
Resolving Conflicts in Action Descriptions
Thomas Eiter and Esra Erdem and Michael Fink and Ján Senko1

Abstract. We study resolving conflicts between an action descrip-
tion and a set of conditions (possibly obtained from observations),
in the context of action languages. In this formal framework, the
meaning of an action description can be represented by a transi-
tion diagram—a directed graph whose nodes correspond to states and
whose edges correspond to transitions describing action occurrences.
This allows us to characterize conflicts by means of states and tran-
sitions of the given action description that violate some given con-
ditions. We introduce a basic method to resolve such conflicts by
modifying the action description, and discuss how the user can be
supported in obtaining more preferred solutions. For that, we iden-
tify helpful questions the user may ask (e.g., which specific parts of
the action description cause a conflict with some given condition),
and we provide answers to them using properties of action descrip-
tions and transition diagrams. Finally, we discuss the computational
complexity of these questions in terms of related decision problems.

1 INTRODUCTION
Action languages [3] are a formal tool for reasoning about actions,
where an agent’s knowledge about a domain in question is repre-
sented by a declarative action description that consists of logical for-
mulas. Consider for instance a light bulb with a switch. When the
light is off, then toggling the switch turns the light on; this can be
expressed in the action description languageC [4] by the formula

causedLight after Toggle ∧ ¬Light . (1)

On the other hand, at every state, if the light bulb is broken then the
light is off. This can be expressed by the formula

caused¬Light if Broken. (2)

Other pieces of knowledge, like laws of inertia, may be also included.
The meaning of such an action description can be represented by a
transition diagram—a directed graph whose nodes correspond to the
states of the world and the edges to the transitions describing action
occurrences. For instance, see Figure 1 for the transition diagram of
the action description above (consisting of (1), (2), and inertia laws).

Note that the action description above is “buggy”, since the ef-
fects of toggling the switch are not completely specified. Our goal is
to “repair” such descriptions taking into account some additional in-
formation, such as observations or axioms about the action domain,
which can be represented in an action query language [3], expressing
conditions on the transition diagram.

For example, when the light bulb is broken, toggling the switch
may lead to a state where the light is off; this information is possibly
obtained from some observations of the agent, and can be expressed
in an action query language, e.g., by the statement

possibly¬Light after Toggle if Broken. (3)

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
1040 Wien, Austria, email:{eiter, esra, michael, jan}@kr.tuwien.ac.at

Some of the additional information may conflict with the action
description. For instance, condition (3) does not hold relative to the
action description above, since at the state where the light bulb is bro-
ken and the light is off, toggling the light switch is not possible. Thus,
there is a conflict between the action description and this condition.

In this paper, we consider such conflicts, and how the agent’s ac-
tion description can be modified to resolve them. This may be ac-
complished in many different ways, and there is no canonical method
which works satisfactorily in all cases. According to [2], one might
aim at dropping a smallest set of candidate formulas to resolve the
conflict. In our example, dropping (1) would work. However, under
further conditions, like

necessarily¬Light after Toggle if Light , (4)

the conflict cannot be resolved just by dropping formulas: remov-
ing any of (1), (2) and inertia laws will not lead to an edge from
a state where the light is on to a state where the light is off. A re-
fined approach is needed which, semantically, modifies the transition
diagram by suitable changes of the formulas to “repair” the action
description such that the given queries (i.e., conditions) hold.

This paper makes two main contributions in this direction:
1) It provides a precisenotion of conflictbetween an action descrip-
tion and a set of queries, and presents a basic algorithm to resolve
such conflicts. The idea is to modify the transition diagram of the
action description by adding or deleting transitions so that all given
conditions are satisfied; such a modification of the transition diagram
is possible by adding, deleting or modifying some formulas in the ac-
tion description. Based on this idea, our algorithm calculates a repair
whenever it is possible.
2) Intuitive repair preferences might be difficult to formalize (e.g.,
both syntactic and semantic aspects might play a role) and thus to
achieve with the basic algorithm above. In such cases, the designer
might want toask questionsabout the action description, the transi-
tion diagram, and the extra information, whose answers could guide
her to come up with an appealing repair in an iterative repair process.
For that, we explore several kinds of such questions and determine
properties of action descriptions, transition diagrams, and extra in-
formation which are helpful in answering them. We also analyze the
computational complexity of related problems.

