
Comparing Action Descriptions based on
Semantic Preferences

Thomas Eiter and Esra Erdem and Michael Fink and Ján Senko1

Abstract. We consider action domain descriptions whose meaning
can be represented by transition diagrams. We introduce several se-
mantic measures to compare such action descriptions, based on pref-
erences over possible states of the world and preferences over some
given conditions (observations, assertions, etc.) about the domain, as
well as the probabilities of possible transitions. This preference in-
formation is used to assemble a weight which is assigned to an action
description. As an application of this approach, we study the prob-
lem of updating action descriptions with respect to some given con-
ditions. With a semantic approach based on preferences, not only, for
some problems, we get more plausible solutions, but also, for some
problems without any solutions due to too strong conditions, we can
identify which conditions to relax to obtain a solution. We further
study computational issues, and give a characterization of the com-
putational complexity of the computing the semantic measures.

1 INTRODUCTION

This paper discusses how to compare action descriptions, whose
meaning can be represented by transition diagrams—a directed graph
whose nodes correspond to states and edges correspond to transi-
tions caused by action occurrences and nonoccurrences, with respect
to some given conditions. Comparison of action descriptions is im-
portant for applications, when an agent has to prefer one description
more than the others. One such application is the action description
update problem [2]: when an agent tries to update an action descrip-
tion with respect to some given information, she usually ends up
with several possibilities and has to choose one of these action de-
scriptions. Another application is related to representing an action
domain in an elaboration tolerant way [9, 1]: among several action
descriptions representing the same action domain, which one is the
most elaboration tolerant one, with respect to some given conditions
describing possible elaborations?

The preference of an agent over action descriptions may be based
on a syntactic measure, such as the number of formulas: the less
the number of formulas contained in an action description, the more
preferred it is. A syntactic measure can be defined also in terms of
set containment with respect to a given action descriptionD: an ac-
tion description is more preferred if it is a maximal set among others
that is contained inD. For instance, according to the syntactic mea-
sure used in [2] for updating an action descriptionD with some new
knowledgeQ, an action descriptionD′ is more preferred ifD′ is a
maximal set among others containingD and contained inD ∪ Q is
maximum.

1 Institute of Information Systems, Vienna University of Technology, Vienna,
Austria, Email: (eiter| esra| michael| jan)@kr.tuwien.ac.at

{PushPBT V }
PowerON

TvON ¬TvON

¬PowerON

{} {}{PushPBRC} {PushPBRC}

{PushPBT V }
{PushPBT V , PushPBRC}

{PushPBT V , PushPBRC}

Figure 1. A transition diagram.

In this paper, we describe the preference of an agent over action
descriptions, with respect to some semantic measure. The idea is to
describe a semantic measure by assigning weights (i.e., real num-
bers) to action descriptions, with respect to their transition diagrams
and some given conditions; then, once the weights of action descrip-
tions are computed, to compare two descriptions by comparing their
weights.

We consider action descriptions, in a fragment of the action lan-
guageC [6], which consists of “causal laws.” For instance, the causal
law

causedPowerON after PushPBTV ∧ ¬PowerON , (1)

expresses that the actionPushPBTV causes the value of the fluent
PowerON to change fromf to t; such causal laws describe direct
effects of actions. The causal law

causedTvON if PowerON , (2)

expresses that if the fluentPowerON is caused to be true, then the
fluentTvON is caused to be true as well; such causal laws describe
state constraints. The meaning of an action descriptionD can be rep-
resented by a transition diagram, like in Figure 1. In this transition
diagram, the nodes of the graph (shown by boxes) denote the states
of the world: (s) one where both the power and the TV is on, and (s′)
the other where both the power and the TV is off. The edges denote
action occurrences. For instance, the edge froms to s′ labeled by the
action of pushing the power button on the TV describes that execut-
ing this action ats leads tos′. The edges labeled by the empty set are
due to the law of inertia.

Suppose that we are given another action descriptionD′ describ-
ing the domain above; and that the transition diagram ofD′ is almost
the same as that ofD, except that there is no outgoing edge from the
state{PowerON ,TvON } with the label{PushPBRC}. Which ac-
tion description should be preferred? To answer this question, we
assign weights to these two action descriptions, based on their tran-
sition diagrams, and given conditions (observations, assertions, etc.).

We describe conditions in an action query language, like in [5], by

“queries.” For instance,

ALWAYS
∨

A∈2A
executableA, (3)

where2A denotes the set of all actions, expresses that, at every state,
there is some action executable. The query

SOMETIMES evolvesPowerON ; {PushPBRC};PowerON

(4)
expresses that, at some state when the power is on, pushing the power
button on the remote control does not turn the power off.

The question we consider in this paper is then the following:

Given a setD of action descriptions and a setC of queries,
which action description inD is a most preferred one with re-
spect toC?

Our main contributions are briefly summarized as follows.

• We provide an answer to the above question with respect to mainly
four semantically-orientedapproaches, by assigning weights to
action descriptions inD, based on their transition diagrams. The
weights express preferences of the agent over possible states of the
world and preferences over conditions, as well as the probabilities
of possible transitions.
A simple weight measure is to count the number of queries inC
which an action descriptionD entails. In the example above,D
entails according to its transition diagram (3) and (4), soD has
weight 2;D′ entails according to its transition diagram only (3),
soD′ has weight 1. Hence,D is preferred overD′.

• We apply these approaches to the problem of updating an action
description, and observe two benefits. First, if a problem has many
solutions with the syntactic approach of [2], a semantic approach
can be used to pick one. Second, if a problem does not have any
solution with any of the approaches due to too strong conditions,
a semantic approach can be used to identify which conditions to
relax to find a solution.

• We characterize the computational cost of computing the weight
assignments, which lays the foundations for efficient computation.

