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Abstract

Different notions of equivalence, such as the prominenbnetof strong and uniform equivalence,
have been studied in Answer-Set Programming, mainly fopthipose of identifying programs that
can serve as substitutes without altering the semanticsngtance in program optimization. Such
semantic comparisons are usually characterized by vasilestions of models in the logic of Here-
and-There (HT). For uniform equivalence however, corréetracterizations in terms of HT-models
can only be obtained for finite theories, respectively paotg. In this article, we show that a selection
of countermodels in HT captures uniform equivalence alsarfiinite theories. This result is turned
into coherent characterizations of the different notiohsquivalence by countermodels, as well as
by a mixture of HT-models and countermodels (so-callededgince interpretations). Moreover,
we generalize the so-called notion of relativized hypenredence for programs to propositional
theories, and apply the same methodology in order to obtaenzantic characterization which is
amenable to infinite settings. This allows for a lifting oftfesults to first-order theories under a very
general semantics given in terms of a quantified version of\M& thus obtain a general framework
for the study of various notions of equivalence for theodeder answer-set semantics. Moreover, we
prove an expedient property that allows for a simplifiedttremt of extended signatures, and provide
further results for non-ground logic programs. In partcuuniform equivalence coincides under
open and ordinary answer-set semantics, and for finite noangl programs under these semantics,
also the usual characterization of uniform equivalenceims of maximal and total HT-models of
the grounding is correct, even for infinite domains, whemegponding ground programs are infinite.

To appear in Theory and Practice of Logic Programming (TPLP)

KEYWORDSanswer-set programming, uniform equivalence, relatglizquivalence, knowledge
representation.

1 Introduction

Answer-Set Programming (ASP) is a fundamental paradigmdamonotonic knowledge
representation (Baral 2003) that encompasses logic progiiag under the answer-set se-
mantics. It is distinguished by a purely declarative semardnd efficient solvers, such

« A preliminary version of this work appeared in the Procegsliof the 24" International Conference on Logic
Programming (ICLP), M. Garcia de la Banda and E. Pontells(EdNCS 5366, pp. 99—-113, Springer, 2008.
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as, e.g., DLVI(Leone et al. 2006), Smodeéls (Simons et al. [R@tsp/(Gebser et al. 2007),
GnT (Janhunen and Niemela 2004), and ASSAT (Lin and ZhadR0Gitially providing

a semantics for rules with default negation in the body, tienaer-set semantics (or stable-
model semantics) (Gelfond and Lifschitz 1991) has beenmoally extended in terms of
expressiveness and syntactic freedom. Starting withriisije rules, allowing for disjunc-
tions in rule heads, negation in rule heads was considerthandevelopment continued
by allowing nested expressions, i.e., implication-freegasitional formulas in the head
and the body. Eventually, arbitrary propositional thesrigere given a non-classical min-
imal model semantics as their answer sets, which has rgdeedén lifted to a general
answer-set semantics for first-order theories (Ferraas €007).

In a different line of research, the restriction to Herbralwinains for programs with
variables, i.e., non-ground programs, has been relaxedderdo cope with open do-
mains (Heymans et al. 2007), which is desirable for certpplieations, e.g., in concep-
tual modelling and Semantic Web reasoning. The resultimp@mswer-set semantics has
been further generalized by dropping the unique names gtgxmiHeymans et al. 2008)
for application settings where it does not apply, for inse&rwhen combining ontologies
with nonmontonic rules (de Bruijn et al. 2007).

As for a logical characterization of the answer-set sermanthe logic of Here-and-
There (HT), a nonclassical logic extending intuitionidtigic, served as a basis. Equilib-
rium Logic selects certain minimal HT-models for charaiziag the answer-set seman-
tics for propositional theories and programs. It has rdgdrgen extended to Quantified
Equilibrium Logic (QEL) for first-order theories on the basif a quantified version of
Here-and-There (QHT)_(Pearce and Valverde 2006; Pearc¥awerde 2008). Equilib-
rium Logic serves as a viable formalism for the study of seticammparisons of theories
and programs, like different notions of equivalerice (Etesl. 2005; Lifschitz et al. 2007;
Woltran 2008 Faber and Konczak 2006; Faber et al. 2008;daoad Sakama 2004). The
practical relevance of this research originates in progoatimization tasks that rely on
modifications that preserve certain properiies (Eiter.2@06{ Lin and Chen 2007; Janhunen et al. 2009;
Janhunen 2008; Sakama and Inoue 2009).

In previous work [(Fink 2008), we complemented this line ofe@rch by solving an
open problem concerning uniform equivalence of propasititheories and programs. In-
tuitively, two propositional logic programs are uniforndguivalent if they have the same
answer sets under the addition of an arbitrary set of atorhsttoprograms. Former char-
acterizations of uniform equivalence, i.e., selectionsldfmodels based on a maximality
criterion [Eiter et al. 2007), failed to capture uniform a@lence for infinite propositional
programs—a problem that becomes relevant when turningetmdm-ground setting, re-
spectively first-order theories, where infinite domainghsas the natural numbers, are
encountered in many application domains.[In (Fink 20083, lilas been remedied resort-
ing to countermodels in HT.

In this article, we extend the former work beyond the bastoms of strong and uniform
equivalence. So-called relativized notions thereof haenlzonsidered in order to capture
more fine-grained semantical comparisons (see e.g., @itdr 2007; Pearce et al. 2007)).
Intuitively, these notions restrict the alphabet to be abered for potential additions, i.e.,
programs or sets of facts, respectively. A further refinerdestinguishes the alphabet for
atoms allowed in rule heads of an addition from the alphatretfoms allowed in rule
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bodies|(Woltran 2008). The various notions of equivalehe¢tan be formalized this way
have recently been callgdlativized hyperequivaleng@ruszczynski and Woltran 2008a;
Truszczynski and Woltran 2008b).

Similarly as for uniform equivalence, semantic charaztgions of relativized hyper-
equivalence have been obtained by means of a maximaligrionit so far, and only for
finite propositional settings. We address this issue antydabe same methods as for uni-
form equivalence in order to obtain alternative charaz#tions. They can be stated with-
out any finiteness restrictions and easily lift to first-arsettings over infinite domains.

The new contributions compared to (Fink 2008) can be sunaedas follows:

e We provide full proofs for the characterizations of unifoequivalence, but also
classical equivalence, answer-set equivalence, andgs&quivalence, in terms of
countermodels in HT, respectively in termseaxfuivalence interpretationslevel-
oped in (Fink 2008).

e \We extend these ideas to relativized settings of equiveland generalize the no-
tion of relativized hyperequivalence to propositionaldties. Abstracting from the
notions of rule head and rule body, we obtain respectiveonstdf relativization
for theories. We provide novel semantical characterinatio terms of equivalence
interpretations for this generalized setting, again withemy finiteness restrictions.

o We lift these results to first-order theories by means of QésBentially introduc-
ing, besides uniform equivalence, relativized hypereajeice for first-order theo-
ries under the most general form of answer-set semanticsrdly considered.

e We correct an informal claim that has been made in conneetitin a property
which allows for a simplified treatment of extended signasuand holds for QHT
countermodels. Based on an erroneous example (ExampléZmniknZ008)), it was
claimed that this property does not hold for QHT-models,chitis not the case.

e Eventually, we reconsider logic programs and prove, usiegstablished character-
ization, that uniform equivalence coincides for open amtir@ary answer-set seman-
tics, as well as other results which have been stated withraalf in (Fink 2008).

Our results provide an elegant, uniform model-theoreticnework for the characteri-
zation of the different notions of equivalence considereA$P. They generalize to first-
order theories without finiteness restrictions, and areveeit for practical ASP systems
that handle finite non-ground programs over infinite domains

In particular relativized notions of equivalence are rate\in practice. For instance, pro-
gram composition from modular parts is an issue of incregisiterest in ASP_(Dao-Tran et al. 2009;
Janhunen et al. 2009). It usually hinges on semantic priegespecified for an interface
(input/output for ‘calling’ or connecting modules), i.properties that require compliance
on a subset of the underlying language. Our results mighkpliéed to provide correct-
ness guarantees for specific compositions.

Another benefit comes with the generalization to first-otteories. It facilitates and
simplifies the study of combinations of ASP with other forisials, or means for external
data access, in a unifying formalism. Especially the comtixm of nonmonotonic rules
with description logics is a highly relevant instance offsaccombination. Our results can
initiate or reduce difficulties in the study of modularitydaoptimization for such combined
settings. (cf.[(Fink and Pearce 2009) for preliminary warkhis direction).
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For the sake of presentation, the technical content is spbttwo parts, discussing
the propositional case first, and addressing first-ordesribée and nonground programs
in a second part. In particular, the organization is as fedtoSectio R introduces essen-
tial preliminaries for the treatment of the propositionase. In Sectioq]3, we develop a
characterization of uniform equivalence by means of caumtelels in HT, and proceed
with an alternative characterization in terms of equivateimterpretations, before we turn
to generalizing and characterizing relativized hyperegjence for propositional theories.
After some introductory background on quantified HT, Setdibdeals with generaliza-
tions of previous results to first-order theories under galired answer-set semantics. In
Sectior b, we apply our characterization of uniform equmak to logic programs under
various extended semantics in comparison with the traditisemantics over Herbrand
domains, before we draw some conclusions in Se€fion 6.

2 Preliminaries

We start with the propositional setting and briefly summettze necessary background.
Corresponding first-order formalisms will be introducedanltdiscussing first-order theo-
ries, respectively non-ground logic programs.

2.1 Propositional Here-and-There

In the propositional case we consider formulas of a projoosit signatureZ, i.e., a set of
propositional variables, and the connectives/, —, and_L for conjunction, disjunction,
implication, and falsity, respectively. Furthermore wekease of the following abbrevia-
tions:¢ = ¢ for (¢ — ) A (Y — ¢); ~¢p for¢ — L;andT for L — L. Aformulais
said to be‘actua@ if it is built using A, v, L, and— (i.e., implications of the fornp — L),
only. A theoryT" is factual if every formula of* has this property.

The logic of here-and-there is an intermediate logic betwetiitionistic logic and clas-
sical logic. Like intuitionistic logic it can be semantibatharacterized by Kripke models,
in particular using just two worlds, namelhére’ and “theré’ (assuming that théere
world is ordered before ththereworld). Accordingly, interpretations (HT-interpretatis)
are pairg X, Y) of sets of atoms front, such thatX C Y. An HT-interpretation igotal
if X =Y. The intuition is that atoms iX (theherepart) are considered to be true, atoms
notinY (thetherepart) are considered to be false, while the remaining atfmom(\ X)
are undefined.

We denote classical satisfaction of a formgilay an interpretatiotx , i.e., a set of atoms,
asX E ¢, whereas satisfaction in the logic of here-and-there (amttBel), symbolically
(X,Y) E ¢, is defined recursively:

1. (X,Y) =aif a € X, for any atonm,
2. (X,Y) [~ 1L,
3. (X,Y) E o Adif (X,Y) E ¢and(X,Y) E o,

1 When uniform equivalence of theories is considered, thetu# theories can be considered instead of facts—
hence the terminology—see also the discussion at the efisafection.
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4. (X,Y)EoVvyif (X,Y) Eg¢or(X,Y) v,
5. (X,Y) |= ¢ — ¢ if (i) (X,Y) £ dor (X,Y) =, and () Y = ¢ — .

