Fundamenta Informaticae 57 (2003) 345370 345
10S Press

Monitoring Agents using Declarative Planning*

Jiirgen Dix'

Institut fur Informarik, Technische Universit Clausthal
Julius-Albert-Stralie 4

D-38678 Clausthal, Germany

dix@tu-clausthal.de

Thomas Eiter, Michael Fink, Axel Polleres
Institut fur Informationssysteme, TU Wien
A-1040 Wien, Austria

{eiter, fink, pollere(@kr.tuwien.ac.at

Yinggian Zhang

Department of Computer Science, University of Manchester
M13 9PL, UK

zhangy@cs.man.ac.uk

Abstract. In this paper we consider the following problem: Given a igatar description of a
multi-agent systemMAS), is it implemented properly? We assume that we are givessiply
incomplete) information about the system and aim at refuiis proper implementation. In our
approach, agent collaboration is described as an actiamthéction sequences reaching the col-
laboration goal are computed by a planner, whose compliaitbeéhe actuaMASbehaviour allows
to detect possible collaboration failures. The approachhm fruitfully applied to aid in offline
testing of aMASimplementation, as well as in online monitoring.

Keywords: knowledge representation, multi agent systems, planning

* A preliminary version of this paper appeared in: Proc. 26timdal German Conference on Artificial Intelligence (KI 203
LNCS 2821, pages 646—660, Springer, 2003. This work wasastggbby FWF (Austrian Science Funds), projects P14781,
P-16536-N04, and Z29-N04, and partially funded by the Imi@tion Society Technologies programme of the European
Commission, Future and Emerging Technologies under th081-37004 WASP project.

tAddress for correspondence: Institut fur Informarik, Aeische Universitat Clausthal, Julius-Albert-Stra3eD438678
Clausthal, Germany

346 J.Dix et al./ Monitoring Agents using Declarative Planning

1. Introduction

Multi-agent systems have been recognised as a promisiragligan for distributed problem solving.
Indeed, numerous multi-agent platforms and frameworke teen proposed, which allow to program
agents in languages ranging from imperative over objeented to logic-based ones [22]. A major
problem that agent developers face with many platforms ietdy that a suite of implemented agents
collaborate well in order to reach a certain goal (e.g., ppduchain management). Tools for automatic
verificatiort are rare. Thus, common practice is geared towards extenget testing, employing
tracing and simulation tools (if available).

In this paper, we presentraonitoringapproach which aids in automatically detecting that ageots
not collaborate as intended. In the spirit of Popperimciple of falsification it aims at refuting from
(possibly incomplete) information at hand that an agentesyswvorks properly, rather than proving its
correctness. In our approach, agent collaboration is itbestat an abstract level, and the single steps in
runs of the system are examined to see whether the agentgeebasonable,” i.e., "compatible” with
a sequence of steps for reaching a goal.

Even if the internal structure of some agents is unknown, &g get hold of the messages exchanged
among them. A given message protocol allows us to draw csioeig about the correctness of the agent
collaboration. Our monitoring approach is based on thisdad involves the following steps:

(1) The intended collaborative behaviour of the agents is nkediels aplanning problem More
precisely, knowledge about the actions performed by thetagepecifically, messaging) and their effects
is formalised in araction theory T', which can be reasoned about to automatically consplacts as
sequences of actions to reach a given goal.

(2) FromT and the collaborative go#élt, a set of intended plansPlans for reachingG is generated
via a planner.

(3) The observed agent behaviour, i.e., the message actiaonsafmoessage logs then compared to
the plans in-Plans

(4) In case an incompatibility is detected, an error is flaggetth¢odeveloper (or user, respectively),
pinpointing the last action causing the failure so thatfertsteps might be taken.

Steps (2)—(4) can be done by a spemalnitoring agentwhich is added to the agent system providing
supports both during testing, and in the operational ph&askeosystem. Among the benefits of this
approach are the following:

¢ It allows to deal with collaboration behaviour regardlesthe implementation language(s) used for
single agents.

e Depending on the planner used in Step (2), different kindplafs optimal conformant .. .),
might be considered, reflecting different agent attitudes@llaboration objectives.

e Changes in the agent messaging by the system designer megnspdrently incorporated to the
action theoryI’, without further need to adjust the monitoring process.

!By well-known results, verification is impossible in gereeven in simple cases when details of some agents (e.getin h
erogenous environments) are missing.

J.Dix et al./ Monitoring Agents using Declarative Planning 347

e Furthermore,T" forms a formal system specification, which may be reasonedtand used in
other contexts.

e As a by-product, the method may also be used for autorpatiocol generationi.e., determining
the messages needed and their order, in a (simple) collaara

In the following, we detail our approach and illustrate ithwan example derived from an imple-
mented agent system. The next section describes the basit fagmework that we build upon and
presents a (here simplified version of a) multi-agent systethe postal services domain. In Section 3
we describe how to model the intended behaviour of a muihtilgystem as an abstract planning prob-
lem, and instantiate this for our example system using ttieratanguagelC [7, 5]. Our approach to
agent monitoring is then discussed in Section 4; some fuedtahproperties are investigated in Sec-
tion 5. After a brief discussion of the implementation in &t 6 and a review of related works in
Section 7, we conclude in Section 8 with an outlook on furtiesearch.

2. Message Flow in a Multi-Agent System

In a multi-agent systenMAS), autonomous agents are collaborating to reach a certain Qoir aim is
to monitor (some aspects of) the behaviour of the agentsderdo detect inconsistencies and help to
debug the whole system.

As opposed to verification, monitoringMAS does not require a complete specification of the be-
haviour of the particular agents. Rather, we adopt a morergé(and in practice much more realistic)
view: We do not have access to the (entire) internal statewdf single autonomous agent, but we are
ableto observe the communication between agehtee system. By means of its communication capa-
bilities, an agent can potentially control another agenir &m is to draw conclusions about the state of
a multi-agent system by monitoring the message protocol.

2.1. Basic Framework

We consider multi-agent systems consisting of a finite’set {ai,...,a,} of collaborating agents
a;. Although agents may perform a number of different (intBriagtions, we assume that only one
action is externally observable, namely an action cadlesd msg(r), which allows an agent to send a
messagern, to another agent in the system. Eveshd msg action is given a timestamp and recorded
in a message log file containing the history of messages $hatfollowing definitions do not assume a
sophisticated messaging framework and apply to almosiMa&§ Thus, our framework is not bound to
a particularMAS

Definition 2.1. (Message M, file)

A messagés a quadruplen = (s,t,c,d), wheres,r € A are the identifiers of theendingand there-
ceivingagents, respectively; € Cis from a finite seC of message commandsis a list of constants rep-
resenting thenessage dataA message log files an ordered sequendeliog = t1:m1,toimy, . .., tgmy
of messages; with timestamps;, wheret; < ¢;,1,1 < k.

The sefC constitutes a set of messagerformativesspecifying the intended meaning of a message.
In other words, it is the type of a message according to spaeictineory: the illocutionary force of an

348 J.Dix et al./ Monitoring Agents using Declarative Planning

Statistic

Dispatcher
Agent

Figure 1. TheGofishpost office system.

utterance. These commands may range feaiitell primitives to application specific commands fixed
during system specification.

Often, an agenty; will not send every kind of message, but use a message repettp C C.
Moreover, only particular agents might be message redpi@iowing for simplified formats). Given
that the repertoire€; are pairwise disjoint and each message typas a unique recipient, we will use
(c,d) in place ofm = (s,7,c,d).

Finally, we assume a fixed bound on the time within the nexbachould happen in tHdAS i.e., a
timeout for each action (which may depend on previous as}jomhich allows to determine frooh g
whether theMAS:is stuck or still idle.

2.2. Gofish Post Office

We consider an exampMAScalled Gofish Post Officdor postal services. Its goal is to improve postal
services by mail tracking, customer notifications, and aded quality control. The following scenario
is our running example:

Example scenario: Pat drops a packagg;, for a friend, Sue, at the post office. In the evening, Sue is
informed through a phone call that a package has been seatn& day, Sue decides to pick up the
package herself at the post office on her way to work. Unfeateig, the clerk has to tell her that the
package is already on a truck on its way to her home.

The overall design of th&ofish MASis depicted in Figure 1. Arvent dispatcher agerftiisp)
communicates system relevant (external) events tevaent management agefetn) that maintains an
event database. Information about packages is stored inkaga database manipulated bpackage
agent(pa). Thenotification ageninotify) notifies customers about package status and expected de-
livery time, for which it maintains a statistics databasénally, a zip agent(zip) informs responsible
managers, which are stored in a manager database, abootdzs ot being well served.

Example 2.1. (SimpleGofish)

To keep things simple and illustrative, we restrict thefish MASto the package agenha, the event

management agendm, and the event dispatcher ageaditsp; thus,A = {pa, em, disp}. The messages
concerning agentotify will be discussed in the extended version of the examplesagitial of Section 4.

