+ ⊆ X ′
+ ⊂ Y+ andX ′

− ⊆ X−. In both cases,(X ′, Y ) 6|= Γ1. In
the former case because(Y, Y ) isA+-total, i.e.,(Y+, Y ) is closed inEs(Γ1). In the latter
case, it is a consequence of the fact that(X,Y ) ∈ EA

+

A− (Γ1), which implies(X ′, Y ) 6|= Γ1

byA+-closure. This contradicts our assumption concerning the existence ofX ′ ⊂ Y such
that(X ′, Y ) |= Γ1 ∪ Γ, and proves thatY is an answer set ofΓ1 ∪ Γ. However,Y is not
an answer set ofΓ2 ∪ Γ. To wit, since(X,Y ) 6∈ EA

+

A− (Γ2), there existsX ′ ⊂ Y such
thatX+ ⊆ X ′

+, X ′
− ⊆ X−, and(X ′, Y ) |= Γ2. Moreover,(X ′, Y ) is an HT-model of

Γ. Observe thatX ′
− ⊆ X− implies that(X ′, Y ) is an HT-model of every formula of the

form α → β in Γ. Hence,(X ′, Y ) |= Γ2 ∪ Γ, and sinceX ′ ⊂ Y , it follows thatY is not
an answer set ofΓ2 ∪ Γ. Note thatΓ is anA+-A−-theory, which contradictsΓ1

A+

A−≡ Γ2.

This provesEA
+

A− (Γ1) = EA
+

A− (Γ2).

For the if direction, supposeEA
+

A− (Γ1) = EA
+

A− (Γ2) and towards a contradiction assume

thatΓ1
A+

A− 6≡ Γ2. W.l.o.g. letY be an answer set ofΓ1 ∪ Γ for someA+-A−-theoryΓ,
such thatY is not an answer set ofΓ2∪Γ (the other case is symmetric). Then,(Y, Y ) is an
equivalence interpretation of both,Γ1 andΓ, and(Y+, Y ) is closed inEs(Γ1 ∪ Γ), which
implies (taking Proposition 5 into account) that(Y, Y ) isA+-total forΓ1 and(Y |A, Y ) is
in EA

+

A− (Γ1). Therefore,(Y |A, Y ) is also inEA
+

A− (Γ2), with the consequence that(Y, Y ) is
in Es(Γ2), and thus(Y, Y ) ∈ Es(Γ2 ∪ Γ). Since by assumptionY is not an answer set of
Γ2 ∪ Γ, there existsX ⊂ Y such that(X,Y ) 6∈ Es(Γ2 ∪ Γ), i.e.,(X,Y ) |= Γ2 ∪ Γ. Since
(Y |A, Y ) ∈ EA

+

A− (Γ2), it holds thatX |A ⊂ Y |A. Moreover,X+ ⊂ Y+ due toA+-totality

of (Y, Y ). Clearly,(X |A, Y ) is not inEA
+

A− (Γ2) as witnessed by(X,Y ) |= Γ2, and thus

(X |A, Y ) 6∈ EA
+

A− (Γ1) sinceEA
+

A− (Γ1) = EA
+

A− (Γ2). From(X |A, Y ) 6∈ EA
+

A− (Γ1), we con-
clude that there existsX ′ ⊆ Y , such thatX+ ⊆ X ′

+, X ′
− ⊆ X−, and(X ′, Y ) 6∈ Es(Γ1),

i.e.,X ′ ⊂ Y and(X ′, Y ) |= Γ1. By Proposition 4,(X,Y ) |= Γ implies (X ′, Y ) |= Γ.
Consequently,(X ′, Y ) |= Γ1 ∪ Γ, and sinceX ′ ⊂ Y , this contradicts our assumption that
Y is an answer set ofΓ1 ∪ Γ, and provesΓ1

A+

A−≡ Γ2.

Like in the logic programming setting, the framework obtained by the consideration of
relativized hyperequivalence interpretations provides ageneral unified characterization of
semantic characterizations of equivalence notions. In other words, the notions of equiva-
lence considered in the previous subsection are obtained asspecial cases. For this purpose,
one needs to refer to the universal alphabet (respectively signature), denoted byA, ex-
plicitely. Then, by definition, settingA+ = A− = ∅ amounts to answer-set equivalence,
A+ = A− = A yields strong equivalence, andA+ = A, A− = ∅ characterizes uniform
equivalence. The latter is not by definition but follows fromtwo simple observations: ev-
ery set of facts overA is aA-∅-theory, and everyA-∅-theory is a factual theory modulo
formulas of the form⊥ → φ, which are tautologies in HT.

Corollary 2
Given two propositional theoriesΓ1 andΓ2 overL ⊆ A, the following propositions are
equivalent fore ∈ {a, s, u}, A+(a) = A−(a) = ∅, A+(s) = A−(s) = A, A+(u) = A,
andA−(u) = ∅:

(1) Γ1 ≡e Γ2; (2) Γ1
A+(e)

A−(e)≡ Γ2.
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In these particular cases, not only the notions of equivalence but also the characteris-
tic semantic structures coincide, i.e., relativized hyperequivalence interpretations coincide
with the respective characteristic sets of equivalence interpretations.

Proposition 6
Let Γ be a propositional theory overL ⊆ A, and lete ∈ {a, s, u},A+(a) = A−(a) = ∅,
A+(s) = A−(s) = A,A+(u) = A, andA−(u) = ∅. Then,

Ee(Γ) = E
A+(e)
A−(e)(Γ).

