In: Proc. 19th International Conference on Logic Programming (ICLP 2003), LNCS,
(© 2003 Springer.

Uniform Equivalence of Logic Programs under the
Stable Model Semantics

Thomas Eiter and Michael Fink

Institut fir Informationssysteme, Abt. Wissensbasierte Systeme,
Technische Universit Wien
Favoritenstrale 9-11, A-1040 Vienna, Austria
{eiter,michael }@kr.tuwien.ac.at

Abstract. In recent research on nonmonotonic logic programming, repeatedly
strong equivalence of logic prograrsand(@ has been considered, which holds

if the programsP U R and@ U R have the same stable models for any other
programR. This property strengthens equivalencefofind Q with respect to
stable models (which is the particular case for= (), and has an application

in program optimization. In this paper, we consider the more liberal notion of
uniform equivalence, in whicl ranges only over the sets of facts rather than
all sets of rules. This notion, which is well-known, is particularly useful for as-
sessing whether progranisand(@ are equivalent as components in a logic pro-
gram which is modularly structured. We provide semantical characterizations of
uniform equivalence for disjunctive logic programs and some restricted classes,
and analyze the computational cost of uniform equivalence in the propositional
(ground) case. Our results, which naturally extend to answer set semantics, com-
plement the results on strong equivalence of logic programs and pave the way for
optimizations in answer set solvers as a tool for input-based problem solving.

Keywords: uniform equivalence, strong equivalence, stable models, answer set seman-
tics, computational complexity, program optimization.

1 Introduction

In the last years, logic programming with hon-monotonic negation, and in particular
stable semantics, as a problem solving tool has received increasing attention, which led
to application in several fields. To a great deal, this is due to the availability of several
advanced implementations of the stable semantics such as smodels [18], DLV [11], or
ASSAT [15]. In turn, the desire of more efficient stable models solvers has raised the
need for sophisticated optimization methods by which logic programs can be simplified
and processed more efficiently. In this direction, properties of logic programs under the
stable semantics have been investigated which may aid in optimization.

A particular useful such property$$rong equivalencgl 2, 23]: Two logic programs
Py and P, are strongly equivalent, if by adding any set of rule$o both P, and P,
the resulting program®&; U R and P, U R are equivalent under the stable semantics,
i.e., have the same set of stable models. Thus, if a prodtarontains a subprogram

* This work was partially supported by the Austrian Science Fund (FWF) Project Z29-N04, and
the European Commission projects FET-2001-37004 WASP and IST-2001-33570 INFOMIX.

Q which is strongly equivalent to a progra@r, then we may replac® by @', in
particular if the resulting program is simpler to evaluate than the original one.

However, strong equivalence is a very restrictive concept. As for optimization, it is
not very sensitive to a modular structure of logic programs which naturally emerges by
splitting them into layeredomponentthat receive input from lower layers by facts and
in turn output facts to a higher layer [13, 5], nor to the usage of the same logic program
to compute solutions over varying inputs given as sets of facts.

In this paper, we study the more liberal notion wfiform equivalencg22, 16],
which is better suited in this respect: Two logic prografsand P, are uniformly
equivalent, if by adding any set édcts F' to both P, and P, the resulting programs
P, U F andP, U F have the same set of stable models. Thus, a compaheiithin a
programP may be (offline) replaced by a uniformly equivalent set of rdiésprovided
the global component structure of the program is not affected (a simple syntactic check).

That strong equivalence and uniform equivalence are different concepts is illustrated
by the following simple example.

Example 1.Let P = {a vV b} and@ = {a < notb; b — nota}. ThenP and(are
not strongly equivalent, sincB U {a < b; b — a} has the stable modék, b}, which
is not a stable model @) U {a < b; b «— a}. However, it can be seen th&andQ
are uniformly equivalent.

Moreover, this holds even for programs without disjunction.

Example 2.Let P = {a < notb; a «+ b} and@Q = {a <« notc; a — c}. Then, itis
easily verified that? and (@ are uniformly equivalent. However, they are not strongly
equivalent: ForP U {b < a} and@Q U {b < a}, we have thatS = {qa,b} is a stable
model ofQ U {b — a} but not of P U {b «— a}.