For additional examples and another application, we refer the
reader to an extended version [3], available athttp://www.kr.
tuwien.ac.at/research/ad-cmp.pdf.

2 TRANSITION DIAGRAMS AND ACTION
DESCRIPTIONS

We start with a(propositional) action signaturethat consists of a
setF of fluent names, and a setA of action names. Anaction is
a truth-valued function onA, denoted by the set of action names
that are mapped tot. A (propositional) transition diagramof an
action signatureL = 〈F,A〉 consists of a setS of states, a func-
tion V : F × S → {f, t}, and a subsetR ⊆ S × 2A × S of
transitions. We say thatV (P, s) is thevalueof P in s. The statess′

such that〈s, A, s′〉 ∈ R are the possibleresults of the executionof
the actionA in the states. We say thatA is executablein s, if at
least one such states′ exists. A transition diagram can be thought of
as a labeled directed graph. Every states is represented by a vertex
labeled with the functionP 7→ V (P, s) from fluent names to truth
values. Every triple〈s, A, s′〉 ∈ R is represented by an edge leading
from s to s′ and labeledA. An example of a transition diagram is
shown in Figure 1.

We consider a subset of the action description languageC [6] that
consists of two kinds of expressions (calledcausal laws): static laws
of the form

causedL if G, (5)

whereL is a fluent literal andG is a fluent formula anddynamic laws
of the form

causedL if G after U , (6)

whereL andG are as above, andU is a formula; the partif G can be
dropped ifG is True. An action descriptionis a set of causal laws.
For instance, the action description consisting of the causal laws (1),
(2), and

caused¬PowerON after PushPBTV ∧ PowerON

caused¬TvON if ¬PowerON

inertial PowerON ,¬PowerON ,TvON ,¬TvON .
(7)

encodes how a TV system operates;inertial L1, . . . , Lk stands for
causedLi if Li after Li (1 ≤ i ≤ k).

The meaning of an action description can be represented by a
transition diagram. LetD be an action description with a signature
L = 〈F,A〉. The transition diagram〈S, V, R〉 describedby D is
defined as follows:S is the set of all interpretationss of F such that,
for every static law (5) inD, s satisfiesG ⊃ L; V (P, s) = s(P);
andR is the set of all triples〈s, A, s′〉 such thats′ is the only inter-
pretation ofF which satisfies the headsL of all static laws (5) inD
for whichs′ satisfiesG, and dynamic laws (6) inD for whichs′ sat-
isfiesG ands ∪ A satisfiesU . For instance, the transition diagram
described by{(1), (2)}∪(7) is presented in Figure 1. Note that there
is a unique transition diagram described by an action description. We
say that an action description isconsistentif its transition diagram is
with nonempty state set.

3 ACTION QUERIES

To talk about observations of the world, or assertions about the
effects of the execution of actions, we use an action query lan-
guage consisting of queries described as follows. We start withbasic
queries: (a)static queriesof the form

holdsF , (8)

whereF is a fluent formula; (b)dynamic queriesof the form

necessarilyQ after A1; . . . ; An, (9)

whereQ is a basic query and eachAi is an action; and (c) every
propositional combination of basic queries. Anexistential queryis
an expression of the form

SOMETIMES Q, (10)

whereQ is a basic query; auniversal queryis of the form

ALWAYS Q, (11)

whereQ is a basic query. Aqueryis a propositional combination of
existential queries and universal queries.

As for the semantics, letT = 〈S, V, R〉 be a transition diagram,
with a setS of states, a value functionV mapping, at each states,
every fluentP to a truth value, and a setR of transitions. Ahistory
of T of lengthn is a sequence

s0, A1, s1, . . . , sn−1, An, sn (12)

where each〈si, Ai+1, si+i〉 (0 ≤ i < n) is in R. We say that a
states ∈ S satisfiesa basic queryq of form (8) (resp. (9)) relative
to T (denotedT, s |= q), if the interpretationP 7→ V (P, s) satis-
fiesF (resp. if, for every historys = s0, A1, s1, . . . , sn−1, An, sn

of T of lengthn, basic queryQ is satisfied at statesn). For other
forms of basic queryq, satisfactionis defined by the truth tables of
propositional logic. IfT is described by an action descriptionD, then
the satisfaction relation betweens andq can be denoted byD, s |= q
as well. Note that, for every states and for every fluent formulaF ,
D, s |= holds F iff D, s |= ¬holds ¬F . For every states, every
fluent formulaF , and every action sequenceA1, . . . , An (n ≥ 1),
if D, s |= necessarily(holds F) after A1; . . . ; An thenD, s |=
¬necessarily(¬holdsF) after A1; . . . ; An.

We say thatD entailsa queryq (denotedD |= q) if one of the
following holds:q is an existential query (10) and∃s ∈ S (D, s |=
Q); q is a universal query (11) and∀s ∈ S (D, s |= Q); q is of the
form¬Q andD 6|= Q; q is of the formQ∧Q′, andD |= Q andD |=
Q′; or q is of the formQ ∨ Q′, andD |= Q or D |= Q′. For every
basic queryQ, D |= SOMETIMES Q iff D |= ¬ALWAYS ¬Q.

For a setC of queries, we say thatD entailsC (denotedD|=C) if
D entailsevery query inC. For instance, consider the action descrip-
tion consisting of (1), (2), and (7) encoding how a TV system oper-
ates;inertial L1, . . . , Lk stands forcausedLi if Li after Li (1 ≤
i ≤ k). This action description does not entail any set of queries
containing

ALWAYS necessarily (holds¬TvON) after {PushPBRC}

because this query is not satisfied at the state{TvON ,PowerON };
but, it entails the queries:

ALWAYS holds PowerON ≡ TvON ,

ALWAYS holds PowerON ∧ TvON ⊃
¬necessarily(holdsTvON) after {PushPBTV }.