An HT-interpretation X, Y) satisfies a theory, iff it satisfies all formulas) € T'. For
an axiomatic proof system see, e.q., (Lifschitz et al. 2007)

Atotal HT-interpretatiorfY, V) is called arequilibrium modebf a theont, iff (YY) &
T and for all HT-interpretation§X,Y’), such thatX C Y/, it holds that(X,Y") |~ I'. An
interpretatior” is ananswer sebf I' iff (Y,Y") is an equilibrium model of .

We will make use of the following simple properties(iX,Y) = I' then(Y,Y) = T;
and(X,Y) E —¢iff Y E —¢; as well as of the following lemma.

Lemma 1ILemma 5 in[(Pearce and Valverde 20D4)
If ¢ is a factual propositional formulédX,Y) | ¢, andX C X' C Y, then(X',Y) | ¢.

2.2 Propositional Logic Programming
A (disjunctive ruler is of the form
arV---VarV -ags1 V-V bl,...,bm,—‘berl,...,—‘bn, (1)

whereaq, ..., a;,b1,...,b, are atoms of a propositional signatutesuch that > k£ > 0,
n > m > 0,andl + n > 0. We refer to “-" as default negationThe headof r is
the setH (r) = {au,...,ar, "ak+1,...,a;}, and thebodyof r is denoted byB(r) =
{b1,...,bm, =bmi1,..., 7b,}. Furthermore, we define the séis" (r) = {a1,...,ax},
H=(r) ={ags1,.--, a1}, BT(r) = {b1,..., by}, andB~(r) = {bpms1,...,bn}. A pro-
gramII (over L) is a set of rules (ovef).

An interpretation/, i.e., a set of atoms, satisfies a rulesymbolicallyl = r, iff I N
H*(r)#£0orH(r) € I,if BT (r) C I andB~(r)NI = (). Adapted from[{Gelfond and Lifschitz 1991),
thereductof a progranil with respect to an interpretatidip symbolicallyIl’, is given by
the set of rules

a1 V---Vag < bi,...,bm,

obtained from rules ifil, such that? —(r) C T andB~(r) N I = 0.
An interpretation/ is called ananswer seof I1 iff I = II! and it is subset minimal
among the interpretations dfwith this property.

2.3 Notions of Equivalence

For any two theories, respectively programs, and a pofegti®nsion byl", we con-
sider the following notions of equivalence which have beleows to be the only forms
of equivalence obtained by varying the logical form of esiens in the propositional case
in (Pearce and Valverde 2004).

2 Thatis,Y satisfiesp — 1+ classically.
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Definition 1
Two theoried'{, I'; over £ are called

e classically equivalent’; =, I's, if and only if they have the same classical models;

e answer-set equivalent; =, I', if and only if they have the same answer sets, i.e.,
equilibrium models;

e strongly equivalentl’; =, T's, if and only if, for any theonf" over£’ O £, Ty UT
andI's U T are answer-set equivalent;

e uniformly equivalentl’; =, T, if and only if, for any factual theor{/ over£’ D L,
I'y UT andI'; UT are answer-set equivalent.

Emanating from a logic programming setting, uniform eql@aae is usually understood
wrt. sets offacts(i.e., atoms). Obviously, uniform equivalence wrt. fa¢thaories implies
uniform equivalence wrt. sets of facts. The converse doadias been shown as well for
general propositional theories (cf. Theorem 2[in (Pearcév@aiverde 2004)). Therefore,
in general there is no difference whether uniform equivedeis considered wrt. sets of
facts or factual theories. The latter may be regarded as, fiaet, rules with an empty body,
of so-called nested logic program rules. One might alsoidensets of disjunctions of
atomic formulas and their negations (i.e., clauses), atbog for facts according to the
definition of program rules in this article. Note that class®nstitute factual formulas
and the classical transformation of clauses into implagtiis not valid under answer set
semantics (respectively in HT).

3 Equivalence of Propositional Theories by HT-Countermodels

Uniform equivalence is usually characterized by so-cdllédmodels, i.e., total and max-
imal non-total HT-models, which fail to capture uniform @glence for infinite proposi-
tional theories.

Example 1((Eiter et al. 2007)
LetT; andI'; overL = {a; | i > 1} be the following propositional theories

Flz{ai |221}, and ng{ﬁai%ai, A4l — Q5 |221}
Both,I'; andI's, have the single total HT-modéL, £). Furthermorel’; has no non-total
HT-model(X, £), i.e, such thafX c £, while I'; has the non-total HT-model(sX;, £),
whereX,; = {ay,...,a;} fori > 0. Both theories have the same total and maximal non-

total (namely none) HT-models. But they are not uniformlyigglent as witnessed by the
fact that(£, £) is an equilibrium model of'; but not ofl’s. [

The reason for this failure is the inability of the concepiraximality to capture differ-
ences exhibited by an infinite number of HT-models.

3.1 HT-Countermodels

The above problem can be avoided by taking HT-countermddtalssatisfy a closure
condition instead of the maximality criterion.
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Definition 2
An HT-interpretation X, Y") is anHT-countermodebf a theoryl" if (X,Y") £ T'. The set
of HT-countermodels of a theoilyis denoted by’ (T").

Intuitively, an HT-interpretation fails to be an HT-modélatheoryI’ when the theory
is not satisfied at one of the worldsdreor there). Note that satisfaction at thbereworld
amounts to classical satisfaction of the theoryyhyA simple consequence is thathif =
T, then(X,Y) is an HT countermodel df for any X C Y. At the hereworld, classical
satisfaction is a sufficient condition but not necessary.légic programs, satisfaction at
thehereworld is precisely captured by the reduct of the progtamrt. the interpretation
at thethereworld, i.e., if X = I1Y.

Definition 3
Atotal HT-interpretatior{Y, Y") istotal-closedn a setS of HT-interpretationsif X, Y") €
S for everyX C Y. We say that an HT-interpretatidX, V) is

o closedin a setS of HT-interpretations if X’,Y) € S foreveryX C X' CY.
e there-closedn a setS of HT-interpretations if(Y,Y) ¢ S and(X',Y) € S for
everyX C X' CY.

A setS of HT-interpretations is total-closed, if every total Hitérpretatiody, Y) € S
is total-closed inS. By the remarks on the satisfaction at thereworld above, it is ob-
vious that every total HT-countermodel of a theory is aldaltolosed inC,(T"). Conse-
quently,C,(T") is a total-closed set for any theofy By the same argument, (fX,Y) is
an HT-countermodel such that C Y andY }~ T, then(X,Y) is closed inC,(I"). The
more relevant cases concerning the characterization afagqaoce are HT-countermodels
(X,Y) such thaty” =T.

Example 2

Consider the theory’; in Example[ll and a non-total HT-interpretatioX, £). Since
(X, L) is non-total, X C £ holds, and thereforéX, £) = a;, for somea; € L. Thus,
we have identified a HT-countermodell6f. Moreover the same argument holds for any
non-total HT-interpretation of the froiX’, £) (in particular such thak' C X’ C Y).
Therefore(X, £) is there-closed it€'s(I'y). O

The intuition that, essentially, there-closed counterat®dan be used instead of max-
imal non-total HT-models for characterizing uniform equence draws from the follow-
ing observation. If X,Y") is a maximal non-total HT-model, then evef¥’,Y"), such
that X ¢ X’ C Y, is a there-closed HT-countermodel. However, there-dds&-
countermodels are not sensitive to the problems that iafatitins cause for maximality.

Given a theony, let C,,(T") denote the set of there-closed HT-interpretationS4(r).

Theorem 1
Two propositional theorieB, I's are uniformly equivalent iff they have the same sets of
there-closed HT-countermodels, in symbBls=,, T's iff C,,(T'1) = C,,(T'2).
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Proof

For the only-if direction, assume that two theoriEs,andI’;, are uniformly equivalent.
Then they are classically equivalent, i.e., they coincidéatal HT-models, and therefore
also on total HT-countermodels. Since a total HT-interatien (Y,Y") is there-closed in
Cy(D) if (Y,Y) ¢ Cs(T), i.e., if (Y,Y) is an HT-model ofT", this proves that'; and
I'; coincide on total HT-interpretations that are there-aoseC;(T'; ), respectively in
Cs (FQ)

To prove our claim, it remains to show thA{ andT'; coincide on non-total there-
closed HT-countermode(sY,Y), i.e., such thafY,Y") is an HT-model of both theories.
Consider such a there-closed HT-countermoddlofThen,(Y,Y) is a total HT-model
of I'; U X and noX’ C Y exists such thatX’,Y) = I'; U X, either because it is an
HT-countermodel of’; (in caseX C X’ C Y) or of X (in caseX’ C X). Thus,Y
is an answer set df;y U X and, by hypothesis sinc& is factual, it is also an answer
set of 'y U X. The latter implies for allX C X’ C Y that(X',Y) (£ T2 U X. All
these HT-interpretations are HT-modelsX%f Therefore we conclude that they all are HT-
countermodels df'; and hencé X, Y') is a there-closed HT-countermodellof. Again by
symmetric arguments, we establish the same for any thesedHT countermodék, Y)
of I'y such thatY, Y') is a common total HT-model. This proves thigtandT's have the
same sets of there-closed HT countermodels.

For the if direction, assume that two theori€s,andI's, have the same sets of there-
closed HT-countermodels. This implies that they have timeestotal HT-models (since
these are there-closed). Consider any factual th€6ryuch thatY” is an answer set of
I'; UTY. We show thal” is an answer set df; UT” as well. Clearly(Y,Y) T UTY
implies(Y,Y") = I"” and therefor¢Y,Y) = T's UT". Consider anyX C Y. SinceY is an
answer set of'; UT”, it holds that( X, Y") (£ I'; UT”. We show that X,Y") f£ T2 UT”. If
(X,Y) }£ T thisis trivial, and in particular the case(iK, V') = I';. So let us consider the
case wheréX,Y) = I'y and(X,Y) = I'". By Lemmd1 we conclude from the latter that,
foranyX C X' C Y, (X',Y) I". Therefore(X',Y) |~ I'1, as well. This implies that
(X,Y) is a there-closed HT-countermodellof. By hypothesis(X,Y") is a there-closed
HT-countermodel of 'y, i.e., (X,Y) £ T's. ConsequentlyX,Y) £ T's UT'. Since this
argument applies to any¥ C Y, (Y,Y) is an equilibrium model of'; UT”, i.e.,Y is an
answer set of’; U I"”. The argument witl"; andT'; interchanged, proves that is an
answer set of ; UT if it is an answer set of', UT”. Therefore, the answer setslof U T
andTl’; U I coincide for any factudl”, i.e.,I'; andI'y are uniformly equivalent. O

Example 3

Reconsider the theories in Exampple 1. Every non-total H&Fpretation( X;, £) is an HT-
countermodel of'y, and thus, each of them is there-closed’ir{I’;). On the other hand,
none of these HT-interpretations is an HT-countermodélofThereforel'; andIl'; are
not uniformly equivalent. [J

Countermodels have the drawback however, that they carmnoharacterized directly
in HT itself, i.e., as the HT-models of a ‘dual’ theory. Theage of “dual” here is non-
standard compared to its application to particular caloutonsequence relations, but it
likewise conveys the idea of a dual concept. In this sensehidiiefore is non-dual:
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Proposition 1
Given a theonyl', in general there is no theoFy such tha{ X, Y") is an HT-countermodel
of T iff it is a HT-model of TV, for any HT-interpretatiof X, Y").

