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1. Introduction

Multi-agent systems have been recognised as a promising paradigm for distributed problem solving.
Indeed, numerous multi-agent platforms and frameworks have been proposed, which allow to program
agents in languages ranging from imperative over object-oriented to logic-based ones [22]. A major
problem that agent developers face with many platforms is toverify that a suite of implemented agents
collaborate well in order to reach a certain goal (e.g., in supply chain management). Tools for automatic
verification1 are rare. Thus, common practice is geared towards extensiveagent testing, employing
tracing and simulation tools (if available).

In this paper, we present amonitoringapproach which aids in automatically detecting that agentsdo
not collaborate as intended. In the spirit of Popper’sprinciple of falsification, it aims at refuting from
(possibly incomplete) information at hand that an agent system works properly, rather than proving its
correctness. In our approach, agent collaboration is described at an abstract level, and the single steps in
runs of the system are examined to see whether the agents behave ”reasonable,” i.e., ”compatible” with
a sequence of steps for reaching a goal.

Even if the internal structure of some agents is unknown, we may get hold of the messages exchanged
among them. A given message protocol allows us to draw conclusions about the correctness of the agent
collaboration. Our monitoring approach is based on this fact and involves the following steps:

(1) The intended collaborative behaviour of the agents is modelled as aplanning problem. More
precisely, knowledge about the actions performed by the agents (specifically, messaging) and their effects
is formalised in anaction theory, � , which can be reasoned about to automatically constructplansas
sequences of actions to reach a given goal.

(2) From� and the collaborative goal�, a set of intended plans,I-Plans, for reaching� is generated
via a planner.

(3) The observed agent behaviour, i.e., the message actions from amessage log, is then compared to
the plans inI-Plans.

(4) In case an incompatibility is detected, an error is flagged tothe developer (or user, respectively),
pinpointing the last action causing the failure so that further steps might be taken.

Steps (2)–(4) can be done by a specialmonitoring agent, which is added to the agent system providing
supports both during testing, and in the operational phase of the system. Among the benefits of this
approach are the following:

� It allows to deal with collaboration behaviour regardless of the implementation language(s) used for
single agents.

� Depending on the planner used in Step (2), different kinds ofplans (optimal, conformant, . . . ),
might be considered, reflecting different agent attitudes and collaboration objectives.

� Changes in the agent messaging by the system designer may be transparently incorporated to the
action theory� , without further need to adjust the monitoring process.

1By well-known results, verification is impossible in general, even in simple cases when details of some agents (e.g., in het-
erogenous environments) are missing.
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� Furthermore,� forms a formal system specification, which may be reasoned about and used in
other contexts.

� As a by-product, the method may also be used for automaticprotocol generation, i.e., determining
the messages needed and their order, in a (simple) collaboration.

In the following, we detail our approach and illustrate it with an example derived from an imple-
mented agent system. The next section describes the basic agent framework that we build upon and
presents a (here simplified version of a) multi-agent systemin the postal services domain. In Section 3
we describe how to model the intended behaviour of a multi-agent system as an abstract planning prob-
lem, and instantiate this for our example system using the action language� [7, 5]. Our approach to
agent monitoring is then discussed in Section 4; some fundamental properties are investigated in Sec-
tion 5. After a brief discussion of the implementation in Section 6 and a review of related works in
Section 7, we conclude in Section 8 with an outlook on furtherresearch.

2. Message Flow in a Multi-Agent System

In a multi-agent system (MAS), autonomous agents are collaborating to reach a certain goal. Our aim is
to monitor (some aspects of) the behaviour of the agents in order to detect inconsistencies and help to
debug the whole system.

As opposed to verification, monitoring aMASdoes not require a complete specification of the be-
haviour of the particular agents. Rather, we adopt a more general (and in practice much more realistic)
view: We do not have access to the (entire) internal state of each single autonomous agent, but we are
ableto observe the communication between agentsof the system. By means of its communication capa-
bilities, an agent can potentially control another agent. Our aim is to draw conclusions about the state of
a multi-agent system by monitoring the message protocol.

2.1. Basic Framework

We consider multi-agent systems consisting of a finite set� � ���� � � � � ��	 of collaborating agents
�
. Although agents may perform a number of different (internal) actions, we assume that only one
action is externally observable, namely an action called��
� ������, which allows an agent to send a
message,�, to another agent in the system. Every��
� ��� action is given a timestamp and recorded
in a message log file containing the history of messages sent.The following definitions do not assume a
sophisticated messaging framework and apply to almost anyMAS. Thus, our framework is not bound to
a particularMAS.

Definition 2.1. (Message,�log file)
A messageis a quadruple� � �����c � � �, where��� � � are the identifiers of thesendingand there-
ceivingagents, respectively;c � C is from a finite setC of message commands; � is a list of constants rep-
resenting themessage data. A message log fileis an ordered sequence�log = ��:�����:��� � � � � ��:��
of messages�
 with timestamps�
, where�
 � �
��,  ! ".

The setC constitutes a set of messageperformativesspecifying the intended meaning of a message.
In other words, it is the type of a message according to speechact theory: the illocutionary force of an
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Figure 1. TheGofish post office system.

utterance. These commands may range fromask/tell primitives to application specific commands fixed
during system specification.

Often, an agent�
 will not send every kind of message, but use a message repertoire C
 � C.
Moreover, only particular agents might be message recipients (allowing for simplified formats). Given
that the repertoiresC
 are pairwise disjoint and each message typec has a unique recipient, we will use
�c� � � in place of� � �����c � � �.

Finally, we assume a fixed bound on the time within the next action should happen in theMAS, i.e., a
timeout for each action (which may depend on previous actions), which allows to determine from�log

whether theMASis stuck or still idle.

2.2. Gofish Post Office

We consider an exampleMAScalledGofish Post Officefor postal services. Its goal is to improve postal
services by mail tracking, customer notifications, and advanced quality control. The following scenario
is our running example:

Example scenario:Pat drops a package,��, for a friend, Sue, at the post office. In the evening, Sue is
informed through a phone call that a package has been sent. The next day, Sue decides to pick up the
package herself at the post office on her way to work. Unfortunately, the clerk has to tell her that the
package is already on a truck on its way to her home.

The overall design of theGofish MAS is depicted in Figure 1. Anevent dispatcher agent(����)
communicates system relevant (external) events to anevent management agent(��) that maintains an
event database. Information about packages is stored in a package database manipulated by apackage
agent(��). Thenotification agent(��	�
�) notifies customers about package status and expected de-
livery time, for which it maintains a statistics database. Finally, a zip agent(���) informs responsible
managers, which are stored in a manager database, about zip codes not being well served.

Example 2.1. (SimpleGofish)
To keep things simple and illustrative, we restrict theGofish MASto the package agent,��, the event
management agent,��, and the event dispatcher agent,����; thus,� � ���� �������	. The messages
concerning agent��	�
� will be discussed in the extended version of the example at the end of Section 4.
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Agent ���� informs agent�� about a package (identified by a unique identifier) being dropped
off at the post office, its arrival at the distribution center, its loading on a truck, its successful delivery,
or when a recipient shows up at the distribution center to pick up the package by herself:C���� �
�dropOff�distCenter � truck�delivery� pickup	. Agent�� instructs agent�� to add a package to the pack-
age database after the drop off, as well as to update the delivery time after delivery or customer pickup:
C�� � �addPackage�setDelivTime	. The package agent here only receives messages, thusC�� � �	.

3. Modelling Agent Behaviour via Declarative Planning

We now discuss how to formalise the intended collaborative behaviour of agents as an action theory for
planning that encodes a legal message flow. In it, actions correspond to messages and fluents represent
assumptions about the current state of the world.

Under suitable encodings, we could use planning formalismslike STRIPS [9], PDDL [11] or HTN [8]
based planners to model simple agent environments. In fact,HTN planning has recently been incor-
porated in aMAS [3] and formulated as action theories in logic programming [2]. Another powerful
language suitable for modelling control knowledge and plans for agents is Golog [21]. However, due
to its high expressive power (loop, conditionals) automated plan generation is limited in this formalism.
In Subsection 3.1 we give a generic formulation of our approach, independent of a particular planning
mechanism. Then, in Subsection 3.2 we instantiate this high-level description using the action language
� [7, 5]. While our approach does not rely on�, we have chosen it because of its declarative nature and
its capabilities of dealing with incomplete knowledge and nondeterminism.