While strong equivalence of logic programs under stable semantics has been con-
sidered in a number of papers [3, 4, 14,12, 19, 23, 24], to our knowledge uniform equiv-
alence of has not been considered. Sagiv [22] has studied the property in the context
of definite Horn datalog programs, where he showed decidability of uniform equiva-
lence testing, which contrasts with the undecidability of equivalence testing for datalog
programs. Maher [16] considered the property for definite general Horn programs, and
reported undecidability. Moreover, both [22, 16] showed that uniform equivalence co-
incides for the respective programs with Herbrand logical equivalence.

In this paper we focus on propositional logic programs (to which general programs
reduce). Our main contributions are briefly summarized as follows.

e We provide characterizations of uniform equivalence of logic programs. In particu-
lar, we use the concept of strong-equivalence models (SE-models) [23, 24] and thus give
characterizations which appeal to classical models and the Gelfond-Lifschitz reduct [9,
10]. Our characterizations of uniform equivalence will elucidate the differences be-
tween strong and uniform equivalence in the examples above such that they immedi-
ately become apparent.

e For the finitary case, we provide a simple and appealing characterization of a logic
program with respect to uniform equivalence in terms afiit§orm equivalence models

(UE models)which is a special class of SE-models. The associated notion of conse-
quence can be fruitfully used to determine redundancies under uniform equivalence.

e We consider restricted subclasses, in particular positive programs, head-cycle free
programs [1], and Horn programs, and consider the relationship between uniform and
strong equivalence on them.

e We analyze the computational complexity of deciding uniform equivalence of two
given programsP and Q. We show that the problem i#{ -complete in the general
propositional case, and thus harder than deciding strong equivalefcarafQ), which

is in coNP [19, 24]. However, the complexity of testing uniform equivalence decreases
on important fragments; in particular, itéisNP-complete for positive and head-cycle
free programs, while it is polynomial for Horn programs. In the nonground case, the
complexity increases by an exponential for function-free programs.

¢ Finally, we address extensions to extended and to nested logic programs.

Our results complement the results on strong equivalence of logic programs, and
pave the way for optimization of logic programs under stable negation by exploiting
uniform equivalence. For space reasons, some proofs are omitted here (see [6] for an
extended version).

2 Preliminaries

We deal with disjunctive logic programs, which allow the use of default negation

in rules. A ruler is a triple (H(r), B*(r), B~ (r)), where H(r) = {A1,..., A},

BT (r) = {Ai1,...,An}, B~ (r) = {41, ..., Ap}, where0 < 1 < m < n and

A;, 1 <i < n,areatoms from afirst-order language. Throughout, we use the traditional
representation of a rule as an expression of the form

A V.. VA — A, Ay not Ay, ..., not Ay,

We call H(r) theheadof r, andB(r) = {Aj+1, ..., Am, not Apiq, ..., not A, }
thebodyof r. If H(r) =), thenr is aconstraint As usual;r is afactif B(r) = 0,
which is also represented Wy (r) if it is nonempty, and byl (falsity) otherwise. A
rule r is normal(or non-disjunctive), if < 1; definite if [= 1; andpositive if n = m.
Arule isHorn if it is normal and positive.

A disjunctive logic programiDLP) P is a (possibly infinite) set of rules. A program
P is anormal logic program(NLP) (resp., definite, positive, or Horn), if all rules i»
are normal (resp., definite, positive, or Horn). Furthermore, a prodgtasrhead-cycle
free (HCF) [1], if its dependency graph (which is defined as usual) has no directed cycle
that contains two atoms belonging to the head of the samelnuiee rest of this paper,
we focus on propositional programs over a set of ato#ns programs with variables
reduce to their ground (propositional) versions as usual.

We recall the stable model semantics ok Ps [10, 21], which generalizes the sta-
ble model semantics faVL Ps [9]. Aninterpretation/, viewed as subset o4, models
the head of a rule, denoted! = H(r), iff A € I for someA € H(r). It models
B(r),i.e.,I = B(r) iff (i) eachA € BT (r)istrueinI,i.e., A € I, and (i) each
A € B~ (p)isfalseinl,i.e., A ¢ I. Furthermore] models ruler, iff I = H(r)
wheneverl = B(r), andI = P, for a programP, iff T = r, forallr € P.

Thereductof a ruler relative toa set of atoms, denoted-/, is the positive rule’
suchthat (') = H(r) andB™(r') = B*(r) if INnB~(r) = 0, and is void otherwise.