J.Dix et al./ Monitoring Agents using Declarative Planning 349

Agent disp informs agentem about a package (identified by a unique identifier) being pkedp
off at the post office, its arrival at the distribution ceniés loading on a truck, its successful delivery,
or when a recipient shows up at the distribution center t& pig the package by herselqis, =
{dropOff, distCenter, truck, delivery, pickup}. Agentem instructs agenpa to add a package to the pack-
age database after the drop off, as well as to update theedetimne after delivery or customer pickup:
Cem = {addPackage, setDelivTime}. The package agent here only receives messageschus {}.

3. Modelling Agent Behaviour via Declarative Planning

We now discuss how to formalise the intended collaboratefealsiour of agents as an action theory for
planning that encodes a legal message flow. In it, actiomegpond to messages and fluents represent
assumptions about the current state of the world.

Under suitable encodings, we could use planning formalli@STRIPS [9], PDDL [11] or HTN [8]
based planners to model simple agent environments. InHdY planning has recently been incor-
porated in aMAS[3] and formulated as action theories in logic programmi8f [Another powerful
language suitable for modelling control knowledge and gl agents is Golog [21]. However, due
to its high expressive power (loop, conditionals) automgtian generation is limited in this formalism.

In Subsection 3.1 we give a generic formulation of our apgnpandependent of a particular planning
mechanism. Then, in Subsection 3.2 we instantiate thisleiggl description using the action language
K [7, 5]. While our approach does not rely & we have chosen it because of its declarative nature and
its capabilities of dealing with incomplete knowledge anddeterminism.

3.1. Modelling Intended Behaviour of aMAS

Our approach to formalise the intended collaborative bielawf a MAS consisting of agentéd. =
{ai,...,a,} as aplanning probler® comprises three steps:

Step 1: Actions (Act). Declare a set oictionssuch that correspondiractionsfor each message: =
(s,r,c,d) in our domain, i.e., we haves, r,d) € Act(see Def. 2.1). Again, if the message repertoires
C; are pairwise disjoint and each message types a unique recipient, we simply writéd). These
actions might have effects on the states of the agents iestadwid will change the properties that hold
on them.

Step 2: Fluents (FI). Define propertiesfluents of the “world” that are used to describe action effects.
We distinguish between the setsinfernal fluents? Fl,, of a particular agena andexternalfluents,
Fl.., which cover properties not related to specific agents. @Haents are often closely related to the
message performatives of the agents.

Step 3: Theory (T) and Goal (G). Using the fluents and actions from above, state various axadmout
the collaborative behaviour of the agents gdanning theoryl'. The axioms describe how the various
actions change the state and under which assumptions teegxacutable. Finally, state the ultimate
Goal G (in the running scenario: to deliver the package) suitateife chosen planning formalism.

We end up with glanning problen?” = (Act FI, T, G), whereFl = [J,.a Fla U Flex; whosesolutions
are a set ofP-Plans Note that the precise formulation of these notions depemdthe underlying

2Internal fluents especially can describe private valueshvhiight be inaccessible by an external observer.

350 J.Dix et al./ Monitoring Agents using Declarative Planning

planning formalism. For example, in HTN planning one haspecHfy operatorsandmethodsand their
effects (this is closely related #octandFl above), as well as a domain description and a task list (which
corresponds td andG above); we refer to [2] for a full discussion.

The above description is a generic formulation suitablenfany planning frameworks. We shall
consider planning at an abstract level in these framewaor&ection 5. In the remainder of this section,
we turn to the particular planning framework built around tinguageC.

3.2. Using Action LanguagelC

In this section, we instantiate the planning problBrdescribed above to a problegt* formulated in the
action languagéC. Rather than giving a detailed review of the langu&gand its planning framework,
we describe here for space reasons only the key featureganrda [7, 5] for further details.

The languagel (where K stands for planning witkknowledgestates) is a member of a family of
logic-based action languages in the area of knowledge septation and reasoning. These languages
aim at providing a flexible, declarative formalism for reaisgy about actions and their effects, on which
planning systems might be built. Prominent languages m fémily are the languaged [10] andC
[13]. Compared with these languagksis closer to logic programming than to classical logic, sinc
it includes respective features (e.g., default negatiah sdirong negation). In a nutshekl; offers the
following distinguishing features:

handling incomplete knowledgéor a fluentf, in a state neithef nor —f may be known.

nondeterministic effectactions may have multiple possible outcomes.

optimistic and secure (conformant) planningonstruction of “credulous” plans or “sceptical’
plans which work in all cases.

parallel actions:more than one action may be executed simultaneously.

An operational prototype of a planning systemfgmLv*, built as frontend on top of theLv system
[4], is available ahttp://www.dbai.tuwien.ac.at/proj/dlv/.

In IC, an action domain is defined by the statmckground knowledgB8K , which specifies a finite
set of static facts through a non-monotonic logic prograra fanction-free first-order language, and a
dynamic action descriptiondD. Actions and fluentsy, are defined by declarations of the form

p(X) requires bk1 (Y1), ..., bk (Yy,)
whereX = X;,..., X, is alist of parameters, each of which mustyeedby some predicatds:, ...,

bk, which are defined irlBK . In addition, to specify action executions and effegisallows to state
axioms of the following forms:

(1) caused f if a after f.
(2) total f if a after f.

(3) inertial f.

(4) executable a if f.

(5) nonexecutable a if f£.

J.Dix et al./ Monitoring Agents using Declarative Planning 351

Heref is a fluent literala an actionq a set of (possibly default negated) fluent literals, Arid a set of
(possibly default negated) actions and fluent literals:

(1) means that fluenf is caused whenever holds afters. (2) simulates nondeterministic effects:
its meaning is that fluenf is either true or false itx holds after3. (3) models inertia of a fluent:
it is a macro forcaused f if not —.f afterf, wherenot is default negation aneh is strong nega-
tion. Furthermore, by (4) and (5) we can express under whirchimstances an action eéxecutableor
nonexecutable

A planning problemP* in K may then be formalised, according to the general schema $em
tion 3.1 above, as a tupl@ct Fl, T, G), whereAct defines the actions;l the fluents,T comprisesBK
and all axioms (of the sorts introduced above), énd the goal, i.e. a set of ground fluent literals.

The semantics of is defined throughransitionst = (s, A, s') from states to statess’ by simulta-
neous execution of a action where astates is any consistent set of ground fluent literdlRoughly,
the action description yields a non-monotonic logic pragrahich computes the possible successor
statess’ from s and A in its models.

A trajectory T'r is then any initial state, (which must comply with the integrity constraints in the
planning theory) or sequenae, ..., t, of transitionst; = (s;,_1,4;,s;), i € {1, ..., n}, starting in
an initial statesq.* An (optimistic) planfor goal G is P ={(), or the projectionP=(A;,..., A,) of a
trajectoryT'r, such thatG holds insg, or s, respectively.

Example 3.1. (SimpleGofish cont'd)
In the Gofishexample, the followindgC actions (corresponding to the possible messages) anddlaent
defined (inbLv* notation [5]):

actions: drop0ff(P) requires pkg(P).
addPkg(P) requires pkg(P).
distCenter(P) requires pkg(P).
truck(P) requires pkg(P). Act
delivery(P) requires pkg(P).
pickup(P) requires pkg(P).
setDelivTime(P) requires pkg(P).

V
fluents: pkgAt(P,Loc) requires pkg(P),loc(Loc).
delivered(P) requires pkg(P).
recipAtHome(P) requires pkg(P). FI
added(P) requires pkg(P).
delivTimeSet(P) requires pkg(P).
The first three external fluents describe the current logati@ package, whether it has been successfully
delivered, and, whether its recipient is at home, respelgtivl he last two fluents are internal fluents about
the state of agenta describing whether the package has already been added patkage database
and whether the delivery time has been set properly, ragpct
A possible package (e.g., a geneari¢ and its locations form the background knowledge represent
by the set of factB K ={pkg(p1), loc(drop), loc(dist), loc(truck)}. Now we specify further axioms
for 7' (in bLY" notation) as follows:

®Note that ink states are not “total”, i.e., a fluejfitcan be neither true nor false in a state.
“In [7, 5], states and transitions occurring in possibleettjries are calletegal, in order to distinguish them from other
transitions which are meaningless for executions and plaingo the domain of discourse. Here, we just omit this didtion.

352 J.Dix et al./ Monitoring Agents using Declarative Planning

initially: recipAtHome(p;).
always : noConcurrency.
inertial pkgAt(P,Loc).
inertial delivered(P).
inertial recipAtHome(P).
inertial added(P).

executable drop0ff(P) if not added(P).
caused pkgAt(P,drop) after dropOff(P).
nonexecutable dropOff(P) if pkgAt(P,drop).

executable addPkg(P) if pkgAt(P,drop),not added(P).
caused added(P) after addPkg(P).

executable distCenter(P) if added(P),pkgAt(P,drop).
caused pkgAt(P,dist) after distCenter(P).
caused -pkgAt(P,drop) after distCenter(P).

executable truck(P) if pkgAt(P,dist),not delivered(P).
caused pkgAt(P,truck) after truck(P).
caused -pkgAt(P,dist) after truck(P).

executable delivery(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after delivery(P),recipAtHome(P).

executable setDelivTime(P,DTime) if delivered(P).
caused delivTimeSet(P) after setDelivTime(P).

executable pickup(P) if pkgAt(P,dist), notdelivered(P).
executable pickup(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after pkgAt(P,dist), pickup(P).
total recipAtHome(P) after pickup(P).