3.1. Modelling Intended Behaviour of aMAS

Our approach to formalise the intended collaborative behaviour of a MAS consisting of agents� �
���� � � � � ��	 as a planning problem

�
comprises three steps:

Step 1: Actions (Act). Declare a set ofactionssuch that correspondingactionsfor each message� �
�����c � � � in our domain, i.e., we havec������ � � Act (see Def. 2.1). Again, if the message repertoires
C
 are pairwise disjoint and each message typec has a unique recipient, we simply writec�� �. These
actions might have effects on the states of the agents involved and will change the properties that hold
on them.

Step 2: Fluents (Fl). Define properties,fluents, of the “world” that are used to describe action effects.
We distinguish between the sets ofinternal fluents,2 	 
�, of a particular agent� andexternalfluents,	 
�
�, which cover properties not related to specific agents. These fluents are often closely related to the
message performativesC
 of the agents.

Step 3: Theory (T) and Goal (G). Using the fluents and actions from above, state various axioms about
the collaborative behaviour of the agents as aplanning theory� . The axioms describe how the various
actions change the state and under which assumptions they are executable. Finally, state the ultimate
Goal� (in the running scenario: to deliver the package) suitable for the chosen planning formalism.

We end up with aplanning problem
� � �Act�Fl �T�G�� whereFl � ���� Fl� �Flext� whosesolutions

are a set of
�

-Plans. Note that the precise formulation of these notions dependson the underlying

2Internal fluents especially can describe private values which might be inaccessible by an external observer.
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planning formalism. For example, in HTN planning one has to specify operatorsandmethodsand their
effects (this is closely related toActandFl above), as well as a domain description and a task list (which
corresponds toT andG above); we refer to [2] for a full discussion.

The above description is a generic formulation suitable formany planning frameworks. We shall
consider planning at an abstract level in these frameworks in Section 5. In the remainder of this section,
we turn to the particular planning framework built around the language�.

3.2. Using Action Language�
In this section, we instantiate the planning problem

�
described above to a problem

��
formulated in the

action language�. Rather than giving a detailed review of the language� and its planning framework,
we describe here for space reasons only the key features and refer to [7, 5] for further details.

The language� (where� stands for planning withknowledgestates) is a member of a family of
logic-based action languages in the area of knowledge representation and reasoning. These languages
aim at providing a flexible, declarative formalism for reasoning about actions and their effects, on which
planning systems might be built. Prominent languages in this family are the languages� [10] and�
[13]. Compared with these languages� is closer to logic programming than to classical logic, since
it includes respective features (e.g., default negation and strong negation). In a nutshell,� offers the
following distinguishing features:

� handling incomplete knowledge:for a fluent�, in a state neither� nor �� may be known.

� nondeterministic effects:actions may have multiple possible outcomes.

� optimistic and secure (conformant) planning:construction of “credulous” plans or “sceptical”
plans which work in all cases.

� parallel actions:more than one action may be executed simultaneously.

An operational prototype of a planning system for�, ����, built as frontend on top of the��� system
[4], is available at	

� �

��� ������
����
 �����

����
���
.

In �, an action domain is defined by the staticbackground knowledge�� , which specifies a finite
set of static facts through a non-monotonic logic program ina function-free first-order language, and a
dynamic action description,��. Actions and fluents,�, are defined by declarations of the form

� ��� �������� �"�� ��� � � � � �"! � !�

where
� � ��� � � � ��� is a list of parameters, each of which must betypedby some predicates�"�� � � � �

�"!, which are defined in"#. In addition, to specify action executions and effects,� allows to state
axioms of the following forms:

$%& '()*+, - ./ 0 (/1+2 34$5& 161(7 - ./ 0 (/1+2 34$8& .9+21.(7 - 4$:& +;+')1(<7+ = ./ 34$>& 969+;+')1(<7+ = ./ 34
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Here� is a fluent literal,� an action,� a set of (possibly default negated) fluent literals, and
�

is a set of
(possibly default negated) actions and fluent literals:

(1) means that fluent� is caused whenever� holds after
�

. (2) simulates nondeterministic effects:
its meaning is that fluent� is either true or false if� holds after

�
. (3) models inertia of a fluent�:

it is a macro for
������ � �� 
�
 ��� ��
���, where
�
 is default negation and� is strong nega-

tion. Furthermore, by (4) and (5) we can express under which circumstances an action isexecutableor
nonexecutable.

A planning problem
��

in � may then be formalised, according to the general schema fromSec-
tion 3.1 above, as a tuple�Act�Fl �T�G�, whereAct defines the actions,Fl the fluents,T comprises��
and all axioms (of the sorts introduced above), andG is the goal, i.e. a set of ground fluent literals.

The semantics of� is defined throughtransitions� � �������� from states� to states�� by simulta-
neous execution of a actions�, where astate� is any consistent set of ground fluent literals.3 Roughly,
the action description yields a non-monotonic logic program which computes the possible successor
states�� from � and� in its models.

A trajectory� � is then any initial state�� (which must comply with the integrity constraints in the
planning theory) or sequence��� � � � � �� of transitions�
 � ��
	���
 ��
�,  � �
� � � � � �	, starting in
an initial state��.4 An (optimistic) planfor goal� is � = ��, or the projection� = ���� � � � ���� of a
trajectory� �, such that� holds in��, or ��, respectively.

Example 3.1. (SimpleGofish cont’d)
In theGofishexample, the following� actions (corresponding to the possible messages) and fluents are
defined (in���� notation [5]):

('1.69* 
 ,26��//$�& 2+�).2+* ���$�&4
(,,���$�& 2+�).2+* ���$�&4,.*1�+91+2$�& 2+�).2+* ���$�&4
12)'�$�& 2+�).2+* ���$�&4,+7.�+2�$�& 2+�).2+* ���$�&4�.'�)�$�& 2+�).2+* ���$�&4
*+1�+7.��.�+$�& 2+�).2+* ���$�&4

���������
��������

Act

/7)+91* 
 ����1$���6'& 2+�).2+* ���$�&�76'$�6'&4,+7.�+2+,$�& 2+�).2+* ���$�&4
2+'.��1�6�+$�& 2+�).2+* ���$�&4
(,,+,$�& 2+�).2+* ���$�&4,+7.��.�+ +1$�& 2+�).2+* ���$�&4

�����
����

Fl

The first three external fluents describe the current location of a package, whether it has been successfully
delivered, and, whether its recipient is at home, respectively. The last two fluents are internal fluents about
the state of agent�� describing whether the package has already been added to thepackage database
and whether the delivery time has been set properly, respectively.

A possible package (e.g., a generic��) and its locations form the background knowledge represented
by the set of facts��=��"! ����� 
"#���"��� 
"#�� ���� 
"#���$#"�	. Now we specify further axioms
for � (in ���� notation) as follows:

3Note that in% states are not “total”, i.e., a fluent& can be neither true nor false in a state.
4In [7, 5], states and transitions occurring in possible trajectories are calledlegal, in order to distinguish them from other
transitions which are meaningless for executions and planswrt. to the domain of discourse. Here, we just omit this distinction.
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.9.1.(77� 
 2+'.��1�6�+$��&4
(7�(�* 
 96�69')22+9'�4
.9+21.(7 ����1$���6'&4.9+21.(7 ,+7.�+2+,$�&4.9+21.(7 2+'.��1�6�+$�&4.9+21.(7 (,,+,$�&4
+;+')1(<7+ ,26��//$�& ./ 961 (,,+,$�&4'()*+, ����1$��,26�& (/1+2 ,26��//$�&4
969+;+')1(<7+ ,26��//$�& ./ ����1$��,26�&4
+;+')1(<7+ (,,���$�& ./ ����1$��,26�&�961 (,,+,$�&4'()*+, (,,+,$�& (/1+2 (,,���$�&4
+;+')1(<7+ ,.*1�+91+2$�& ./ (,,+,$�&�����1$��,26�&4'()*+, ����1$��,.*1& (/1+2 ,.*1�+91+2$�&4'()*+, -����1$��,26�& (/1+2 ,.*1�+91+2$�&4
+;+')1(<7+ 12)'�$�& ./ ����1$��,.*1&�961 ,+7.�+2+,$�&4'()*+, ����1$��12)'�& (/1+2 12)'�$�&4'()*+, -����1$��,.*1& (/1+2 12)'�$�&4
+;+')1(<7+ ,+7.�+2�$�& ./ ����1$��12)'�&� 961 ,+7.�+2+,$�&4'()*+, ,+7.�+2+,$�& (/1+2 ,+7.�+2�$�&�2+'.��1�6�+$�&4
+;+')1(<7+ *+1�+7.��.�+$����.�+& ./ ,+7.�+2+,$�&4'()*+, ,+7.��.�+ +1$�& (/1+2 *+1�+7.��.�+$�&4
+;+')1(<7+ �.'�)�$�& ./ ����1$��,.*1&� 961 ,+7.�+2+,$�&4
+;+')1(<7+ �.'�)�$�& ./ ����1$��12)'�&� 961 ,+7.�+2+,$�&4'()*+, ,+7.�+2+,$�& (/1+2 ����1$��,.*1&� �.'�)�$�&4
161(7 2+'.��1�6�+$�& (/1+2 �.'�)�$�&4

Most of the theory is self-explanatory. The recipient is at home initially. The keyword
���
�����
��
specifies that concurrent actions are disallowed. An important aspect is modelled by the final
�
��
statement. It expresses uncertainty whether after a pickupattempt at the distribution center, the recipient
will be back home, in particular in time before the truck arrives to deliver the package, if the truck is
already on the way. Finally, the goal is� = �����������
����.

The following (optimistic) plans reach�:

�� � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
12)'�$��&
�.'�)�$��&
,+7.�+2�$��&
*+1�+7.��.�+$��&��� � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
12)'�$��&
,+7.�+2�$��&
*+1�+7.��.�+$��&��
 � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
�.'�)�$��&
*+1�+7.��.�+$��&�

In ��, the recipient shows up at the distribution center after thepackage is loaded on the truck and the
truck is on its way. In��, the package is successfully delivered before the recipient comes to pick it up
herself, whereas in��, she picks up the package before it has been loaded on the truck.

Running scenario:We assume the following entries in the message log�log= 0:����� � ���dropOff ����,
5:�������addPackage ����, 13:����� � ���distCenter ����, 19:����� � ��� truck����, 20:����� � ���
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pickup����. According to the message history in�log, we can see that plan�� is infeasible, as well
as�� since the package can not be handed over to Sue at the distribution center. Thus, only�� remains
for successful task completion.

4. Agent Monitoring

The overall aim of adding a monitoring agent (����	��) is to aid in debugging a given MAS. We can
distinguish between two principal types of errors:(1) design errors, and(2) implementation (or coding)
errors. While the first type means that the model of the system is wrong (i.e., theMASbehaves correctly
to the model of the designer of theMAS, but this model is faulty and does not yield the desired result in
the application), the second type points to more mundane mistakes in the actual code of the agents: the
code does not implement the formal model of the system (i.e.,the actions are not implemented correctly).

Note that often it is very difficult, if not impossible at all,to distinguish between design and imple-
mentation errors. But even before the system is deployed, the planning problem

�
can be given to a

planner and thus the overall existence of a solution can be checked. If there is no solution, this is clearly
a design error and the monitoring agent can pinpoint where exactly the planning fails (assuming the
underlying planner has this ability). If there are solutions, the agent designer can check them and thus
critically examine the intended model.

However, for most applications the bugs in the system becomeapparent only at runtime. Our pro-
posed monitoring agent has the following structure.

Definition 4.1. (Structure of the monitoring agent)
The agent����	�� loops through the following steps:

1. Read and parse the message log�log. If �log � �, the set of all possible plans for
�

may be
cached for later reuse.

2. Check whether an action timeout has occurred.

3. If this is not the case, compute the currentintended plans(according to the planning problem
description and additional info from the designer) compatible with the actions as executed by the
MAS.

4. If no compatible plans survive, or the system is no more idle, then inform the agent designer about
this situation.

5. Sleep for some pre-specified time.

We now elaborate more deeply on these tasks.

CheckingMAS behaviour: ����	�� continually keeps track of themessages sent between the agents.
They are stored in the message log,�log, which is accessible by����	��. Thus for����	��, the
behaviour of theMAS is completely determined by�log. We think this is a realistic abstraction from
internal agent states. Rather than describing all the details of each agent (which might be unknown, e.g.
if legacy agents are involved), the kinds of messages sent byan agent can be chosen so as to give a
declarative high-level view of it. In the simplifiedGofishexample, these messages for agents��, ����,
��are given byC��, C����, andC�� (see Section 2).
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Intended behaviour and compatibility: The desired collaborativeMASbehaviour is formalised as a
planning problem

�
(e.g., in language�, cf. Section 3). Thus, even before theMAS is in operation,

problem
�

can be fed into a planner which computes potential plans to reach a goal. Agent����	�� is
exactly doing that.

In general, not all
�

-Plans may be admissible, as constraints may apply (derivedfrom the intended
collaborative behaviour).5 E.g., some actions ought to be taken in a fixed order, or actions may be
penalised with costs whose sum must stay within a limit. We thus distinguish a setI-Plans(

�� ��-Plans
asintended plans(of theMASdesigner).

It is perfectly possible that the original problem has successful plans, yet after some actions executed
by theMAS, these plans are no longer valid. This is the interesting case for the agent designer since it
clearly shows that something has gone wrong:����	�� can pinpoint the precise place indicating which
messages have caused the plan to collapse. Because these messages are related to actions executed by the
agents, information about them will help to debug theMAS. In general, it is difficult to decide whether
the faulty behaviour is due to a coding or design error. However, the info given by����	�� will aid the
agent designer in detecting the real cause.

Messages from����	��: Agent����	�� continually checks and compares the actions taken so far
for compatibility with all current plans. Once a situation has arisen in which no successful plan exists
(detected by the planner employed),����	�� writes a message into a separate file containing (1) the
first action that caused theMAS to go into a state where the goal is unreachable, (2) the sequence of
actions taken up to this action, and (3) all the possible plans beforethe action in 1) was executed (these
are all plans compatible with theMASbehaviour up to it).

In the above description, we made heavily use of the notion ofa compatibleplan. Before giving a
formal definition, we consider our running scenario. InGofish, all three plans��, ��, �� generated from
the initial problem coincide on the first three steps: dropOff(��), addPkg(��), and distCenter(��).
Running scenario (coding error): Suppose on a preliminary run of our scenario,�log shows that��=dropOff(��). This is compatible with each plan�
,  � �
����	. Next,�� = distCenter(��). This is
incompatible with each plan;����	�� detects this and gives a warning. Inspection of the actual code
may show that the command of adding the package to the database is wrong. While this doesn’t result
in a livelock (theMAS is still idle), the database was not updated. Informed by����	��, this flaw is
detected at this stage already. After correction of this coding error, theMASmay be started again and
another error shows up:

Running scenario (design error): Instead of waiting at home (as in the “standard” plan��), Sue shows
up at the distribution center and makes a pickup attempt. This “external” event may have been unforeseen
by the designer (problematic events could also arise fromMASactions). We can expect this in many agent
scenarios: we have no complete knowledge about the world; unexpected events may happen; and, action
effects may not fully determine the next state.

Only plan�� remains to reach the goal. However, there isno guarantee of success, if Sue is not
back home in time. This situation can be easily captured in the framework of [7, 5], where we have the
notion of asecureplan. An (optimistic) plan issecure(or conformant[14]), if regardless of the initial
state and the outcomes of the actions, the steps of the plan will always be executable one after the other
and reach the goal (i.e., in all trajectories). As can be easily seen,�� and�� are secure plans, while��
5This might depend on the capabilities of the underlying planning formalism to model constraints such as state axioms, cost
bounds, or optimality wrt. resource consumption etc.
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is not secure. Thus, a design error is detected, if delivering the package must be guaranteed under all
circumstances.