Proof

As observed in[(Cabalar and Ferraris 2007), any theory hagbhdosed set of counter-
models. Consider the theolly = {a} and suppose there exists a thedy such that
(X,Y) is an HT-countermodel df iff it is an HT-model of . Then, vice versa,.X,Y")

is an HT-countermodel df’ iff it is an HT-model ofT". Since forY” = {a}, (Y,Y) is an
HT-model ofT", we conclude thafY, Y') is an HT-countermodel di’. Because any theory
has a total-closed set of countermodels, it follows {fiat") is an HT-countermodel df’,
hence, an HT-model df. Contradiction. [

3.2 Characterizing Equivalence by means of Equivalencedriretations

The characterization of countermodels by a theory in HTregaby fails due to total HT-
countermodels. However, total HT-countermodels of a thaoe not necessary for char-
acterizing equivalence, in the sense that they can be mexplag total HT-models of the
theory for this purpose.

Definition 4
An HT-countermode{X,Y") of a theonyl is called ahere-countermodafT"if Y = T.

Definition 5

An HT-interpretation is aequivalence interpretatioof a theoryl if it is a total HT-model
of I or a here-countermodel @f. The set of equivalence interpretations of a theloiig
denoted byF, ().

Theorem 2
Two theoried™; andT’; coincide on their HT-countermodels iff they have the sameéweq
alence interpretations, symbolically (T';) = C,s(I'2) iff E5(T'y) = E4(T'2).

Proof

For the only-if direction, assume that two theoriEs,andI';, have the same sets of HT-
countermodels. This implies that they have the same harateamodels. Furthermore,
since the total HT-countermodels are equal, they also @erm total HT-models. Con-
sequentlyI'; andI'y have the same equivalence interpretations.

For the if direction, assume that two theori€s,andT’;, coincide on their equivalence
interpretations. Then they have the same total HT-modelshamce the same total HT-
countermodels. Since total HT-countermodels of everyrthaoe total-closed in the set
of HT-countermodels, the sets of HT-countermodels comaid all HT-interpretations
(X,Y)suchthatY,Y) is a (total) HT countermodel. All remaining HT-countermistare
here-countermodels and therefore coincide by hypothadigree definition of equivalence
interpretations. This proves the claim[]
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As a consequence of this result, and the usual relationshiptl-models, we can char-
acterize equivalences of propositional theories also lcsens of equivalence interpre-
tations, i.e., a mixture of non-total here-countermodets@®tal HT-models, such that the
characterizations, in particular for uniform equivalenaee also correct for infinite theo-
ries.

Definition 6
Given a theoryl’, we denote by

e C.(T'), respectivelyE. (T'), the restriction to total HT-interpretations @i (T"), re-
spectively inE,(T);

e C,(T') the set of there-closed HT-interpretations of the f¢fy") in C,(T"), and by
E,(T) the set of total-closed HT-interpretationsAl(T') (i.e., equilibrium models);

e E,(T) the set of closed HT-interpretationsi (T').

By means of the above sets of HT-countermodels, respegtxplivalence interpreta-
tions, equivalences of propositional theories can be ciarized as follows.

Corollary 1
Given two propositional theorids, andI's, the following propositions are equivalent for
e € {c,a,s,u}:

(1) Ty = I'y; (2) Ce(T1) = Ce(I2); () Ee(l'1) = E(I'2).

Example 4
In our running example?', (T';) # C,(T'2), as well asE,, (T'1) # E,(T2), by the remarks
on non-total HT-interpretations in Examjple 3]

Since equivalence interpretations do not encompass tdtaidtintermodels, we attempt
a direct characterization in HT.

Lemma 2
For any HT-interpretatiofiX, Y) of signatureC andr. = {-—a — a | a € L}, it holds
that(X,Y) E 7. iff X =Y.

Proof

(X,)Y) Erforala e Liff (X,Y)E -—a — aforalla € LIiff, foreverya € L, it
holds that( X, Y) £ ——a or (X,Y) | a, andY = ——a — a. The latter is a tautology,
and(X,Y) £ —a iff a ¢ Y. We conclude thatX,Y) | 7. iff (X,Y) | « for all
acY,ie, iffX=Y. O

By means of this lemma, we can use formulas of the ferna — « to ensure for a
given formulag of T that if (X,Y) E ¢ thenX =Y, i.e., that the HT-interpretation is
total.

Proposition 2
Let M be an HT-interpretation ovet. Then,M € E,(T") for a theonyl iff M =T, for
somegp € I', wherel'y = {—=— | Y €T} U{¢d = (——a — a) | a € L}.
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Proof

For the only-if direction, assumeX, Y) is an equivalence interpretationf ThenY” = ¢
for all v € T and thereforé X,Y) = - forall ¢y € T'. If X =Y, then by Lemmal2,
(X,Y) also satisfiess~a — a forall a € L. In this case(X,Y) = T', forall ¢ € T.
We continue with the case wheke C Y. Then,(X,Y) is a here-countermodel @F, i.e.,
there existsp € I" such that X,Y") £ ¢. This implies tha{ X,Y) = ¢ — (-—a — a)
foralla € £,i.e.,(X,Y) =Ty. This proves the claim foaK C Y.

For the if direction, assume th@X,Y) = TI'y for some¢ € I'. Then,(X,Y) =
- for all ¢ € T, which impliesY |= ¢ for all v € I'. Consequently(X,Y") is an
equivalence interpretation @fif X = Y. If X C Y, we conclude thatX,Y") does not
satisfy——a — a for somea € £ by Lemmd2. Howevel( X,Y) | I'; for someg € T,
hence(X,Y) E ¢ — (-—a — a) forall a € L. Therefore(X,Y) ~ ¢ must hold for
someg € I'. This proves, sinc& C Y, that(X,Y) is a here-countermodel &7, i.e., an
equivalence interpretation of. [

For infinite propositional theories, we thus end up with arabterization of equivalence
interpretations as the union of the HT-models of an infiniteber of (infinite) theories. At
least for finite theories, however, a characterizationimgeof a (finite) theory is obtained
(even for a potentially extended infinite signature).

If £ > LandM = (X,Y) is an HT-interpretation ovef’, then M|, denotes the
restriction ofM to £: M| = (X|¢z,Y|z). The restriction igotality preservingif X C YV
impliesX|; C Y|..

Proposition 3
LetT be a theory oveL, let £’ D L, and letM an HT-interpretation ove£’ such that
M| is totality preserving. Then\f € C(T") impliesM |, € Cs(T).

Proof

LetM = (X",Y’), M|, = (X,Y), and assum@/ £ T'. First, supposé/ is total, hence,
Y’ £ T. Then,Y [~ T, because otherwisg’ = T would hold, sincd” is overL. This
proves the claim for total HT-countermodels, and since HIntermodels are total-closed,
for any HT-countermodel/ = (X', Y"), such that’” (£ T.

We continue with the case that = I'. ThenX’ C Y’ holds, which means that/
is an equivalence interpretation Bf Therefore M (£~ ¢ for some¢ € T'. Additionally,
M = - forall ¢ € T (recall thatY’ |= T'). This impliesM = T'y, wherel', =
{= | Y e T}U{p = (-ma — a) | a € L}. Therefore,M|; |= Ty, i.e., M|,
is an equivalence interpretation Bf Since the restriction is totality preserviny|. is
non-total. This proved/ |, £ T. [

This eventually enables the characterization of the HTataumodels of a finite theory
by another finite theory, as stated in the next result.

Theorem 3
LetT be a finite theory ovet, and let)M be an HT-interpretation. Thed/ € E(T) iff
M|z = Vger Ayer, ¢ andM|. is totality preserving.
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Proof

For the only-if directionlef € E,(T'). If M is total thenM | is total andM |= T implies
M|z =T. Hence M|, € Eg(I') andM |z =V yer Ayer, - So letM be non-total. We
show thatM | is totality-preserving. Towards a contradiction assuneecdntrary. Then,
M| is total. FromY” |= T we conclude’|. =T and the same foK |- by X |, = Y|..
Becausd is overL, X =T follows, henceM = T, which is a contradiction. Thus{/ |
is totality-preserving. The/|; is also non-total and ifs(I"). ThereforeM |, € E4(T),
which impliesM |z =V 4 /\wer¢ 1.

For the if direction, consider any HT-interpretatidhsuch that\/ | - satisfies the theory
Veer /\weu v andM | is totality preserving. If\/ is total thenM |- is total andM |- =
T, which impliesM |= T, sincel is overL. If M is non-total then\/| . is non-total and
M|z b T, which impliesM ([T, [O

Example 5

LetT = {a} overL = {a} and recall what the proof of Propositibh 1 established: &her
is no theoryl” such that(X,Y") is an HT-model ofl” iff it is an HT-countermodel of
I'. According to Theorerhl3 however, we can charactefiz€l') by means of totality-
preserving HT-models of the theofy = {-—a A (¢ — (-—a — a))}. Consider any
HT-interpretation( X,Y") over£’ O L. Itis easily verified thatX,Y) E IV iff a € Y. If
additionallye € X andX C Y, then(X|.,Y|.) is not totality preserving. Thu$X,Y")

is a totality-preserving HT-model di’ iff « € Y and eitherX = Y ora ¢ X. These
interpretations respectively correspond to the total nwdad the here-countermodels,
i.e., the equivalence interpretationsivbver£’. [

3.3 Relativized Hyperequivalence for Propositional Théxs

We now turn to the notion of relativized hyperequivalendee Term ‘hyperequivalence’
has been coined in the context of ASP, as a general exprdesidifferent forms of equiv-
alence, which guarantee that the semantics is preserved thedaddition of arbitrary pro-
grams (calleadontext$from a particular class of programs (Truszczynski and ¥&al2008g).
Relativized hyperequivalence emanates from the studylafivized notions of equiva-
lence by restricting contexts to particular alphabetsésge(Eiter et al. 2007; Pearce et al. 2007)).
It has been generalized to the setting, where possiblyrdiftalphabets are used to restrict
the head atoms and the body atoms allowed to appear in contest{\Woltran 2008).

While up to now relativized hyperequivalence has only beedisd for finite programs,
we aim at a generalization of relativized hyperequivalefiocgropositional theories un-
der the answer-set semantics, without any finitenesscegstrs. For this purpose, we first
generalize the notions of ‘head atom’ and ‘body atom’ foiottes.

The occurrence of an atomin a formulag¢ is calledpositiveif ¢ is implication free, if
a occurs in the consequent of an implicatioryinor if ¢ is of the form(¢; — ¢2) — ¢35
anda occors ing;. An occurrence of, is callednegativaf a occurs in the antecedent of an
implication. The notion of positive and negative occureigextended to (sub-)formulas
in the obvious way. Note that any occurrence under negdtienrefore is a negative occur-
rence, and that the occurrence of an atom or subformula mbgtheositive and negative,
for instance the occurrencebbfn a — (b — 1), viz.a — —b.
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A propositional theonyl™ over AT U A~, whereA™ and A~ are sets of propositional
variables, is called ad*-A~-theoryif every formula inT' has positive occurrences of
atoms fromA™, and negative occurrences of atoms frdm, only. Note thatL is always
allowed to appear both, positively and negatively. Ah- A~ -theory is calledextendedlif
additionally factual formulas ovet™ are permitted.