(13)

In the rest of the paper, an expression of the form

possiblyQ after A1; . . . ; An,

whereQ is a basic query and eachAi is an action, stands for the
dynamic query¬necessarily¬Q after A1; . . . ; An; an expression
of the form

evolvesF0; A1; F1; . . . ; Fn−1; An; Fn, (14)

where eachFi is a fluent formula, and eachAi is an action, stands
for holds F0 ∧ possibly (holds F1 ∧ possibly (holds F2 ∧
...) after A2) after A1; and an expression of the form

executableA1; . . . ; An,

where eachAi is an action, stands for the dynamic query
possiblyTrue after A1; . . . ; An. We sometimes dropholds from
static queries appearing in dynamic queries.

Queries allow us to express various pieces of knowledge about the
domain. For instance, we can express the existence of states where a
formulaF holds:SOMETIMES holds F. Similarly, we can express
the existence of a transition from some state where a formulaF holds
to another state where a formulaF ′ holds, by the execution of an
actionA:

SOMETIMES holds F ∧ possiblyF ′ after A.

In general, the existence of a history (12) such that, for eachsi of the
history, the interpretationP 7→ V (P, si) satisfies some formulaFi

can be expressed by the query:

SOMETIMES evolvesF0; A1; F1; . . . ; Fn−1; An; Fn. (15)

For instance, query

SOMETIMES evolvesPowerON ; {PushPBTV };
¬PowerON ; {PushPBTV };PowerON .

(16)

describes the presence of the following history in Figure 1:

{PowerON ,TvON }, {PushPBTV }, {¬PowerON ,
¬TvON }, {PushPBTV }, {PowerON ,TvON }.

(17)

Also we can express that there is no transition from any state where
a formulaF holds:

SOMETIMES holds F ∧
∧

A∈2A
necessarilyFalse after A.

Like in [2], executability of an action sequence
A1, . . . , An (n ≥ 1) at every state can be described by
ALWAYS executable A1; . . . ; An; mandatory effects of a se-
quence A1, . . . , An (n ≥ 1) of actions in a given context
by ALWAYS holds G ⊃ necessarily F after A1; . . . ; An;
and possible effects of a sequence of actions in a context by
ALWAYS holds G ⊃ possiblyF after A1; . . . ; An. In the last two
queries,F describes the effects andG the context.

4 WEIGHT ASSIGNMENTS FOR ACTION
DESCRIPTIONS

To compare action descriptions with respect to their semantics, we
can assign weights to them, based on their transition diagrams and
a given set of conditions. We present below several weight assign-
ments, each with a different motivation expresses some appeal of the
action description.

4.1 Weighted states

We can specify our preference over states of a transition diagram
〈S, V, R〉 by assigning a weight to each state inS, by a functiong.
Such a function assigning real numbers to states of the world can be
considered as autility function, as in decision theory. If one state of
the world is preferred to another state of the world then it has higher
utility for the agent; here “utility” is understood as “the quality of
being useful” as in [11]. Alternatively, the functiong can be viewed
as areward function: being at a states will give a reward ofg(s) to
the agent.

Given a utility function for a setS of states, we can identify the
highly preferred states relative to a given numberl: a state with the
weight greater thanl is highly preferred. Then, one way to define the
weight of an action descriptionD relative tog andl is as follows:

weights(D) = |{s : s ∈ S, g(s) > l}|.

With respect to this definition, the more the number of states that are
highly preferred by the agent, the more preferred the action descrip-
tion is.

For instance, consider the transition diagram in Figure 1 described
by D. Take, for eachs ∈ S,

g(s) =

{

2 if PowerON ∈ s
1 otherwise.

(18)

Takel = 1. Thenweights(D) = 1.

4.2 Weighted queries

We can assign weights to queries to specify preferences over condi-
tions they express. Based on such weighted queries, we can define
the weight of an action descriptionD as follows.

Let C be a set of queries, along with a weight functionf mapping
each condition inC to a real number. Then one way to define the
weight ofD (relative toC andf) is by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the
weights of queries shows how much the setC of given preferable
queries are satisfied.With this definition, the more the highly pre-
ferred queries are satisfied, the more preferred the action description
is.

For instance, suppose thatC consists of (16) and

ALWAYS executable{PushPBRC}, (19)

with weights 1 and 2 respectively. For the descriptionD with the
transition diagram in Figure 1,weightq(D) = 3.

4.3 Weighted histories

In a transition diagramT = 〈S, V, R〉, we will say that a history (12)
of lengthn is desiredwith respect to a given query (15), if, for each
i, the interpretationP 7→ V (P, si) satisfiesFi.

Let D be an action description, andT = 〈S, V, R〉 be the transi-
tion diagram described byD. Let C be a set of queries, along with a
weight functionf mapping each condition inC to a number. LetHC

be the set of pairs(w, c) such thatw is a desired history inT with
respect to the queryc of form (15) inC. Let us denote byst(w) the
starting states0 of a historyw of form (12). We define a functionh
mapping each desired historyw appearing inHC to a real number,
in terms of the utilityu(w) of statest(w) with respect tow:

h(w) = u(w) ×
∑

(w,c)∈HC

f(c).

The functionu mapping a historyw of form (12) to a real number
can be defined in terms of a sequence of functionsui. Given a utility
function (or a reward function)g mapping each state inS to a real
number, and atransition modelm mapping each transition〈s, A, s′〉
in R to a probability (i.e., the probability of reachings′ from s after
execution ofA):

un(w) = g(sn)
ui(w) = g(si) + m(〈si, Ai+1, si+1〉) × ui+1(w) (0 ≤ i < n)
u(w) = u0(w).