TheGelfond-Lifschitz reducP?, of a programP, is P/={r! | r € PandINB~(r) =
(¢}. Aninterpretatior/ is astable modebf a programP iff I is a minimal model (under
inclusionC) of PZ. By SM(P) we denote the set of all stable modelsiaf

EquivalencesSeveral notions for equivalence of logic programs have been considered,
cf. [12, 16, 22]. Under stable semantics, thd Ps P and(are regarded as equivalent,
denotedP = Q, iff SM(P) = SM(Q).

The more restrictive forms of strong equivalence [12] and uniform equivalence [22,
16] are as follows.

Definition 1. Let P and(@ be twoDLPs, Then

(7) P and Q are strongly equivalent, denoted =* (@, iff for any rule setR, the
programsP U R and@ U R are equivalent,i.,ePUR = Q U R.

(#¢) P and @ are uniformly equivalent denotedP =% @, iff for any set of non-
disjunctive factd”, the programsPUF andQUF’ are equivalent, i.e PUF = QUF'.

One of the main results of [12] is a semantical characterization of strong equivalence
in terms of the non-classical logic HT. For characterizing strong equivalence in logic
programming terms, Turner introduced the following notion of SE-models [23, 24]:

Definition 2. Let P be aDLP, and letX,Y be sets of atoms such that C Y. The
pair (X,Y) is an SE-model oP, if Y = P and X |= PY. By SE(P) we denote the
set of all SE-models d?.

Strong equivalence can be characterized as follows.
Proposition 1 ([23, 24]).For everyDLPs P and@Q, P =* Q iff SE(P) = SE(Q).

Example 3.Reconsider”? = {a <« notb; a «— b} andQ = {a <« notc; a «— c}.
Recall that? =* Q. However,P #£° Q, as(), {a, b}) is in SE(P) but notinSE(Q).

3 Characterizations of Uniform Equivalence

After the preliminary definitions, we now turn to the issue of characterizing uniform
equivalence between logic programs in model-theoretic terms. As restated above, strong
equivalence can be captured by the notion of SE-model (equivalently, HT-model [12])
for a logic program. The weaker notion of uniform equivalence can be characterized in
terms of SE-models as well, by imposing further conditions.

We start with a seminal lemma, which allows us to derive simple characterizations
of uniform equivalence.

Lemma 1. Two DLPs P and @ are uniformly equivalent, i.eP =" @, iff for every
SE-model(X,Y), such that(X,Y") is an SE-model of exactly one of the programs
Pand@, itholds that) Y = P U Q, and (i) there exists an SE-modéM,Y),

X C M CY, of the other program.

Proof. For the only-if direction, suppose = Q. If Y neither modeld’, nor @, then
(X,Y) is not an SE-model of any of the prograf@sand@). Without loss of generality,
assum&” = P andY [~ Q. Then, since in this casé = PY and no strict subset of
Y modelsPUY,Y € SM(PUY),whileY ¢ SM(Q UY). This contradicts our
assumption? =* . Hence, item4) must hold.

To show {:), assume first thgtX, V') is an SE-model of but not ofQ. In view of
(4), itis clear thatX C Y must hold. Suppose now thatforevery3étX ¢ M C Y, it
holds that M, Y') is not an SE-model af. Then, since no subset &f modelsQY UX,
(Y,Y) is the only SE-model of) U X of form (-, Y). Thus,Y € SM(Q U X) in this
case, whiley ¢ SM(PU X) (X = PY impliesX = (PUX)Y,so(X,Y)is an
SE-model ofP U X). However, this contradict® =" . Thus, it follows that for some
M suchthatX ¢ M C Y, (X,Y) is an SE-model of). The argument in the case
where(X,Y") is an SE-model of) but not of P is analogous. This proves itenz),

For the if direction, assume tha) @nd ¢:) hold for every SE-mod€lX, Y) which
is an SE-model of exactly one &f and@. Suppose that there exist sets of atofrasnd
X, such that w.l.o.g.X € SM(PUA)\ SM(QU A). SinceX € SM(PU A), we
have thatd C X, and, moreoverX = P. Consequently(X, X) is an SE-model of
P.SinceX ¢ SM(QU A), eitherX [~ (Q U A)X, or there exists{’ C X such that
X' E(QUA)Y.