Proof
First consider answer-set equivalence, i.e.,e = a andA+ = A− = ∅. Then for any HT-

interpretation(X,Y ), it holds that(X,Y ) ∈ EA
+

A− (Γ) = E
A+(e)
A−(e)(Γ) iff (∅, Y ) is there-

closed inEs(Γ) andX = ∅. The former follows from the first condition in Definition 9
sinceY |A+ = ∅, and the latter from the second condition in Definition 9, i.e., from the
existence of anX ′ such thatX = X ′|A+ (sinceX ′|∅ = ∅ for anyX ′). Note thatX = ∅

and(∅, Y ) there-closed inEs(Γ) are exactly the requirements for(X,Y ) ∈ Ea(Γ). This
proves(X,Y ) ∈ EA

+

A− (Γ) iff (X,Y ) ∈ Ea(Γ).
Turning to strong equivalence, lete = s andA+ = A− = A. Then for any HT-

interpretation(X,Y ) overA, it holds that(X,Y ) ∈ EA
+

A− (Γ) = E
A+(e)
A−(e)(Γ) iff (Y, Y ) in

Es(Γ) and(X,Y ) in Es(Γ). The former follows from the first condition in Definition 9
sinceY |A = Y , and the latter from the second condition in Definition 9, i.e., from the
existence of anX ′ such thatX = X ′|A (which impliesX ′ = X sinceX ′|A = X ′ for
anyX ′) and such thatX ′′ ∈ Es(Γ) for all X ′′ ⊆ Y whereX ′|A = X ′′|A (i.e., for
X ′′ = X ′ = X). Note that(X,Y ) ∈ Es(Γ) implies (Y, Y ) ∈ Es(Γ). Consequently, it
holds that(X,Y ) ∈ EA

+

A− (Γ) iff (X,Y ) ∈ Es(Γ).
Eventually consider uniform equivalence, i.e.,e = u, A+ = A, andA− = ∅. In this

case,(X,Y ) ∈ EA
+

A− (Γ) = E
A+(e)
A−(e)(Γ), for any HT-interpretation(X,Y ) overA, iff

(Y, Y ) in Es(Γ) and(X ′, Y ) in Es(Γ) for all X ⊆ X ′′ ⊆ Y . The former follows from
the first condition in Definition 9 sinceY |A = Y , and the latter from the second condition
in Definition 9, i.e., from the existence of anX ′ such thatX = X ′|A (which implies
X ′ = X sinceX ′|A = X ′ for anyX ′) and such thatX ′′ ∈ Es(Γ) for all X ′′ ⊆ Y where
X ′|A ⊆ X ′′|A (i.e., forX ′ = X ⊆ X ′′ ⊆ Y ). Note that this are exactly the requirements
for (X,Y ) being closed inEs(Γ), thus for(X,Y ) ∈ Eu(Γ). Therefore,(X,Y ) ∈ EA

+

A− (Γ)

iff (X,Y ) ∈ Eu(Γ), which proves the claim.

Moreover, a setting whereA+ = A− is termed relativized strong equivalence, andA− =

∅ denotes relativized uniform equivalence. A further remarkis in place, however. While we
proved for uniform equivalence of propositional theories,that it is indifferent to whether
we restrict additions (contexts) to sets of atoms or whetherwe allow for factual theories,A-
∅-theories syntactically do not encompass factual theories, since negation, i.e., formulas of
the forma→ ⊥, are not permitted. One question that this raises is: would allowing factual
theories as contexts make a difference for relativized notions of uniform equivalence?

The answer is by inspection of the proof of Theorem 4 in connection with Proposi-
tion 4 and Proposition 5. Recall that the propositions have been stated for extendedA+-
A−-theories. Therefore, the only-if direction of Theorem 4 also holds for extendedA+-
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A−-theories. Since the if direction just referred toA+-A−-theories (which, trivially, are
extendedA+-A−-theories too), we obtain the following.

Corollary 3
Two propositional theoriesΓ1,Γ2 arerelativized hyperequivalent wrt. extendedA+-A−-
theoriesif and only if they coincide on their HT-hyperequivalence interpretations wrt.A+

andA−.

Thus, also relativized uniform equivalence is independentof whether sets of atoms or
factual theories are permitted as contexts. More generally, for any notion of relativized
hyperequivalence, factual theories overA+ can be allowed in the context without altering
the notion of equivalence captured. This holds essentiallydue to Proposition 4, which
generalizes Lemma 1 (Lemma 5 in (Pearce and Valverde 2004)) in this respect.

A final result establishes, that the notion of relativized hyperequivalence which has been
introduced in this section is a proper generalization of therespective logic programming
version to the more general case of propositional theories under answer-set semantics. It
is a straight forward consequence of Theorem 4, since theA+-A−-theories in the proof of
the if direction consist of formulas corresponding to ruleswith heads restricted to positive
atoms fromA+ and body atoms fromA−. Let us say that two propositional programsΠ1

andΠ2 are relativized hyperequivalent wrt.A+ andA− in the logic programming sense,
in symbolsΠ1

A+

A−≡ lp Π2, if and only ifΠ1 ∪ Π ≡a Π2 ∪Π for any programΠ, such that
H−(r) = ∅,H+(r) ⊆ A+, andB(r) ⊆ A−, for all r ∈ Π.

Corollary 4
Given two programsΠ1 andΠ2, letA+ andA− be sets of propositional variables. Then,
Π1

A+

A−≡ lp Π2 if and only if Π1
A+

A−≡ Π2.