2 PRELIMINARIES

Transition diagrams. We start with apropositional action sig-
natureL = 〈F,A〉 that consists of a setF of fluent names, and a
setA of action names. Satisfaction of a propositional formulaG over
atomsAt ⊆ F ∪A by an interpretationP 7→ I(P) ∈ {t, f} for all
P ∈ At as usual, is denoted byI |= G. An actionis an interpretation
of A, denoted by the set of action names that are mapped tot.

¬Broken
Light

Broken
¬Light

¬Broken
¬Light

{} {}{}, {Toggle}

{Toggle}

Figure 1. Transition diagram of the action description{ (1), (2), (7)}.

A transition diagramof L consists of a setS of states, a func-
tion V : F × S → {f, t} such that each states in S is uniquely
identified by the interpretationP 7→ V (P, s), for all P ∈ F, and a
subsetR ⊆ S × 2A × S of transitions. We say thatV (P, s) is the
valueof P in s. The statess′ such that〈s,A, s′〉 ∈ R are the possible
results of the executionof the actionA in the states. We can think
of a transition diagram as a labeled directed graph. Every states is
represented by a vertex labeled with the functionP 7→ V (P, s) from
fluent names to truth values; we denote bys the set of fluent literals
satisfied by this function. Each triple〈s,A, s′〉 ∈ R is represented
by an edge froms to s′ and labeledA. See Figure 1 for an example.

Action descriptions. We consider a subset of the action descrip-
tion languageC [4] that consists of two kinds of expressions (called
causal laws): static lawsof the form

causedL if G, (5)

whereL is a fluent literal orFalse, andG is a propositional combi-
nation of fluent names; anddynamic lawsof the form

causedL if G after U , (6)

whereL andG are as above, andU is a propositional combination
of fluent names and action names. In (5) and (6) the partif G can be
dropped ifG is True.2 An action descriptionis a set of causal laws.
For instance, one formalization of the light domain described in the
introduction can be expressed in this language by the causal laws (1),
(2), and the inertia laws

inertial Light ,¬Light ,Broken,¬Broken. (7)

Here an expression of the forminertial L1, ..., Lk stands for the
causal lawscausedLi if Li after Li for i ∈ {1, ..., k}.

The meaning of an action description can be represented by a tran-
sition diagram as follows. We say that a causal lawl is applicableto
a transition〈s,A, s′〉 in a transition diagram, if

• l is a static law (5), such thats′ |= G; or
• l is a dynamic law (6), such thats′ |= G ands ∪A |= U .3

We denote byD(tr) the set of all causal laws in an action descrip-
tion D that are applicable to a transitiontr; by HD(tr) the set of
the heads of all causal laws inD(tr); and bysat(HD(tr)) the set of
interpretations ofF that satisfyHD(tr).

LetD be an action description with a signatureL = 〈F,A〉. Then
the transition diagram〈S, V,R〉 describedby D, denotedT (D), is
defined as follows:

• S is the set of all interpretationss of F such that, for every static
law (5) inD, s |= G ⊃ L,

• V (P, s) = s(P),
• R is the set of all〈s,A, s′〉 such thatsat(HD(〈s,A, s′〉)) = {s′}.

We denote byS(D) (resp.R(D)) the set of states (resp. transitions)
of T (D). For instance the transition diagram described by the action
description consisting of (1), (2), (7) is shown in Figure 1.
2

True (resp.False) is the empty conjunction (resp. disjunction).
3 We identify statess with the interpretationsP 7→ V (P, s).