Let us first assum& (= (Q U A)X, then, sincdQ U A)X = QX UAandA C X,
it follows that X [= Q~. This impliesX j @ and hence(X, X) is not an SE-model
of Q. Thus,(X, X) is an SE-model of exactly one program, but (X, X) violates ()
sinceX £ @Q; this is a contradiction.

It follows that X = (Q U A)X must hold, and that there must exi§t C X such
thatX’ = (QUA)X = Q¥ UA. Sowe can conclud® = @ and that X', X) is an SE-
model of@ but not of P. To see the latter, note thdt C X’ must hold. So if X', X)
were an SE-model oP, then it would also be an SE-model 8fU A, contradicting
the assumption that € SM(PU A). Again we get an SE-modglX’, X), of exactly
one of the programs) in this case. Hence, according t@)(there exists an SE-model
(M,X)of P, X’ ¢ M C X.However, because of C X’, it follows that(M, X) is
also an SE-model aP U A4, contradicting our assumption that € SM(P U A).

This proves that, giveril and ¢:) for every SE-mode{X,Y") such that X,Y) is
an SE-model of exactly one @ and@, no sets of atomgl and X exists such thak’
is a stable model of exactly one 6fU A and@ U A. Thatis,P =" @ holds. ad

From Lemma 1 we immediately obtain the following characterization of uniform
equivalence between logic programs.

Theorem 1. Two DLPs, P and@ are uniformly equivalentP =* @, iff

(#) (X, X)is an SE-model oP iff it is an SE-model of), and
(i) (X,Y), whereX C Y, is an SE-model oP (respectively) iff there exists a set
M, suchthatX C M C Y, and(M,Y) is an SE-model af) (respectivelyP).

Example 4.Reconsider the prograni3 = {a Vv b} and@ = {a < not b; b — not a}.
By Theorem 1, we can easily verify th& and (@ are uniformly equivalent: Their SE-
models differ only in(@, {a, b}), which is an SE-model af) but not of P. Thus, items
(¢) and ¢i) clearly hold for all other SE-models. Moreovéfa}, {a, b}) is an SE-model
of P, and thus itemif) also holds for((), {a, b}).

Note thatP and @) are strongly equivalent after adding the constraint- «, b,
which enforces exclusive disjunction. Uniform equivalence does not require such an
addition.

Example 5.Let P and@ as in the previous example. Sin& (R U S) = SE(R) N
SE(S) for any programsP and S, the pair (@, {a,b}) is no longer an SE-model of
QU{c: « a,b} (becausda,b} |~ c). Hence,P U {c} =°* Q U {c}.

For finite programs, we can derive from Theorem 1 the following characterization
of uniform equivalence.

Theorem 2. Two finite DLPs P and @ are uniformly equivalent, i.e? =" @, iff the
following conditions hold:

(?) (X, X)is an SE-model aP iff it is an SE-model of) for everyX, and
(¢4) for every SE-mod€lX,Y) € SE(P) U SE(Q) such thatX C Y, there exists an
SE-mode(M,Y) € SE(P)N SE(Q) (=SE(PUQ)) suchthatX C M C Y.

Proof. Since) holds by virtue of Theorem 1, we only need to shai).(Assume
(X,Y),whereX CY,isinSE(P)U SE(Q).
If (X,Y) € SE(P)NSE(Q), then the statement holds. Otherwise, by virtue of The-

orem 1, there existd\/;,Y), X C M; C Y, suchthatM;,Y)isin SE(P)USE(Q).

By repeating this argument, we obtain a chain of SE-mod&IsY) = (M,,Y),
(Ml,Y), Caey (MZ,Y), ... such tha(M“Y) S SE(P) @] SE(Q) andM; C Mi+11

for all # > 0. Furthermore, we may choodd; such thatM; coincides withY on

all atoms which do not occur i U @ (and hence allM;, i > 1, do so). SinceP
and @ are finite, it follows thatM; = M,;; must hold for some& > 0 and hence
(M;,Y) € SE(P)n SE(Q) must hold. This proves the result. O

Note that the previous theorem remains valid even if only onB ahd(is finite.
In the light of this result, we can capture uniform equivalence of finite programs by
the notion of UE-model defined as follows.