4 Generalization to First-Order Theories

Since the characterizations, in particular of uniform equivalence, presented in the previous
section capture also infinite theories, they pave the way forgeneralizing this notion of
equivalence to non-ground settings without any finiteness restrictions. In this section we
study first-order theories.

As first-order theories we consider sets of sentences (closed formulas) of a first-order
signatureL = 〈F ,P〉 in the sense of classical first-order logic. Hence,F andP are pair-
wise disjoint sets of function symbols and predicate symbols with an associated arity, re-
spectively. Elements ofF with arity 0 are called object constants. A0-ary predicate symbol
is a propositional constant. Formulas are constructed as usual and variable-free formulas
or theories are calledground. A sentence is said to befactualif it is built using connectives
∧,∨, ∃, ∀, and¬ (i.e., implications of the formφ→ ⊥), only. A theoryΓ is factual if every
sentence ofΓ has this property. The abbreviations introduced for propositional formulas
carry over:φ ≡ ψ for (φ→ ψ) ∧ (ψ → φ); ¬φ for φ→ ⊥; and⊤ for ⊥ → ⊥.

4.1 Static Quantified Logic of Here-and-There

Semantically we refer to the static quantified version of here-and-there with decidable
equality as captured axiomatically by the systemQHTs

= (Pearce and Valverde 2006; Lifschitz et al. 2007;
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Pearce and Valverde 2008). It is characterized by Kripke models of two worlds with a com-
mon universe (hence static) that interpret function symbols in the same way.

More formally, consider a first-order interpretationI of a first-order signatureL on a
universeU . We denote byLI the extension ofL obtained by adding pairwise distinct
namescε as object constants for the objects in the universe, i.e., for eachε ∈ U . We write
CU for the set{cε | ε ∈ U} and identifyI with its extension toLI given byI(cε) = ε.
Furthermore, lettI denote the value assigned byI to a ground termt (of signatureLI ), let
LF denote the restriction ofL to function symbols (thus including object constants), and
letBP,CU

be the set of atomic formulas built using predicates fromP and constantsCU .
We represent a first-order interpretationI of L onU as a pair〈I|LF

, I|CU
〉,3 whereI|LF

is the restriction ofI on function symbols, andI|CU
is the set of atomic formulas from

BP,CU
which are satisfied inI. Correspondingly, classical satisfaction of a sentenceφ by

a first-order interpretation〈I|LF
, I|CU

〉 is denoted by〈I|LF
, I|CU

〉 |= φ. We also define a
subset relation for first-order interpretationsI1, I2 of L onU (ie., over the same domain)
by I1 ⊆ I2 if I1|LF

= I2|LF
andI1|CU

⊆ I2|CU
.

A QHT-interpretation ofL is a triple〈I, J,K〉, such that (i) I is an interpretation ofLF
onU , and (ii) J ⊆ K ⊆ BP,CU

.
The satisfaction of a sentenceφ of signatureLI by a QHT-interpretationM = 〈I, J,K〉

(a QHT-model) is defined as:

1. M |= p(t1, . . . , tn) if p(ctI
1
, . . . , ctIn) ∈ J ;

2. M |= t1 = t2 if tI1 = tI2;
3. M 6|= ⊥;
4. M |= φ ∧ ψ if M |= φ andM |= ψ,
5. M |= φ ∨ ψ, if M |= φ orM |= ψ,
6. M |= φ→ ψ if ( i) M 6|= φ orM |= ψ, and (ii) 〈I,K〉 |= φ→ ψ4;
7. M |= ∀xφ(x) if M |= φ(cε) and〈I,K〉 |= φ(cε) for all ε ∈ U ;
8. M |= ∃xφ(x) if M |= φ(cε) for someε ∈ U ;.

A QHT-interpretationM = 〈I, J,K〉 is called aQHT-countermodelof a theoryΓ iff
M 6|= Γ; it is calledtotal if J = K. A total QHT-interpretationM = 〈I,K,K〉 is called a
quantified equilibrium model(QEL-model) of a theoryΓ, iff M |= Γ andM ′ 6|= Γ, for all
QHT-interpretationsM ′ = 〈I, J,K〉 such thatJ ⊂ K. A first-order interpretation〈I,K〉
is ananswer setof Γ iff M = 〈I,K,K〉 is a QEL-model of a theoryΓ.

In analogy to the propositional case, we will use the following simple properties. If
〈I, J,K〉 |= φ then〈I,K,K〉 |= φ; and〈I, J,K〉 |= ¬φ iff 〈I,K〉 |= ¬φ.

4.2 Characterizing Equivalence by QHT-countermodels

We aim at generalizing uniform equivalence for first-order theories, in its most liberal form,
which means wrt. factual theories. For this purpose, we firstlift Lemma 1.

Lemma 3
Let φ be a factual sentence. If〈I, J,K〉 |= φ andJ ⊆ J ′ ⊆ K, then〈I, J ′,K〉 |= φ.

3 We use angle brackets to distinguish from HT-interpretations.
4 That is,〈I,K〉 satisfiesφ→ ψ classically.
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Proof

The proof is by induction on the formula structure ofφ. LetM = 〈I, J,K〉,M |= φ, and
M ′ = 〈I, J ′,K〉 for someJ ⊆ J ′ ⊆ K. For the base case, consider an atomic sentence
φ. If φ is of the formp(t1, . . . , tn), thenp(ctI

1
, . . . , ctIn) ∈ J becauseM |= φ. By the fact

thatJ ′ ⊇ J we conclude thatp(ctI
1
, . . . , ctIn) ∈ J

′ and henceM ′ |= φ. If φ is of the form
t1 = t2 thenM |= φ impliestI1 = tI2, and thusM ′ |= φ. Note also thatM |= φ implies
φ 6= ⊥. This proves the claim for atomic formulas.