Conditions. For expressing extra conditions, we consider here a
language with two kinds of statements (“queries”) about an action
description:possibilityandnecessity queriesof the respective forms

possiblyψ after A if φ (8)

necessarilyψ after A if φ (9)

whereφ andψ are propositional combinations of fluent names, and
A is an action. These queries are syntactically different from the ones
presented in [3] and [2]; on the other hand, semantically they consti-
tute a fragment of an extension of the action query languageP [3]
(from which we draw the term “query”) and the condition language
in [2] (see Related and Further Work for a discussion).

A queryq of form (8) (resp., (9))is satisfied at states in a tran-
sition diagramT , denotedT, s |= q, if either s 6|= φ, or for some
(resp., every) transition〈s,A, s′〉 of T s′ |= ψ holds. We say that
T entailsa setQ of queries (denotedT |=Q), if T, s |= q for every
q ∈ Q and for every states in T . Accordingly, an action description
D entailsQ (denotedD |=Q) if T (D) |= Q.

Example 1 Let us consider the light domain described in the intro-
duction as our running example. LetD be the action description con-
sisting of (2), (1), and (7); andQ be the set of two queries: possibility
query (3) and the necessity query (4), denoted byqp andqn respec-
tively. Figure 1 showsT (D) (i.e., the transition diagram ofD). Then
it can be easily verified that, at state{¬Light , Broken}, since there
is no transition from this state with actionToggle, the queryqn is
trivially satisfied whileqp is not satisfied.

What a query describes is different from what a causal law does:
action descriptions allow us to describe a transition diagram, based
on causal explanations (what “is caused”), whereas queries allow us
to state assertions (what “holds”) about transition diagrams. These
assertions may, e.g., be observations or axioms about the action do-
main. (See [3] for a discussion on action query languages.)

3 CONFLICTS IN ACTION DESCRIPTIONS

Given an action descriptionD and a setQ of queries, we say that
there is aconflictbetweenD andQ, if D 6|= Q. Our goal is to resolve
these conflicts by modifying the action description.

Conflicts can be characterized, from a semantic point of view, in
terms of states and transitions “violating” some queries. We assume
that the states of the world are correctly described by the given action
description. Thus conflicts are existing transitions (for the violation
of a necessity query) and non-existing transitions (for the violation
of a possibility query) that cause such conflicts. The idea is then to
“repair” an action description by a syntactic modification, such as
adding, deleting, or modifying some of its causal laws, so that the
detected conflicts are resolved by adding and/or deleting some tran-
sitions in the transition diagram.

For an action descriptionD and a setQ of queries, the states and
transitions violating possibility and necessity queries inQ, respec-
tively, are as follows.

• A states of T (D) violatesa possibility queryq of form (8) inQ,
if T (D), s 6|= q.

• A transitiontr = 〈s,A, s′〉 of T (D) violatesa necessity queryq
of form (9) inQ (denotedtr 6|= q), if s |= φ ands′ 6|= ψ.

Example 2 (cont’d) FromT (D) we can identify the following con-
flicts: the single state violating the possibility queryqp is {¬Light ,

Broken}, and the single transition violating the necessity queryqn

is 〈{Light ,¬Broken}, {Toggle}, {Light ,¬Broken}〉.

Since we suppose that states of the world are correctly described
byD, we do not need to modify the static laws inD for a repair.

Algorithm RESOLVE(D,Q) : Mod , Incon

Input: An action description,D, and a set of queries,Q.
Output: A repair,Mod , and a set of queries,Incon.

Mod := ∅; Incon := ∅;
for all (q, tr) ∈ confn(D,Q) do

Mod := Mod ∪ Delete(tr);
D′ := Mod(D); Ins := ∅;
for all (q, s) ∈ confp(D

′, Q) do
(q = possiblyψ after A if φ)
Cands := {〈s,A, s′〉 | s′ ∈ S(D), s′ |= ψ,

〈s,A, s′〉 |= q′, ∀q′ ∈ Qn};
if (Cands 6= ∅) then

selecttr ∈ Cands;
Ins := Ins ∪ {tr};

else
Incon := Incon ∪ {q};

return Mod ∪ Insert(Ins, D′), Incon;

Figure 2. An algorithm to resolve conflicts.