By means of these notions, relativized hyperequivalenceropositional theories can
be expressed as follows, which is a proper generalizatitimedbgic programming setting.

Definition 7

Two propositional theorieE', 'y over £ are calledrelativized hyperequivalent wrtd™
and A—, symbolicallyl’y j‘;z Iy, iff for any AT-A~-theoryI’ over£’ D £,T; UT and
I'; UT are answer-set equivalent.

Towards a characterization of relativized hyperequivedgrour goal is to follow the
same methodology that we used to characterize uniform alguige, i.e., resorting to HT-
countermodels and respective closure conditions. Howewte in the logic program-
ming setting such closure conditions may be obtained framaitemonotonicity properties
of the program reduct, we first have to establish correspanpiioperties for theories. A
first property in this respect is the following. Note thathaltigh the next result is stated
for extendedAt-A~-theories (for reasons which will become clear later),ivtidtly also
holds for any (non-extended)™-A~-theory.

Proposition 4

Consider an extended propositiondit -A~-theoryT', and an HT-interpretatiof(X, Y).
Then,(X,Y) E T implies(X’,Y) =T, forall X’ C Y such thatX|,+ C X'| 4+ and
X'|a- CX|a-.

Proof

Consider anydt-A~-formula¢ in T, i.e., any formula that has positive occurrences of
atoms fromA™, and negative occurrences of atoms frdm, only. We show by induction
on the formula structure af, that for all X’ C Y such thatX| 4+ C X'|4+ andX'|4- C
X|A*:

(@ (X,Y) E ¢implies(X',Y) E ¢ if ¢ is a positive occurrence; and
(b) (X,Y) I~ ¢ implies(X',Y) | ¢ if ¢ is a negative occurrence.

For the base case, consider any atomic fornguland suppose first that (a) the occur-
rence of¢ is a positive occurrence. ThefiX,Y') = ¢ implies thatp is not L, and thus is
an atomz from A" such that € X. SinceX |4+ C X’| 4+ for all X’ under consideration,
we conclude that € X'. Hence(X',Y) = ¢. Suppose (by is a negative occurrence. If
(X,Y) £ ¢, then eitherpis L, and(X’,Y") £ ¢ follows trivially. Otherwiseg is an atom
bfrom A~, such thab ¢ X|,-. SinceX’| 4- C X|4- forall X’ under consideration, we
conclude thab ¢ X', i.e.,(X’,Y) |~ ¢. This proves (a) and (b) for atomic formulas.

For the induction step, assume that (a) and (b) hold for4thyA~-formula of connec-
tive nesting depth — 1, and letp be a formula of connective nesting depthConsider the
case where is of the formeg, A @2, respectivelyy; V ¢.. If ¢ is a positive occurrence (a),
then so are; andg,, both of connective nesting depth depth 1. From(X,Y) | ¢ we
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conclude(X,Y) &= ¢; and (or)(X,Y) & ¢». The induction hypothesis applies, proving
(X",Y) E ¢1 and (or)(X',Y) & ¢, forall X’ C Y such thatX|,+ C X'|4+ and
X'|4- = X|a-, 1.6, (X",Y) E ¢ for all X’ under consideration. In cageis a nega-
tive occurrence (b), then so ate andg,, both of connective nesting depth— 1. Then,
(X,Y) £ ¢ implies (X,Y) £ ¢1 or (and)(X,Y) £ ¢2, and the same holds for any
(X’,Y) under consideration by induction hypothesis. This prq@sY’) [~ ¢ implies
(X",Y) E 6.

Finally, let ¢ be of the form¢; — ¢-. Then, independent of whetheroccurs pos-
itively or negatively,¢; is a negative occurrence ard is a positive occurrence, both
of connective nesting depth — 1. First, suppose that is a positive occurrence (a), as
well as that(X,Y) E ¢. Towards a contradiction assume that there ex}stsC Y
such thatX |4+ C X'|4+, X'|a- C X|4-, and(X",Y) £ ¢. Since(X,Y) = ¢ im-
plies thatY” = ¢, we conclude that bot{ X', Y) = ¢; and(X',Y) (£ ¢9, hold. From
the latter, since), is a positive occurrence of connective nesting depth 1, it follows
that (X,Y) £ ¢2 (otherwise by induction hypothesis (&X', Y) E ¢2). This implies
(X,Y) £ ¢1 since(X,Y) E ¢. However,¢, is a negative occurrence of connective
nesting deptln — 1, thus by induction hypothesis (b) we conclude th&t,Y") [~ ¢1,

a contradiction. Thereford X’ Y) &= ¢ for all X’ under consideration, which proves
(a). For (b), lety be a negative occurrence and suppa&eY) £ ¢. If Y £ ¢, then
also (X',Y) ¥ ¢ for all X’ under consideration. In cagé = ¢, we conclude that
(X,Y) E ¢1 and(X,Y) £ ¢2. Sinceg is a negative occurrence, not orly but alsog,

is a negative occurrence, both of connective nesting depthl. Therefore, by induction
hypothesis (b) we conclude théX’,Y) = ¢2. Moreover, also becausgis a negative
occurrenceg, is a positive occurrence as well. Hence, by induction hygsith(a) we
conclude(X",Y) = ¢1 from (X,Y) E ¢4, viz. (X', Y) £ ¢, for all X’ under consider-
ation. This concludes the inductive argument and provear({d)b) forA™-A4~-formulas
of arbitrary connective nesting.

Next, we turn to factual formulagin I", and prove by induction on the formula structure
of ¢, that

(©) (X,Y) = ¢ implies(X',Y) | 4, for all X’ C Y such thatX|,+ C X’'|4+ and
X/|A— §X|A7;and
(d) (Y,Y) k£ ¢ implies(X',Y) = ¢, forall X' C Y.

For the base case, consider any atomic formyland suppose firstthat (CX,Y") & .
Then,y is not L, but an atonu from A" such thats € X. SinceX |4+ C X'| 4+ for all
X' such thatX|,+ C X'|4+ andX’|4- C X|,-, we conclude that € X’. Hence,
(X',Y) | 4. For (d), assuméY,Y) t£ . Theny is L or« is a an atom not irfY. In
the former casg X', Y") [~ ¢ follows trivially for all X’ C Y. In the latter case, the atom
also cannot be a member of ai¥ such thatX’ C Y. Therefore (X', Y) [~ v, for all
X’ C Y. This proves (c) and (d) for atomic formulas.

For the induction step, assume that (c) and (d) hold for actyéd formula of connective
nesting deptm — 1, and lety) be a factual formula of connective nesting deptiConsider
the case wheré is of the formiyy A 1o, respectively); V 1o. Sincey is factual, so are
11 ands, both of connective nesting depth depih- 1. In case (c), from(X,Y) E ¢
we conclude(X,Y) = 7 and (or)(X,Y) E .. The induction hypothesis applies,
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proving(X',Y) = ¢ and (or)(X',Y) k= 1, for all X’ C Y such thatX| 4+ C X'| 4+
andX’|4- C X|4-,1.e.,(X",Y) E ¢ for all X’ under consideration. Assume (d), i.e.,
(Y,Y) £ 4. As a consequenc€Y,Y) = ¢ or (and)(Y,Y) [~ 2, hence by induction
hypothesis, for allX’ C Y, it holds that X', Y") I~ ¢ or (and)(X’,Y) F~ 1. Therefore,
(X,)Y) vy, forall X' CY.

Finally, lety be of the formy; — L. Theny), is factual and of connective nesting depth
depthn — 1. In case (c), if( X,Y) | ¢, thenY |= ¢, henceY [~ ¢y, i.e., (YY) £ ¢
and by induction hypothesis (d), the same holds for @, Y) such thatX’ C Y. Thus,
in particular forX’ C Y such thatX| 4+ C X'|4+ andX’|,- C X|4-, it follows that
(X',Y) £ ¥1. MoreoverY = ¢, and thereforé X', Y) E ¢ — L, forall X’ CY such
that X |4+ C X'|4+ and X’'|4- C X|4-. For (d), assuméY,Y") k= . Consequently
Y [~ ¢, and this implieg X', Y") }= ¢, for all X’ C Y. This concludes the inductive argu-
ment and proves (c) and (d) for factual formulas axdeér of arbitrary connective nesting.

Concerning the claim of the proposition, sincg,Y) = I' implies (X,Y) E ¢ and
(X,Y) = 4, for every AT-A~-formula ¢ in T' and every factual formula in T, we
conclude thatX’,Y) = ¢ and(X',Y) = o, forall X’ C Y such thatX |4+ C X'| 4+
andX’|4- C X|4-. This proveg X', Y) =T, for all X’ under consideration. []

Complementary to this result, given a total HT-model of arteded)A™-A~-theory,
we can infer its satisfaction for the following class of ntmtal HT-interpretations.

Proposition 5
Consider an extended propositiongl- A~ -theoryl’, and a total HT-interpretatiofY, V).
Then,(Y,Y) = T'implies(X',Y) | T, for all X’ C Y such thatX'| s+ = Y| 4+.

Proof

Consider anyd™-A~-formula¢ in T, i.e., any formula that has positive occurrences of
atoms fromA ™, and negative occurrences of atoms frdm, only. We show by induction
on the formula structure of, that for all. X’ C Y such thatX’| 4+ = Y| 4+:

@ (YY) = ¢implies(X',Y) E ¢ if ¢ is a positive occurrence; and
(b) (Y,Y) k£ ¢ implies(X',Y) |~ ¢ if ¢ is a negative occurrence.

For the base case, consider any atomic formuband suppose first (a) thats a positive
occurrence such théy,Y) = ¢. Theng is not L, and thus is an atomfrom A+ such that
a € Y.SinceX’| 4+ = Y|4+ for all X’ under consideration, we conclude thae X'.
Hence,(X',Y) E ¢. Suppose (by is a negative occurrence. (V,Y) £ ¢, theng is
either L, or an atonb from A—, such thab ¢ Y. SinceX’ C Y impliesX’|4- C Y|4~
for all X’ under consideration, we conclude that X’. Hence, (X', Y) £ ¢.