For the induction step, assume thatM |= φ impliesM ′ |= φ, for any sentence of depth
n−1, and letφ be a sentence of depthn. We show thatM |= φ impliesM ′ |= φ. Supposeφ
is the conjunction or disjunction of two sentencesφ1 andφ2. Thenφ1 andφ2 are sentences
of depthn − 1. Hence,M |= φ1 impliesM ′ |= φ1, and the same forφ2. Therefore, if
M models both or one of the sentences then so doesM ′, which impliesM |= φ implies
M ′ |= φ if φ is the conjunction or disjunction of two sentences. As for implication, since
φ is factual we just need to consider the case whereφ is of the formφ1 → ⊥, i.e.,¬φ1.
Then,M |= ¬φ1 iff 〈I,K〉 |= ¬φ1 iff M ′ |= ¬φ1. This provesM |= φ impliesM ′ |= φ if
φ is an implication with⊥ as its consequence. Eventually, consider a quantified sentence
φ, i.e.,φ is of the form∀xφ1(x) or ∃xφ1(x). In this case,M |= φ impliesM |= φ1(cε)

and〈I,K〉 |= φ1(cε), for all ε ∈ U , respectivelyM |= φ1(cε), for someε ∈ U , in case of
existential quantification. Since each of the sentencesφ1(cε) is of depthn − 1, the same
is true forM ′ by assumption, i.e.,M ′ |= φ1(cε) and〈I,K〉 |= φ1(cε), for all ε ∈ U ,
respectivelyM ′ |= φ1(cε), for someε ∈ U . It follows thatM |= φ impliesM ′ |= φ also
for quantified sentencesφ of depthn, and therefore, for any sentenceφ of depthn. This
proves the claim.

The different notions of closure naturally extend to (sets of) QHT-interpretations. In
particular, a total QHT-interpretationM = 〈I,K,K〉 is calledtotal-closedin a setS of
QHT-interpretations if〈I, J,K〉 ∈ S for everyJ ⊆ K. A QHT-interpretation〈I, J,K〉 is
closedin a setS of QHT-interpretations if〈I, J ′,K〉 ∈ S for everyJ ⊆ J ′ ⊆ K, and it is
there-closedin S if 〈I,K,K〉 6∈ S and〈I, J ′,K〉 ∈ S for everyJ ⊆ J ′ ⊂ K.

The first main result lifts the characterization of uniform equivalence for theories by
HT-countermodels to the first-order case.

Theorem 5

Two first-order theories are uniformly equivalent iff they have the same sets of there-closed
QHT-countermodels.

The proof idea is the same as in the propositional case, thus for space reasons the proof is
skipped. The same applies to Theorem 6 and Proposition 7 (cf.(Fink 2009) for full proofs).

We next turn to an alternative characterization by a mixtureof QHT-models and QHT-
countermodels as in the propositional case. A QHT-countermodel〈I, J,K〉 of a theoryΓ
is called QHT here-countermodel ofΓ if 〈I,K〉 |= Γ. A QHT-interpretation〈I, J,K〉 is
an QHT equivalence-interpretation of a theoryΓ, if it is a total QHT-model ofΓ or a QHT
here-countermodel ofΓ. In slight abuse of notation, we reuse the notationSe, S ∈ {C,E}
ande ∈ {c, a, s, u}, for respective sets of QHT-interpretations, and arrive atthe following
formal result:
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Theorem 6
Two theories coincide on their QHT-countermodels iff they have the same QHT equivalence-
interpretations, in symbolsCs(Γ1) = Cs(Γ2) iff Es(Γ1) = Es(Γ2).

As a consequence of these two main results, we obtain an elegant, unified formal charac-
terization of the different notions of equivalence for first-order theories under generalized
answer-set semantics.

Corollary 5
Given two first-order theoriesΓ1 andΓ2, the following propositions are equivalent for
e ∈ {c, a, s, u}: Γ1 ≡e Γ2; Ce(Γ1) = Ce(Γ2); Ee(Γ1) = Ee(Γ2).

Moreover, lifting the characterization of HT-countermodels provided in Proposition 2
to the first-order setting, allows us to prove a property, which simplifies the treatment of
extended signatures.

Proposition 7
LetM be a QHT-interpretation overL onU . Then,M ∈ Es(Γ) for a theoryΓ iff M |=

Γφ(M) for someφ ∈ Γ, whereΓφ(M) = {¬¬ψ | ψ ∈ Γ} ∪ {φ → (¬¬a → a) | a ∈

BP,CU
}.

For QHT-models it is known thatM |= Γ impliesM |L |= Γ (cf. e.g., Proposition 3
in (de Bruijn et al. 2007)), henceM |L 6|= Γ impliesM 6|= Γ, i.e.,M |L ∈ Cs(Γ) implies
M ∈ Cs(Γ). The converse direction holds for totality preserving restrictions (the proof
appeared in (Fink 2008) and can also be found in (Fink 2009)):

Theorem 7
Let Γ be a theory overL, let L′ ⊃ L, and letM a QHT-interpretation overL′ such that
M |L is totality preserving. Then,M ∈ Cs(Γ) impliesM |L ∈ Cs(Γ).