4 A METHOD FOR RESOLVING CONFLICTS

Under the assumption above, we can resolve conflicts between an
action descriptionD and a setQ of queries by the algorithm pre-
sented in Figure 2. Before we explain how this algorithm works, let
us describe the notation used in it.

For a setQ of queries, we denote byQp (resp.Qn) the set of
possibility (resp. necessity) queries inQ. Then

confp(D,Q) = {(q, s) | q ∈ Qp, s∈S(D), T (D), s 6|= q}
confn(D,Q) = {(q, tr) | q ∈ Qn, tr∈R(D), tr 6|= q}.

For a tripletr = 〈s,A, s′〉, wheres ands′ are states andA is
an action, and a dynamic causal lawl = causedL if U after G,
〈s,A, s′〉 |= l if either l is not applicable totr, or s′ |= L.

A repair itemis an expression of form(modify , l, l′), or (add , l),
wherel and l′ are dynamic causal laws. Arepair is a set of repair
items. For an action descriptionD and a repairM , we denote by
M(D) the action description obtained fromD by applying the mod-
ifications specified by the repair items in a repairM : (add , l) modi-
fiesD by addingl; (modify , l, l′) modifiesD by replacingl with l′;
all repair items are executed in parallel, i.e., ifM comprises several
modify items for the same lawl, all corresponding modificationsl′

are generated and eventually replacel. The repairs used by the algo-
rithm RESOLVE(D,Q) are as follows (in causal laws, a states stands
for

∧
L∈s

L, and an actionA for
∧

X∈A
X ∧

∧
X∈A\A

¬X):

Delete(〈s,A, s′〉) = {(add , causedFalse if s′ after A ∧ s)}
Insert(Tr ,D) =
{(add , causedL if s′ after A ∧ s) | 〈s,A,s′〉∈Tr , L∈s′} ∪

{(modify , l, causedL if G after U ∧ α(Tr , l)),
(modify , l, causedL if G ∧ L after U ∧A ∧ s) |
l=causedL if G after U, l∈D, 〈s,A,s′〉∈Tr , 〈s,A,s′〉 6|= l}

whereα(Tr , l) =
∧

〈s,A,s′〉∈Tr,〈s,A,s′〉6|=l
¬A ∨ ¬s.

In the algorithm above, first every transitiontr violating the ne-
cessity queries inQ is removed, by adding toD the causal laws
Delete(tr). The new action description,D′, entailsQn. Then, for
each states violating a possibility queryq = possiblyψ after A if φ
inQ relative toD′, a setCands of transition candidatestr (triples of
form 〈s,A, s′〉 wheres′ ∈ S(D)) that, when added toT (D′), would

satisfyq at s (i.e., s′ |= ψ) but not violate any necessity queries in
Q (i.e., tr |= q′, ∀q′ ∈ Qn), is computed. If such transition can-
didates exist (i.e.,Cands 6= ∅), by introducing only one of these
candidates intoT (D′), the violation ofq ats is prevented; otherwise
no repair ofD exists forQ (i.e., Incon is not empty, and it con-
tains the possibility queries that conflict with some necessity query
in Q). The setIns denotes all the transition candidates to be intro-
duced intoT (D′) so that no possibility query is violated in any state.
Adding Ins to T (D′) can be achieved by adding toD′ the causal
lawsInsert(Ins,D ′).

Theorem 1 For any repairMod and setIncon of queries output by
RESOLVE(D,Q), the following hold:

1. D |= Q iff Mod = ∅ andIncon = ∅;
2. Incon = ∅ iff ∃D′ such thatS(D) = S(D′) andD′ |=Q;
3. if Incon = ∅, thenMod(D) |= Q.

The selection of a transition candidatetr ∈ Cands for repairing
a possibility query constitutes a choice point of the algorithm, where
further heuristics can be employed to prune the set of repairs. We
could, e.g., prefer transition candidates thatrespect inertia conditions
or computeminimal modifications, i.e., repairs such that the modifi-
cations toT (D) are minimal w.r.t. addition or deletion of transitions.