Most of the theory is self-explanatory. The recipient is@tle initially. The keyworchoConcurrency
specifies that concurrent actions are disallowed. An ingmbraspect is modelled by the finedtal
statement. It expresses uncertainty whether after a piakempt at the distribution center, the recipient
will be back home, in particular in time before the truck wes to deliver the package, if the truck is
already on the way. Finally, the goalGs= delivTimeSet(p)).

The following (optimistic) plans reaci:

P, = (drop0ff(p;); addPkg(p;); distCenter(py); truck(p);
pickup(pi);delivery(p;); setDelivTime(p))

P, = (drop0ff(p;); addPkg(p;); distCenter(py); truck(p);
delivery(p); setDelivTime(py))

P; = (drop0ff(p;); addPkg(p;); distCenter(py); pickup(py); setDelivTime(py))

In Py, the recipient shows up at the distribution center afterphekage is loaded on the truck and the
truck is on its way. InP,, the package is successfully delivered before the redigiemes to pick it up
herself, whereas i;, she picks up the package before it has been loaded on tihe truc

Running scenario: We assume the following entries in the message\gy= 0:(disp, em, dropOff, p;),
5:(em, pa, addPackage, p1), 13{disp, em,distCenter,p;), 19i(disp, em,truck,p;), 20(disp, em,

J.Dix et al./ Monitoring Agents using Declarative Planning 353

pickup, p1). According to the message history o5, we can see that plaR, is infeasible, as well
asP; since the package can not be handed over to Sue at the dismilsenter. Thus, only?, remains
for successful task completion.

4. Agent Monitoring

The overall aim of adding a monitoring agemt¢nitor) is to aid in debugging a given MASVe can
distinguish between two principal types of errofs) design errorsand(2) implementation (or coding)
errors. While the first type means that the model of the system is g/foa., theMASbehaves correctly
to the model of the designer of tiAS but this model is faulty and does not yield the desired tesul
the application), the second type points to more mundantkeis in the actual code of the agents: the
code does not implement the formal model of the system {fie actions are not implemented correctly).

Note that often it is very difficult, if not impossible at al distinguish between design and imple-
mentation errors. But even before the system is deployedpldmnning problen can be given to a
planner and thus the overall existence of a solution can bekeld. If there is no solution, this is clearly
a design error and the monitoring agent can pinpoint wheagetgxthe planning fails (assuming the
underlying planner has this ability). If there are solutipthe agent designer can check them and thus
critically examine the intended model.

However, for most applications the bugs in the system becapparent only at runtime. Our pro-
posed monitoring agent has the following structure.

Definition 4.1. (Structure of the monitoring agent)
The agenimonitor loops through the following steps:

1. Read and parse the messageMgg. If Miog = 0, the set of all possible plans f@ may be
cached for later reuse.

2. Check whether an action timeout has occurred.

3. If this is not the case, compute the curramended plangaccording to the planning problem
description and additional info from the designer) compativith the actions as executed by the
MAS

4. 1f no compatible plans survive, or the system is no mor idlen inform the agent designer about
this situation.

5. Sleep for some pre-specified time.

We now elaborate more deeply on these tasks.

Checking MAS behaviour: monitor continually keeps track of thmessages sent between the agents
They are stored in the message ldgog, Which is accessible bynonitor. Thus formonitor, the
behaviour of theMASis completely determined by1,q. We think this is a realistic abstraction from
internal agent states. Rather than describing all theldetheach agent (which might be unknown, e.g.
if legacy agents are involved), the kinds of messages seminbggent can be chosen so as to give a
declarative high-level view of it. In the simplifie@ofishexample, these messages for agents disp,

pa are given byCem, Caisp, andC,, (see Section 2).

354 J.Dix et al./ Monitoring Agents using Declarative Planning

Intended behaviour and compatibility: The desired collaborativMAS behaviour is formalised as a
planning problenfP (e.g., in languagdC, cf. Section 3). Thus, even before tMASIs in operation,
problem’P can be fed into a planner which computes potential plansachra goal. Agenthonitor is
exactly doing that.

In general, not aliP-Plans may be admissible, as constraints may apply (defivedthe intended
collaborative behavioud. E.g., some actions ought to be taken in a fixed order, or actinay be
penalised with costs whose sum must stay within a limit. e tfistinguish a sdtPlan{P) CP-Plans
asintended plangof the MASdesigner).

It is perfectly possible that the original problem has ssst@d plans, yet after some actions executed
by the MAS these plans are no longer valid. This is the interesting éasthe agent designer since it
clearly shows that something has gone wromginitor can pinpoint the precise place indicating which
messages have caused the plan to collapse. Because thesgeseare related to actions executed by the
agents, information about them will help to debug MAS In general, it is difficult to decide whether
the faulty behaviour is due to a coding or design error. Hagahe info given bynonitor will aid the
agent designer in detecting the real cause.

Messages frommonitor: Agentmonitor continually checks and compares the actions taken so far
for compatibility with all current plans. Once a situatioasharisen in which no successful plan exists
(detected by the planner employedjonitor writes a message into a separate file containing (1) the
first action that caused tdASto go into a state where the goal is unreachable, (2) the sequaf
actions taken up to this action, and (3) all the possiblegitefiorethe action in 1) was executed (these
are all plans compatible with tHdASbehaviour up to it).

In the above description, we made heavily use of the notiomaafmpatibleplan. Before giving a
formal definition, we consider our running scenarioQafish, all three plang?;, P,, P; generated from
the initial problem coincide on the first three steps: drdp®¥, addPkgp,), and distCentep().

Running scenario (coding error): Suppose on a preliminary run of our scenatld,oy shows that
m1=dropOff(p;). This is compatible with each plah, i € {1,2,3}. Next,my = distCenter(p;). This is
incompatible with each plannonitor detects this and gives a warning. Inspection of the actud co
may show that the command of adding the package to the datébasong. While this doesn’t result
in a livelock (theMASis still idle), the database was not updated. Informedimnitor, this flaw is
detected at this stage already. After correction of thisraperror, theMASmay be started again and
another error shows up:

Running scenario (design error): Instead of waiting at home (as in the “standard” plafn, Sue shows
up at the distribution center and makes a pickup attemps "Biiternal” event may have been unforeseen
by the designer (problematic events could also arise ftASactions). We can expect this in many agent
scenarios: we have no complete knowledge about the wortkpatted events may happen; and, action
effects may not fully determine the next state.

Only plan P; remains to reach the goal. However, theredsguarantee of success Sue is not
back home in time. This situation can be easily capturederfrdimework of [7, 5], where we have the
notion of asecureplan. An (optimistic) plan isecure(or conformant[14]), if regardless of the initial
state and the outcomes of the actions, the steps of the plealwéays be executable one after the other
and reach the goal (i.e., in all trajectories). As can beyasen,P, and P; are secure plans, whilg

5This might depend on the capabilities of the underlying piag formalism to model constraints such as state axionst, co
bounds, or optimality wrt. resource consumption etc.

J.Dix et al./ Monitoring Agents using Declarative Planning 355

is not secure. Thus, a design error is detected, if deligaitie package must be guaranteed under all
circumstances.

Based on a generic planning probléMm we now define compatible plans as follows. &Plans
denote the set of all plans fr.

Definition 4.2. (M,qg compatible plans)

Let the planning probler® model the intended behaviour oMAS which is given by a sdtPlans(P)
C P-Plans. Then, for any message lo§jog =t1:m1, ..., ty:my, we denote byC-Plans(P, Mqg, 1),
n > 0, the set of plans fromPlans(P) which comply on the first. steps with the actions, . .., m,,.

In a planning framework with different notions of plara;Plans is assumed to comprise the most
liberal notion of plan. For example, iLV"*, the planner forkC, optimistic and secure plans can be
computed for any probler®*, and?-Plans would consist of all optimistic plans.

Definition 4.3. (Culprit(Miog, P))

Let ¢,,:m,, be the first entry ofM,og such that either (iC-Plans(P, Mg,) = 0 or (ii) a timeout
is detected. TherCulprit(Miog, P) is the pair(t, m,,, idle) if (i) applies and(t,:m,,, timeou} (resp.
(timeoup if Mqq is empty) otherwise.

Initially, Mog is empty and thug€-Plans(P, Mjeg,0) = I-Plans(P). As more and more actions are
executed by th&/1AS they are recorded iMog and the seC-Plans(P) shrinks. Agentmonitor can
thus check at any point in time wheth@sPlans(P, Mqg, 1) is empty or not. Whenever this happens,
Culprit(Miog, P) is computed and pinpoints the problematic action.

Running scenario: Under guaranteed delivery (i.e., under secure planninggntanonitor writes
Culprit(Miog, P) = (20:ms, idle) (thepickup(pi) message) in a file, and thus clearly points to a situation
missed in theMASdesign. Note that there are also situations where everyikifine; if pickup would
not occur, ageninonitor would not detect a problem at this stage.

Example 4.1. (SimpleGofish extended)

We now consider the extension of the previous sin@tdgishexample by adding a customer notification
service. That is, th&ofishpostal service performs mail tracking in order to be ablediifyicustomers
about the status of mail delivery. Each recipient of a paekagnotified about the arrival of the package
at the distribution center and when the package has beeadaaua truck for delivery.