These equations are essentially obtained from the equations used
for value determination in the policy-iteration algorithm described
in [11, Chapter 17]: take{s0, . . . , sn} as the set of states,
〈si, Ai+1, si+1〉 as the possible transitions, the mappingsi 7→ Ai+1

as the fixed policy,U asu, Ui asui, R asg, andM asm. Then we
can define the weight ofD in terms of the weights of desired histories
w1, . . . , wz appearing inHC as follows:

weighth(D) =
∑z

i=1
h(wi).

The more the utilities of desired histories (or trajectories) satisfied
by the action description, the more preferred the action description
is.

For instance, suppose thatC consists of query (16), with weight
3. Consider the transition diagramT = 〈S, V, R〉 in Figure 1. Let
us denote history (17) byw, and query (16) byc. ThenHC contains
(w, c). Takeg(s) as in (18). Takel = 1. Suppose that, for each
transition〈s, A, s′〉 in R,

m(〈s, A, s′〉) =

{

0.5 if s = {PowerON ,TvON }
∧ |A| = 1

1 otherwise.
(20)

Then u(w) is computed as 3.5. andh(w) = u(w) ×
∑

(w,c)∈HC
f(c) = 3.5 × 3 = 10.5. Henceweighth(D) = 10.5.

4.4 Weighted queries relative to weighted states

The three approaches above can be united by also considering to what
extent each universal query inC is entailed by the action descrip-
tion. The idea is while computing the weight of a description relative
to weighted queries, to take into account the states at which these
queries are satisfied.

Let D be an action description. LetT = 〈S, V, R〉 be the transi-
tion diagram described byD, along with a weight functiong map-
ping each state inT to a real number. LetC be a set of queries such
that every queryq in C is an existential query, a universal query, or a
disjunction of both.

First, for each states in S, we compute its new weightg′(s), tak-
ing into account utilities of the desired histories starting withs. Let
HC be the set of pairs(w, c) such thatw is a desired history inT
with respect to the queryc of form (15) in C. Let W be the set of
histories that appear inHC . Letu be a function mapping a historyw
to a real number, describing the utility of states with respect tow.
Then the new weight functiong′ is defined as follows:

g′(s) =

{

g(s) if 6 ∃w(w ∈ W ∧ st(w) = s)
∑

w∈W,st(w)=s
u(w) otherwise.

Next, for each queryc in C, we compute its new weightf ′(c). Let
f be a function mapping each condition inC to a real number. We
will denote bySD(B) the set of statess such thatD, s |= B. Then
we definef ′ as follows:

f ′(q) =











α if q = q′ ∨ q′′

β if q = ALWAYS B
γ if q = SOMETIMES B ∧ |SD(B)| > 0
0 if q = SOMETIMES B ∧ |SD(B)| = 0,

whereα = f ′(q′) + f ′(q′′); β = f(q) ×
∑

s∈SD(B)
g′(s); γ =

f(q) × [(
∑

s∈SD(B)
g′(s))/|SD(B)|]. Intuitively, f ′ describes to

what extent each preferable queryq is satisfied.
Then the weight ofD (relative toC andf ′) is the sum:

weightqs(D) =
∑

q∈C
f ′(q).

Intuitively, it describes how much and to what extent the given prefer-
able queries are satisfied.

For instance, suppose thatC consists of three queries:

ALWAYS executable{PushPBTV }, (21)

SOMETIMES ¬executable{PushPBRC ,PushPBTV }, (22)

and query (16), denoted byc1, c2 andc3 respectively. Consider an
action descriptionD, with the transition diagram in Figure 1. Let us

denote history (17) byw; thenHC = {(w, c3)}. Take the utility
functiong as (18), and the transition modelm as (20). Takef(c1) =
1, f(c2) = 2, f(c3) = 3. Theng′({PowerON ,TvON }) = 3.5,
g′({¬PowerON ,¬TvON }) = 1, and f ′(c1) = 4, f ′(c2) =
4, f ′(c2) = 10.5. Therefore,weightqs(D) = 18.5.

5 APPLICATION: UPDATING AN ACTION
DESCRIPTION

Suppose that an action descriptionD consists of two parts:Du (un-
modifiable causal laws) andDm (modifiable causal laws); and a set
C of conditions is partitioned into two:Cm (must) andCp (prefer-
able). We define anAction Description Update (ADU)problem by
an action descriptionD = (Du, Dm), a setQ of causal laws, a
setC = (Cm, Cp) of queries, all with the same signature, and a
weight functionweight mapping an action description to a number.
The weight function can be defined relative to a set of queries, a util-
ity function, or a transition model, as seen in the previous section. We
say that a consistent action descriptionD′ is asolutionto the ADU
problem(D, Q, C,weight) if

(i) Q ∪ Du ⊆ D′ ⊆ D ∪ Q,
(ii) D′ |= Cm,
(iii) there is no other consistent action descriptionD′′ such that
Q ∪ Du ⊆ D′′ ⊆ D ∪ Q, D′′ |= Cm, andweight(D′′) >
weight(D′).

The definition of an ADU problem in [2] is different from the one
above mainly in two ways. First,Cp = ∅. Second, instead of (iii)
above, the following syntactic condition is considered: there is no
consistent action descriptionD′′ such thatD′ ⊂ D′′ ⊆ D ∪ Q, and
D′′ |= C.