Example 3 (cont’d) Stipulating preference of transition candidates
that respect inertia, the basic method resolves the conflicts as follows.
First, the only transition violatingqn (i.e., 〈s1,{Toggle},s1〉, where
s1 ={Light ,¬Broken}) is deleted fromT (D) by adding the law:

causedFalse if Light∧¬Broken afterToggle∧Light∧¬Broken.

Then, to resolve conflicts withqp, the only transition candidate re-
specting inertia (i.e.,tc = 〈s2,{Toggle},s2〉, wheres2 = {¬Light ,

Broken}) is introduced intoT (D′) (Insert(tc,D ′) = {(add , li),
(modify , (1), lj) | i = 1, 2, j = 3, 4}), replacing (1) with the laws:

l1 : caused¬Light if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

l2 : causedBroken if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

l3 : causedLight if Light after Toggle∧¬Light∧Broken,

l4 : causedLight after Toggle∧¬Light∧¬Broken.

We remark that algorithm RESOLVE can be implemented to use
polynomial work space, producing its output, which is exponential
in general, as a stream. After computing RESOLVE(D,Q), to get
a more concise description, one may drop redundant causal laws
that might have been introduced (e.g., (6) whereU ≡ False), and
apply some equivalence preserving transformations (e.g., replac-
ing two lawscausedL after A∧U andcausedL after A∧¬U with
causedL after A.) Note also, that if there exists a repair forD, then
there always also exists a repairD′ of polynomial size. Informally
speaking,D′ can be obtained by expressing all necessity queries as
dynamic laws and dispensing causality for all actions occurring in
queries (causedL if L after A, for every literalL). Such a repair is
independent ofD apart from static laws and semantically it amounts
to a complete transition graph w.r.t. actions occurring in queries mod-
ulo transitions violating necessity queries. Thus, it is even less ap-
pealing than solutions computed by RESOLVE(D,Q), which aim at
making modifications as local as possible on single transitions (in
order to retain the original semantics ofD as much as possible even
in case of further modifications). In most cases, however, neither of
these basic repairs will be satisfactory. This motivates the utilization
of additional knowledge of certain properties for repair.

5 TOWARDS USER-ASSISTED REPAIRS

With the method described above we can automatically repair an ac-
tion descriptionD with respect to a setQ of queries, under the as-
sumption that the states of the world are described correctly byD.
However, we may end up with an action description with many causal
laws, some possibly redundant or implausible. To get a more appeal-
ing description most often requires respecting additional knowledge
or intuitions of thedesignerabout the action description.

Usually, this knowledge cannot be easily formalized, as the fol-
lowing example illustrates:

Example 4 The designer ofD might use her knowledge about the
domain, i.e., light bulbs and switches, to infer from the conflict with
the observation expressed inqn that the duality of the toggle action
has not been modeled correctly, and that the conflict withqp is due
to neglecting the effects of toggling when the bulb is broken. Hence,
instead ofD, she might considerD′ consisting of (2), (7), and:

causedLight after Toggle ∧ ¬Light ∧ ¬Broken

caused¬Light after Toggle ∧ Light ∧ ¬Broken.
(10)

Note that this description is more concise and plausible than the one
generated by the basic method (see Example 3).

For (interactively) providing support to a designer repairing an ac-
tion description, we present some questions that she may ask about
Q,D, andT (D). Answers to these questions are obtained from use-
ful properties of queries, action descriptions, and transition diagrams.

Questions about queries and causal laws.To better understand
the reasons for conflicts, the designer may want to check the given
queriesQ make sense with each other. Then the question is:

D1: If Q is contradictory relative toD, which queries inQ are
contradictory?

We understand contradiction in a setQ as follows:

Definition 1 A setQ of queries iscontradictoryrelative to an action
descriptionD, if there is no action descriptionD′ such thatS(D) =
S(D′) andD′ |= Q.