The realisation of the notification service in ddASbrings the notification agentotify) into play.
The notification agent is informed by the event managemesitagm) about the arrival of a package,
as well as its loading on a truck. In both cases agerttify contacts the package agept{ in order
to obtain the required customer information. For simplicite subsume both messages — frem to
notify and fromnotify to pa — into a single messaggetRecipinfo which is parameterised by the
corresponding eventist or truck, i.e.,Crotiry = {getRecipinfo}. The package agent replies to the
requests ohotify with the corresponding information to notify the custoneeg., the email address of
the recipient in case afist and the phone number in casetafuck. Thus now,C,, = {recipinfo}.

In order to reflect this extension in our model, we add theofwihg actions for the newly introduced
messages and another fluent:

actions: getRecipInfo(P,Loc) requires pkg(P), loc(Loc).
recipInfo(P,Loc) requires pkg(P), loc(Loc).

356 J.Dix et al./ Monitoring Agents using Declarative Planning

fluents: informed(P,Loc) requires pkg(P), loc(Loc).

The new external fluentnformed captures the state of the customer concerning her knowlakget
the package status. The effects and executability congitié the new actions are defined as follows:

inertial informed(P,Loc).
inertial -informed(P,Loc).

executable getRecipInfo(P,dist) if pkgAt(P,dist).
executable getRecipInfo(P,truck) if pkgAt(P, truck).
caused -informed(P,Loc) after getRecipInfo(P,Loc).
nonexecutable getRecipInfo(P,Loc) if informed(P,Loc).
nonexecutable getRecipInfo(P,Loc) if -informed(P,Loc).

executable recipInfo(P,Loc) if pkgAt(P,Loc), -informed(P,Loc).
caused informed(P,Loc) after pkgAt(P,Loc), recipInfo(P,Loc).
nonexecutable recipInfo(P,Loc) if informed(P,Loc).

Furthermore, we modify the axioms for the delivery and trekyp action:

executable delivery(P) if pkgAt(P,truck), informed(P,truck),
not delivered(P).

executable pickup(P) if pkgAt(P,dist), not informed(P,truck),
not delivered(P).

The customer must be informed about the package being dedil®y a truck before delivery, thus she
will no longer show up at the distribution center for picking the package.

In general, because of the “nondeterminism” of the exteavaint of a customer showing up at
a distribution center for picking up a package, we will nowtad» more plans that reach the goal
G=delivTimeSet(p;). For example, the following (optimistic) plans are vargaf the planp;:

P, 1 = (drop0£ff(p1); addPkg(p1); distCenter(py); getRecipInfo(py, dist); recipInfo(py, dist);
truck(p;); getRecipInfo(py, truck); pickup(pi); recipInfo(py, truck); delivery(p);
setDelivTime(py))

P, 5 = (drop0£ff(p1); addPkg(p1); distCenter(py); getRecipInfo(py, dist); recipInfo(py, dist);
truck(p;); pickup(pi); getRecipInfo(ps, truck); recipInfo(py, truck); delivery(p);
setDelivTime(py))

Note that still the customer may show up at the distributienter after the package has been loaded
on a truck. However, this can no longer be the case after thimmmer has been notified. Moreover, it
is assumed that the customer natification takes place whishartly after loading the package on the
truck.

Running scenario: Consider a run of our scenario in the extendédS and suppose the following
sequence of messages in the messageMtigy: m; = (dropOff, p;), my = (addPackage, p;), m3 =
(distCenter, p1), my4 = (getRecipinfo, p1, dist), ms = (recipinfo, p1, dist), mg = (truck, p;), m7 =
(getRecipinfo, p1, truck), andmg = (recipinfo, p1, truck). Then, everything is fine even under secure
planning, i.e. guaranteed delivery, since pickup cannotioafter Sue has been notified that her package
has been loaded on truck for delivery. ThatAd,oq4 is compatible with the secure plan

P, = (drop0ff(p));addPkg(p;);distCenter(p); getRecipInfo(py, dist); recipInfo(py, dist);
truck(p;); getRecipInfo(py, truck); recipInfo(py, truck); delivery(py);
setDelivTime(py)).

J.Dix et al./ Monitoring Agents using Declarative Planning 357

However, if Sue had shown up at the distribution center leefamtification, i.e.mg = (pickup, p1)
say again at timeo, the package would no longer be guaranteed delivered ondintenonitor would
again writeCulprit(Mog, P) = (20:mg, idle) to a file to indicate the problematic situation.

To sum up, by extending our postal service with customeffination we reduced the probability
of unsuccessful deliveries but we did not achieve guardndedivery. We remark, however, that in our
example setting this could easily be obtained by disallgvanstomer pickups.

5. Properties

In this section, we take a closer look at our agent monitcaymgroach and show that it has some desirable
properties. To this end, we shall need some preliminary idiefiis in order to make the notions we have
used above formally more precise.

As for the underlying planning framework, referred toJa%, we assume that the basic element for
the semantics of plan execution is given by trajectoriebéyianning world formed by state transitions,
similar to the semantics of the planning langud@eThat is, we assume that there is a set of possible
world statesSp+ (where world states are described e.g. by fluents) and a set of actibpg in PF, as
well as a sefpr C Spr of initial states. Furthermore, there is a partial, muétiued transition function
trpr : Spr x Apr — 2577 which assigns a set of possible successor states(s, A) to a state
s € Spx and an actiom € Apx to be executed in; the transitionir»» might be undefined, however,
Or NO successor state may exist.

Definition 5.1. A trajectoryT in PF is a sequencey, a1, s1, - - - , Gy, S, Of Statess; € Spx and actions
a; C apr,n > 0, such thaty € Ipr ands; € trpr(si_1,a;), foreveryi € {1,...,n}.

We view plans for reaching a go@lin PF, which in general is some constraint on the desired states,
from a semantical perspective, as structures correspgnalitne trajectories in the planning world which
are compatible with them. More formally,

Definition 5.2. Any plan P in PF is an object which has associated with it a nonempty set jeftiaries
in PF, Sem(P), such thatG holds in states,, for eachT' € Sem(P) whereT = sg, a1, 51,...,0p, Sp.

By way of illustration, in thelC planning framework, the transition functiany is implicit by the
definition of state transitions, vizri (s, A) is defined for a state and a set of actiond (which we can
view as a single compound action) iff, in the terminologykgfA is executable wrts andtri (s, A) =
{s' | (s,A,s") is a state transitionin this case. An optimistic pla® in K for the goalG is then
semantically characterised by the condition that theresejaence of actiongé4,, ..., A,),n > 0, such
that (i) eachl’ € Sem(P) is of formsg, A1, s1, ..., Ay, s, and (i) each trajectoryg, A1, s1,. .., An, Sp
which establishes the go@lis in Semn (P). Furthermore, a secure plahis in XC an optimistic plan which
satisfies in addition that (iii) for each trajectdfy = s, A1, s1, ..., Am, sm With m < n, the goalG is
established itn = n, andtr(s,,, A,+1) is defined and nonempty otherwise.

As for the multi-agent system in question, we assume that its collaborative behaviouovemed
by some strategy;. We take here also a pure semantical view and prdjeici the set of possible runs
which might be observed during execution (in particularthsyagent tester). Formally, a run is defined
as follows.

358 J.Dix et al./ Monitoring Agents using Declarative Planning

Definition 5.3. Given aMAS M, we assume there is an underlying set of possible systeasstai. A
runis a sequenc&® = S% my, S, ..., my, Sk, k > 0, of (global) system state$’ and messages:;,
whereSY is the initial state (resp., from the set of possible inisi@tes in case of indeterminism).

Informally, upon message:;, the system transits from stag~! to stateS?; here, we abstract
from concrete time points when messages are sent. We démosett of possible runs under obedience
of strategyS by Runs(S), which is assumed to be nonempty. Each such Rumust establish the
collaboration goal, which is assumed to be expressed byaessipredicate on global states (thafsts,
must satisfy it giverR = S°, m, St, ..., my, S*).

In order to account for the case that we do not know the preclaboration strategy adopted by
M (e.g., this could be negotiated in a startup phase), we ntbdahtended behaviour by a nonempty
setZS(M) of possible strategieS. A run R is admissibleif it is possible for somes € ZS(M), i.e.,

R € Usezsr) Runs(S).

The planning frameworkP F, and theMAS M are linked by the basiModelling Assumptiothat
runs inM gracefully correspond to trajectories ¥ and vice versa such th®F models evolutions in
M, and that the planning goal corresponds to the collabarait@l. This is made precise as follows.

Modelling Assumption:

1. There is a one-to-one correspondentebetween messages and actions:, f(m) = a,
and a correspondence, (not necessarily one-to-one) between states 5, in the agent

system and statese Sp in the planning framework$ =N s, such that the initial states in
M andPF correspond among each other;

2. there is a fixed planning godk, defining a planning problen®, such that the states fAF
fulfilling G and the states i/ establishing the collaboration goal correspond among each
other; and

3. the correspondence homomorphically extends to transitin runs inM and transitions
in trajectories iNPF, respectively. That is, for ang’~!,m;, S* in a run, we have that
g(S81), f(m4), g(S") is part of a trajectory ifPF, and conversely, for any;_, a;, s; in a
trajectory,g~!(s; 1), f ' (a;), 97 (s;) is part of a run ofM.