Based on a generic planning problem
�

, we now define compatible plans as follows. Let�-Plans
denote the set of all plans for

�
.

Definition 4.2. (�log compatible plans)
Let the planning problem

�
model the intended behaviour of aMAS, which is given by a setI-Plans���

� �-Plans. Then, for any message log�log = ��:��� � � � � ��:��, we denote byC-Plans�� ��log
���,� � �, the set of plans fromI-Plans��� which comply on the first� steps with the actions��� � � � ���.

In a planning framework with different notions of plans,�-Plans is assumed to comprise the most
liberal notion of plan. For example, in����, the planner for�, optimistic and secure plans can be
computed for any problem

��
, and�-Plans would consist of all optimistic plans.

Definition 4.3. (Culprit��log
���)

Let ��:�� be the first entry of�log such that either (i)C-Plans�� ��log
��� � � or (ii) a timeout

is detected. Then,Culprit��log
��� is the pair���:��� idle� if (i) applies and���:��� timeout� (resp.

�timeout� if �log is empty) otherwise.

Initially, �log is empty and thusC-Plans�� ��log
��� � I-Plans���. As more and more actions are

executed by theMAS, they are recorded in�log and the setC-Plans��� shrinks. Agent����	�� can
thus check at any point in time whetherC-Plans�� ��log

��� is empty or not. Whenever this happens,
Culprit��log

��� is computed and pinpoints the problematic action.

Running scenario: Under guaranteed delivery (i.e., under secure planning), agent����	�� writes
Culprit��log

��� = ���:�� � idle� (the� #"$� ���� message) in a file, and thus clearly points to a situation
missed in theMASdesign. Note that there are also situations where everything is fine; if pickup would
not occur, agent����	�� would not detect a problem at this stage.

Example 4.1. (SimpleGofish extended)
We now consider the extension of the previous simpleGofishexample by adding a customer notification
service. That is, theGofishpostal service performs mail tracking in order to be able to notify customers
about the status of mail delivery. Each recipient of a package is notified about the arrival of the package
at the distribution center and when the package has been loaded on a truck for delivery.

The realisation of the notification service in ourMASbrings the notification agent (��	�
�) into play.
The notification agent is informed by the event management agent (��) about the arrival of a package,
as well as its loading on a truck. In both cases agent��	�
� contacts the package agent (��) in order
to obtain the required customer information. For simplicity, we subsume both messages – from�� to
��	�
� and from��	�
� to �� – into a single messagegetRecipInfo which is parameterised by the
corresponding event���
 or 
����, i.e., C��	�
� � �getRecipInfo	. The package agent replies to the
requests of��	�
� with the corresponding information to notify the customer,e.g., the email address of
the recipient in case of���
 and the phone number in case of
����. Thus now,C�� � �recipInfo	.

In order to reflect this extension in our model, we add the following actions for the newly introduced
messages and another fluent:

('1.69* 
 �+1�+'.�
9/6$���6'& 2+�).2+* ���$�&� 76'$�6'&42+'.�
9/6$���6'& 2+�).2+* ���$�&� 76'$�6'&4
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/7)+91* 
 .9/62�+,$���6'& 2+�).2+* ���$�&� 76'$�6'&4
The new external fluent

�
������ captures the state of the customer concerning her knowledgeabout
the package status. The effects and executability conditions of the new actions are defined as follows:

.9+21.(7 .9/62�+,$���6'&4.9+21.(7 -
.9/62�+,$���6'&4

+;+')1(<7+ �+1�+'.�
9/6$��,.*1& ./ ����1$��,.*1&4
+;+')1(<7+ �+1�+'.�
9/6$��12)'�& ./ ����1$��12)'�&4'()*+, -

.9/62�+,$���6'& (/1+2 �+1�+'.�
9/6$���6'&4969+;+')1(<7+ �+1�+'.�
9/6$���6'& ./ .9/62�+,$���6'&4969+;+')1(<7+ �+1�+'.�
9/6$���6'& ./ -
.9/62�+,$���6'&4

+;+')1(<7+ 2+'.�
9/6$���6'& ./ ����1$���6'&� -
.9/62�+,$���6'&4'()*+, .9/62�+,$���6'& (/1+2 ����1$���6'&� 2+'.�
9/6$���6'&4969+;+')1(<7+ 2+'.�
9/6$���6'& ./ .9/62�+,$���6'&4

Furthermore, we modify the axioms for the delivery and the pickup action:
+;+')1(<7+ ,+7.�+2�$�& ./ ����1$��12)'�&� .9/62�+,$��12)'�&�

961 ,+7.�+2+,$�&4
+;+')1(<7+ �.'�)�$�& ./ ����1$��,.*1&� 961 .9/62�+,$��12)'�&�

961 ,+7.�+2+,$�&4
The customer must be informed about the package being delivered by a truck before delivery, thus she
will no longer show up at the distribution center for pickingup the package.

In general, because of the “nondeterminism” of the externalevent of a customer showing up at
a distribution center for picking up a package, we will now obtain more plans that reach the goal
�=�����������
����. For example, the following (optimistic) plans are variants of the plan��:

���� � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
�+1�+'.�
9/6$���dist
&
2+'.�
9/6$���dist

&

12)'�$��&
�+1�+'.�
9/6$��� truck

&
�.'�)�$��&
2+'.�
9/6$��� truck
&
,+7.�+2�$��&
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&
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Note that still the customer may show up at the distribution center after the package has been loaded
on a truck. However, this can no longer be the case after the customer has been notified. Moreover, it
is assumed that the customer notification takes place while or shortly after loading the package on the
truck.
Running scenario: Consider a run of our scenario in the extendedMAS and suppose the following
sequence of messages in the message log�log: �� = �dropOff� ���, �� = �addPackage ����, �� =
�distCenter � ���, �� = �getRecipInfo � ��, dist�, �� = �recipInfo� ��, dist�, �� = �truck� ���, �� =
�getRecipInfo � ��, truck�, and�� = �recipInfo� ��, truck�. Then, everything is fine even under secure
planning, i.e. guaranteed delivery, since pickup cannot occur after Sue has been notified that her package
has been loaded on truck for delivery. That is,�log is compatible with the secure plan

���� � 	,26��//$��&
(,,���$��&
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However, if Sue had shown up at the distribution center before notification, i.e.�� = �pickup� ���
say again at time

��
, the package would no longer be guaranteed delivered on time, and����	�� would

again writeCulprit��log
��� = ���:�� � idle� to a file to indicate the problematic situation.

To sum up, by extending our postal service with customer notification we reduced the probability
of unsuccessful deliveries but we did not achieve guaranteed delivery. We remark, however, that in our
example setting this could easily be obtained by disallowing customer pickups.

5. Properties

In this section, we take a closer look at our agent monitoringapproach and show that it has some desirable
properties. To this end, we shall need some preliminary definitions in order to make the notions we have
used above formally more precise.

As for the underlying planning framework, referred to as
��

, we assume that the basic element for
the semantics of plan execution is given by trajectories in the planning world formed by state transitions,
similar to the semantics of the planning language�. That is, we assume that there is a set of possible
world states,��� (where world states�are described e.g. by fluents) and a set of actions��� in

��
, as

well as a set��� � ��� of initial states. Furthermore, there is a partial, multi-valued transition function���� � ��� ���� 	 �
�� which assigns a set of possible successor states
���� ����� to a state� � ��� and an action� � ��� to be executed in�; the transition

���� might be undefined, however,
or no successor state may exist.

Definition 5.1. A trajectory� in
��

is a sequence�� ������� � � � ������ of states�
 � ��� and actions
�
 � ��� , � � �, such that�� � ��� and�
 � ���� ��
	���
�, for every � �
� � � � ��	.

We view plans for reaching a goal� in
��

, which in general is some constraint on the desired states,
from a semantical perspective, as structures corresponding to the trajectories in the planning world which
are compatible with them. More formally,

Definition 5.2. Any plan� in
��

is an object which has associated with it a nonempty set of trajectories
in

��
, 
���� �, such that� holds in state�� for each� � 
���� � where� � �� ������� � � � ������.