The semantic approach above has mainly two benefits, compared
to the syntactic approach of [2]. First, there may be more than one
solution to some ADU problems with the syntactic approach. In such
cases, a semantic approach may be applied to pick one of those so-
lutions. Example 1 illustrates this benefit. Second, for an ADU prob-
lem, if no consistent action descriptionD′ satisfying (i) satisfies the
must queries (Cm), there is no solution to this problem with either
syntactic or semantic approach. In such a case, we can use the seman-
tic approach with weighted queries, to relax some must queries in
Cm (e.g., move them toCp). The idea is first to solve the ADU prob-
lem ((Du, Dm), Q, (∅, C′

m),weight), whereC′
m is obtained from

Cm by complementing each query, and where the weights of queries
in C′

m are equal to some very small negative integer; and then to
identify the queries ofC′

m satisfied in a solution and add themCp,
with weights multiplied by -1. This process of relaxing some condi-
tions ofCm to find a solution is illustrated in Example 2.

Example 1 Consider, for instance, the action descriptionD =
(Dm, Du), whereDm = {(1), (2)} andDu is (7), that describes
a TV system with a remote control. Suppose that, later the following
information,Q, is obtained:

causedTvON after PushPBRC ∧ PowerON ∧ ¬TvON

caused¬TvON after PushPBRC ∧ TvON .

Suppose that we are given the setC = (Cm, Cp) of queries where
Cm consists of the queries (3) and

SOMETIMES evolves¬TvON ; {PushPBTV };¬TvON , (23)

andCp consists of the queries (16), (22), (21), (19), (4), denoted by
c1, . . . , c5 respectively. WhenQ is added toD, the meaning ofD∪Q

{PushPBT V , PushPBRC}PowerON

TvON

{}

¬TvON

¬PowerON

{PushPBRC}
{}

{PushPBT V }

{PushPBT V , PushPBRC}

{PushPBT V }

Figure 2. Transition diagram ofD(2) = Du ∪ Q ∪ {(2)}.

{PushPBT V , PushPBRC}

¬TvON

PowerON

{}

¬PowerON

¬TvON

PowerON

TvON

{}

{PushPBT V , PushPBRC}
{PushPBT V }

{}
{PushPBRC}

{PushPBRC}

{PushPBRC}

{PushPBT V }

{PushPBT V }

Figure 3. Transition diagram ofD(3) = Du ∪ Q ∪ {(1)}.

can be represented by a transition diagram almost the same as in that
of D (Figure 1), except that there is no outgoing edge from the state
{PowerON ,TvON } with the label{PushPBRC}; thus only (3),
(23), and (16) inC are entailed byD ∪ Q. The question is how to
updateD by Q so that the must conditions,Cm, are satisfied, and the
preferable conditions,Cp, are satisfied as much as possible.

The consistent action descriptions for which (i) holds are

D(1) = D ∪ Q,

D(2) = Du ∪ Q ∪ {(2)},

D(3) = Du ∪ Q ∪ {(1)},

D(4) = Du ∪ Q.

With the syntactic approach of [2], we have to choose betweenD(2)

andD(3), since they have more causal laws. Consider the semantic
approach based on weighted histories (i.e.,weight = weighth), with
(18) as the utility functiong, (20) as the transition modelm, and

f(c1) = 3, f(c2) = 1, f(c3) = 4, f(c4) = 3, f(c5) = 2.

Let us consider the states

s0 = {PowerON ,TvON },
s1 = {PowerON ,¬TvON },
s2 = {¬PowerON ,¬TvON };

and the histories

w0 = s0, {PushPBRC}, s1,
w1 = s1, {PushPBRC}, s0,
w2 = s0, {PushPBTV }, s2, {PushPBTV }, s1,
w3 = s1, {PushPBTV }, s2, {PushPBTV }, s1

whose utilities,u(wi) = u0(wi), can be computed as shown in Ta-
ble 1. That is,

u(w0) = 3, u(w1) = 4, u(w2) = 3.5, u(w3) = 5.

ForD(2) (Figure 2), sinceHCp = ∅, weighth(D(2)) = 0.

Table 1. Utilities of histories in Example 1.

w i ui(w)
w0 1 g(s1) = 2
w0 0 g(s0) + m(〈s0, {PushPBRC }, s1〉) × u1(w0) = 3
w1 1 g(s0) = 2
w1 0 g(s1) + m(〈s1, {PushPBRC }, s0〉) × u1(w1) = 4
w2 2 g(s1) = 2
w2 1 g(s2) + m(〈s2, {PushPBTV }, s1〉) × u2(w2) = 3
w2 0 g(s0) + m(〈s0, {PushPBTV }, s2〉) × u1(w2) = 3.5
w3 2 g(s1) = 2
w3 1 g(s2) + m(〈s2, {PushPBTV }, s1〉) × u2(w3) = 3
w3 0 g(s1) + m(〈s1, {PushPBTV }, s2〉) × u1(w3) = 5

For D(3) (Figure 3), sinceHCp contains (w0, c5), (w1, c5),
(w2, c3), and(w3, c3),

weighth(D(3)) =
u(w0) × f(c5) + u(w1) × f(c5) + u(w2) × f(c3)+
u(w3) × f(c3) = 3 × 2 + 4 × 2 + 3.5 × 4 + 5 × 4 = 48.

ThusD(3) is the solution.