Conditions 2 and 3 of the Modelling Assumption aim at allogvatbstraction in the encoding of the
multi-agent system in the planning formalism; note that ne-tb-one correspondence between trajec-
tories and runs is requested. For example, fluents in tha-agént system might be disregarded in the
planning formulation, such that states in the multi-aggstesm with different fluents values correspond
to the same state in the planning world. On the other handplénening formulation might include
fluents which do not correspond to fluents in the multi-aggatesn and whose value is immaterial for
the intended monitoring task. These fluents can be projentey, leading to a possible many-to-one
correspondence from states in the planning world to stdté®anulti-agent system. We emphasise that
some assumption on the correspondence between, on the otestaes and runs in the multi-agent
system and, on the other hand, states and trajectories gatwap for proving meaningful results.

We shall denote the solutions (plans) for the planning ot by P-Plans. Furthermore, we shall
occasionally simply writen = A, S=s, andR="T for appropriate objects corresponding yiand f.

J.Dix et al./ Monitoring Agents using Declarative Planning 359

The correspondence: induces a notion of similaritgz_. (for short,~) among runs by? ~_. R’ if
and only if there is some trajectofly in PF such thatR = T and R’ = T'. In order to get meaningful
results, we assume that collaboration stratediese closed under similarity; that is, wheneveR €
Runs(S) andR ~ R, then alsaR’ € Runs(S) holds. As a consequence, each trajectory corresponds
either only to admissible runs or to no admissible run.

After these preliminary definitions, our first result contethe soundness of the monitoring ap-
proach. Let us say that a pldh € PF modelsa strategysS, iff each runR € Runs(S) corresponds to
some trajectoryl’ € Sem(P) and vice versa, and that a SgtP = {P; | 7 € I} of plans models a set of
strategiesSS = {S; | i € I}, if eachP; modelsS;.

Theorem 5.1. (Soundness)

Suppose that the sePlans(P) C P-Plans of intended plans for the planning probléin PF models
the intended collaborative behaviour of tMAS A, ZS(M). Let M|oq be a message log. Theh/ is
implemented incorrectly i€ulprit(Miog, P) exists.

Proof:
Let R = S%m4,S,...,my, S* be the run which producetiog=t;:my,...,txmy. Consider the
two different types ofCulprit(M,og, P). Suppose first that it is of forni,,:m,,, timeou} or (timeouy.
Then, a time-out has been detected and we hawek or k = 0, respectively. This means that eithier
has terminated or thal/ is stuck. The monitor agent expects, supported by a traje@ioc Sem(P)
for someP € C-Plans(P, Miog,) (# 0), such thatl’ is compatible with the messages;, ..., m,
in Mjoq, that the execution oM continues, i.e., some messags,; follows. Hence in both cases
(whetherM is terminated or stuck)? ¢ | scz.s(ar) Buns(S). Hence,M is not implemented correctly.
Suppose next thaCulprit(Mieg, P) = (t,:m,,idle). Then, we haved < n < k. By the def-
inition of culprit, we have thaC-Plans(P, Miog,n) = (. This means that there is no trajectory
T = sg,a1,581,-..,a, Sk in the planning frameworkPF such thatl’ € Sem/(P) for someP ¢
I-Plans(P) with the property that the prefif’ = sg,a1,51,-..,a,,8, Of T and the prefixR' =
SY my, St ..., my,, S" of R satisfy R = T'. Hence,R ¢ Usezs(u) Runs(S), which again means
that M is not implemented correctly. This proves soundness. O

The soundness result of the monitoring approach can be @esel to a setting in which the in-
tended collaborative behavioS (M) of the agents is not exactly modelled by some intended plans i
the planning framework, but just cautiously approximaté&tiis is in particular useful if the strategies
governing the collaborative behaviour in tEAS A/ amount to an expressive notion of plans.

For example, thd1ASmight employ a conditional plai®™ [24] in which depending on conditions
c1,... € on the current state, suitable actians. .. 4, are executed, respectively, and a similar strategy
is recursively applied on each case. Conditional plans arg nmportant, since sensing information
(observations from the world) can be suitably respectegy e more liberal than secure plans, which
do not allow for branching on conditions.

However, the planning framewofRF which we employ for agent monitoring might not be capable
of conditional planning, such that we can not moftéf as a respective intended plan; for example, the
K planning framework does not support conditional planniDgspite this obstacle, we might employ
the planning frameworfP F fruitfully for error detection as follows.

360 J.Dix et al./ Monitoring Agents using Declarative Planning

Definition 5.4. Given a planning frameworR F and aMAS M, we say that a sef’P of plans inPF
coversthe intended collaborative behaviour &f, ZS(M), if for each runk € Ugczs) Runs(S),
there exists some plaR € CP and trajectoryl’ € Sem(P) such thatR = 7.

Agentmonitor then uses in Step 3 of its procedure from Definition 4.1 theec6\P instead of the
intended plans-Plans(P). We then writel-Plans(CP), C-Plans(CP, Mqg, 1), Culprit(Meg, CP) etc.
We have the following result:

Theorem 5.2. (Soundness of Covering)

Suppose the planning problefin P.F is such that its accepted solution@P C P*-Plans, cover the
intended collaborative behaviour of tMAS M, given byZS(M). Let M\oq be a message log. Then,
the MASis implemented incorrectly i€ulprit(M,og, CP) exists.

Proof:
The proof is similar to the proof of Theorem 5.1, whérans(P) is replaced withCP. O

As an immediate corollary, we obtain soundness of agentiitor via optimistic plans in theC
planning framework:

Corollary 5.1. (Soundness ofP* Cover)

Let PX be ak planning problem, such that the set? C PX-plans of optimistic plans covers the
intended collaborative behaviour of tNeAS M. Let M|qq be a message log. TheMASis implemented
incorrectly if Culprit(Mog, OF) exists.

In particular, if nothing is known about the collaboratianasegy of M, the setOP might safely
be set toP*-Plans, i.e., all optimistic plans. Then, any behaviour will be eoed, including intended
behaviour governed by a conditional plan, or by a more witei secure plan.

As for completeness of the monitoring method, there is biewr converse of the soundness result for
coversCP of the intended behaviour in general, sif€B might include a plarP which has an associated
trajectory that masks an inadmissible run of MAS M this is the price to pay for overestimating the
intended behaviour.

On the other hand, if all trajectories of plans in the cogét correspond to admissible runs of the
MAS then the cover allows to unveil an incorrddASimplementation, provided certain conditions are
met.

As for a general completeness result, we adopt the followaisgertions. The first is that success-
ful runs can not grow arbitrarily long, i.e., they have a (kmd upper bound on their length. The
second assertion concerns the evolution of MAS with respect to the particular mechanism of mes-
sage logging we build on, which does not foresee recordiate shformation about/. From the
messages itM|og =t1:m1,. .., t;:my, alone, it is in general impossible to infer the state of therag
systemM. We thus assert fol/ the property that any run® = S° m,,S',...,m;, S* andR =
S50 my, St ..., my, S* are similar, i.e.,R ~ R holds; we say thal/ hasone-way logging For ex-
ample, one-way logging is guaranteed in agent systems witrministic message effects and a single
initial state.

Let us call a covelCP for ZS(M) exact if for eachP € CP and eacll’ € Sem(P), there exists
some strategy € ZS(M) and runR € Runs(S) such thafl” corresponds td.

J.Dix et al./ Monitoring Agents using Declarative Planning 361

Theorem 5.3. (Completeness)

Let the planning probler® in PF be such that the sétP C P-plans of selected plans exactly covers the
intended collaborative behaviour oMAS M, given byZS(M), where all admissible runs are bounded.
If M has one-way logging and is implemented incorrectly, thémeei(i) CP = () or (ii) there is some
message log\U|og suchCulprit(Mioeg, P) exists.

Proof:
Suppose thal/ is incorrectly implemented. That is, the intended collative behaviour is violated,
and there is a ru = S% my, S*, ..., my, S* witnessing this fact, i.e.R ¢ Usezsm Buns(S). If

k exceeds the length bound, then any trajectBryuch thatR = T exceeds the length bound as well,
and thusC-Plans(P, Mg, k) = 0 must hold; henceCulprit(Miog, P) exists in this case. Thus, for
the rest assume thatis within the limit. Let Mjog=%1:m1,...,t;:m; be the message log produced
by R; notice that because of one-way loggin®fiog is produced only by run&’ such thatkR’ ~ R.
Towards a contradiction, suppose th@P # () and Culprit(Mqg, P) is not found by agentnonitor.
Thus, there is no time-out detected (and tiiss not judged terminated or stuck), and there must exist
some trajectoried” € Sem(P) for some plans® € CP of form T = sg,my,s1,...,mg,Sk. By
the Modelling Assumption, there exists some rutisof M such thatR’ = T'. Since CP is an exact
cover, at least on&’ among them is admissible, i.ek’ € Runs(S) for someS € ZS(M). Since
the correspondencg between action sets and messages is one-to-oné/ahds one-way logging, it
follows that R’ ~ R. However, by closure of strategies under it follows R € Runs(S) and thus
R € Usezs(m) Runs(S), which is a contradiction. O

In particular, the above theorem holdsGf models the intended behavio#iS(M) (i.e., CP =
I-Plans(P)). In (i), we can conclude a design error, while in (ii) a desig coding error may be present.
Again, we obtain an easy corollary for tlieplanning framework:

Corollary 5.2. (Completeness of ExacP* Cover)

Let PX be ak planning problem, such that the S8 C P*-plans of optimistic plans exactly covers
the intended collaborative behaviour of thRRAS M. If M has one-way logging and is implemented
incorrectly, then either (i(’’P = (or (ii) there is some message 8¢ og SuchCulprit(Meg, P) exists.