By way of illustration, in the� planning framework, the transition function��� is implicit by the
definition of state transitions, viz.��� ����� is defined for a state� and a set of actions� (which we can
view as a single compound action) iff, in the terminology of�, � is executable wrt.� and

��� ����� �
��� � �������� is a state transition	 in this case. An optimistic plan� in � for the goal� is then
semantically characterised by the condition that there is asequence of actions,���� � � � ����, � � �, such
that (i) each� � 
���� � is of form �� ������� � � � ������ and (ii) each trajectory�� ������� � � � ������
which establishes the goal� is in 
���� �. Furthermore, a secure plan� is in � an optimistic plan which
satisfies in addition that (iii) for each trajectory�

� � �� ������� � � � ��! ��! with � � �, the goal� is
established if� � �, and

�� ��! ��!��� is defined and nonempty otherwise.
As for the multi-agent system� in question, we assume that its collaborative behaviour is governed

by some strategy,�. We take here also a pure semantical view and project� to the set of possible runs
which might be observed during execution (in particular, bythe agent tester). Formally, a run is defined
as follows.
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Definition 5.3. Given aMAS�, we assume there is an underlying set of possible system states,��. A
run is a sequence

� � �
� ������� . . . , �����, " � �, of (global) system states�



and messages�� ,

where�
�

is the initial state (resp., from the set of possible initialstates in case of indeterminism).

Informally, upon message�
, the system transits from state�

	�

to state�


; here, we abstract

from concrete time points when messages are sent. We denote the set of possible runs under obedience
of strategy� by �������, which is assumed to be nonempty. Each such run

�
must establish the

collaboration goal, which is assumed to be expressed by a success-predicate on global states (that is,��
must satisfy it given

� � �
� ������� � � � ������).

In order to account for the case that we do not know the precisecollaboration strategy� adopted by
� (e.g., this could be negotiated in a startup phase), we modelthe intended behaviour by a nonempty
set�� �� � of possible strategies�. A run

�
is admissible, if it is possible for some� � �� �� �, i.e.,� � ���	�
�� ���� ���.

The planning framework,
��

, and theMAS� are linked by the basicModelling Assumptionthat
runs in� gracefully correspond to trajectories in

��
and vice versa such that

��
models evolutions in

�, and that the planning goal corresponds to the collaboration goal. This is made precise as follows.

Modelling Assumption:

1. There is a one-to-one correspondence,�, between messages� and actions�, � ��� � �,
and a correspondence,!, (not necessarily one-to-one) between states� � �� in the agent

system and states� � ��� in the planning framework,�
�
 �, such that the initial states in

� and
��

correspond among each other;

2. there is a fixed planning goal,�, defining a planning problem,
�

, such that the states in
��

fulfilling � and the states in� establishing the collaboration goal correspond among each
other; and

3. the correspondence homomorphically extends to transitions in runs in� and transitions
in trajectories in

��
, respectively. That is, for any�


	���
��

in a run, we have that

! ��
	���� ��
��! ��
 � is part of a trajectory in
��

, and conversely, for any�
	���
 ��
 in a
trajectory,!	���
	����	���
��!	���
� is part of a run of�.

Conditions 2 and 3 of the Modelling Assumption aim at allowing abstraction in the encoding of the
multi-agent system in the planning formalism; note that no one-to-one correspondence between trajec-
tories and runs is requested. For example, fluents in the multi-agent system might be disregarded in the
planning formulation, such that states in the multi-agent system with different fluents values correspond
to the same state in the planning world. On the other hand, theplanning formulation might include
fluents which do not correspond to fluents in the multi-agent system and whose value is immaterial for
the intended monitoring task. These fluents can be projectedaway, leading to a possible many-to-one
correspondence from states in the planning world to states of the multi-agent system. We emphasise that
some assumption on the correspondence between, on the one hand, states and runs in the multi-agent
system and, on the other hand, states and trajectories is mandatory for proving meaningful results.

We shall denote the solutions (plans) for the planning problem
�

by �-Plans. Furthermore, we shall
occasionally simply write�
�, �
�, and

�
� for appropriate objects corresponding via! and�.
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The correspondence
 induces a notion of similarity�� (for short,�) among runs by
�
��

��
if

and only if there is some trajectory� in
��

such that
� 
 � and

�� 
 � . In order to get meaningful
results, we assume that collaboration strategies� are closed under similarity�; that is, whenever

� �
������� and

�
�

��
, then also

�� � ������� holds. As a consequence, each trajectory corresponds
either only to admissible runs or to no admissible run.

After these preliminary definitions, our first result concerns the soundness of the monitoring ap-
proach. Let us say that a plan� � ��

modelsa strategy�, iff each run
� � ������� corresponds to

some trajectory� � 
���� � and vice versa, and that a set�� � ��
 �  � �	 of plans models a set of
strategies�� � ��
 �  � �	, if each�
 models�
.

Theorem 5.1. (Soundness)
Suppose that the setI-Plans��� ��-Plans of intended plans for the planning problem

�
in

��
models

the intended collaborative behaviour of theMAS�, �� �� �. Let �log be a message log. Then,� is
implemented incorrectly ifCulprit��log

��� exists.

Proof:
Let

� � �
� ������� � � � ������ be the run which produces�log = ��:��� � � � � ��:��. Consider the

two different types ofCulprit��log
���. Suppose first that it is of form���:��� timeout� or �timeout�.

Then, a time-out has been detected and we have� � " or " � �, respectively. This means that either
�

has terminated or that� is stuck. The monitor agent expects, supported by a trajectory � � 
���� �
for some� � C-Plans�� ��log

��� (
�� �), such that� is compatible with the messages��� � � � ���

in �log, that the execution of� continues, i.e., some message���� follows. Hence in both cases
(whether� is terminated or stuck),

� �� ���	�
�� �������. Hence,� is not implemented correctly.
Suppose next thatCulprit��log

��� = ���:��� idle�. Then, we have� ! � � ". By the def-
inition of culprit, we have thatC-Plans�� ��log

��� � �. This means that there is no trajectory
� � �� ������� � � � ���� ���� in the planning framework

��
such that� � 
���� � for some� �

I-Plans��� with the property that the prefix�
� � �� ������� � � � ������ of � and the prefix

�� �
�
� ������� � � � ������

of
�

satisfy
�� 
 �

�
. Hence,

� �� ���	�
�� �������, which again means
that� is not implemented correctly. This proves soundness. �

�

The soundness result of the monitoring approach can be generalised to a setting in which the in-
tended collaborative behaviour�� �� � of the agents is not exactly modelled by some intended plans in
the planning framework, but just cautiously approximated.This is in particular useful if the strategies
governing the collaborative behaviour in theMAS� amount to an expressive notion of plans.

For example, theMASmight employ a conditional plan��
[24] in which depending on conditions#�,. . . ,#� on the current state, suitable actions��,. . . ,�� are executed, respectively, and a similar strategy

is recursively applied on each case. Conditional plans are very important, since sensing information
(observations from the world) can be suitably respected. They are more liberal than secure plans, which
do not allow for branching on conditions.

However, the planning framework
��

which we employ for agent monitoring might not be capable
of conditional planning, such that we can not model��

as a respective intended plan; for example, the
� planning framework does not support conditional planning.Despite this obstacle, we might employ
the planning framework

��
fruitfully for error detection as follows.
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Definition 5.4. Given a planning framework
��

and aMAS�, we say that a set�� of plans in
��

coversthe intended collaborative behaviour of�, �� �� �, if for each run
� � ���	�
�� �������,

there exists some plan� � �� and trajectory� � 
���� � such that
� 
 � .

Agent����	�� then uses in Step 3 of its procedure from Definition 4.1 the cover �� instead of the
intended plansI-Plans���. We then writeI-Plans����, C-Plans��� ��log

���, Culprit ��log
� ��� etc.

We have the following result:

Theorem 5.2. (Soundness of Covering)
Suppose the planning problem

�
in

��
is such that its accepted solutions,�� � ��-Plans, cover the

intended collaborative behaviour of theMAS�, given by�� �� �. Let �log be a message log. Then,
theMASis implemented incorrectly ifCulprit��log

� ��� exists.