With an answer toD1, the designer may drop contradictory queries
fromQ. Here are some sufficient conditions to find these queries.

Proposition 1 A setQ of queries is contradictory relative toD, if
Q includes a possibility query of form (8) such that somes∈S(D)
satisfiesφ, but nos∈S(D) satisfiesψ.

Proposition 2 A setQ of queries is contradictory relative toD, if
Q includes a necessity querynecessarilyψ′ after A if φ′ and a
possibility query (8) such that some state inS(D) satisfiesφ ∧ φ′,
but no state inS(D) satisfiesψ ∧ ψ′.

Example 5 In our running example (i.e., Example 1), ifQ had con-
tained the querypossiblyLight∧Broken after Toggle if True then,
due to Proposition 1,Q would be contradictory relative toD.

If the given set of queries is not contradictory, then she may ask:

D2: If D does not satisfy a particular necessity queryq in Q,
which dynamic causal laws inD violateq?

We understand violation of a query as follows:

Definition 2 A dynamic causal lawl∈D violatesa given necessity
queryq, if there is a transitiontc = 〈s,A, s′〉 in T (D) such thattc
violatesq, l is applicable totc, ands′ satisfies the head ofl.

Once the designer finds out which causal laws violate which
queries, she may want to repair the action description in a way that
some causal laws (e.g., the inertia laws) are not modified at all:

D3: Can we resolve a conflict betweenD andQ, without mod-
ifying a setD0 of causal laws inD?

To answerD3 the following definition and proposition are helpful.
Definition 3 A transition diagramT satisfiesa setD of causal laws
(denotedT |=D), if, for each transitiontc=〈s,A, s′〉 in T , for each
causal lawl∈D, l is not applicable totc or s′ satisfies the head ofl.

Proposition 3 Let D be an action description, andQ be a set of
queries. If there exists a transition diagramT such thatT |= D

andT |= Q, then there exists an action descriptionD′, such that
S(D) = S(D′),D ⊆ D′ andT = T (D′).

With this proposition, we can answerD3 by checking if any transi-
tion diagram, having statesS(D), that satisfiesD0 also entailsQ.

Example 6 In our running example it is possible to repairD without
modifying the inertia laws: there exists an action description contain-
ing the inertia laws and satisfying the given queries (cf. Example 4).

In another scenario, the designer may suspect that the definition of
a particular fluent causes problems, so she may want to know whether
some particular laws have to be modified in order to obtain a repair:

D4: Do we have to modify a setD0 of dynamic causal laws
in D to resolve a conflict betweenD andQ?

For this, due to the proposition below, we can check whether none of
the transition diagrams, with the same states asD (and thus asD0),
that satisfyD0, entailsQ.
Proposition 4 LetD0 be an action description, andQ be a set of
queries. If someD0 ⊆ D satisfiesS(D0) =S(D) andD |=Q, then
there exists a transition diagramT such thatT |= D0 andT |= Q.

Questions about states and transitions. Alternatively, the de-
signer may want to extract some information fromT (D). For in-
stance, an answer to the following question gives information about
states violating a queryq in Q:

T1: Which states ofT (D) satisfying a given formulaφ′ vio-
lateq?

Example 7 In Example 1, if we just consider states where the light
is on (i.e.,φ′ = Light), then the only state at which a query ofQ is
violated is{Light ,¬Broken}.

An answer to the following question gives information about tran-
sitions violating a necessity queryq in Q:

T2: Given formulasψ′ andφ′, which transitions〈s,A, s′〉 of
T (D) such thats satisfiesφ′ ands′ satisfiesψ′, violateq?

With such information extracted from the transition diagram, the de-
signer might decidehowto modify the action descriptionD.

Suppose thatD does not satisfy a possibility query (8) inQ. The
designer may want to learn about possible transition candidates that,
when added toT (D) by modifying the definition of some literalL
in D, might lead to a repair:

T3: Given a literalL, for every states of T (D) such thats
satisfiesφ, is there some under-specified transition candidate
tc = 〈s,A, s′〉 for D such thats′ satisfiesψ ∧ L andL is
under-specified relative totc? If there is, then what are they?