Definition 3 (UE-model).Let P be aDLP. Then, any X,Y) € SE(P) is auniform
equivalencg UE) model of P, if for every (X', Y) € SE(P) it holds thatX c X’
impliesX’ =Y. By UE(P) we denote the set of all UE-modelsiof

That is, the UE-models comprise all SE-models aD&P which correspond to
classical models oP (for Y = X), plus all its maximal 'non-classical’ SE-models,
e, UE(P) = {(X,X) € SE(P)} Umax>{(X,Y) € SE(P) | X C Y}, where
X, YN>X, Y)Y =YANXCX.

By means of UE-models, we then can characterize uniform equivalence of finite
logic programs by the following simple condition.

Theorem 3. Two finite DL Ps P and @ are uniformly equivalent, i.e? =* @, if and
only if UE(P) = UE(Q).

Proof. By Theorem 2 we have to show that Conditiofis(X, X) = P < (X, X) =
Qand () (X, Y)EPAXCY=3IM,XCMCY : (M,Y) = PuQ hold iff
UE(P) = UE(Q).

For the if direction assumé&E(P) = UE(Q). Then §) holds by definition of
UE-models. Now le{ X,Y") be an SE-model oP, such thatX C Y. There are two

possibilities: If(X,Y") is maximal, then X,Y) € UE(Q) as well and thusi) holds

(M = X); otherwise,(X,Y") is not maximal, which means that there exists some
(X',Y) € UE(P) such thatX ¢ X' C Y, and sinceUE(P) = UE(Q) Condition

(7¢) holds again {4 = X”).

For the only-if direction letP =* Q. Then by Condition#) UE(P) and UE(Q)
coincide on model§X, X). Assume w.l.o.g. thatX,Y), X C Y,isin UE(P), but not
in UE(Q). By (it) there exist§M,Y), X C M C Y, which is an SE-model of both
P andQ. SinceX C M contradicts X,Y) € UE(P),letM = X, i.e,(X,Y)is an
SE-model of@ as well, but it is not inUE(Q). Hence, there existsX’,Y) € UE(Q),
X C X’ C Y and by (:) there existM’,Y), X’ C M C Y, which is an SE-model
of P. This again contradictsX,Y’) € UE(P). Hence,UE(P) = UE(Q). O

This result shows that UE-models capture the notion of uniform equivalence, in
the same manner as SE-models capture strong equivalence. That is, the essence of a
programP with respect to uniform equivalence is expressed by a semantic condition
on P alone.

Example 6.Each SE-model of the prograi = {a V b} satisfies the condition of an
UE-model, and thu$/E(P) = SE(P). The progran@ = {a «— notb; b «— nota}
has the additional SE-modé{}, {a,b}), and all of its SE-models except this one are
UE-models of@. Thus, UE(P) = UE(Q) = {({a},{a}), ({b},{b}), ({a},{a,b}),
({6}, {a,b}), ({a,b}, {a,b})}.

Note that the strong equivalence betwdeand @ fails becausé(), {a, b}) is not
an SE-model ofP. This SE-model is enforced by the intersection propefy:(Y)
and (X,,Y) in SE(P) implies (X1 N X»,Y) € SE(P)) which the Horn program
QY enjoys, which however is not satisfied by the disjunctive progfdm(=P). The
maximality condition of UE-models eliminates this intersection property.

Example 7.Reconside” = {a < not b; a «+ b}, which has classical mode{a }UY",
Y C {b,c}. Its UE-models are of for{a} U X, {a} UY) whereX € {Y, Y\ {b},Y"\
{c}}. Note that the atoms andc have symmetric roles it/E(P). Consequently, the
program obtained by exchanging the role$@ndc, Q = {a < notc; a < ¢} has
the same UE models. HendB,and@ are uniformly equivalent.

Like Theorem 2, also Theorem 3 remains valid if only onefoind () is finite.
However, the following example shows that it fails if bathand@ are infinite.

Example 8.Consider the programB and@ overA = {a} U {b; | i > 1}, defined by
P:{(I(; y b,L(*|ZZ].}, andQ:{CLHnOtG, biHbi-i-ly bl%a‘ZZI}

Both P and@ have the single classical modeél = {a,b; | i > 1}. Furthermore P
has no “incomplete” SE-modé¢lX,Y") such thatX C Y, while Q has the incomplete
SE-models(X;, M), whereX; = {b1,...,b;} fori > 0. Both P and @ have the
same maximal incomplete SE-models (namely none), and hence they have the same
UE-models.
However,P % @), since e.gP has a stable model whit@ has obviously not. Note
that this is caught by our Theorem 1, itei¥)(for (X, M), which is an SE-model af)
but not of P, we cannot find an SE-modeX, M) of P between Xy, M) and(M, M).