Proof:
The proof is similar to the proof of Theorem 5.1, whereI-Plans��� is replaced with��. ��

As an immediate corollary, we obtain soundness of agent����	�� via optimistic plans in the�
planning framework:

Corollary 5.1. (Soundness of
��

Cover)
Let

��
be a� planning problem, such that the set�� � ��

-plans of optimistic plans covers the
intended collaborative behaviour of theMAS�. Let �log be a message log. Then,MASis implemented
incorrectly if Culprit��log

� ��� exists.

In particular, if nothing is known about the collaboration strategy of�, the set�� might safely
be set to��-Plans, i.e., all optimistic plans. Then, any behaviour will be covered, including intended
behaviour governed by a conditional plan, or by a more restrictive secure plan.

As for completeness of the monitoring method, there is clearly no converse of the soundness result for
covers�� of the intended behaviour in general, since�� might include a plan� which has an associated
trajectory that masks an inadmissible run of theMAS�; this is the price to pay for overestimating the
intended behaviour.

On the other hand, if all trajectories of plans in the cover�� correspond to admissible runs of the
MAS, then the cover allows to unveil an incorrectMASimplementation, provided certain conditions are
met.

As for a general completeness result, we adopt the followingassertions. The first is that success-
ful runs can not grow arbitrarily long, i.e., they have a (known) upper bound on their length. The
second assertion concerns the evolution of theMASwith respect to the particular mechanism of mes-
sage logging we build on, which does not foresee recording state information about�. From the
messages in�log = ��:��� � � � � ��:�� alone, it is in general impossible to infer the state of the agent
system�. We thus assert for� the property that any runs

� � �
� ������� � � � ������ and �� �

��
� ���� ���� � � � ���� ��� are similar, i.e.,

�
� �� holds; we say that� hasone-way logging. For ex-

ample, one-way logging is guaranteed in agent systems with deterministic message effects and a single
initial state.

Let us call a cover�� for �� �� � exact, if for each� � �� and each� � 
���� �, there exists
some strategy� ��� �� � and run

� � ���� ��� such that� corresponds to
�

.
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Theorem 5.3. (Completeness)
Let the planning problem

�
in

��
be such that the set�� � �

-plans of selected plans exactly covers the
intended collaborative behaviour of aMAS�, given by�� �� �, where all admissible runs are bounded.
If � has one-way logging and is implemented incorrectly, then either (i) �� � � or (ii) there is some
message log�log suchCulprit��log

��� exists.

Proof:
Suppose that� is incorrectly implemented. That is, the intended collaborative behaviour is violated,
and there is a run

� � �
� ������� � � � ������ witnessing this fact, i.e.,

� �� ���	�
�� ���� ���. If
" exceeds the length bound, then any trajectory� such that

� 
 � exceeds the length bound as well,
and thusC-Plans�� ��log

� "� � � must hold; hence,Culprit��log
��� exists in this case. Thus, for

the rest assume that" is within the limit. Let �log = ��:��� � � � � ��:�� be the message log produced
by

�
; notice that because of one-way logging,�log is produced only by runs

��
such that

��
�

�
.

Towards a contradiction, suppose that�� �� � andCulprit ��log
��� is not found by agent����	��.

Thus, there is no time-out detected (and thus� is not judged terminated or stuck), and there must exist
some trajectories� � 
���� � for some plans� � �� of form � � �� ������� � � � ������. By
the Modelling Assumption, there exists some runs

��
of � such that

�� 
 � . Since�� is an exact
cover, at least one

��
among them is admissible, i.e.,

�� � ������� for some� � �� �� �. Since
the correspondence� between action sets and messages is one-to-one and� has one-way logging, it
follows that

��
�

�
. However, by closure of strategies under�, it follows

� � ���� ��� and thus� � ���	�
�� �������, which is a contradiction. ��

In particular, the above theorem holds if�� models the intended behaviour�� �� � (i.e., �� �
I-Plans���). In (i), we can conclude a design error, while in (ii) a design or coding error may be present.
Again, we obtain an easy corollary for the� planning framework:

Corollary 5.2. (Completeness of Exact
��

Cover)
Let

��
be a� planning problem, such that the set�� � ��

-plans of optimistic plans exactly covers
the intended collaborative behaviour of theMAS�. If � has one-way logging and is implemented
incorrectly, then either (i)�� � � or (ii) there is some message log�log suchCulprit��log

��� exists.

Notice that Theorem 5.3 allows us to detect incorrectness despite a mismatch of the structure of
strategies� used in� and the structures of plans supported in

��
.

We may dispose some of the assertions if the strategies used in theMASsatisfy certain properties. An
example is the case in which the collaborative behaviour is governed by aconformant strategy�, which
means that� semantically corresponds to a conformant (i.e., secure) plan; that is, starting from any
possible initial state, the same sequence������ � � � ��� of messages is expected to appear (and always
lead to success), regardless of how the global state evolves. If we model the intended behaviour by
secure plans in the planning framework, then we can drop the one-way logging assertion. We formulate
the result here for the particular formalism�, for which we described secure plans more detailed after
Definition 5.2 above. In fact, it turns out that exact covers are tantamount to secure plans.

Lemma 5.1. Let
��

be a� planning problem, such that the set�� � ��
-plans of optimistic plans

exactly covers the intended collaborative behaviour�� �� � of �. Suppose that each� in �� �� � is
conformant. Then, each plan� � �� is secure.
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Proof:
Indeed, suppose� � �� is not secure. Every trajectory� � 
���� � corresponds to some admissible
run

�
of a strategy� � �� �� �, and some such

�
and� must exist. On the other hand, insecurity

of � � ������� � � � ���� implies that there exists some trajectory�
� � �� ������� � � � ��! ��� in

��
violating condition (iii) for a secure plan above. That is, either � � � and the goal is not established, or� ! � and

�� ��! ��!��� is either undefined or empty. By the Modelling Assumption,�
�
corresponds

to a run
��

in � which does not establish the collaboration goal at termination of � or that� is stuck.
Since

��
and

�
have the same message sequence��� � � � ��� (where� ��
� � �
, 
 �  � "), this

��
compromises that� is conformant. This is a contradiction. ��

Theorem 5.4. (Completeness of
��

for Secure Strategies)
Let

��
be a� planning problem, such that the set�� � ��

-plans of optimistic plans exactly covers
the intended collaborative behaviour�� �� � of �. Suppose that� has bounded runs and a conformant
collaboration strategy,��. Then, if� is implemented incorrectly, there is some message log�log such
that either (i)�� � �, or (ii) Culprit��log

� ��� exists.

Proof:
The argument is similar to that in the proof of Theorem 5.3. Inarguing towards a contradiction, rather
than concluding that

�
�

��
must hold, we use that

�
must correspond to some trajectory�

� ���� �������� � � � ��� ����, where�
 � � ��
�,  � �
� � � � � "	, which does not reach the planning goal�.
This trajectory means that the plan� � ���� � � � ���� given by the trajectory� � �� ������� � � � ������,
is not secure. However, this is a contradiction to Lemma 5.1. ��

For example, in our running scenario, a design error is detected for conformant plans asMAScol-
laborative behaviour formalism, if we use secure plans in�. The culprit vanishes if we move to a cover
which contains in addition the (non-secure) plan��, since it is compatible with�log.

We can deploy the� planner also for checkingC-Plans�� ��log
��� �� �or whetherCulprit��log

���
exists. In particular, if the intended behaviour is expressed by optimistic/secure plans in�, deciding
C-Plans��� � �log

� �� �� � is tantamount to optimistic/secure plan existence; the plan prefix given by
�log

� � can easily be encoded in the planning problem itself by adding corresponding constraints.
Let �log = ��:�����:��� � � � � ��:��, and let

��
be a� planning problem modelling theMAS� at

hand. Let
���

log
be the problem obtained from

��
by adding the following to the� program (cf. [7] for

details on the semantics):

.9.1.(77� 
 *1+�� 4
(7�(�* 
 '()*+, /(7*+ (/1+2 961 �� � *1+�� 4'()*+, *1+�� (/1+2 �� 4'()*+, /(7*+ (/1+2 961 �� � *1+��4'()*+, *1+�� (/1+2 �� 4

���'()*+, /(7*+ (/1+2 961 �� � *1+����4�
where �
��	� � � � � �
���	� are newly added propositional fluents. Intuitively, this modified planning
encoding enforces the “execution” of the messages in�log and only plans which comply with these
messages are computed. We therefore obtain the following result:
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Proposition 5.1. Suppose the set�� � ��
-plans of optimistic plans for

��
(respectively, the set


� � ��
-plans of secure plans) covers�� �� �. Let �log = ��:�����:��� � � � � ��:�� be a message

log. Then,C-Plans���, �log
� �� �� � iff

���
log

has an optimistic (resp. secure) plan.