For the induction step, assume that (a) and (b) hold forthyA~-formula of connec-
tive nesting deptlh — 1, and lety be a formula of connective nesting depthConsider
the case where is of the forme; A ¢, respectivelyy; V ¢,. If ¢ is a positive occurrence
(a), then so aré; and¢,, both of connective nesting depth depth 1. From(Y,Y) = ¢
we conclud€Y,Y) = ¢; and (or)(Y,Y) | ¢2. The induction hypothesis applies, prov-
ing (X",Y) E ¢1 and (or)(X',Y) | ¢e, forall X’ C Y such thatX’| 4+ = Y|4+,
i.e., (X')Y) E ¢ for all X’ under consideration. In cageis a negative occurrence (b),
then so arey»; andg,, both of connective nesting depth— 1. Then,(Y,Y") £ ¢ implies
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(Y)Y) £ ¢1 or (and)(Y,Y) = ¢2, and the same holds for arfX’, Y') under consid-
eration by induction hypothesis. This proves’,Y) £~ ¢. Finally, let$ be of the form
¢1 — ¢2. Then, independent of wheth@ioccurs positively or negatively, is a negative
occurrence angs is a positive occurrence, both of connective nesting depthl. First,
suppos€Y.,Y) = ¢. Towards a contradiction assume that there exXistsC Y such that
X'|a+ =Y|a+ and(X",Y) = ¢. Since(Y,Y) = ¢ implies thatY” = ¢, we conclude
that both,(X",Y) E ¢ and(X',Y) £~ ¢9, hold. From the latter, sincé, is a positive
occurrence of connective nesting depth- 1, it follows that(Y,Y) (£ ¢2 (otherwise by
induction hypothesis (a)X',Y) E ¢2). This implies(Y,Y) (£ ¢; since(Y,Y) & ¢.
However,¢; is a negative occurrence of connective nesting depthl, thus by induction
hypothesis (b) we conclude thgX”’,Y) [~ ¢1, a contradiction. Thereforé X' Y) E ¢
for all X’ under consideration, which proves (a). For (b),ddbe a negative occurrence
and suppos€Y,Y) |~ ¢. ThenY }£ ¢, hence alsdX’,Y) (= ¢ for all X’ under consider-
ation. This concludes the inductive argument and provear(d)(b) forA*-A~-formulas
of arbitrary connective nesting.

Next, we turn to factual formulagin ", and prove by induction on the formula structure
of ¥, that(Y,Y) = ¢ implies(X',Y) = ¢, forall X’ C Y suchthatX’|,+ = Y| 4+.

For the base case, consider any atomic formuland suppose that”, Y") = . Then,
1 is not L, but an atomu from A* such that: € Y. SinceX’| 4+ = Y| 4+ forall X’ under
consideration, we conclude thate X’. Hence,(X',Y) E ¢, for all X’ C Y such that
X'|a+ =Ya+.

For the induction step, assume that the claim holds for artuéformula of connective
nesting deptm — 1, and lety) be a factual formula of connective nesting deptiConsider
the case where is of the formiy; A 1o, respectivelyy; V 1». Sincey is factual, so are
11 andi, both of connective nesting depth depth- 1. From(Y,Y") | ¢ we conclude
(YY) =« and (or)(Y,Y) E . The induction hypothesis applies, provig§’, Y) &
1 and (or)(X',Y) | 4o, for all X’ C Y such thatX’| 4+ = Y|4+, 1.6, (X, Y) E o
for all X’ under consideration. Finally, let be of the formy; — L. Then,y; is factual
and of connective nesting depth depth- 1. If (YY) = ¢, thenY = ¢, henceY” £ 1,
i.e., (Y,Y) [~ ¢ and by Case (d) in the proof of Propositidn 4, the same holdarig
(X',Y) such thatX’ C Y. Thus, in particular forX’ C Y such thatX'| 4+ = Y|4+, it
follows that(X',Y") |~ 1. Moreover,Y = ¢, and thereforé X’ Y) &= ¢ — L, for all
X'’ C Y such thatX’| 4+ = Y|4+. This concludes the inductive argument and proves the
claim for factual formulas oved™ of arbitrary connective nesting.

Concerning the claim of the proposition, sin@é Y) = T implies(Y,Y) & ¢ and
(Y,Y) & v, for every AT-A—-formula ¢ in T' and every factual formula in T, we
conclude thatX’,Y) = ¢ and(X',Y) | o, forall X’ C Y such thatX’|4+ = Y| 4+.
This proves X', Y) = T, for all X’ under consideration. []

Having established these propertiestof- A~ -theories, we can state respective closure
conditions for HT-interpretations referring to countenets, or which we consider more
convenient here, referring to equivalence interpretation

Definition 8
Given a propositional theorly over £, sets of propositional variables™ C £/, A~ C £/,
L' D £, and an HT-interpretatiofX, Y'), we say that
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e (YY)is At-totaliff (Y|4+,Y)is closed inE,(T');
e (X,Y)is AT-closedin E,(I') iff (X',Y) € E,(T), for all X’ C Y such that
X|A+ - X/|A+ andX/|A— - X|A*-

With these concepts, a semantic characterization of vedati hyperequivalence for
propositional theories can be established by means of tlesviag characteristic equiva-
lence interpretations.

Definition 9

An HT-interpretation( X, Y') is anHT-hyperequivalence interpretation wrt™ and A~

of a propositional theory" iff (Y,Y) is A*-total and there exists an HT-interpretation
(X',Y) such thatX = X’|4+4- and(X’,Y") is AT-closed inE,(T").

The set of HT-hyperequivalence interpretations wirt. and A~ of a propositional theory
I is denoted by 4" ().

This definition intuitively generalizes the characteri@aof Woltran (2008) for the logic
programming setting to propositional theories. Note havgthat rather than resorting to
HT-models and a maximality criterion, the above definitiefers to equivalence interpre-
tations (i.e., HT-countermodels in case of non-totality)l @espective closure conditions.
As in the case of uniform equivalence, this not only simgiftae definition, but also
avoids difficulties in infinite settings. The next resultaddishes that HT-hyperequivalence
interpretations precisely characterize relativized ngpaivalence.

Theorem 4

Two propositional theorieE 1, I's are relativized hyperequivalent welt and A~ if and
only if they coincide on their HT-hyperequivalence intefations wrt.A* and A~, sym-
bolically Ty 4" = Ty iff B4 (') = E47 ().

Proof
In the following, we will use the following notational simfitation: For any set of atoms
X, we write X for X| 4+, andX_ for X|4-.

For the only-if direction supposié, ﬁfz T’y and towards a contradiction assume that
EAT(T) # E47 (). Wlo.g. let(X,Y) € E4" (1) and(X,Y) € E4" (') (the other
case is symmetric). Note thé,Y") € Ejf (T'y) implies that(Y,Y") is A*-total, i.e.,
(Y4,Y) is closed inE(T'y ). This implies thatY,,Y") is in Eﬁf (T'1). Suppos€Y,.,Y)
is not in Eg‘f (T'3). Then, eitherY,Y) B~ I's, or there existyy C X’ C Y such that
(X',Y) E I's. LetT' = Y, and observe that in both casEsis not an answer set of
I'; UT. In the former case becaus¥,Y) [~ I's UT, in the latter becaus&’ C Y
and (X',Y) E I'; UT (note that(X’,Y) = T' by Propositior[ 5). Howeven is an
answer set of'; UT. Indeed,(Y,,Y") is closed inE,(T';). And for anyX’ C Y such that
Y, ¢ X', obviously(X’,Y) is a non-total HT-countermodel @f. ConsequentlyY,Y)
is total-closed inF; (T'; UT'). Becausé' is anA™- A~ -theory, this contradict; g‘fz Is.
Thus, we conclude thad’,,Y) € Ej“f (T'2). Note that therefor¢Y,Y') is A*-total for
Ty, which implies thatY | 4,Y) isin Ej;‘f (T'2), henceX C Y|4 andX, C Y. Consider
the following theonyI' = X, U{a — 8| a € Y_\ X_,5 € Y, \ X;}. We show that
Y is an answer set df; U T'. Obviously,Y | T' becauseX; C Y} andg € Y for every
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B8 € Yy \ X4. Therefore(Y,Y) = I'; UT'. Towards a contradiction, assume that there
existsX’ C Y suchtha{X’,Y) = TI'y UT. From(X',Y) |= T', we conclude that either
X =Y, orthatX, C X! C Y, andX’ C X_. In both cases(X’,Y) }~ I';. In
the former case becaug,Y) is A*-total, i.e.,(Y,,Y) is closed inE4(T'y ). In the latter
case, it is a consequence of the fact {iatY’) E;}‘f (T'1), which implies(X’,Y) ~ Ty
by AT -closure. This contradicts our assumption concerningtistence ofX’ C Y such
that(X’,Y) E I'; UT, and proves that” is an answer set df; U T'. However,Y is not
an answer set ofy U I'. To wit, since(X,Y) ¢ Eﬁf (T'2), there existsX’ C Y such
thatX, C X/, X’ C X_,and(X",Y) | I's. Moreover,(X',Y) is an HT-model of
I'. Observe thafX” C X_ implies that(X’,Y) is an HT-model of every formula of the
forma — ginT. Hence(X',Y) | T2 UT, and sinceX’ C Y, it follows thatY is not
an answer set df, U I'. Note thafl” is anA*-A~-theory, which contradicts; Afz T's.
This provesE4 " () = B4 (T'y).

For the if direction, supposEj“f () = Ej;‘f (T'2) and towards a contradiction assume
thatT'; fxt # I'y. W.Lo.g. letY be an answer set df; U I' for someA*t-A~-theoryT,
such thalt” is not an answer set &%, UT" (the other case is symmetric). Thélr, V) is an
equivalence interpretation of both; andTI’, and(Y;,Y) is closed inE(I'; UT'), which
implies (taking Proposition] 5 into account) tHat Y) is AT -total forT'; and(Y'|4,Y) is
in Eﬁf (T'1). Therefore(Y]4,Y) is also inEg‘f (T'2), with the consequence th@, Y') is
in E5(T'2), and thugY,Y) € E;(I'; UT'). Since by assumptioH is not an answer set of
I, UT, there existsX C Y suchtha(X,Y) ¢ E,(T2 UT), i.e.,(X,Y) =T UT. Since
(Y|a,Y) € Ej“f (T'2), it holds thatX'|4 C Y|4. Moreover, X C Y, due toA™-totality
of (Y,Y). Clearly,(X|4,Y) is notin Ej;‘f (T'2) as witnessed byX,Y) = I'y, and thus
(X|a,Y) & EAT(Ty) sinceE4" (') = E4' (Ty). From(X|4,Y) & E4"(T';), we con-
clude that there exist&’ C Y, suchthatX | € X/, X’ € X_,and(X",Y) & E,(I'1),
ie, X’ C Yand(X')Y) = I'y. By Propositioi¥(X,Y) E I implies (X', Y) E T.
Consequently X', Y) = T'; UT, and sinceX’ C Y, this contradicts our assumption that
Y is an answer set df; U T, and proveg™ ﬁfz I's, O

Like in the logic programming setting, the framework ob&arby the consideration of
relativized hyperequivalence interpretations providgemeral unified characterization of
semantic characterizations of equivalence notions. lerotfords, the notions of equiva-
lence considered in the previous subsection are obtaingukeasal cases. For this purpose,
one needs to refer to the universal alphabet (respectivghatire), denoted by, ex-
plicitely. Then, by definition, settinglt™ = A~ = () amounts to answer-set equivalence,
A*T = A~ = Avyields strong equivalence, anti- = A, A~ = {) characterizes uniform
equivalence. The latter is not by definition but follows frémo simple observations: ev-
ery set of facts oveH is a.A-(-theory, and everyd-()-theory is a factual theory modulo
formulas of the forml. — ¢, which are tautologies in HT.