Notice that Theorem 5.3 allows us to detect incorrectnespitéea mismatch of the structure of
strategiesS used inM and the structures of plans supportedift.

We may dispose some of the assertions if the strategies mffeelMASsatisfy certain properties. An
example is the case in which the collaborative behaviouoi®med by aonformant strategys, which
means thatS semantically corresponds to a conformant (i.e., secui); ghat is, starting from any
possible initial state, the same sequencems, . . . , m, Of messages is expected to appear (and always
lead to success), regardless of how the global state evolwege model the intended behaviour by
secure plans in the planning framework, then we can dropribeanay logging assertion. We formulate
the result here for the particular formalisk) for which we described secure plans more detailed after
Definition 5.2 above. In fact, it turns out that exact covesstantamount to secure plans.

Lemma5.1. Let P* be ak planning problem, such that the séP C P*-plans of optimistic plans
exactly covers the intended collaborative behavib&()/) of M. Suppose that eachl in ZS(M) is
conformant. Then, each pldh e CP is secure.

362 J.Dix et al./ Monitoring Agents using Declarative Planning

Proof:

Indeed, suppos® € CP is not secure. Every trajectofly € Sem (P) corresponds to some admissible
run R of a strategyS € ZS(M), and some sucli® andS must exist. On the other hand, insecurity
of P = {ay,as,...,a,) implies that there exists some trajectd = sg, a1, 51, ..., am, s, N PX
violating condition (iii) for a secure plan above. That igher m = n and the goal is not established, or
m < n andtr(s,,,anm+1) is either undefined or empty. By the Modelling Assumptidhcorresponds
to a runR’ in M which does not establish the collaboration goal at terronaif M or thatM is stuck.
SinceR’ and R have the same message sequenge. . ., my (Wheref(m;) = a;, 1 < i < k), thisR'
compromises that is conformant. This is a contradiction. O

Theorem 5.4. (Completeness @P* for Secure Strategies)

Let P* be ak planning problem, such that the SP C P*-plans of optimistic plans exactly covers
the intended collaborative behavidli§ (M) of M. Suppose that/ has bounded runs and a conformant
collaboration strategysy,. Then, if M is implemented incorrectly, there is some message\tg; such
that either ()CP = 0, or (i) Culprit(Meg, CP) exists.

Proof:
The argument is similar to that in the proof of Theorem 5.3aiguing towards a contradiction, rather
than concluding thal ~ R’ must hold, we use thak must correspond to some trajectdfy =

50,01, 81, .. ,a, s, wherea; = f(m;), i € {1,...,k}, which does not reach the planning g@al
This trajectory means that the pléh= (aq,...,a,) given by the trajectoryl’ = sg, a1, $1,- - -, an, Sn,
is not secure. However, this is a contradiction to Lemma 5.1. O

For example, in our running scenario, a design error is tledefor conformant plans @8dAS col-
laborative behaviour formalism, if we use secure plan§.iThe culprit vanishes if we move to a cover
which contains in addition the (non-secure) plan since it is compatible witbtM|qg.

We can deploy th& planner also for checking-Plans(P,Meg, n) # 0 or whetherCulprit(Mieg, P)
exists. In particular, if the intended behaviour is expeesby optimistic/secure plans i, deciding
C-Plans(PX, Miog, n) # (is tantamount to optimistic/secure plan existence; tha ptafix given by
Miog, n can easily be encoded in the planning problem itself by agdatresponding constraints.

Let Miog = t1:m1, taima, . .., t,:m,, and letPX be ak planning problem modelling thlAS M at
hand. LetP Miog be the problem obtained fro@" by adding the following to théC program (cf. [7] for
details on the semantics):

initially: stepo.

always : caused false after not m;, stepo.
caused step; after m;.
caused false after not mg, step;.
caused step; after mo.

caused false after not m,, stepp_1.,

wherestepo, . .., step, 1 are newly added propositional fluents. Intuitively, thisdified planning
encoding enforces the “execution” of the messages gy and only plans which comply with these
messages are computed. We therefore obtain the followstre

J.Dix et al./ Monitoring Agents using Declarative Planning 363

Proposition 5.1. Suppose the seDP C P*-plans of optimistic plans foP* (respectively, the set
SP C PKk-plans of secure plans) COVELS(M). Let Miog = tiimy, taima,. .., t,'m, be a message
log. Then,C-Plans(PX, Miog,) # 0 iff Pj\c/llog has an optimistic (resp. secure) plan.

As easily seen, the encodim@j\alog can therefore be used to check the eXiSten(IB,ltp‘rit(Mbg’pIC)
of form (t,,:m,,, idle), while in general we cannot use a planner for detecting adirne theMAS

This encoding is not restricted to our particular formaliskor instance, the computation of plans
compatible with a prefixM,og can be achieved in any planning formalism which allows fomailar
modelling of domains such that certain actions can be fixéisTwe can apply planning also to check
whetherC-Plans(P*, Miog, n) # () or whether aCulprit(Miog, PX) of form (t,,:m,,, idle) exists.

As for complexity, we mention that in expressive planningralisms likeC, deciding whether
C-Plans(P, Miog,) # 0 or Culprit(Miog, P) exists fromP, Mioq andn is NP-hard in general, which
is inherited from the expressive planning language; theesponding complexity results and a discussion
of complexity issues can be found in [7]. We remark that, fikesatisfiability (SAT), NP-hardness (or
even worse, if secure plans are required) is a theoreticastvease measure. Nevertheless, solutions
for many instances can be found quickly, especially if ondyimistic planning is required. Moreover,
there are problem classes which are polynomial time sadvabid for whichpLv* is guaranteed to
compute plans in polynomial time. This highly depends onrdgiirements of intended plans and how
complicated the corresponding planning problem gets.

For small domains, where the number of plans is modetr&&ns (or C-Plans, resp.) might be
computed offline or simply be cached such that checking agait,y becomes simple.

6. Implementation

To demonstrate the proposed method, a running example basrbplemented. In our implementation,
the GofishMASand ageninonitor are developed within IMPACTIfteractive Maryland Platform for
Agents Collaborating TogetherEach agent consists of a sedafta typesAPI functions actions and an
agent prograrthat includes some rules prescribing the behaviour. Sinek [5] is used as the planner,
a new connection module has been created sontlatitor is able to access ttm.v" planner. In this
way, before theGofishMASoperates, we feeB%, ¢, into monitor, which then calloLv* to compute
all potential plans including both secure and optimistangl

Running scenario: The Gofish post office guarantees package delivery wittdrhours from dropOff.
Consider the case that Sue receives an email at thieformed that her package(=0x00fe6206c.1)
has arrived at the distribution center. Sue decides to pickha package herself. Unfortunately, when
she reaches the distribution center at ti2fiethe clerk tells her that the package has been loaded on the
truck at timel9 and it is now on the way to her home.

Because of the guaranteed delivery requirement, agemtitor computes secure plans for the pur-
pose of monitoring:

P, = (dropOff(py); addPkg(p1); distCenter(p;); getRecipInfo(py, dist);recipInfo(py, dist);
truck(p;); getRecipInfo(py, truck); recipInfo(ps, truck); delivery(py);
setDelivTime(py)).

364 J.Dix et al./ Monitoring Agents using Declarative Planning

P, = (drop0ff(p;);addPkg(p;);distCenter(p); getRecipInfo(py, dist); recipInfo(py, dist);
pickup(pi); setDelivTime(py)).

Therefore after the action "pickup”, a mistake was immesdjatietected bynonitor. In the end,
themonitor agent generated a log file as follows:

Problematic action:
20:pickup(0200fe6206c.1), idle

Actions executed:

0:drop0£f£ (0200 fe6206c.1); 5:addPkg (0200 fe6206¢.1);
13:distCenter(0z00fe6206¢.1); 15:getRecipInfo(0z00fe6206¢.1, dist);
16:recipInfo(0z00fe6206¢.1, dist); 19:truck(0z00fe6206¢.1);

Possible plans before problematic action:

(drop0f£(p;); addPkg(p1); distCenter(p;); getRecipInfo(ps, dist); recipInfo(p;, dist);
truck(pi); getRecipInfo(py, truck); recipInfo(py, truck); delivery(pi); setDelivTime(pi))

More information about our running example can be found atpiioject homepade.In addition,
we refer to [26] for the details of IMPACT.