Here under-specification is understood as follows:
Definition 4 A transition candidatetc = 〈s,A, s′〉 for D is under-
specified, if {s′} ⊂ sat(HD(tc)). A literal L is under-specifiedrel-
ative to a transition candidatetc, if {L,L} ∩HD(tc) = ∅.

With a positive answer toT3, the designer may try to modify the
descriptionD, e.g., by addingcausedL if ψ after A ∧ φ.

6 COMPLEXITY RESULTS

First let us remind the following result from [2]: Given an ac-
tion descriptionD and a setQ of queries, decidingD |= Q

is Πp
2
-complete in general. WhenQ contains the single query

possiblyTrue after A if True, the executability of an actionA at
every state, this result conforms with the ones reported in [10, 6].

In the following, we formally state two central results and, infor-
mally discuss how to obtain further results. The first main result is
about the existence of a conflict resolution between an action de-
scriptionD andQ without modifying a subsetD0 of D.

Theorem 2 GivenD,Q, andD0 ⊆ D, deciding if there exists some
D′, such thatS(D)=S(D′),D0⊆D

′, andD′ |=Q, isΠp
2
-complete.

We can showΠp
2
-hardness even forD0 = ∅; for suchD0, complexity

drops only if in additionQ is restricted to queries of form (8) (to
PNP

|| -completeness, i.e., polynomial time with parallel queries to an
NP-oracle, see, e.g., [5]).

The second main result is about the existence of a conflict resolu-
tion between an action descriptionD andQ without modifying the
transition diagram described byD.

Theorem 3 GivenD andQ, deciding if there exists someD′, such
thatS(D)=S(D′),D′ |=Q, andR(D)⊆R(D′), is Πp

2
-complete.

We remark that if some repair ofD for Q is known to exist, then
deciding the above problem iscoNP-complete.

Table 1. Complexity results (completeness) for problemsD1–D4, T1–T3.

Problem D1 D2 D3 D4 T1 T2 T3
Σp

2
NP Πp

2
Σp

2
Σp

2
NP Πp

2

Qn = ∅ PNP

|| O(1) Πp
2

Σp
2

Σp
2

O(1) Πp
2

Qp = ∅ O(1) NP O(1) O(1) NP NP Πp
2

Table 1 shows complexity results for the decision problems resp.
existence problems4 related to the questions above (denotedD1–D4,
resp.T1–T3) for the general case, and whenQn=∅, orQp=∅.

Deciding whetherQ is contradictory w.r.t.D (D1) is Σp
2
-complete

in general. Intuitively, this is because deciding the violation of a pos-
sibility query q is Σp

2
-complete. We have to guess a violating state

and verify, by means of anNP-oracle, for corresponding transition
candidates that they do not satisfyq. Since we can express necessity
queries by dynamic causal laws, this source of complexity carries
over to deciding whether a set of (mixed) queriesQ is contradictory.
From these observations,Σp

2
-completeness of the existence version

of T1 (i.e., whether such a state exists) is straightforward. However,
if Qn=∅, to show thatQ is contradictory w.r.t.D, it is sufficient to
test whether, for some query (8) inQp, some state satisfiesφ but no
state satisfiesψ. This amounts to a Boolean combination of SAT in-
stances, whose evaluation is inPNP

|| . ForQp=∅, note that a setQn

of necessity queries cannot be contradictory.
On the other hand, deciding whether a necessity queryq is violated

is in NP: Guess and verify in polynomial time a transition violating
q. Thus, e.g., deciding whether a causal lawl∈D violatesq∈Qn (i.e.,
D2) is NP-complete, as well as the existence version ofT2.

D3 is the problem considered in Theorem 2,D4 is the complemen-
tary problem, and corresponding results have been discussed above.
Finally, the property ofT3 fails if there exists a states satisfyingφ,
such that no under-specified transition candidatetc = 〈s,A, s′〉 for
D exists, such thats′ |= ψ ∧ L. Since for a givens, this can be
checked with anNP-oracle, failure of the property is inΣp

2
.