Corollary 2

Given two propositional theorids, andI'; over £ C A, the following propositions are
equivalent fore € {a,s,u}, AT(a) = A= (a) =0, AT(s) = A (s) = A, AT (u) = A,
andA~ (u) = 0

A*(e)

(1) Fl =e FQ; (2) 1—‘ll A*(e)E

Ts.
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In these particular cases, not only the notions of equicadut also the characteris-
tic semantic structures coincide, i.e., relativized hgpgivalence interpretations coincide
with the respective characteristic sets of equivalenapmetations.

Proposition 6
LetI" be a propositional theory ovér C A, and lete € {a,s,u}, AT (a) = A~ (a) = 0,
AT(s)=A(s) = A, AT (u) = A, andA~ (u) = (. Then,

At (e
E.(l) = Ey_{9(I).

Proof

First consider answer-set equivalence, kes a andA™ = A~ = (). Then for any HT-
interpretation( X, Y), it holds that(X,Y) € E4'(I) = Eﬁfgg (T) iff (0,Y) is there-
closed inEs(I") and X = . The former follows from the first condition in Definitién 9
sinceY|4,+ = 0, and the latter from the second condition in Definitin 9., ifeom the
existence of anX’ such thatX = X’| 4+ (sinceX’|y = 0 for any X’). Note thatX = 0
and(0,Y) there-closed irE, (T") are exactly the requirements foK,Y") € E,(T"). This
proves(X,Y) € E4" (1) iff (X,Y) € Eq(T).

Turning to strong equivalence, let= s and At = A~ = A. Then for any HT-
interpretation( X, Y') over A, it holds that(X,Y) € EA"(I') = B Gy iff (v,Y) in
E () and(X,Y) in E4(T). The former follows from the first condition in Definitidd 9
sinceY |4 = Y, and the latter from the second condition in Definitidn 9,, ifeom the
existence of anX’ such thatX = X’| 4 (which impliesX’ = X sinceX’|4 = X' for
any X'’) and such thatX” € E,(T') for all X" C Y whereX'|4 = X"|4 (i.e., for
X" = X' = X). Note that(X,Y) € E,(T') implies(Y,Y) € E;(T"). Consequently, it
holds that( X, Y) € E4" () iff (X,Y) € E,(I).

Eventually consider uniform equivalence, i.e.+= u, AT = A, andA~ = (. In this
case,(X,Y) € Eﬁf () = Eﬁjég ("), for any HT-interpretatio X,Y") over A, iff

(Y,Y) in E4(T) and(X',Y) in E4(T') forall X C X” C Y. The former follows from
the first condition in Definition]d sincE| 4 = Y/, and the latter from the second condition
in Definition[9, i.e., from the existence of ak’ such thatX = X’|4 (which implies
X' = X sinceX’| 4 = X’ forany X') and such thak”’ € E,(T) for all X” C Y where
X'|a CX"4 (e, forX' =X C X" CY). Note that this are exactly the requirements
for (X,Y) being closed it (T"), thus for(X,Y) € E, (T"). Therefore(X,Y) € Ej;‘f (™)

iff (X,Y) € E,(I"), which proves the claim. (O

Moreover, a setting wheré™ = A~ is termed relativized strong equivalence, attd =
() denotes relativized uniform equivalence. A further reniaik place, however. While we
proved for uniform equivalence of propositional theoritst it is indifferent to whether
we restrict additions (contexts) to sets of atoms or whetlgeallow for factual theories4-
()-theories syntactically do not encompass factual thegsiase negation, i.e., formulas of
the forma — L, are not permitted. One question that this raises is: wdldd/iag factual
theories as contexts make a difference for relativizedomstof uniform equivalence?

The answer is by inspection of the proof of Theolelm 4 in cotioravith Proposi-
tion[4 and Proposition] 5. Recall that the propositions haaentstated for extendedi-
A~ -theories. Therefore, the only-if direction of TheorEm daaholds for extended *-
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A~ -theories. Since the if direction just referredAd - A~ -theories (which, trivially, are
extendedd-A~-theories too), we obtain the following.

Corollary 3

Two propositional theorieB, I'; arerelativized hyperequivalent wrt. extendéd -A~-
theoriesif and only if they coincide on their HT-hyperequivalencteimpretations wrtA*
andA~.

Thus, also relativized uniform equivalence is independénthether sets of atoms or
factual theories are permitted as contexts. More geneffallyany notion of relativized
hyperequivalence, factual theories over can be allowed in the context without altering
the notion of equivalence captured. This holds essentihlly to Propositiohl4, which
generalizes Lemnid 1 (Lemma 5 in (Pearce and Valverde 200#)jsi respect.

A final result establishes, that the notion of relativizegénequivalence which has been
introduced in this section is a proper generalization ofréspective logic programming
version to the more general case of propositional theomeleiuanswer-set semantics. It
is a straight forward consequence of Theofém 4, sinceithel ~-theories in the proof of
the if direction consist of formulas corresponding to rudéth heads restricted to positive
atoms fromA™ and body atoms froml~. Let us say that two propositional prograis
andIl, are relativized hyperequivalent wel.™ and A~ in the logic programming sense,
in symbolsll, ﬁfz 1p o, if and only if II; U II =, II, UII for any progranil, such that
H-(r)=0,H"(r) C A*,andB(r) C A~, forallr € II.

Corollary 4
Given two program3l; andIl,, let AT and A~ be sets of propositional variables. Then,
I, 4'=,, T, if and only if IT; 47 = TI,.

4 Generalization to First-Order Theories

Since the characterizations, in particular of uniform gglénce, presented in the previous
section capture also infinite theories, they pave the waygésreralizing this notion of
equivalence to non-ground settings without any finitenesgrictions. In this section we
study first-order theories.

As first-order theories we consider sets of sentences (tfisenulas) of a first-order
signaturel = (F,P) in the sense of classical first-order logic. Hen€eand P are pair-
wise disjoint sets of function symbols and predicate symodth an associated arity, re-
spectively. Elements of with arity 0 are called object constants 0Aary predicate symbol
is a propositional constant. Formulas are constructed @al asd variable-free formulas
or theories are calleground A sentence is said to Bactualif it is built using connectives
A, V, 3,V, and- (i.e., implications of the fornrp — L), only. A theoryl is factual if every
sentence of" has this property. The abbreviations introduced for prajoosl formulas
carry over¢ = v for (¢ — ¥) A (v — ¢); ~¢for¢ — L;andT for L — L.

4.1 Static Quantified Logic of Here-and-There

Semantically we refer to the static quantified version ofekemd-there with decidable
equality as captured axiomatically by the sysi@HT? (Pearce and Valverde 2006; Lifschitz et al. 2007,
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Pearce and Valverde 2008). It is characterized by Kripkeatsoaf two worlds with a com-
mon universe (hence static) that interpret function symbothe same way.

More formally, consider a first-order interpretatiérof a first-order signatur€ on a
universel{. We denote by.! the extension of obtained by adding pairwise distinct
names. as object constants for the objects in the universe, i.egdohs € /. We write
Cy for the set{c. | ¢ € U} and identify] with its extension taC! given by (c.) = e.
Furthermore, let’ denote the value assigned byo a ground term (of signatureC’), let
Lr denote the restriction of to function symbols (thus including object constants), and
let Bp ¢, be the set of atomic formulas built using predicates ff@mnd constants;,.

We represent a first-order interpretatibaf £ oni/ as a pairfI|. ,, I|CM>E wherel|. .
is the restriction off on function symbols, and|c,, is the set of atomic formulas from
Bp.c, which are satisfied id. Correspondingly, classical satisfaction of a sentehby
a first-order interpretatiotl | -, I|¢c,,) is denoted by{(I|., I|c,,) = ¢. We also define a
subset relation for first-order interpretatiohs I> of £ on/ (ie., over the same domain)
byIl CLif Il|£F = IQ|L}- and11|cu - IQ|CM.

A QHT-interpretation of_ is a triple(I, J, K'), such that4) I is an interpretation of »
onU,and i) J C K C Bpg,.

The satisfaction of a sentengef signatureC’ by a QHT-interpretatiod! = (I, J, K)

(a QHT-model) is defined as:

1. M Ep(t,....ta) if pleg, ... e ) € J;
Mt =tyif t] =k,

.M L

. MENYIEME ¢andM E i,
MgV, if M=dorM =,

LM ¢ — ¢if (i) M = ¢ or M =, and (i) (I, K) |= ¢ — i
. M EVzo(x) if M = ¢(c.) and(I, K) = ¢(c.) forall e € U;

. M= Jxo(x) if M = ¢(c.) for somes € U;.

A QHT-interpretationM = (I, J, K) is called aQHT-countermodebf a theoryT" iff
M £T; itis calledtotal if J = K. A total QHT-interpretatiol = (I, K, K) is called a
quantified equilibrium mod€lQEL-mode) of a theonyT', iff M =T andM’ (£ T, for all
QHT-interpretations\/’ = (I, J, K') such that/ C K. A first-order interpretation/, K)
is ananswer seof I iff M = (I, K, K) is a QEL-model of a theory.

In analogy to the propositional case, we will use the follogvsimple properties. If
(I,J,K) = ¢then(I, K, K) = ¢; and(I, J, K) = —¢ iff (I, K) = —¢.

O~NO UL WN

4.2 Characterizing Equivalence by QHT-countermodels

We aim at generalizing uniform equivalence for first-ordhexdries, in its most liberal form,
which means wrt. factual theories. For this purpose, welfitdtemmald.

Lemma 3
Let ¢ be a factual sentence.(f, J, K) = ¢ andJ C J' C K, then(I,J',K) = ¢.

3 We use angle brackets to distinguish from HT-interpretatio
4 Thatis,(I, K) satisfiesp — 1 classically.
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Proof
The proof is by induction on the formula structuregofLet M = (I, J, K), M = ¢, and
M’ = {1,J',K) forsomeJ C J' C K. For the base case, consider an atomic sentence
¢. If ¢ is of the formp(ty, ..., t,), thenp(c,r, . .. ;¢ ) € J becausel = ¢. By the fact
thatJ’ O J we conclude thap(c,:, ..., c;1) € J' and hencéll’ = ¢. If ¢ is of the form
t; = ta thenM = ¢ impliest! = ¢4, and thusM’ = ¢. Note also that\/ = ¢ implies
¢ # L. This proves the claim for atomic formulas.

For the induction step, assume tldt = ¢ implies M’ |= ¢, for any sentence of depth
n—1, and letp be a sentence of depth We show thaf\/ = ¢ impliesM’ |= ¢. Suppose
is the conjunction or disjunction of two sentenggsand¢,. Theng, and¢g, are sentences
of depthn — 1. Hence,M = ¢; implies M’ | ¢1, and the same fap,. Therefore, if
M models both or one of the sentences then so ddgswhich impliesM | ¢ implies
M’ = ¢ if ¢ is the conjunction or disjunction of two sentences. As foplication, since
¢ is factual we just need to consider the case whei®of the form¢; — L, i.e.,—¢;.
Then,M = —¢, iff (I, K) = —¢y iff M’ = —¢1. This provesV | ¢ impliesM’ = ¢ if
¢ is an implication with L as its consequence. Eventually, consider a quantified rseate
¢, i.e., ¢ is of the formVz ¢, (z) or 3z¢ (z). In this caseM | ¢ impliesM = ¢1(c.)
and(I, K) = ¢1(c.), forall e € U, respectivelyM = ¢;(c.), for somes € U, in case of
existential quantification. Since each of the sentengés. ) is of depthn — 1, the same
is true for M’ by assumption, i.eM’ = ¢1(c.) and{I, K) = ¢1(c.), foralle € U,
respectivelyM’ = ¢1(c.), for somes € U. It follows thatM |= ¢ implies M’ = ¢ also
for quantified sentences of depthn, and therefore, for any sentengeof depthn. This
proves the claim. [

The different notions of closure naturally extend to (seé)js@HT-interpretations. In
particular, a total QHT-interpretatioll = (I, K, K) is calledtotal-closedin a setS of
QHT-interpretations if I, J, K) € S for everyJ C K. A QHT-interpretation/, J, K) is
closedin a setS of QHT-interpretations if, J', K) € S foreveryJ C J' C K,anditis
there-closedn S if (I, K, K) ¢ Sand(l,J',K) € SforeveryJ C J C K.