Note that this property carries over to QHT-models, i.e.,M |L |= Γ impliesM |= Γ,
if M |L is the restriction ofM to L and this restriction is totality preserving. Otherwise,
by the above resultM 6|= Γ would implyM |L 6|= Γ. We remark that in (Fink 2008) it is
erroneously stated informally that this property does not hold for QHT-models, however
the counter-example given there is flawed (Example 5 in (Fink2008)).

4.3 Relativized Hyperequivalence for First-Order Theories

In this section we extend the notion of relativized hyperequivalence to first-order theories.
For this purpose, we distinguish positive and negative occurrences of predicates in sen-
tences. More precisely, the occurrence of a predicatep in a sentenceφ is calledpositive
if φ is implication free, ifp occurs in the consequent of an implication inφ, or if φ is of
the form(φ1 → φ2) → φ3 andp occurs inφ1. An occurrence ofp is callednegativeif p
occurs in the antecedent of an implication. The notion of positive and negative occurrence
is again extended to (sub-)sentences in the obvious way.

Let Γ be a first-order theory overL = 〈F , L+ ∪ L−〉, whereL+ andL− are sets of
predicate symbols with an associated arity, such that if a predicate symbolp occurs in both
L+ andL−, then it is also associated the same arity. We say thatΓ is anL+-L−-theoryif
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its sentences have positive occurrences of predicates fromL+, and negative occurrences of
predicates fromL−, only. As in the propositional case,⊥ is allowed to appear positively
and negatively, and the same holds for equality in the first-order case. Moreover, anL+-
L−-theory is calledextended, if additionally factual formulas overL+ are permitted.

Definition 10

Two first-order theoriesΓ1,Γ2 overL are calledrelativized hyperequivalent wrt.L+ and
L−, symbolicallyΓ1

L+

L−≡ Γ2, iff for anyL+-L−-theoryΓ overL′ ⊇ L, Γ1∪Γ andΓ2∪Γ

are answer-set equivalent.

The properties proven for HT-interpretations and extendedA+-A−-theories in the propo-
sitional case, carry over to QHT-interpretations and extendedL+-L−-theories in a straight
forward manner.

Proposition 8

Consider an extended first-orderL+-L−-theoryΓ, and a QHT-interpretation〈I, J,K〉.
Then,〈I, J,K〉 |= Γ implies〈I, J ′,K〉 |= Γ, for all J ′ ⊆ K such thatJ |L+ ⊆ J ′|L+ and
J ′|L− ⊆ J |L− .

The proof is lengthy and does not convey particular new insights, therefore it is skipped
here (cf. (Fink 2009)). The main differences to the propositional case concern the treat-
ment of equality of terms and that quantification has to be taken into account. The former
depends solely on the interpretation partI, which is the same for the QHT-interpretations
under consideration, and thus has no further influence on theargument. The latter, is a fur-
ther case to be considered in the inductive argument, however one that reduces easily to the
respective induction hypotheses. The remainder simply mirrors the propositional case, with
the polarity being considered on the predicate level, rather than for propositional variables.
The same holds for the proofs of the remaining results in thissection.

Proposition 9

Consider an extended first-orderL+-L−-theoryΓ, and a total QHT-interpretation〈I,K,K〉.
Then,〈I,K,K〉 |= Γ implies〈I, J ′,K〉 |= Γ, for all J ′ ⊆ K such thatJ ′|L+ = K|L+ .

Having lifted the essential properties to the case ofL+-L−-theories, it comes at no
surprise that we end up with respective closure conditions for QHT-equivalence interpre-
tations.

Definition 11

Given a first-order theoryΓ overL, sets of predicate symbolsL+ ⊆ L′,L− ⊆ L′,L′ ⊇ L,
and a QHT-interpretationM = 〈I, J,K〉, we say that

• 〈I,K,K〉 isL+-total iff 〈I,K|L+ ,K〉 is closed inEs(Γ);

• M is L+-closedin Es(Γ) iff 〈I, J ′,K〉 ∈ Es(Γ), for all J ′ ⊆ K such thatJ |L+ ⊆

J ′|L+ andJ ′|L− ⊆ J |L− .

Also the characteristic structures for a semantic characterization are defined in straight-
forward analogy.
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Definition 12
A QHT-interpretationM = 〈I, J,K〉 is aQHT-hyperequivalence interpretation wrt.L+

andL− of a first-order theoryΓ iff 〈I,K,K〉 is L+-total and there exists a QHT-inter-
pretation〈I, J ′,K〉 such thatJ = J ′|L+∪L− and〈I, J ′,K〉 isL+-closed inEs(Γ).
The set of QHT-hyperequivalence interpretations wrt.L+ andL− of a first-order theoryΓ
is denoted byEL

+

L− (Γ).

Eventually, we arrive at a characterization of relativizedhyperequivalence for general
first-order theories under answer-set semantics, where contexts are restricted on the predi-
cate level.

Theorem 8
Two first-order theoriesΓ1,Γ2 are relativized hyperequivalent wrt.L+ andL− if and only
if they coincide on their QHT-hyperequivalence interpretations wrt.L+ andL−, symboli-
cally Γ1

L+

L−≡ Γ2 iff EL
+

L− (Γ1) = EL
+

L− (Γ2).