As easily seen, the encoding
���

log
can therefore be used to check the existence ofCulprit��log

����
of form ���:��� idle�, while in general we cannot use a planner for detecting a timeout in theMAS.

This encoding is not restricted to our particular formalism. For instance, the computation of plans
compatible with a prefix�log can be achieved in any planning formalism which allows for a similar
modelling of domains such that certain actions can be fixed. Thus, we can apply planning also to check
whetherC-Plans��� � �log

� �� �� � or whether aCulprit��log
���� of form ���:��� idle� exists.

As for complexity, we mention that in expressive planning formalisms like�, deciding whether
C-Plans�� � �log

� �� �� � or Culprit��log
��� exists from

�
, �log and� is NP-hard in general, which

is inherited from the expressive planning language; the corresponding complexity results and a discussion
of complexity issues can be found in [7]. We remark that, likefor satisfiability (SAT), NP-hardness (or
even worse, if secure plans are required) is a theoretical worst-case measure. Nevertheless, solutions
for many instances can be found quickly, especially if only optimistic planning is required. Moreover,
there are problem classes which are polynomial time solvable and for which���� is guaranteed to
compute plans in polynomial time. This highly depends on therequirements of intended plans and how
complicated the corresponding planning problem gets.

For small domains, where the number of plans is moderate,I-Plans (or C-Plans, resp.) might be
computed offline or simply be cached such that checking against �log becomes simple.

6. Implementation

To demonstrate the proposed method, a running example has been implemented. In our implementation,
theGofishMASand agent����	�� are developed within IMPACT (Interactive Maryland Platform for
Agents Collaborating Together). Each agent consists of a set ofdata types, API functions, actions, and an
agent programthat includes some rules prescribing the behaviour. Since���� [5] is used as the planner,
a new connection module has been created so that����	�� is able to access the���� planner. In this
way, before theGofish MASoperates, we feed

��
Gofish into ����	��, which then calls���� to compute

all potential plans including both secure and optimistic plans.

Running scenario: TheGofish post office guarantees package delivery within�� hours from dropOff.
Consider the case that Sue receives an email at time
� informed that her package (��=0x00fe6206c.1)
has arrived at the distribution center. Sue decides to pick up the package herself. Unfortunately, when
she reaches the distribution center at time��, the clerk tells her that the package has been loaded on the
truck at time
� and it is now on the way to her home.

Because of the guaranteed delivery requirement, agent����	�� computes secure plans for the pur-
pose of monitoring:

�� � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
�+1�+'.�
9/6$���dist
&
2+'.�
9/6$���dist

&

12)'�$��&
�+1�+'.�
9/6$��� truck

&
2+'.�
9/6$��� truck
&
,+7.�+2�$��&


*+1�+7.��.�+$��&�.
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�� � 	,26��//$��&
(,,���$��&
,.*1�+91+2$��&
�+1�+'.�
9/6$���dist
&
2+'.�
9/6$���dist

&

�.'�)�$��&
*+1�+7.��.�+$��&�.

Therefore after the action ”pickup”, a mistake was immediately detected by����	��. In the end,
the����	�� agent generated a log file as follows:

Problematic action:��
:��������	��&
����
���� ����

Actions executed:�
:
���������	��&
����
���� �:��������	��&
����
������
:
�� !"�#!����	��&
����
���� ��:

��!$����%#����	��&
����
���dist���&
:
�����%#����	��&
����
���dist�� �':!������	��&
����
����

Possible plans before problematic action:(��������)*�� �������)*���� !"�#!���)*����!$����%#���)*�dist�������%#���)*�dist��!�����)*����!$����%#���)*� truck�������%#���)*� truck������+��,�)*��  �!-���+.�/��)*�0

More information about our running example can be found at the project homepage.6 In addition,
we refer to [26] for the details of IMPACT.

7. Related Work

In contrast to research on plan generation, there has been relatively little work on the use of plans to
debug aMASand to monitor the execution of agents. As plans can be executed by one agent or by
many collaborative agents, in this section, we review related work in (1) single-agent settings, and (2)
multi-agent environments.

7.1. Monitoring in Single-Agent Settings

Interleaving monitoring with plan execution has been addressed in the context of single agent environ-
ment in [12], where the authors present a situation calculus-based account of execution monitoring for
robot programs written in Golog. A situation calculus specification is given for the behaviour of Golog
programs. Combined with the interpretation of Golog programs, an execution monitor detects the dis-
crepancy after each execution of a primitive action. Once a discrepancy is found, the execution monitor
checks whether it isrelevant in the current state, that is, whether preconditions of the next action still
hold with the effect of an exogenous action. If this exogenous action does matter, arecovermechanism
will be invoked. The method of recovering is based on planning. A new plan (or program) is computed
whose execution will make things right by way of leading the current state to the desired situation, had
the exogenous action not occurred. In their work, declarative representations have been proposed for the
entire process of plan-execution, -monitoring and -recovery. Similar to our method, the approach is com-
pletely formal and capable of monitoring arbitrary programs. The authors have addressed the problem
of recovering from failure, which is not included in our system for the moment. However, their approach
must know in advance all exogenous events in order to specifyappropriaterelevancechecks andrecover

61!!� 233444 5� 5/�# 5��5��3671�#�,3���8��!3/�#�!��3
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mechanisms. In addition, they do not explore in-depth how toproperly defineRelevantandRecover.
The framework was later expanded in [25] by introducing tracing and backtracking into the process of
online monitoring of Golog programs.

To enable generation of plans in dynamic environments, Veloso et al. [28] introduceRationale-Based
Monitoring based on the idea of planning as decision making. Rationale-based monitors encode the
features that are associated with each planning decision. The method is used for sensing relevant (or
potentially relevant) features of the world that likely affect the plan. Moreover, it investigates the balance
between sensitivity to changes in the world and stability ofthe plans. Although this approach provides
the planner opportunities to optimise the plans in a dynamicenvironment during plan generation, as
opposed to our approach, they have not studied the issue of execution monitoring.

As the methods mentioned above address the problem of asingle agentacting in an uncertain envi-
ronment, the techniques focus on monitoring of environmentand verifying plans. While our approach
could be directly applied to single agent domains, these approaches need extra work in order to handle
monitoring the collaboration of multiple agents.

7.2. Monitoring of Multi-Agent Coordination

Teamwork monitoring has been recognised as a crucial problem in multi-agent coordination. Jennings
proposes two foundations of multi-agent coordination in [17]: commitmentsandconventions. Agents
make commitments, and conventions are a means of monitoringof the commitments. The monitoring
rules, i.e., what kind of information is monitored and the way how to perform monitoring, are decided by
conventions. Jennings illustrates the method by some examples, but does not investigate how to select
such conventions. Different from his idea, our approach avoids the problem of monitoring selectivity.

Myers [23] introduces a continuous planning and execution framework (CPEF). The system’s central
component is a plan manager, which directs the processes of plan-generation, -execution, -monitoring,
and -repair. Monitoring of the environment is carried out atall time during plan generation and execu-
tion. Furthermore, execution is tracked by the plan managerby comparing reports of individual action
outcomes with the temporal ordering relationships of actions. Several types of event-response rules have
been concerned: (1)failure monitorsencode suitable responses to potential failures during plan execu-
tion, (2) knowledge monitorsdetect the availability of information required for decision making, and
(3) assumption monitorscheck whether assumptions that a given plan relies on still hold. The idea of
assumption monitors helps early detection of potential problems before any failure occurs, which can
also be achieved in our system with a different approach. Based upon CPEP, Wilkins et al. present a
system in [29]. The execution monitoring of agent teams is performed based on communicating state
information among team members that could be any combination of humans and/or machines. Humans
make the final decision, therefore, even if unreliable communications exist, the monitoring performance
may not be degraded much with the help of human experience.