Based on UE-models, we define an associated notion of consequence nifaien
equivalenceRecall that X, Y) models arule- iff Y = r andX = rY.

Definition 4 (UE-consequence)A rule, r, is an UE-consequencef a program P,
denotedP =, r, if (X,Y) Erforall (X,Y) € UE(P).

Clearly, P =, r forall r € P, and() |= r iff r is a classical tautology. The next
result shows that a program remains invariant under addition of UE-consequences.

Proposition 2. For any finite programP and ruler, if P =, r thenP U {r} =" P.

From this proposition, we obtain an alternative characterization of uniform equiva-
lence in terms of UE-consequence. As usual, we white-,, R for any set of rules®
if P =, rforallrecR.

Theorem 4. Let P and@ be any finiteDLPs. ThenP =* Q iff P =, Q andQ =, P.

Proof. For the if-direction, we apply Prop. 2 repeatedly and obfaix* PUQ =* Q.
For the only-if direction, we hav&E (P)=UE(Q) if P =" @ by Theorem 3, and thus
P and@ have the same UE-consequences. SIIEgY) = P (resp.(X,Y) = Q), for
all (X,Y) € UE(P) (resp.(X,Y) € UE(Q), itfollows @ =, PandP =, Q. O

We note that with respect to uniform equivalence, every progpdmas a canonical
normal form,P*, given by its UE-consequences, i.B5 = {r | P =, r}.

Clearly, P C P* holds for every progran®?, andP* has exponential size. Applying
optimization methods which build on UE-consequerieegsp.P* may be transformed
into smaller uniform equivalent programs; we leave this for further study.

As for the relationship of UE-consequence to classical consequence and cautious
consequence under stable semantics, we note the following hierarchy: Ldgnote
consequence from the stable models, il r iff M |= r for everyM € SM(P).

Proposition 3. For any finite programP and ruler, (i) P =, r impliesPU A =, r,
for each set of factsl; (iz) P U A =, r, for each set of factdl, impliesP . r; and
(237) P = v impliesP = r.

This hierarchy is strict, i.e., none of the implications holds in the converse direction.
(For @), note that{a — nota} . a but{a < nota} W, a, since the UE-model
(0,{a}) violatesa.)

We next present a semantic characterization in terms of UE-models, under which
UE-and classical consequence and thus all four notions of consequence coincide.

Lemma 2. Let P be a finite DLP. Suppose thatX,Y) € UE(P) impliesX |= P
(i.e., X is a model ofP). Then,P = r impliesP =, r, for every ruler.

Lemma 3. Let P be a finiteDLP. Then,P |=, r impliesP = r, for every ruler.

Theorem 5. Let P be any finiteDLP. Then the following conditions are equivalent:

(i) Pk, riff P = r, for every ruler.
(¢7) Forevery(X,Y) € UE(P), itholds thatX = P.

Proof. (i7) = (i) Follows immediately from Lemmas 2 and 3.

(¢) = (i) SupposeP |, riff P | r, for every ruler, but there exists some UE-
model (X,Y") of P such thatX [~ P. HenceX [~ r for some ruler € P. Let

r’ be the rule which results from by shifting the negative literals to the head, i.e.,
H(r') = H(r)UB~(r), Bt (') = B*(r),andB~ (') = 0. Then,X § r’. On the
other handy € P implies (X,Y) = r. Hence,Y = r and thusY = +’. Moreover,
B~ (') = (implies that’ € PY, and henceX k= r’. This is a contradiction. It follows
thatX | P for each UE-mode({X,Y") of P. O

An immediate corollary to this result is that for finite positive programs, the notion
of UE-consequence collapses with classical consequence, and hence uniform equiv-
alence of finite positive programs amounts to classical equivalence. We shall obtain
these results as corollaries of more general results in the next section, though.

4 Restricted Classes of Programs

After discussing uniform equivalence of general propositional programs, let us now
consider two prominent subclasses of programs, namely positive and head-cycle free
programs.