7. Related Work

In contrast to research on plan generation, there has b&sively little work on the use of plans to
debug aMAS and to monitor the execution of agents. As plans can be exgdut one agent or by
many collaborative agents, in this section, we review eelatork in (1) single-agent settings, and (2)
multi-agent environments.

7.1. Monitoring in Single-Agent Settings

Interleaving monitoring with plan execution has been asksked in the context of single agent environ-
ment in [12], where the authors present a situation caleofised account of execution monitoring for
robot programs written in Golog. A situation calculus sfieation is given for the behaviour of Golog
programs. Combined with the interpretation of Golog proggaan execution monitor detects the dis-
crepancy after each execution of a primitive action. Onciserepancy is found, the execution monitor
checks whether it iselevantin the current state, that is, whether preconditions of e action still
hold with the effect of an exogenous action. If this exogenaction does matter,racovermechanism
will be invoked. The method of recovering is based on plagniy new plan (or program) is computed
whose execution will make things right by way of leading therent state to the desired situation, had
the exogenous action not occurred. In their work, declaatpresentations have been proposed for the
entire process of plan-execution, -monitoring and -reppv@imilar to our method, the approach is com-
pletely formal and capable of monitoring arbitrary progsanthe authors have addressed the problem
of recovering from failure, which is not included in our syt for the moment. However, their approach
must know in advance all exogenous events in order to spapjfyopriateelevancechecks andecover

6http ://www.cs.man.ac.uk/"zhangy/project/monitor/

J.Dix et al./ Monitoring Agents using Declarative Planning 365

mechanisms. In addition, they do not explore in-depth hoprtperly defineRelevantand Recover
The framework was later expanded in [25] by introducingitr@@and backtracking into the process of
online monitoring of Golog programs.

To enable generation of plans in dynamic environments,Séeta al. [28] introduc®ationale-Based
Monitoring based on the idea of planning as decision making. Ratidreded monitors encode the
features that are associated with each planning decisitie. nfethod is used for sensing relevant (or
potentially relevant) features of the world that likelyeadt the plan. Moreover, it investigates the balance
between sensitivity to changes in the world and stabilityhef plans. Although this approach provides
the planner opportunities to optimise the plans in a dynaeniironment during plan generation, as
opposed to our approach, they have not studied the issuesofittan monitoring.

As the methods mentioned above address the problensiofjfe agentacting in an uncertain envi-
ronment, the techniques focus on monitoring of environnaent verifying plans. While our approach
could be directly applied to single agent domains, thesecggpes need extra work in order to handle
monitoring the collaboration of multiple agents.

7.2. Monitoring of Multi-Agent Coordination

Teamwork monitoring has been recognised as a crucial groblenulti-agent coordination. Jennings
proposes two foundations of multi-agent coordination id]{lcommitment&nd conventions Agents
make commitments, and conventions are a means of monitofitige commitments. The monitoring
rules, i.e., what kind of information is monitored and thepaaw to perform monitoring, are decided by
conventions. Jennings illustrates the method by some draimiput does not investigate how to select
such conventions. Different from his idea, our approachdsvthe problem of monitoring selectivity.

Myers [23] introduces a continuous planning and executiaméwork (CPEF). The system’s central
component is a plan manager, which directs the processdarefpneration, -execution, -monitoring,
and -repair. Monitoring of the environment is carried oualitime during plan generation and execu-
tion. Furthermore, execution is tracked by the plan manbgeromparing reports of individual action
outcomes with the temporal ordering relationships of asticGeveral types of event-response rules have
been concerned: (Tailure monitorsencode suitable responses to potential failures during @tacu-
tion, (2) knowledge monitorsgletect the availability of information required for deoisimaking, and
(3) assumption monitorsheck whether assumptions that a given plan relies on siidl. hThe idea of
assumption monitors helps early detection of potentiablgms before any failure occurs, which can
also be achieved in our system with a different approach.e@apon CPEP, Wilkins et al. present a
system in [29]. The execution monitoring of agent teams rfop@med based on communicating state
information among team members that could be any combimafictumans and/or machines. Humans
make the final decision, therefore, even if unreliable comications exist, the monitoring performance
may not be degraded much with the help of human experience.

Another interesting monitoring approach in multi-agenorciination is based oplan-recognition
by Huber [15], Tambe [27], Intille and Bobick [16], DevaneydaRam [1], Kaminka et al. [18, 20].
In this approach, an agent’s intentions (goals and plamdiefb or future actions are inferred through
observations of another agent’s ongoing behaviour.

Devaney and Ram [1] described the plan recognition probieendgomplex multi-agent domain in-
volving hundreds of agents acting over large space and tiaes They use pattern matching to recog-
nise team tactics in military operations. The team-plarahp stores several strategic patterns which the

366 J.Dix et al./ Monitoring Agents using Declarative Planning

system needs to recognise during the military operationordier to make computation efficient, they
utilise representations of agent-pair relationshipsdant behaviour recognition.

Intille and Bobick [16] construct a probabilistic framewdhat can represent and recognise complex
actions based on visual evidence. Complex multi-agenbmgt inferred using a multi-agent belief
network. The network integrates the likelihood values gateel by several visual goal networks at
each time and returns the likelihood that a given action lemnlobserved. The network explicitly
represents the logical and temporal relationships betwagents, and its structure is similar to a naive
Bayesian classifier network structure, reflecting the tewmpstructure of a particular complex action.
The approach relies on abordination constraintemong the agents. Once an agent fails, it may not be
able to recognise the plans.

Another line of work has been pursued by Kaminka et al. [18, ®B0 developed th©OVERSEER
monitoring system building upon work on multi-agent placagnition in [16, 27]. The authors address
the problem of many geographically distributed team memibellaborating in a dynamic environment.
The system employs plan recognition to infer the currertiesibagents based on the observed messages
exchanged between them. The basic componentpmiaabilistic plan-recognition algorithnwhich
underlies the monitoring of a single agent and runs sepgrfiieeach agent. This algorithm is built
under a Markovian assumption and allows linear-time infeee To monitor multiple agentsocial
knowledgei.e. relationships and interactions among agents, isedilfor better predicting the behaviour
of team members and detect coordination failur€8/ERSEERsupports reasoning about uncertainty
and time, and allows to answer queries related to the ligetihof current and future team plans.

While our objective is (1) to debugffline an implementedMAS and (2) to monitoonline the col-
laboration of multiple agents, the plan-recognition apgtes described above mainly aim to inferring
(sub-)team plans and future actions of agents. MIA&debugging issue is not addressed. Furthermore,
we point out that our method might be used in #hW&Sdesign phase to suppgmotocol generationi.e.,
determine at design time the messages needed and their forde(simple) agent collaboration. More
precisely, possible planB = (m,...,my) for a goal encode sequences of messages. ., my that
are exchanged in this order in a successful cooperatiorednli the goal. The agent developer may
select one of the possible plans, e.g. according to optiynaiiteria such as least cogt, and program
the individual agents to obey the corresponding protoaolsubsequent monitoring and testidg; is
then the (single) intended plan.

However, plan recognition is suitable for various situasioif communication igiot possible, agents
exchanging messages are not reliable, or communicatioss lmeusecure. It significantly differs from
our approach in the following points:

(1) If a multi-agent system has already been deployed, or if nisis of legacy code, the plan-
recognition approach can do monitoring without modificagiaon the deployed system. Our method
entirely relies on an agent message log file.

(2) The algorithms developed in [20] and [1] have low computaiocomplexity. Especially the
former is a linear-time plan recognition algorithm.

(3) Our model is not yet capable of reasoning about uncertdintg and space.

(4) In some tasks, agents do not frequently communicate withrsttiuring task execution. In addi-
tion, communication is not always reliable and messagesheagycorrect or get lost.

J.Dix et al./ Monitoring Agents using Declarative Planning 367

We believe the first three points can be taken into accountiirframework. (1) Adding an agent
actions log file explicitly for a giveMASshould not be too difficult. (2) While the developed algarith
are of linear complexity, the whole framework needs to de#i wncertainty or probabilistic reasoning
which can be very expensive. Although our approach is N@-imathe worst case, we did not encounter
any difficulties in the scenarios we have dealt with. (3) IMFAdoes not yet have implemented ca-
pabilities for dealing with probabilistic, temporal andasipl reasoning, but such extensions have been
developed and are currently being implemented.

Among the advantages of our method are the following:

e Our method can be more easily extended tpldn repairthan the methods above. Merely Kaminka
et al. [19] introduce the idea of dealing with failure acgon

e The approach we have chosen includes protocol generatiawvény intuitive sense relying on the
underlying planner while the cited approaches model ageimaiour at an abstract level which can not
be used to derive intended message protocols directly.

e Since ascertaining the intentions and beliefs of the otgents will result in uncertainty with re-
spect to that information, some powerful means of reasomngr uncertainty are required for the plan
recognition method.

8. Conclusion

We have described a method to support testing of a multitagyetem, based on monitoring their mes-
sage exchange using planning methods. This can be seen gsusgiil debugging tool for detecting
coding and design errors. We also presented some soundrkssrapleteness results for our approach,
and touched upon its complexity.