The first main result lifts the characterization of uniforguésalence for theories by
HT-countermodels to the first-order case.

Theorem 5
Two first-order theories are uniformly equivalent iff theaue the same sets of there-closed
QHT-countermodels.

The proofideais the same as in the propositional case, tingpéce reasons the proofis
skipped. The same applies to Theofédm 6 and Propokition (F{ok 2009) for full proofs).

We next turn to an alternative characterization by a mixafr@ HT-models and QHT-
countermodels as in the propositional case. A QHT-courddei{I, J, K) of a theoryl"
is called QHT here-countermodel Bfif (I, K) = I'. A QHT-interpretation(I, J, K') is
an QHT equivalence-interpretation of a thedyyif it is a total QHT-model of” or a QHT
here-countermodel df. In slight abuse of notation, we reuse the notat¥ons € {C, E}
ande € {c, a, s, u}, for respective sets of QHT-interpretations, and arriviaatfollowing
formal result:
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Theorem 6
Two theories coincide on their QHT-countermodels iff thayd&the same QHT equivalence-
interpretations, in symbolS;(T';) = Cs(T'2) iff E5(T'1) = E4(Ta).

As a consequence of these two main results, we obtain ame)eméfied formal charac-
terization of the different notions of equivalence for fisstler theories under generalized
answer-set semantics.

Corollary 5
Given two first-order theorieF; andTI's, the following propositions are equivalent for
e c {C, a, s,u}: Fl = FQ, Ce(Fl) = OC(FQ), Ee(Fl) = EC(FQ)

Moreover, lifting the characterization of HT-countermtsderovided in Propositiohl2
to the first-order setting, allows us to prove a property,chtsimplifies the treatment of
extended signatures.

Proposition 7

Let M be a QHT-interpretation ovel onl{. Then,M € E,(T') for a theoryl' iff M =
I'y(M) for somegp € T, whereT'y(M) = {-— | ¢ € T} U{¢p — (-—a — a) | a €
Bp.cy }-

For QHT-models it is known that/ | T implies M|, | T (cf. e.g., Proposition 3
in (de Bruijn et al. 2007)), henc®/ | }= T impliesM (£ T, i.e., M|, € Cs(T) implies
M € C4(T). The converse direction holds for totality preserving niesbns (the proof
appeared in(Fink 2008) and can also be found in (Fink 2009)):

Theorem 7
LetT be a theory over, let £’ O L, and letM a QHT-interpretation ove£’ such that
M|, is totality preserving. Then\f € C(I") impliesM |, € Cs(T).

Note that this property carries over to QHT-models, i¥|. = T impliesM = T,
if M| is the restriction ofM to £ and this restriction is totality preserving. Otherwise,
by the above result/ (= T would imply M|, = T'. We remark that in[(Fink 2008) it is
erroneously stated informally that this property does radti ior QHT-models, however
the counter-example given there is flawed (Example 5.in (EZDE8)).

4.3 Relativized Hyperequivalence for First-Order Theasie

In this section we extend the notion of relativized hyperegjance to first-order theories.
For this purpose, we distinguish positive and negative metees of predicates in sen-
tences. More precisely, the occurrence of a predigatea sentence is calledpositive
if ¢ is implication free, ifp occurs in the consequent of an implicationginor if ¢ is of
the form(¢; — ¢2) — ¢3 andp occurs ing;. An occurrence op is callednegativeif p
occurs in the antecedent of an implication. The notion oftpesand negative occurrence
is again extended to (sub-)sentences in the obvious way.

Let T be a first-order theory ovef = (F, L™ U L~), whereL* and L~ are sets of
predicate symbols with an associated arity, such that iedipate symbagb occurs in both
L* andL~, then it is also associated the same arity. We saylthatan - L~ -theoryif
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its sentences have positive occurrences of predicatesfrorand negative occurrences of
predicates froml —, only. As in the propositional case, is allowed to appear positively
and negatively, and the same holds for equality in the firdeocase. Moreover, ab™ -
L~ -theory is callecextendedlif additionally factual formulas ovet™ are permitted.

Definition 10

Two first-order theorie§';, I's over £ are calledelativized hyperequivalent wrf.* and
L~, symbolicallyl*; sz Iy, iff forany L*-L~-theoryl’ over£’ O £, T Ul andl' UT
are answer-set equivalent.

The properties proven for HT-interpretations and extentiedd ~-theories in the propo-
sitional case, carry over to QHT-interpretations and edéeld, *- L.~ -theories in a straight
forward manner.

Proposition 8
Consider an extended first-ordér-L~-theory T, and a QHT-interpretatiof/, J, K).
Then,(I, J,K) =T implies(I,J',K) =T, forall J' C K such that/|,+ C J'|;+ and
J - CJ|L-.

The proof is lengthy and does not convey particular new htsigherefore it is skipped
here (cf. [(Eink 2009)). The main differences to the propasél case concern the treat-
ment of equality of terms and that quantification has to benahkto account. The former
depends solely on the interpretation pgrivhich is the same for the QHT-interpretations
under consideration, and thus has no further influence oarthement. The latter, is a fur-
ther case to be considered in the inductive argument, howeesthat reduces easily to the
respective induction hypotheses. The remainder simplsonsithe propositional case, with
the polarity being considered on the predicate level, rdttan for propositional variables.
The same holds for the proofs of the remaining results ingbdtion.

Proposition 9
Consider an extended first-ordet - L.~ -theoryl’, and a total QHT-interpretatidd, K, K).
Then,(I, K, K) =T implies(I, J', K) =T, forall J/ C K such that/'|,+ = K|+.

Having lifted the essential properties to the casel ¢t L~ -theories, it comes at no
surprise that we end up with respective closure conditionQHT-equivalence interpre-
tations.

Definition 11
Given a first-order theorj over L, sets of predicate symbals™ C £/, L~ C L', L' D L,
and a QHT-interpretatio®d = (I, J, K), we say that

e (I,K,K)is LT-totaliff (I, K|+, K) is closed inE(T);
e M is L*-closedin E,(T) iff (I,.J',K) € E4(T), forall J/ C K such that/|,+ C
J'p+andJ’' |- C J|z-.

Also the characteristic structures for a semantic chariaet#on are defined in straight-
forward analogy.
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Definition 12

A QHT-interpretationM = (I, J, K) is aQHT-hyperequivalence interpretation wit:*
and L~ of a first-order theony" iff (I, K, K) is L*-total and there exists a QHT-inter-
pretation(I, J’, K') such that/ = J'| .+, and(I, J’, K) is L"-closed inE4(T").

The set of QHT-hyperequivalence interpretations Wrt.and L~ of a first-order theory’

is denoted by " (T').

Eventually, we arrive at a characterization of relativizggberequivalence for general
first-order theories under answer-set semantics, whettextsrare restricted on the predi-
cate level.

Theorem 8

Two first-order theorie§';, I's are relativized hyperequivalent wit™ andL~ if and only
if they coincide on their QHT-hyperequivalence interptietas wrt. LT and L —, symboli-
cally Ty L = Iy iff BT (D)) = EET ().

In the same way as for propositional theories, the prominetibns of equivalence are
obtained as special cases, and the framework gives ris&atwized notions of strong and
uniform equivalence for general first-order theories urateswer-set semantics. Also in
analogy, the role of factual theories is governed by Prdjood8, yielding the following:

Corollary 6

Two first-order theorie§ |, I's arerelativized hyperequivalent wrt. extended- L~ -theo-
ries if and only if they coincide on their QHT-hyperequivalenageirpretations wrtL ™
andL—.

5 Non-ground L ogic Programs

In this section we apply the characterizations obtainefir&irorder theories to non-ground
logic programs under various extended semantics—comparbe traditional semantics
in terms of Herbrand interpretations. For a proper treatroéthese issues, further back-
ground is required and introduced (succinctly, but at siefficdetail) below.

In non-ground logic programming, we restrict to a functfoee first-order signature
L = (F,P) (i.e., F contains object constants only) without equalityplegramII (over
L) is a set of rules (ovef) of the form [1). A ruler is safeif each variable occurring in
H(r) U B~ (r) also occurs inB*(r); a ruler is ground if all atoms occurring in it are
ground. A program is safe, respectively ground, if all ofitees enjoy this property.

GivenlII over £ and a universg/, let £“ be the extension of as before. Thgrounding
of IT wrt. & and an interpretatiofi| - . of Lx onl/ is defined as the setd,, (I, 1| ,)
of ground rules obtained from € II by () replacing any constamtin r by ¢. such that
Iz, (c) = ¢, and ) all possible substitutions of elementsin for the variables in-.

Adapted from[(Gelfond and Lifschitz 1991), theductof a programil with respect to
a first-order interpretatioh = (I|.,, I|c, ) on universé/{, in symbolsgrd,, (11, I|. . )*, is
given by the set of rules

a1 V---Vag < by,..., b,

obtained from rules igrd,, (11, I|-,-) of the form [1), such that = a; forall k < <1
andI = b; forallm < j <n.
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A first-order interpretatiod satisfies arule, I = r, iff I ET,, wherel', = VZ(8, —
ay), & are the free variables in «,. is the disjunction off (r), andj3, is the conjunction
of B(r). It satisfies a prografi, symbolically! = I, iff it satisfies everyr € 11, i.e., if
I =T, wherel'y =, o T

A first-order interpretation’ is called ageneralized answer seif 11 iff it satisfies
grdy,(IL Iz )! and it is subset minimal among the interpretationsCadn ¢/ with this
property.

Traditionally, onlyHerbrand interpretationgre considered as the answer sets of a logic
program. The set of all (object) constants occurringiis called theHerbrand universef
I1, symbolically?. If no constant appears ifi, thenH = {c}, for an arbitrary constarnt
A Herbrand interpretation is any interpretatibof £4; = (},P) on’H interpreting object
constants by identityid, i.e., I(c) = id(c) = cfor all ¢ € H. A Herbrand interpretatiof
is anordinary answer seof IT iff it is subset minimal among the interpretations®f; on
H satisfyinggrd,, (11, id)".

Furthermore, aextended Herbrand interpretatias an interpretation of on/ > F
interpreting object constants by identity. An extendedddand interpretatior is anopen
answer se{Heymans et al. 2007) df iff it is subset minimal among the interpretations of
L onU satisfyinggrd,, (11, id)?.