Example 2 TakeD, Q, Cp, andD(1)–D(4) as in Example 1, and
Cm as the set consisting of the queries

SOMETIMES ¬
∨

A∈2A
executableA, (24)

ALWAYS ¬evolves¬TvON ; {PushPBTV };¬TvON , (25)

denoted byc′1 andc′2 respectively. None of the descriptionsD(1) –
D(4) entailsCm. Therefore, there is no solution to the ADU problem
above with either the syntactic approach of [2] or any of the semantic
approaches above. To identify which queries inCm we shall move to
Cp, first we obtainC′

m from Cm by negating each query inCm, and
assigning a very small negative integer, say -100, as their weights. So
C′

m consists of the queries (3) and (23), denoted byc′′1 andc′′2 , with
weights -100. With the semantic approach based on weighted queries
(i.e.,weight = weightq),

weightq(D
(1)) = f(c′′1) = −100,

weightq(D
(2)) = weightq(D

(3)) = f(c′′1) + f(c′′2) = −200,

weightq(D
(4)) = f(c′′1) + f(c′′2) = −200,

the description D(1) is the solution to the ADU problem
((Du, Dm), Q, (∅, C′

m),weightq). This suggests relaxing the must
query (24) (i.e., adding the query (24) toCp with the weight 100)
and solving the new ADU problem,((Du, Dm), Q, {(25)}, Cp ∪
{(24)},weightq), for which the descriptionDu ∪ Q is the solution.

5.1 Other semantic approaches to action
description updates

Given a consistent action descriptionE, condition (iii) of an ADU
problem(D, Q, C,weight) can be replaced by

(iii) ′ there is no other consistent action descriptionD′′ such that
Q ∪ Du ⊆ D′′ ⊆ D ∪ Q, D′′ |= Cm, and |weight(D′′) −
weight(E)| < |weight(D′) − weight(E)|

to express that, among the consistent action descriptionsD′ for
which (i) and (ii) hold, an action description that is “closest” to (or
most “similar” to)E is picked. Here, for instance,E may beD ∪Q,
to incorporate as much of the new information as possible, although
D ∪ Q may not entailC. What is meant by closeness or similarity
is based on the particular definition of the weight function. For in-
stance, based on the weights of the states only, withg(s) = 1 if s is
a state ofE, and 0 otherwise, the closeness of an action description
to E is defined in terms of the common world states.

6 COMPUTATIONAL ASPECTS

We confine here to discuss the complexity, in order to shed light on
the cost of computing the weight measures. We assume that the basic
functionsg(s), f(q), andm(〈s, A, s′〉) are computable in polyno-
mial time. For a background on complexity, we refer to the literature
(see e.g. [10]).2

Apparently, none of the different weights above is polynomially
computable from an input action descriptionD and a setC of
queries in general. Indeed, deciding whetherS has any states is NP-
complete, thus intractable. Furthermore, evaluating arbitrary queries
q on D (D |= q) is a PSPACE-complete problem. Indeed,q can be
evaluated by a simple recursive procedure in polynomial space. On
the other hand, evaluating Quantified Boolean Formulas, which is
PSPACE-complete, can be reduced to decidingD |= q.

Table 2. Complexity of computing weights (completeness)

Input / Weight weights weightq weighth weightqs

D, C #P FPSPACE GapP∗ FPSPACE

D, C, S polynomial

Dpol
∗∗, C in FPNP

‖

∗ #P for non-negativeg(s),f(q); ∗∗ |S| is polynomially bounded

6.1 Computation givenD and C

As it turns out, all four weights are computable in polynomial space.
This is because each weight is a sum of (in some cases exponentially
many) terms, each of which can be easily computed in polynomial
space, using exhaustive enumeration. In some cases, the computation
is also PSPACE-hard, but in others supposedly easier:

Theorem 1 Suppose that we are given an action descriptionD, a set
C of queries, a functiong mapping every state a number, a function
f mapping every query inC to a number, and a functionm mapping
every transition to a probability. Suppose that these functions are
computable in polynomial time. Then the following hold:

(i) Computingweights(D) relative tog is, #P-complete;
(ii) Computing weightq(D) relative to C and f is FPSPACE-

complete;
(iii) Computing weighth(D) relative to C, f , g and m is (modulo

some normalization) #P-complete, if the range off andg are non-
negative numbers, and GapP-complete for arbitraryf andg;

(iv) Computingweightqs(D) relative toC, f , g andm is FPSPACE-
complete.

2 See alsohttp://qwiki.caltech.edu/wiki/Complexity Zoo

These results are also shown in the first row of Table 2. Here #P [10]
is the class of the problems where the output is an integer that can be
obtained as the number of the runs of an NP Turing machine which
accepts the input; problems polynomially solvable with an #P oracle
are believed not to be PSPACE-hard. GapP [4, 8] is the closure of #P
under subtraction (equivalently, it contains the functions which are
expressible as number of accepting computation minus the number
of rejecting computations of an NP Turing machine).

Informally, corresponding proof ideas for Theorem 1 can be
sketched as follows:

ad (i). Computingweights(D) amounts to counting the number
of statess such thatg(s) > l. This problem is thus easily seen to
be in #P. Moreover, it is also #P-complete, since the canonical #P-
complete problem #SAT of counting the models of a propositional
formula is readily reduced to it.

ad (ii). As for weightq(D), we must evaluate each queryq∈C
on D and then take a sum. As testingD|=q is PSPACE-complete,
computingweightq(D) is in FPSPACE, i.e., the class of functions
computable in polynomial space. Moreover, the problem can also be
shown to be hard for this class.

ad (iii). Computingweighth(D) modulo some normalization
(which casts the problem to one with integer values), can like com-
puting weights(D) be seen to be in #P, if the functionsg(s) and
f(q) are non-negative. Indeed, each relevant historyw can be non-
deterministically generated in polynomial time, andu(w) andh(w)
are easily computed fromw; to account forh(w), simply that many
accepting computation branches are nondeterministically generated.
On the other hand, #SAT is reducible to computingweighth(D).

We sketch here a simple reduction, which is as follows. Suppose
thatE is a SAT instance on propositional atomsx1, . . . , xn, which
without loss of generality is not satisfied if all atoms are assigned
false. We letx1, . . . , xn be the fluents anda the single action symbol
in an action descriptionD, which consists of all statements

caused xi if xi after ⊤,

caused¬xi if ¬xi after ⊤,

where⊤ stands for a tautology, and letC consist of the single query

c = evolves
n
∧

i=1

¬xi; ∅;⊤.