Our approach works for arbitrary agent systems and can loegdito any planning formalism that is
able to express the collaborative behaviour ofM#eS We have briefly discussed (and implemented) how
to couple a specific planneL.v*, which is based on the languafe to a particulaMASplatform, viz.
IMPACT. A webpage for further information and detailed domntation has been set up (see footnote 6).

Of course, our approach is not yet mature, and in this papdoeused on presenting the conceptual
idea. Several issues remain to be addressed in further ionk.issue concerns the modelling of multi-
agent systems in a planning framework. This seems to becplantiy important for complex multi-
agent systems, since modelling such a system is not easynarajeand requires a thought-through
methodology. The methodology described in this paper menelvides some rules of thumb. Clearly,
developing a good methodology is not a simple task, and adgjuire quite some efforts.

Another issue is scalability of our approach. The example&lwive have considered in this paper
is of moderate size, and for larger multi-agent systemspthening tasks will become more difficult
to solve. It remains to be explore to which size of systemsamoroach remains feasible, depending
on different underlying planning techniques. Howeveradly in multi-agent systems of moderate size
(which are not unrealistic in practice) verifying the catréehaviour of agents may be difficult and
laborious, and tool support will be acknowledged.

There are also several extensions to our basic approach.ameom just some of the planned future
research in this direction:

368 J.Dix et al./ Monitoring Agents using Declarative Planning

(1) Cost based planning: Can the goal still be reached witbrio bound on the overall costs,
given that actions which the agents take have costs as§igAad, what is the optimal cost and how
does the corresponding behaviour look like? This wouldvalls to assess the quality of an actual
agents behaviour and to select cost-effective strategeekeep the exposition simple, we have omitted
that pLV* is also capable of computing admissible plans (plans withost bound) and, moreover,
optimal plans over optimistic and secure plans, respethtiageach action has certain declared costs [6].
For instance, in th&ofish example we might prefer plans where the customer picks updlckage
herself, which is cheaper than sending a truck. Thus, inghtsation of our approach, also economic
behaviour of agents inllASunder cost aspects can be easily monitored, such as obede®smallest
number of message exchanges or least total communicatstn co

(2) Dynamic planning: We assumed arpriori chosen collaboration plan fo¥1,q compatibility.
This impliesC-Plans(P, Mo, n') C C-Plans(P, Mjog,n), for all n' > n > 0. However, this no
longer holds if the plan may be dynamically revised. Chegkog compatibility then amounts to a
new planning problem whose initial states are the stateheebafter the actions iM|qg.

(3) At the beginning of monitoring, all potentially intete®y plans for the goal are generated, and
they can be cached for later reuse. We have shown the adeanvdghis method. However, if a very
large number of intended plans exists up front, the methogdbmaome infeasible. In this case, we might
just check, similar to above, whether from the states phsséached by the actions iM,qg, the goal
can still be established.

Investigating the above and further issues is part of oupimiggand future research, which will be
carried out in the context of the project “An Answer Set Pamgming Framework for Reactive Planning
and Execution Monitoring” which is funded by the Austriarié®ce Funds (FWF).

References

[1] Devaney, M., Ram, A.: Needles in a Haystack: Plan Redagnin Large Spatial Domains Involving Multi-
ple AgentsProceedings 15th National Conference on Atrtificial Intggihce and 10th Innovative Applications
of Artificial Intelligence Conference, AAAI 98998.

[2] Dix, J., Kuter, U., Nau, D.HTN Planning in Answer Set Programmin@echnical Report CS-TR-4332, CS
Department, Univ. Maryland, 2002, SubmittedTieeory and Practice of Logic Programming

[3] Dix, J., Munoz-Avila, H., Nau, D., Zhang, L.: Theoretiand Empirical Aspects of a Planner in a Multi-
Agent Environment,Proceedings of Journees Europeens de la Logique en Irdaliig artificielle (JELIA
'02) (G. lanni, S. Flesca, Eds.), LNCS 2424, Springer, 2002.

[4] Eiter, T., Faber, W., Leone, N., Pfeifer, G.: DeclaratRroblem-Solving Using the DLV System, ihogic-
Based Artificial IntelligencéJ. Minker, Ed.), Kluwer Academic Publishers, 2000, 79-103

[5] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, ALogic Programming Approach to Knowledge-State
Planning, Il: The DL\F System,Artificial Intelligence 144(1-2), 2002, 157-211.

[6] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, Answer Set Planning under Action Costiurnal
of Artificial Intelligence Researgii9, 2003, 25-71.

[7] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, ALogic Programming Approach to Knowledge-State
Planning: Semantics and Complexi%cM Transactions on Computational LogR003, To appear.

J.Dix et al./ Monitoring Agents using Declarative Planning 369

[8] Erol, K., Hendler, J. A., Nau, D. S.: UMCP: A Sound and Cdete Procedure for Hierarchical Task-network
Planning, Proceedings Second International Conference on Artificigdlligence Planning Systems (AIPS-
94) (K. J. Hammond, Ed.), AAAI Press, June 1994.

[9] Fikes, R. E., Nilsson, N. J.: STRIPS: A new Approach to &pplication of Theorem Proving to Problem
Solving, Artificial Intelligence 2(3-4), 1971, 189-208.

[10] Gelfond, M., Lifschitz, V.: Representing Action and &fge by Logic Programspurnal of Logic Program-
ming, 17, 1993, 301-321.

[11] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Rak., Veloso, M., Weld, D., Wilkins, D.PDDL
— The Planning Domain Definition languag&echnical report, Yale Center for Computational Visiom an
Control, October 1998, Available at http://www.cs.yatkifpub/mcdermott/software/pddl.tar.gz.

[12] Giacomo, G. D., Reiter, R., Soutchanski, M.: Executianitoring of High-Level Robot ProgramsPro-
ceedings Sixth International Conference on Principlesmdledge Representation and Reasoning (KR 98)
1998.

[13] Giunchiglia, E., Lifschitz, V.: An Action Language Bed on Causal Explanation: Preliminary Repdtio-
ceedings of the Fifteenth National Conference on Artifimglligence (AAAI '98)1998.

[14] Goldman, R., Boddy, M.: Expressive Planning and BExpkmowledge, Proceedings Third International
Conference on Atrtificial Intelligence Planning System$@96) AAAI Press, 1996.

[15] Huber, M. J., Durfee, E. H.: On Acting Together: With@mmmunication, inSpring Symposium Working
Notes on Representing Mental States and Mechanigmmerican Association for Artificial Intelligence,
Stanford, California, 1995, 60-71.

[16] Intille, S. S., Bobick, A. F.: A Framework for Recogmigj Multi-Agent Action from Visual EvidenceRro-
ceedings 16th National Conference on Atrtificial Intelligerand 11th Conference on on Innovative Applica-
tions of Artificial Intelligence (AAAI/IAAI 9911999.

[17] Jennings, N. R.: Commitments and Conventions: The Bation of Coordination in Multi-Agent Systems,
The Knowledge Engineering Revied(3), 1993, 223-250.

[18] Kaminka, G. A., Pynadath, D. V., Tambe, M.: Monitoringployed Agent Teams2roceedings of the Fifth
International Conference on Autonomous Agents (Agen@d-RACM, 2001.

[19] Kaminka, G. A., Pynadath, D. V., Tambe, M.: Monitoringdms by Overhearing: A Multi-Agent Plan-
Recognition Approachj]ournal of Artificial Intelligence Research7, 2002, 83—135.

[20] Kaminka, G. A., Tambe, M.: Robust Agent Teams via Sdgiattentive Monitoring, Journal of Artificial
Intelligence Researgi2, 2000, 105-147.

[21] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, FheBl¢ R. B.: GOLOG: A Logic Programming Language
for Dynamic DomainsJournal of Logic Programming81(1-3), 1997, 59-83.

[22] Luck, M., McBurney, P., Preist, C., Guilfoyle, C.: ThegantLink Agent Technology Roadmap Draft, 2002,
AgentLink, available ahttp://www.agentlink.org/roadmap/index.html.

[23] Myers, K.: FPEF: A Continuous Planning and ExecutioarfRework,Al Magazing 20(4), 1999, 63—69.

[24] Peot, M. A., Smith, D. E.: Conditional Nonlinear Plangj Proceedings 1st International Conference on
Artificial Intelligence Planning Systems (AIPS; 2AAl Press, 1992.

[25] Soutchanski, M.: Execution Monitoring of High-Levekémporal ProgramsProc. 1JCAI 99 Workshop on
Robot Action Planning, July 31, 1999, Stockholm, Swetie89.

370 J.Dix et al./ Monitoring Agents using Declarative Planning

[26] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Ksa8., Ozcan, F., Ross, Rieterogeneous Agent Systems:
Theory and ImplementatioMIT Press, 2000.

[27] Tambe, M.: Tracking dynamic team activiffroceedings 13th National Conference on Artificial Intgince
(AAAI-96) 1996.

[28] Veloso, M. M., Pollack, M. E., Cox, M. T.: Rationale-Ba Monitoring for Planning in Dynamic Envi-

ronments,Proceedings 4th International Conference on Artificiallifigence Planning Systems (AIPS-98)
1998.

[29] Wilkins, D., Lee, T., Berry, P.: Interactive Executidfionitoring of Agent Teams, Journal of Artificial
Intelligence Researcii8, 2003, 217-261.