4 Formal statements of these problems will be given in an extendedversion.

7 RELATED AND FUTURE WORK

In [2], the authors describe a method to minimally modify an ac-
tion description, when new causal laws are added, by deleting some
causal laws, so that given queries are satisfied. In the method above,
we obtain an action description by adding or modifying some causal
laws, motivated by some reasons for conflicts. For some problems,
as discussed in the introduction, just dropping causal laws as in [2]
does not lead to a solution, whereas our method above does.

Similar to [2], [8] discusses how to minimally update a logic pro-
gram syntactically so that given observations are satisfied. A seman-
tical approach to updating a logic program by changes to Kripke
structures is given in [9], but no conditions are considered. [11] de-
scribes how to resolve conflicts between a logic program and a set
of constraints by “forgetting” some atoms in the program; [12] de-
scribes how logic programs can be updated with that approach.

In [1], the authors extend an action description, encoded as a logic
program, with “consistency restoring” rules, so that when the action
description and given observations are incompatible, these rules can
be “applied” to get some consistent answer set. This, however, is
more geared towards handling exceptions. Lifschitz describes in [7]
an action domain in languageC such that every causal law is defeasi-
ble (by means of an abnormality predicate). To formulate some other
variations of the domain, the agent can just add new causal laws,
some of which “disable” some existing causal laws. In [1] and [7],
the causal laws of the original domain description are not modified.

Ongoing work includes an implementation of the method de-
scribed above for resolving conflicts, and the investigation of the use
of a SAT solver or an answer set solver to answer the questions dis-
cussed above (as suggested by the computational complexity results
of the corresponding decision problems, presented in Table 1). Em-
ploying a richer query language, like that of [2] or the extension of
action query languageP as in [3], in which conditions on sequences
of action occurrences can be expressed, is a future work.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their comments and sugges-
tions. This work is supported by FWF grant P16536-N04.

REFERENCES
[1] M. Balduccini and M. Gelfond, ‘Logic programs with consistency-

restoring rules’, inWork. notes of AAAI Spring Symp., pp. 9–18, (2003).
[2] T. Eiter, E. Erdem, M. Fink, and J. Senko, ‘Updating actiondomain

descriptions’, inProc. IJCAI, pp. 418–423, (2005).
[3] M. Gelfond and V. Lifschitz, ‘Action languages’,ETAI, 3, 195–210,

(1998).
[4] E. Giunchiglia and V. Lifschitz, ‘An action language based on causal

explanation: Preliminary report’, inProc. AAAI, pp. 623–630, (1998).
[5] D. S. Johnson, ‘A catalog of complexity classes’, inHandbook of The-

oretical Computer Science, vol. A, 67–161, MIT Press, (1990).
[6] J. Lang, F. Lin, and P. Marquis, ‘Causal theories of action: A computa-

tional core’, inProc. IJCAI, pp. 1073–1078, (2003).
[7] V. Lifschitz, ‘Missionaries and cannibals in the causalcalculator’, in

Proc. KR, pp. 85–96, (2000).
[8] C. Sakama and K. Inoue, ‘An abductive framework for computing

knowledge base updates’,TPLP, 3(6), 671–713, (2003).
[9] J. Sefŕanek, ‘A Kripkean semantics for dynamic logic programming.’,

in Proc. LPAR, pp. 469–486, (2000).
[10] H. Turner, ‘Polynomial-length planning spans the polynomial hierar-

chy’, in Proc. JELIA, pp. 111–124, (2002).
[11] Y. Zhang, N. Foo, and K. Wang, ‘Solving logic program conflicts

through strong and weak forgettings’, inProc. IJCAI, pp. 627–632,
(2005).

[12] Y. Zhang and N. Foo, ‘A unified framework for representinglogic pro-
gram updates’, inProc. AAAI, pp. 707–713, (2005).