In the same way as for propositional theories, the prominentnotions of equivalence are
obtained as special cases, and the framework gives rise to relativized notions of strong and
uniform equivalence for general first-order theories underanswer-set semantics. Also in
analogy, the role of factual theories is governed by Proposition 8, yielding the following:

Corollary 6
Two first-order theoriesΓ1,Γ2 arerelativized hyperequivalent wrt. extendedL+-L−-theo-
ries if and only if they coincide on their QHT-hyperequivalence interpretations wrt.L+

andL−.

5 Non-ground Logic Programs

In this section we apply the characterizations obtained forfirst-order theories to non-ground
logic programs under various extended semantics—comparedto the traditional semantics
in terms of Herbrand interpretations. For a proper treatment of these issues, further back-
ground is required and introduced (succinctly, but at sufficient detail) below.

In non-ground logic programming, we restrict to a function-free first-order signature
L = 〈F ,P〉 (i.e.,F contains object constants only) without equality. AprogramΠ (over
L) is a set of rules (overL) of the form (1). A ruler is safeif each variable occurring in
H(r) ∪ B−(r) also occurs inB+(r); a ruler is ground, if all atoms occurring in it are
ground. A program is safe, respectively ground, if all of itsrules enjoy this property.

GivenΠ overL and a universeU , letLU be the extension ofL as before. Thegrounding
of Π wrt. U and an interpretationI|LF

of LF on U is defined as the setgrdU (Π, I|LF
)

of ground rules obtained fromr ∈ Π by (i) replacing any constantc in r by cε such that
I|LF

(c) = ε, and (ii) all possible substitutions of elements inCU for the variables inr.
Adapted from (Gelfond and Lifschitz 1991), thereductof a programΠ with respect to

a first-order interpretationI = 〈I|LF
, I|CU

〉 on universeU , in symbolsgrdU (Π, I|LF
)I , is

given by the set of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,

obtained from rules ingrdU(Π, I|LF
) of the form (1), such thatI |= ai for all k < i ≤ l

andI 6|= bj for all m < j ≤ n.
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A first-order interpretationI satisfies a ruler, I |= r, iff I |= Γr, whereΓr = ∀~x(βr →
αr), ~x are the free variables inr, αr is the disjunction ofH(r), andβr is the conjunction
of B(r). It satisfies a programΠ, symbolicallyI |= Π, iff it satisfies everyr ∈ Π, i.e., if
I |= ΓΠ, whereΓΠ =

⋃
r∈Π Γr.

A first-order interpretationI is called ageneralized answer setof Π iff it satisfies
grdU(Π, I|LF

)I and it is subset minimal among the interpretations ofL on U with this
property.

Traditionally, onlyHerbrand interpretationsare considered as the answer sets of a logic
program. The set of all (object) constants occurring inΠ is called theHerbrand universeof
Π, symbolicallyH. If no constant appears inΠ, thenH = {c}, for an arbitrary constantc.
A Herbrand interpretation is any interpretationI of LH = 〈H,P〉 onH interpreting object
constants by identity,id , i.e.,I(c) = id(c) = c for all c ∈ H. A Herbrand interpretationI
is anordinary answer setof Π iff it is subset minimal among the interpretations ofLH on
H satisfyinggrdH(Π, id)I .

Furthermore, anextended Herbrand interpretationis an interpretation ofL onU ⊇ F
interpreting object constants by identity. An extended Herbrand interpretationI is anopen
answer set(Heymans et al. 2007) ofΠ iff it is subset minimal among the interpretations of
L onU satisfyinggrdU (Π, id)

I .
Note that since we consider programs without equality, we semantically resort to the

logicQHTs, which results fromQHTs

= by dropping the axioms for equality. Concerning
Kripke models, however, in slight abuse of notation, we reuse QHT-models as defined for
the general case. A QHT-interpretationM = 〈I, J,K〉 is called an (extended) QHT Her-
brand interpretation, if〈I,K〉 is an (extended) Herbrand interpretation. Given a program
Π, 〈I,K〉 is a generalized answer set ofΠ iff 〈I,K,K〉 is a QEL-model ofΓΠ, and〈I,K〉
is an open, respectively ordinary, answer set ofΠ iff 〈I,K,K〉 is an extended Herbrand,
respectively Herbrand, QEL-model ofΓΠ. Notice that the static interpretation of constants
introduced by Item (i) of the grounding process is essential for this correspondences in
terms ofQHTs. Abusing notation, we further on identifyΠ andΓΠ.

As already mentioned for propositional programs, uniform equivalence is usually un-
derstood wrt. sets ofground facts(i.e., ground atoms). Obviously, uniform equivalence
wrt. factual theories implies uniform equivalence wrt. ground atoms. We show the converse
direction (lifting Theorem 2 in (Pearce and Valverde 2004),for a proof see (Fink 2009)).

Proposition 10

Given two programsΠ1,Π2, thenΠ1 ≡u Π2 iff (Π1 ∪ A) ≡a (Π2 ∪ A), for any set of
ground atomsA.

Thus, there is no difference whether we consider uniform equivalence wrt. sets of ground
facts or factual theories. Since one can also consider sets of clauses, i.e. disjunctions of
atomic formulas and their negations, which is a more suitable representation of facts ac-
cording to the definition of program rules in this article, weadopt the following terminol-
ogy. A ruler is called afact if B(r) = ∅, and afactual programis a set of facts. Then, by
our resultΠ1 ≡u Π2 holds for programsΠ1,Π2 iff (Π1 ∪Π) ≡a (Π2 ∪Π), for any factual
programΠ.