Note that since we consider programs without equality, weasgically resort to the
logic QHT®, which results fromQHTS. by dropping the axioms for equality. Concerning
Kripke models, however, in slight abuse of notation, we eeQ8IT-models as defined for
the general case. A QHT-interpretatidh = (I, J, K) is called an (extended) QHT Her-
brand interpretation, if/, K) is an (extended) Herbrand interpretation. Given a program
I, (I, K) is a generalized answer setldiff (I, K, K) is a QEL-model of";, and(I, K)
is an open, respectively ordinary, answer selldff (I, K, K) is an extended Herbrand,
respectively Herbrand, QEL-model Bf;. Notice that the static interpretation of constants
introduced by Item4) of the grounding process is essential for this correspoceein
terms of QH'T®. Abusing notation, we further on identify andI'y;.

As already mentioned for propositional programs, unifogmigalence is usually un-
derstood wrt. sets afround facts(i.e., ground atoms). Obviously, uniform equivalence
wrt. factual theories implies uniform equivalence wrt.gnd atoms. We show the converse
direction (lifting Theorem 2 in(Pearce and Valverde 200d) a proof see[(Fink 2009)).

Proposition 10

Given two programdl,, IT,, thenIl; =, II, iff (II; U A) =, (IIx U A), for any set of
ground atomsA.

Thus, there is no difference whether we consider unifornivadgnce wrt. sets of ground
facts or factual theories. Since one can also consider $efauses, i.e. disjunctions of
atomic formulas and their negations, which is a more swgtadpresentation of facts ac-
cording to the definition of program rules in this article, agopt the following terminol-
ogy. A ruler is called afactif B(r) = ), and afactual programis a set of facts. Then, by
our resulfll; =, I, holds for program8l,, I1, iff (II; UII) =, (II; UII), for any factual
programiI.
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5.1 Uniform Equivalence under Herbrand Interpretations

The results in the previous section generalize the notiomndbrm equivalence to pro-
grams under generalized open answer-set semantics andeediernative characteriza-
tions for other notions of equivalence. They apply to proggaunder open answer-set
semantics and ordinary answer-set semantics, when Qldipietations are restricted to
extended Herbrand interpretations and Herbrand intexpoets, respectively. In order to
capture strong and uniform equivalence under ordinary anset semantics correctly,
interpretations under the Standard Name Assumption (SN& o be considered, ac-
counting for the potential extensions. For progrdiaandIl; ande € {c, a, s, u}, we use
II; Ef II, andII; EZ“ I1, to denote (classical, answer-set, strong, or uniform)\edgmnce
under open answer-set semantics and ordinary answerrsahtes, respectively.

Corollary 7
Given two program$l; andIl,, it holds that

o II; =5 Ty, C4(I1;) = C¢(Ily), andE¢ (11, ) = E£(I1y) are equivalent; and
o II; =M1, CH(ILy) = C*(I1y), and EX*(11; ) = EM(IIy) are equivalent;

wheree € {¢, a, s, u}, superscripf denotes the restriction to extended Herbrand interpre-
tations, and superscript denotes the restriction to Herbrand interpretations fer{c, a},
respectively to SNA interpretations ferc {s, u}.

For safe programs open answer sets and ordinary answeosetile (de Bruijn et al. 2007).
Note that a fact is safe if it is ground. We obtain that unif@quivalence coincides under
the two semantics even for programs that are not safe. ikelyit the potential addition
of arbitrary facts accounts for the difference in the seicargince it requires to consider
larger domains than the Herbrand univﬂse.

Theorem 9
LetTIl,, I, be programs ovef. ThenIT; =¢ Il iff IT; =7t II,.

Proof

The only-if direction is trivial. For the if direction, towds a contradiction assume that
I, =7t TI, andTl; #¢ I,. LetII be a factual program such thaf = (id, K, K) is an
extended Herbrand QHT-interpretation o8r2 £ onit’, such that\/ is in E£ (IT; UTI),
but M ¢ E£(II, U II). Consider the signatutg,, = (', £}, U {d}), whereL/, are the
predicate symbols of’, andd ¢ L’ is a fresh unary predicate symbol. Cleady, > L'.
Furthermore lefl} = IT; UTTU {d(X)}, 115 = I, UTTU {d(X)}, andK' = K U {d(c) |
c € U'}. We show thatM’ = (id, K', K') is in E7{(I1}), but M’ ¢ E7(I1}). Since
M E II; UTI and no sentence ifi; U II involvesd, we concludeM’ = II; U II. By
construction}M’ is also a QHT-model of(X'), henceM’ |= IT}. Moreoverid, J, K) [~
I1, UTI, for everyJ C K. Therefore, forevery’ = JU{d(c) | c € 4’} suchthat C K,
(id, J', K') B~ II;. So let us consider proper subsdtsof K’ such thatk’ C J, i.e,,
J' c{d(c)|ceU'}. Inthiscas€id, J', K') ~ d(X), and agair{id, J', K') }~ II}. This
provesthat\/’ is in E7¢(I1}). On the other hand, if/ [~ TI, UTL, thenM [~ I, and since

5 Note that this also holds fa@ H'TS. with functions and the result could be strengthened acaglyli
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no sentence ifil; involvesd, we concludé\l’ t~ Ty, thusM’ b= T1,. If M |= T1oUTI, then
(id, J, K) = I, UII forsomeJ C K. Considet’ = JU{d(c) | c € U’'}. SinceJ C K,
it holds that/” ¢ K’, and since no sentenceliiy UII involvesd, (id, J', K') |= Iy UIL.
Moroever,(id, J', K') = {d(X)} by construction, henc@d, J', K’) |= II,. This proves
M’ ¢ EM(I1,). Note thatll U {d(X)} is a factual program; contradiction.[]

Finally, we turn to the practically relevant setting of fifpossibly unsafe, programs
under Herbrand interpretations, i.e., ordinary (and op&swer-set semantics. For finite
programs, uniform equivalence can be characterized by lddets of the grounding, also
for infinite domains. In other words, the problems of “infenithains” as in Examplg 1
cannot be generated by the process of grounding. Note #haedstriction to finite programs
also applies to the programs considered to be potentiatigcd

Theorem 10
Let Iy, IT, be finite programs ovef. Then,II; zy I, iff II; andIl; have the same)
total and ;) maximal, non-total extended Herbrand QHT-models.

Proof

The only-if direction is obvious. IfI; = II, then alsall; =¢ II, by TheoreniB. This
means thall; andIl; have {) the same total extended Herbrand QHT-models, as well as
the same sets of closed extended Herbrand QHT equivaletecprigtations, and thus:i}

the same maximal, non-total extended Herbrand QHT-models.

For the if direction, assume thHt; andII; have the same total and the same maximal,
non-total extended Herbrand QHT-models but, towards aradittion, thatll; £ TI,.
Then, there exists a finite factual progréimsuch thatIl; UTI) £ (I, UII). W.l.o.g. let
M = (I,K,K)overl' D LbeinE*(II; UIl) andM ¢ E*(II, UII). LetH denote the
Herbrand universe dfl; U II. Sincell, andII are finite, X is finite and so igyrd,, (IT; U
I1, id). Therefore, by minimality is finite as well. Note also, that/ is a total extended
Herbrand QHT-model ofl;. By hypothesis4), ITI; andIl, have the same total extended
Herbrand QHT-models. Thud/ is also a total extended Herbrand QHT-modellbf.
Moreover, there exists a QHT-interpretatidfi = (I, J, K), such that/ ¢ K andM’ =
(TIoUII), henceM’ k= Tl,. SinceK is finite, we conclude thdl, has a maximal, non-total
QHT-modelM” = (I,J”, K), such that/’ C J” C K.We show that this is not the case
for II;. M’ = (I1; U IT) implies M’ = 1I. Sincell is a factual program, by Lemnia 3
we conclude thad/” = T1. HoweverM” (= T1; U TI, becausé/ € E}(T1; UTI). Taken
togetherM” = TTandM" t IT; UITimpliesM” |~ 11;. Therefore M is not a maximal,
non-total QHT-model ofl;. Observing thai/” is an Herbrand QHT-model ovél and
L' D L, we conclude thad/” is a maximal non-total extended Herbrand QHT-model of
II,, but not ofII;. Contradiction. [

6 Conclusion

Countermodelsin equilibrium logic have recently been use@abalar and Ferraris (2007)
to show that propositional disjunctive logic programs widgation in the head are strongly
equivalent to propositional theories, and by Cabalar gP807) to generate a minimal

logic program for a given propositional theory.
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By means of QEL, in[(Lifschitz et al. 2007), the notion of stgoequivalence has been
extended to first-order theories with equality, under theegalized notion of answer set we
have adopted. QEL has also been shown to capture open asstsfHeymans et al. 2007)
and generalized open answer-séts (Heymans et al| 2008)s angromising framework
for hybrid knowledge bases, providing a unified semanticempassing classical logic as
well as disjunctive logic programs under the answer-sebseics (de Bruijn et al. 2007).

Our results extend these foundations for the research o&stenproperties in these
generalized settings. First, they complete the pictureenring the prominent notions of
equivalence by making uniform equivalence amenable tethereralized settings without
any finiteness restrictions, in particular on the domairaddition, the developed notion
of relativized hyperequivalence interpretation provideseans for the study of more spe-
cific semantic relationships under generalized answesesatintics. Thus, a general and
uniform model-theoretic framework is achieved for the euterization of various notions
of equivalence studied in ASP. We have also shown that faefprograms, i.e., those pro-
grams solvers are able to deal with, infinite domains do nosedhe problems observed
for infinite propositional programs, when dealing with wmifh equivalence in terms of
HT-models of the grounding.

An intersting theoretical problem for further work is to &ieher equivalences and corre-
spondence under projections of answer $ets (Eiter et af; Z0é€isch et al. 2007; Pihrer et al. 2008;
Pihrer and Tompits 2009). It is not difficult to apply exigtitechniques to our character-
izations in order to obtain characterizations for projeetiersions of uniform and strong
equivalence, and for relativized notions thereof, i.e loag as the same alphabet is per-
mitted for positive and negative occurrences in the contdgtvever, it is not trivial to
characterize projective versions of relativized hypeneajance in the general case, some-
thing which also has not been considered for propositi@mwtiprograms so far.

Concerning the application of our results, there is ong@ing< on combining ontolo-
gies and nonmonotonic rules, an important issue in knovdedgresentation and reason-
ing for the Semantic Web. The study of equivalences and spordences under an ap-
propriate (unifying) semantics, such as the generalinataf answer-set semantics char-
acterized by QEL, constitute a highly relevant topic foresagh in this application do-
main (Fink and Pearce 2009). Like for Datalog, uniform eglémce may serve investiga-
tions on query equivalence and query containment in thelgadgettings, and due to the
combination of two formalisms, more specific notions of e@glénce are needed to ob-
tain the intended notions of correspondence. While ouradtarizations serve as a basis
for these investigations, in particular the simplified tre@nt of extended signatures for
(equivalence) interpretations is expected to be of avdiemconsidering separate alpha-
bets.

On the foundational level, our results raise the intergstinestion whether extensions
of intuitionistic logics that allow for a direct characteation of countermodels, or equiv-
alence interpretations, would provide a more suitable &@pparatus for the study of (at
least notions of uniform) equivalences in ASP.
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