Another interesting monitoring approach in multi-agent coordination is based onplan-recognition,
by Huber [15], Tambe [27], Intille and Bobick [16], Devaney and Ram [1], Kaminka et al. [18, 20].
In this approach, an agent’s intentions (goals and plans), beliefs or future actions are inferred through
observations of another agent’s ongoing behaviour.

Devaney and Ram [1] described the plan recognition problem in a complex multi-agent domain in-
volving hundreds of agents acting over large space and time scales. They use pattern matching to recog-
nise team tactics in military operations. The team-plan library stores several strategic patterns which the
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system needs to recognise during the military operation. Inorder to make computation efficient, they
utilise representations of agent-pair relationships for team behaviour recognition.

Intille and Bobick [16] construct a probabilistic framework that can represent and recognise complex
actions based on visual evidence. Complex multi-agent action is inferred using a multi-agent belief
network. The network integrates the likelihood values generated by several visual goal networks at
each time and returns the likelihood that a given action has been observed. The network explicitly
represents the logical and temporal relationships betweenagents, and its structure is similar to a naive
Bayesian classifier network structure, reflecting the temporal structure of a particular complex action.
The approach relies on allcoordination constraintsamong the agents. Once an agent fails, it may not be
able to recognise the plans.

Another line of work has been pursued by Kaminka et al. [18, 20], who developed theOVERSEER
monitoring system building upon work on multi-agent plan-recognition in [16, 27]. The authors address
the problem of many geographically distributed team members collaborating in a dynamic environment.
The system employs plan recognition to infer the current state of agents based on the observed messages
exchanged between them. The basic component is aprobabilistic plan-recognition algorithmwhich
underlies the monitoring of a single agent and runs separately for each agent. This algorithm is built
under a Markovian assumption and allows linear-time inference. To monitor multiple agents,social
knowledge, i.e. relationships and interactions among agents, is utilised for better predicting the behaviour
of team members and detect coordination failures.OVERSEERsupports reasoning about uncertainty
and time, and allows to answer queries related to the likelihood of current and future team plans.

While our objective is (1) to debugoffline an implementedMAS, and (2) to monitoronline the col-
laboration of multiple agents, the plan-recognition approaches described above mainly aim to inferring
(sub-)team plans and future actions of agents. TheMASdebugging issue is not addressed. Furthermore,
we point out that our method might be used in theMASdesign phase to supportprotocol generation, i.e.,
determine at design time the messages needed and their order, for a (simple) agent collaboration. More
precisely, possible plans� � ���� � � � ���� for a goal encode sequences of messages��,. . . ,�� that
are exchanged in this order in a successful cooperation achieving the goal. The agent developer may
select one of the possible plans, e.g. according to optimality criteria such as least cost,� �, and program
the individual agents to obey the corresponding protocol. In subsequent monitoring and testing,� � is
then the (single) intended plan.

However, plan recognition is suitable for various situations: if communication isnot possible, agents
exchanging messages are not reliable, or communications must be secure. It significantly differs from
our approach in the following points:

(1) If a multi-agent system has already been deployed, or if it consists of legacy code, the plan-
recognition approach can do monitoring without modifications on the deployed system. Our method
entirely relies on an agent message log file.

(2) The algorithms developed in [20] and [1] have low computational complexity. Especially the
former is a linear-time plan recognition algorithm.

(3) Our model is not yet capable of reasoning about uncertainty,time and space.

(4) In some tasks, agents do not frequently communicate with others during task execution. In addi-
tion, communication is not always reliable and messages maybe incorrect or get lost.
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We believe the first three points can be taken into account in our framework. (1) Adding an agent
actions log file explicitly for a givenMASshould not be too difficult. (2) While the developed algorithms
are of linear complexity, the whole framework needs to deal with uncertainty or probabilistic reasoning
which can be very expensive. Although our approach is NP-hard in the worst case, we did not encounter
any difficulties in the scenarios we have dealt with. (3) IMPACT does not yet have implemented ca-
pabilities for dealing with probabilistic, temporal and spatial reasoning, but such extensions have been
developed and are currently being implemented.

Among the advantages of our method are the following:

� Our method can be more easily extended to doplan repairthan the methods above. Merely Kaminka
et al. [19] introduce the idea of dealing with failure actions.

� The approach we have chosen includes protocol generation ina very intuitive sense relying on the
underlying planner while the cited approaches model agent behaviour at an abstract level which can not
be used to derive intended message protocols directly.

� Since ascertaining the intentions and beliefs of the other agents will result in uncertainty with re-
spect to that information, some powerful means of reasoningunder uncertainty are required for the plan
recognition method.

8. Conclusion

We have described a method to support testing of a multi-agent system, based on monitoring their mes-
sage exchange using planning methods. This can be seen as a very useful debugging tool for detecting
coding and design errors. We also presented some soundness and completeness results for our approach,
and touched upon its complexity.

Our approach works for arbitrary agent systems and can be tailored to any planning formalism that is
able to express the collaborative behaviour of theMAS. We have briefly discussed (and implemented) how
to couple a specific planner,����, which is based on the language�, to a particularMASplatform, viz.
IMPACT. A webpage for further information and detailed documentation has been set up (see footnote 6).

Of course, our approach is not yet mature, and in this paper wefocused on presenting the conceptual
idea. Several issues remain to be addressed in further work.One issue concerns the modelling of multi-
agent systems in a planning framework. This seems to be particularly important for complex multi-
agent systems, since modelling such a system is not easy in general and requires a thought-through
methodology. The methodology described in this paper merely provides some rules of thumb. Clearly,
developing a good methodology is not a simple task, and will require quite some efforts.

Another issue is scalability of our approach. The example which we have considered in this paper
is of moderate size, and for larger multi-agent systems, theplanning tasks will become more difficult
to solve. It remains to be explore to which size of systems ourapproach remains feasible, depending
on different underlying planning techniques. However, already in multi-agent systems of moderate size
(which are not unrealistic in practice) verifying the correct behaviour of agents may be difficult and
laborious, and tool support will be acknowledged.

There are also several extensions to our basic approach. We mention just some of the planned future
research in this direction:
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(1) Cost based planning: Can the goal still be reached with a certain bound on the overall costs,
given that actions which the agents take have costs assigned? And, what is the optimal cost and how
does the corresponding behaviour look like? This would allow us to assess the quality of an actual
agents behaviour and to select cost-effective strategies.To keep the exposition simple, we have omitted
that ���� is also capable of computing admissible plans (plans withina cost bound) and, moreover,
optimal plans over optimistic and secure plans, respectingthat each action has certain declared costs [6].
For instance, in theGofish example we might prefer plans where the customer picks up thepackage
herself, which is cheaper than sending a truck. Thus, in the realisation of our approach, also economic
behaviour of agents in aMASunder cost aspects can be easily monitored, such as obedience to smallest
number of message exchanges or least total communication cost.

(2) Dynamic planning: We assumed ana priori chosen collaboration plan for�log compatibility.
This impliesC-Plans�� � �log

� ��� � C-Plans�� ��log
���, for all �� � � � �. However, this no

longer holds if the plan may be dynamically revised. Checking �log compatibility then amounts to a
new planning problem whose initial states are the states reached after the actions in�log.

(3) At the beginning of monitoring, all potentially interesting plans for the goal are generated, and
they can be cached for later reuse. We have shown the advantages of this method. However, if a very
large number of intended plans exists up front, the method may become infeasible. In this case, we might
just check, similar to above, whether from the states possibly reached by the actions in�log, the goal
can still be established.

Investigating the above and further issues is part of our ongoing and future research, which will be
carried out in the context of the project “An Answer Set Programming Framework for Reactive Planning
and Execution Monitoring” which is funded by the Austrian Science Funds (FWF).
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