Equivalences in ASP by Countermodels in the Logic of Here-and-There 27

5.1 Uniform Equivalence under Herbrand Interpretations

The results in the previous section generalize the notion ofuniform equivalence to pro-
grams under generalized open answer-set semantics and provide alternative characteriza-
tions for other notions of equivalence. They apply to programs under open answer-set
semantics and ordinary answer-set semantics, when QHT-interpretations are restricted to
extended Herbrand interpretations and Herbrand interpretations, respectively. In order to
capture strong and uniform equivalence under ordinary answer-set semantics correctly,
interpretations under the Standard Name Assumption (SNA) have to be considered, ac-
counting for the potential extensions. For programsΠ1 andΠ2 ande ∈ {c, a, s, u}, we use
Π1 ≡E

e Π2 andΠ1 ≡H
e Π2 to denote (classical, answer-set, strong, or uniform) equivalence

under open answer-set semantics and ordinary answer-set semantics, respectively.

Corollary 7
Given two programsΠ1 andΠ2, it holds that

• Π1 ≡E
e Π2, CE

e (Π1) = CE
e (Π2), andEE

e (Π1) = EE
e (Π2) are equivalent; and

• Π1 ≡H
e Π2, CH

e (Π1) = CH
e (Π2), andEH

e (Π1) = EH
e (Π2) are equivalent;

wheree ∈ {c, a, s, u}, superscriptE denotes the restriction to extended Herbrand interpre-
tations, and superscriptH denotes the restriction to Herbrand interpretations fore ∈ {c, a},
respectively to SNA interpretations fore ∈ {s, u}.

For safe programs open answer sets and ordinary answer sets coincide (de Bruijn et al. 2007).
Note that a fact is safe if it is ground. We obtain that uniformequivalence coincides under
the two semantics even for programs that are not safe. Intuitively, the potential addition
of arbitrary facts accounts for the difference in the semantics since it requires to consider
larger domains than the Herbrand universe.5

Theorem 9
LetΠ1,Π2 be programs overL. Then,Π1 ≡E

u Π2 iff Π1 ≡H
u Π2.

Proof
The only-if direction is trivial. For the if direction, towards a contradiction assume that
Π1 ≡

H
u Π2 andΠ1 6≡

E
u Π2. Let Π be a factual program such thatM = 〈id ,K,K〉 is an

extended Herbrand QHT-interpretation overL′ ⊇ L onU ′, such thatM is inEE
a (Π1 ∪Π),

butM 6∈ EE
a (Π2 ∪ Π). Consider the signatureLU ′ = 〈U ′,L′P ∪ {d}〉, whereL′P are the

predicate symbols ofL′, andd 6∈ L′P is a fresh unary predicate symbol. Clearly,LU ′ ⊃ L′.
Furthermore letΠ′

1 = Π1 ∪Π∪ {d(X)}, Π′
2 = Π2 ∪Π∪ {d(X)}, andK ′ = K ∪ {d(c) |

c ∈ U ′}. We show thatM ′ = 〈id ,K ′,K ′〉 is in EH
a (Π′

1), butM ′ 6∈ EH
a (Π′

2). Since
M |= Π1 ∪ Π and no sentence inΠ1 ∪ Π involvesd, we concludeM ′ |= Π1 ∪ Π. By
construction,M ′ is also a QHT-model ofd(X), henceM ′ |= Π′

1. Moreover,〈id , J,K〉 6|=
Π1∪Π, for everyJ ⊂ K. Therefore, for everyJ ′ = J ∪{d(c) | c ∈ U ′} such thatJ ⊂ K,
〈id , J ′,K ′〉 6|= Π′

1. So let us consider proper subsetsJ ′ of K ′ such thatK ⊆ J , i.e.,
J ′ ⊂ {d(c) | c ∈ U ′}. In this case〈id , J ′,K ′〉 6|= d(X), and again〈id , J ′,K ′〉 6|= Π′

1. This
proves thatM ′ is inEH

a (Π′
1). On the other hand, ifM 6|= Π2∪Π, thenM 6|= Π2, and since

5 Note that this also holds forQHTs

= with functions and the result could be strengthened accordingly.
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no sentence inΠ2 involvesd, we concludeM ′ 6|= Π2, thusM ′ 6|= Π′
2. If M |= Π2∪Π, then

〈id , J,K〉 |= Π2 ∪Π for someJ ⊂ K. ConsiderJ ′ = J ∪ {d(c) | c ∈ U ′}. SinceJ ⊂ K,
it holds thatJ ′ ⊂ K ′, and since no sentence inΠ2 ∪Π involvesd, 〈id , J ′,K ′〉 |= Π2 ∪Π.
Moroever,〈id , J ′,K ′〉 |= {d(X)} by construction, hence〈id , J ′,K ′〉 |= Π′

2. This proves
M ′ 6∈ EH

a (Π′
2). Note thatΠ ∪ {d(X)} is a factual program; contradiction.

Finally, we turn to the practically relevant setting of finite, possibly unsafe, programs
under Herbrand interpretations, i.e., ordinary (and open)answer-set semantics. For finite
programs, uniform equivalence can be characterized by HT-models of the grounding, also
for infinite domains. In other words, the problems of “infinite chains” as in Example 1
cannot be generated by the process of grounding. Note that the restriction to finite programs
also applies to the programs considered to be potentially added.

Theorem 10
Let Π1,Π2 be finite programs overL. Then,Π1 ≡H

u Π2 iff Π1 andΠ2 have the same (i)
total and (ii) maximal, non-total extended Herbrand QHT-models.