Informally, the transition diagram ofD for the empty action∅ the
complete graph whose nodes are all truth assignments tox1, . . . , xn,
andc captures the transitions from the assignment in which all atoms
are false to some arbitrary assignment via the empty action∅. Now
we define thatg(s) = 2n if s satisfiesE, andg(s) = 0 if s does not
satisfyE, for eachs. Furthermore, we define that transitions have
uniform probability, i.e.,m(〈s, A, s′〉) = 1/2n for each transition
〈s, A, s′〉 in the transition diagram described byD. Let f(c) = 1.

It is easy to see thatHC contains all pairs(w, c) wherew =
s0, ∅, s1 such thats0 is the state in which allxi are false ands1

is an arbitrary state. Furthermore,h(w) = 1 if s1 satisfiesE and
h(w) = 0 otherwise. Therefore,weighth(D) is the number of sat-
isfying assignments ofE. SinceD, C, m, f , andg are obviously
constructible in polynomial time, and since moreoverm, f , andg
are computable in polynomial time, we obtain #P-hardness of com-
putingweighth(D).

In case of arbitrary (possibly negative)g(s) and f(q),
weighth(D) is computable as the difference of two #P functions.
Therefore, computingweighth(D) is in the class GapP. Indeed, we

have that

weighth(D) =
∑

(w,c)∈H
+

C

u(w)×f(c) −
∑

(w,c)inH
−

C

−u(w)×f(c),

whereH+
C contains all pairs(w, c) from HC such thatu(w)×f(c)

is positive andH−
c contains all pairs(w, c) from HC such that

u(w)×f(c) is non-negative. Both
∑

(w,c)∈H
+

C

u(w)×f(c) and
∑

(w,c)∈H
−

C

−u(w)×f(c) can be computed in #P. On the other

hand, computing the differencef1 − f2 of two #P functionsf1

andf2 can be polynomially reduced to computingweighth(D) for
some action descriptionD in polynomial time. More precisely, with
a slight adaption of the above construction, we can reduce comput-
ing the difference of the number of satisfying assignments#(E1)
and#(E2) of two SAT instancesE1 andE2 on atomsx1, . . . , xn,
respectively, (which is GapP-hard) to computingweighth(D). For
this, we assume without loss of generality that bothE1 andE2 are
not satisfied if all atomsxi are false, and redefineg(s) to

g(s) =

{

2n if s satisfiesE1 ∧ ¬E2,
−2n if s satisfies¬E1 ∧ E2,

0 otherwise.

This has the effect that any historyw = s0, A, s1 where(w, c) ∈ C,
will contribute zero toweighth(D) if E1 and E2 have the same
value for the assignments1, and contributeh(w)×f(c) = 1 (resp.,
h(w)×f(c) = −1) if E1 is satisfied but notE2 (resp.E2 is satisfied
but notE1). In total,weighth(D) amounts then to#(E1)−#(E2).
As consequence, computingweighth(D) for generalf and g is
(modulo some normalization) complete for GapP.

ad (iv). Computingweightqs(D) is more involved than comput-
ing weighth(D). Here, we must take modified state rewardsg′(s)
into account and normalize with|SD(B)| for certain queries. How-
ever, both values are computable in polynomial space, and thus also
f ′(q) for each queryq. Consequently, computingweightqs(D) is
in FPSPACE; like computingweightq(D), it is also FPSPACE-
complete.

In comparison, weights(D) and weighth(D) are of the
same computational degree of difficulty, whileweightq(D) and
weightqs(D) are harder under common complexity hypotheses. For
queries where nesting of formulas is bounded by a constant, the com-
plexity drops below FPSPACE.

6.2 Computation givenD, C, and statesS of D

Informally, a source of complexity is thatD may specify an expo-
nentially large transition diagramT . If T is given, then each of the
four weights can be calculated in polynomial time. In fact, not the
whole transition diagram is needed, but only arelevant part, denoted
TC(D), which comprises all states and all transitions that involve
actions appearing inC.

Now if the state setS is known (e.g., after computation with
CCALC [7]) or computable in polynomial time, thenTC(D) is con-
structible in polynomial time. Indeed, for each statess, s′ ∈ S and
each actionA occurring in some query, we can test in polynomial
time whether〈s, A, s′〉 is a legal transition with respect toD; the to-
tal number of such triples is polynomial in|S|. Then the following
result (the second row of Table 2) holds.

Theorem 2 Suppose that we are given an action descriptionD, the
setS of states described byD, a setC of queries, a functiong map-
ping every state inS to a number, a functionf mapping every query

in C to a number, and a functionm mapping every transition to a
probability. Suppose that these functions are computable in polyno-
mial time. Then each weight function,weights(D) (relative tog),
weightq(D) (relative toC and f), weighth(D) (relative toC, f ,
g and m), and weightqs(D) (relative to C, f , g and m), can be
computed in polynomial time.

Obviously, computingweights(D) on TC(D) is polynomial.
Similarly, computingweightq(D) is polynomial since for each
queryq, testingD |= q is polynomial onTC(D): label each state
s ∈ S bottom up with the subformulasq′ of q that are true ats, and
evaluate every dynamic query of form (9) by considering all reach-
able nodes at distancen.

For computingweighth(D), we can also exploit a labeling tech-
nique to avoid considering exponentially many paths inTC(D) ex-
plicitly. First, for a queryq of form (15), we label all statess with
pi, i ∈ {0, . . . , n}, such thats = si for some historyw =
s0, A1, s1, . . . , An, sn satisfyingq, in polynomial time. Here is a
two pass procedure for labeling the states:

1) First label, for each states, all statess′ at distancei = 0, 1, . . . , n
with rs

i that respect the prefix of somew desired with respect toq
such thats = s0 ands′ = si.