4.1 Positive programs

While for programs with negation, strong equivalence and uniform equivalence are dif-
ferent, the notions coincide for positive programs, as shown next.

Proposition 4. Let P and@ be positiveDLPs. ThenP =" Q iff P =° Q.

Proof. The if-direction is immediate aB =* @@ impliesP = Q.

For the only-if-direction, we show that i and@ are not strongly equivalent then
P and@ are not uniformly equivalent. To start with, observe tRaf = P holds for
any positive progran® and any set of literalX .

W.l.o.g., let(X,Y’) be an SE-model oP but not of Q. By definition of SE-model
we haveX = PY,i.e.X = P.Onthe other hand, sin¢eX, Y) is not SE-model of),
either §) X (= QY,i.e., X £ Q,or (i1) Y ~ Q.

(?) Consider the programBx = P U X and@Qx = Q U X. Clearly,X Px and
for eachX’ C X, X’ £ Px = Pg. Hence,X is an answer set aPy. On the other
hand, X £ @ and thusX }~ Qx. Hence, X cannot be an answer set@fx.

(z3) Consider the programBy = PUY andQy = QUY. Clearly,Y = Py and
for eachY’ C Y, Y’ £ Py = PY. HenceY is an answer set aPy-. On the other
hand,Y }£ @ and thusY” |~ Qy. HenceY cannot be an answer set@f, .

In any case we must conclude tHaand@ are not uniformly equivalent. a0

As known and easy to see from the main results of [12, 23, 24], on the class of
positive programs classical equivalence and strong equivalence coincide. By combining
this and the previous result, we obtain

Theorem 6. Let P and @ be positiveDLPs. ThenP =* @ if and only if P = @Q and
Q@ E P, i.e., P and(@ have the same set of classical models.

Note that Sagiv [22] showed that uniform equivalence of datalog progfarasd
II' is equivalent to equivalence @i’ and IT over Herbrand models; this implies the
above result for definite Horn programs. Maher [16] showed a generalization of Sagiv's
result for definite Horn logic programs with function symbols.

Example 9.Consider the positive programd® = {a V b; ¢ <« a; ¢ < b} and@ =
{a Vv b; c}. Their classical models afe, c}, {b, c}, and{a, b, c}. Hence,P and@ are
uniformly equivalent, and even strongly equivalent (due to Prop. 4).

4.2 Head-cycle free programs

The class of head-cycle free programs generalizes the cla8& B by permitting a
restricted form of disjunction. Still, it is capable of expressing nondeterminism such as
a guess for the value of an atamwhich does not occur in the head of any other rule.

As shown by Ben-Eliyahu and Dechter, each head-cycle free program can be rewrit-
ten to anNLP, obtained by shifting atoms from the head to the body, which has the
same stable models. More formally, let us define the following notation:

Definition 5. For any ruler, letr— = {+' | H(') = {a},a € H(r),Bt(r') =
Bt (r),B=(r') = B~ (r)UH(r) \ {a}} if H(r) # 0 andr— = {r} otherwise. For
anyDLP P,letP~ =J,cpr™.

It is well-known that for any head-cycle free progrdmit holds thatP = P~ (cf.
[1]). This result can be strengthened to uniform equivalence.

Theorem 7. For any head-cycle free prograt, it holds thatP =" P—.

Proof. For any set of factsl, it holds that(P U A)~ = P~ U A and that this program
is head-cycle free. Thu§ UA = (PUA)” = P~ UA. Hence,P =* P—. O

We emphasize that a similar result for strong equivalence fails, as shown by the
canonical counterexample in Example 1. Moreover, the progPam {a V b «— .} is
not strongly equivalent to anyZP. Thus, we can not conclude without further consid-
eration that a simple disjunctive “guessing clause” like the on® isuch thatz and
b do not occur in other rule heads) can be replaced in a more complex program by the
unstratified clauses < not b andb < not a; addition of a further constraint— a, b
is required. However, we can conclude this under uniform equivalence taking standard
program splitting results into account [13, 5].

We close this section with the following result, which provides a characterization of
arbitrary programs which are strongly equivalent to their shift variant.

Theorem 8. Let P be anyDLP. Then,P =° P~ if and only if for every disjunctive
ruler € P it holds thatP— has no SE-modélX, Y') such that{) |H(r)NY| > 2 and
(i) X N H(r) =0 and X = B*(r), i.e., X violates the reduced rule" .