Proof
The only-if direction is obvious. IfΠ1 ≡H

u Π2 then alsoΠ1 ≡E
u Π2 by Theorem 9. This

means thatΠ1 andΠ2 have (i) the same total extended Herbrand QHT-models, as well as
the same sets of closed extended Herbrand QHT equivalence interpretations, and thus (ii)
the same maximal, non-total extended Herbrand QHT-models.

For the if direction, assume thatΠ1 andΠ2 have the same total and the same maximal,
non-total extended Herbrand QHT-models but, towards a contradiction, thatΠ1 6≡H

u Π2.
Then, there exists a finite factual programΠ, such that(Π1∪Π) 6≡H

a (Π2∪Π). W.l.o.g. let
M = 〈I,K,K〉 overL′ ⊇ L be inEH

a (Π1 ∪Π) andM 6∈ EH
a (Π2 ∪Π). LetH denote the

Herbrand universe ofΠ1 ∪ Π. SinceΠ1 andΠ are finite,H is finite and so isgrdH(Π1 ∪

Π, id). Therefore, by minimality,K is finite as well. Note also, thatM is a total extended
Herbrand QHT-model ofΠ1. By hypothesis (i), Π1 andΠ2 have the same total extended
Herbrand QHT-models. Thus,M is also a total extended Herbrand QHT-model ofΠ2.
Moreover, there exists a QHT-interpretationM ′ = 〈I, J,K〉, such thatJ ⊂ K andM ′ |=

(Π2∪Π), henceM ′ |= Π2. SinceK is finite, we conclude thatΠ2 has a maximal, non-total
QHT-modelM ′′ = 〈I, J ′′,K〉, such thatJ ′ ⊆ J ′′ ⊂ K. We show that this is not the case
for Π1. M ′ |= (Π2 ∪ Π) impliesM ′ |= Π. SinceΠ is a factual program, by Lemma 3
we conclude thatM ′′ |= Π. HoweverM ′′ 6|= Π1 ∪ Π, becauseM ∈ EH

a (Π1 ∪ Π). Taken
together,M ′′ |= Π andM ′′ 6|= Π1∪Π impliesM ′′ 6|= Π1. Therefore,M ′′ is not a maximal,
non-total QHT-model ofΠ1. Observing thatM ′′ is an Herbrand QHT-model overL′ and
L′ ⊇ L, we conclude thatM ′′ is a maximal non-total extended Herbrand QHT-model of
Π2, but not ofΠ1. Contradiction.

6 Conclusion

Countermodels in equilibrium logic have recently been usedby Cabalar and Ferraris (2007)
to show that propositional disjunctive logic programs withnegation in the head are strongly
equivalent to propositional theories, and by Cabalar et al.(2007) to generate a minimal
logic program for a given propositional theory.
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By means of QEL, in (Lifschitz et al. 2007), the notion of strong equivalence has been
extended to first-order theories with equality, under the generalized notion of answer set we
have adopted. QEL has also been shown to capture open answer-sets (Heymans et al. 2007)
and generalized open answer-sets (Heymans et al. 2008), andis a promising framework
for hybrid knowledge bases, providing a unified semantics encompassing classical logic as
well as disjunctive logic programs under the answer-set semantics (de Bruijn et al. 2007).

Our results extend these foundations for the research of semantic properties in these
generalized settings. First, they complete the picture concerning the prominent notions of
equivalence by making uniform equivalence amenable to these generalized settings without
any finiteness restrictions, in particular on the domain. Inaddition, the developed notion
of relativized hyperequivalence interpretation providesa means for the study of more spe-
cific semantic relationships under generalized answer-setsemantics. Thus, a general and
uniform model-theoretic framework is achieved for the characterization of various notions
of equivalence studied in ASP. We have also shown that for finite programs, i.e., those pro-
grams solvers are able to deal with, infinite domains do not cause the problems observed
for infinite propositional programs, when dealing with uniform equivalence in terms of
HT-models of the grounding.

An intersting theoretical problem for further work is to consider equivalences and corre-
spondence under projections of answer sets (Eiter et al. 2005; Oetsch et al. 2007; Pührer et al. 2008;
Pührer and Tompits 2009). It is not difficult to apply existing techniques to our character-
izations in order to obtain characterizations for projective versions of uniform and strong
equivalence, and for relativized notions thereof, i.e., aslong as the same alphabet is per-
mitted for positive and negative occurrences in the context. However, it is not trivial to
characterize projective versions of relativized hyperequivalence in the general case, some-
thing which also has not been considered for propositional logic programs so far.

Concerning the application of our results, there is ongoingwork on combining ontolo-
gies and nonmonotonic rules, an important issue in knowledge representation and reason-
ing for the Semantic Web. The study of equivalences and correspondences under an ap-
propriate (unifying) semantics, such as the generalizations of answer-set semantics char-
acterized by QEL, constitute a highly relevant topic for research in this application do-
main (Fink and Pearce 2009). Like for Datalog, uniform equivalence may serve investiga-
tions on query equivalence and query containment in these hybrid settings, and due to the
combination of two formalisms, more specific notions of equivalence are needed to ob-
tain the intended notions of correspondence. While our characterizations serve as a basis
for these investigations, in particular the simplified treatment of extended signatures for
(equivalence) interpretations is expected to be of avail, when considering separate alpha-
bets.

On the foundational level, our results raise the interesting question whether extensions
of intuitionistic logics that allow for a direct characterization of countermodels, or equiv-
alence interpretations, would provide a more suitable formal apparatus for the study of (at
least notions of uniform) equivalences in ASP.
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