2) Then, going backwards from states labeled withrn
s , turn eachrs

i

(i = n, n − 1, . . . , 0) into pi.

Now for i = n, n − 1, . . . , 0, we can for each states labeled
with pi compute the sum of the utilitiesu(w′) of all suffixesw′ =
si, Ai+1, si+1, . . . , An, sn of some historyw satisfyingc such that
si = s, easily. In particular,u∗

0(s) is the sum of all utilitiesu(w) of
histories that start ats and satisfyq. Exploiting this,weighth(D) is
then readily computed by rearranging the sum of its definition: For
each relevant queryc of form (15), sum up the theu∗

0(·) values at all
states and multiply the result withf(c). This gives one summand of
a sum to build over all relevant queries (i.e., queries of form (15)).

Example 3 Consider, for instance, the action descriptionD(3) (Fig-
ure 3) in Example 1; takes0 ands1 as specified in Example 1. For
query (4), in the first pass of the labeling process, states0 is labeled
with rs0

0 , rs1

1 ; and states1 is labeled withrs1

0 , rs0

1 ; in the second
pass, both statess0 ands1 are labeled withp0 andp1. Given the util-
ity function and transition model as in Example 1 (i.e., as (18) and
as (20), respectively), and assuming a weight off(c) = 3 for the
query, summing up we obtain:

u∗
1(s0) = g(s0) = 2,

u∗
1(s1) = g(s1) = 2,

u∗
0(s0) = g(s0) + m(〈s0, {PushPBRC}, s1〉) × u∗

1(s1) = 3,

u∗
0(s1) = g(s1) + m(〈s1, {PushPBRC}, s0〉) × u∗

1(s0) = 4.

And in total
f(c) × (u∗

0(s0) + u∗
0(s1)) = 21,

as the summand for the query,c, considered (and as the value for
weighth(D(3)) asc is the only query considered in this example).

Using the same techniques as forweighth(D), we can com-
puteg′(s) for each states in polynomial time onTC(D) and also
|SD(B)|. Therefore, alsoweightqs(D) is computable in polynomial
time in this case.

Finally, if the state spaceS is not large, i.e.,|S| is polynomially
bounded,S can be computed with the help of an NP-oracle in poly-
nomial time; in fact, this is possible with parallel NP oracles queries,

and thus computingS is in the respective class FPNP
‖ . The following

theorem summarizes these results (the third row of Table 2):

Theorem 3 Suppose that we are given an action descriptionD, the
setS of states described byD, a setC of queries, a functiong map-
ping every state inS to a number, a functionf mapping every query
in C to a number, and a functionm mapping every transition to a
probability. Suppose that|S| is polynomially bounded, and the func-
tions f , g, m are computable in polynomial time. Then computing
each weight function,weights(D) (relative tog), weightq(D) (rel-
ative to C and f), weighth(D) (relative to C, f , g and m), and
weightqs(D) (relative toC, f , g andm), is in FPNP

‖ .

On the other hand, tractability of any of the weight functions in
the case where|S| is polynomially bounded is unlikely, since solv-
ing SAT under the assertion that the given formulaF has at most
one model (which is still considered to be intractable) is reducible to
computingweightp(D) for eachp ∈ {s, q, h, qs}.

7 CONCLUSION

We have presented four ways of assigning weights to action descrip-
tions, based on the preferences over states, preferences over condi-
tions, and probabilities of transitions, so that one can compare the ac-
tion descriptions by means of their weights. We have illustrated the
usefulness of such a semantically-oriented approach of comparing
action descriptions, on the problem of updating an action description,
in comparison with the syntactic approach of [2]. Further examples
and applications are considered in an extended version of this paper
[3].

Further work will aim at implementations of the weight measures,
based on the complexity characterizations and algorithms obtained
and to investigate restricted problem classes. Another issue is to ex-
plore further measures.

Acknowledgments

This work is supported by the Austrian Science Fund (FWF) grant
P16536-N04.

REFERENCES
[1] Eyal Amir, ‘Towards a formalization of elaboration tolerance: Adding

and deleting axioms’, inFrontiers of Belief Revision, Kluwer, (2000).
[2] T. Eiter, E. Erdem, M. Fink, and J. Senko, ‘Updating actiondomain

descriptions’, inProc. IJCAI, pp. 418–423, (2005).
[3] T. Eiter, E. Erdem, M. Fink, and J. Senko, ‘Comparing actiondescrip-

tions based on semantic preferences’. Extended manuscript. Available
at http://www.kr.tuwien.ac.at/research/ad-cmp.
pdf, 2006.

[4] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz, ‘Gap-definable
counting classes’,Journal of Computer and System Sciences, 48(1),
116–148, (1994).

[5] M. Gelfond and V. Lifschitz, ‘Action languages’,ETAI, 3, 195–210,
(1998).

[6] E. Giunchiglia and V. Lifschitz, ‘An action language based on causal
explanation: Preliminary report’, inProc. AAAI, pp. 623–630, (1998).

[7] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-
Cain, and Hudson Turner, ‘Nonmonotonic causal theories’,AI, 153(1-
2), 49–104, (2004).

[8] Sanjay Gupta, ‘Closure properties and witness reduction’, Journal of
Computer and System Sciences, 50(3), 412–432, (1995).

[9] John McCarthy, ‘Elaboration tolerance’, inProc. CommonSense,
(1998).

[10] C. Papadimitriou,Computational Complexity, Addison-Wesley, 1994.
[11] S. Russel and P. Norvig,Artificial Intelligence: A Modern Approach,

Prentice Hall, 1995.