Example 10.Reconsidel? = {a Vb «}. ThenP~ = {a « notb,b — nota} has
the SE-model®, {a,b}), which satisfies the conditions)(@and ¢:) for r : a V b «.
Note that also the extended progrdth = {a V b «,a <« b,b « a} is not strongly
equivalent to its shifted progra’ . Indeed (), {a, b}) is also an SE-model o’ .
Furthermorep is also not uniformly equivalent t&' ", since(f, {a, b}) is moreover a
UE-model of P, but P has the single SE-model (and thus UE-modét) b}, {a, b}).

10

5 Complexity

In this section, we address the computational complexity of uniform equivalence. While
our main interest is with the problem of deciding uniform equivalence between two
given programs, we also consider the related problems of UE-model checking and UE-
consequence.

For UE-model checking, we have the following result. llef| denote the size of
an objecto.

Theorem 9. Given a pair of set$ X, Y') and a programP, deciding whethetX,Y") €
UE(P) is (i) coNP-complete in general, andd feasible in polynomial time with re-
spectto| P|| + || X || + ||V, if P is head-cycle free. Hardness in cageholds even for
positive programs.

Corollary 1. UE-model checking for Horn programs is polynomial.

We now consider the problem of our main interest, namely deciding uniform equiv-
alence. By the previous theorem, the following upper bound on the complexity of this
problem is obtained.

Lemma 4. Given twoDLPs P and(Q, deciding whetheP =% Q is in the classlT} .

Recall thatlIl = coNP™Y is the class of problems such that the complementary
problem is nondeterministically decidable in polynomial time with the help dV&n
oracle (i.e., inoy = NPYP),

Proof. To show that twaD L Ps P and@ are not uniformly equivalent, we can by Theo-
rem 3 guess an SE-modeX, V) such tha{ X, Y") is an UE-model of exactly on of the
programsP and@. By Theorem 9, the guess f0X, Y") can be verified in polynomial
time with the help of alNP oracle. This provesl{-membership of” =* Q. O

This upper bound has a complementary lower bound proved in the following result.
Theorem 10. Given twoDLPs P and @, decidingP = Q is I1{’-complete.

Proof. (Sketch) Membership ifif{" has already been established in Lemma 4. To show
IT¥-hardness, we provide a polynomial reduction of evaluating a quantified Boolean
formula (QBF) from a fragment which is knowfl” -complete to deciding uniform
equivalence of twdLPs P andQ.

Consider aQBF, 5 F of form ' = 3XVY \/z ! D;, where eachD; is a conjunct
of at most three literals over the boolean vanable.'Xan VX ={x; |1 <i<n}
andY = {y; | 1 <1 < m}. Deciding whether a given sudfiis true is well-known to
be X' -complete; thus deciding whethgris false isIT¥’-complete.

W.l.o.g., we assume that eaéh contains some literal ovéf. Now let P and@ be
the following programs:

P={zva, — . 1<i<m
i VY, — yj. 1<i#j<m
YiVyi — Y 1<i#75<m

11

W — Ty, The 1<i<mn; wy — Y,y 1<i<m

T; — wo. 1<i<ng wy «— Df. 1< <1
xp — wo. 1<i<n; Y — wi. 1<i<m
Yi < wo. 1 <i<m; y; — wi. 1<i<m
yh — wo. 1<e<m wy «— notwi.

wy < Wg. },

and Q=PU{yVy < .},

whereD; results fromD; by replacing literals-z; and—y; by z; andy;, respectively.
Informally, the disjunctive clauses with; andz’ in the head respy; andy; serve
for selecting a truth assignment to the variab)egresp.,y;). The atomw, serves for
handling a spoiled assignment to somewhich occurs if both:; andz; are true, and
enforces the maximal interpretation as the unique modé?,dby the rules withw
in the body. Similarlyuw, recognizes a spoiled assignment to some varigpte that
some disjuncD; of the QBF is true, and enforces for all atomsy; andw; the unique
value true. However, foP the selection of a truth assignment is conditional to the truth
of any atomy; or y;, while for Q) it is mandatory by the additional rulg v y; <. This
difference leads to a suite of candidate SE-modéls, 1/,) of P which do not satisfy
@, where corresponds to a truth assignment¥oand all atoms not i U X’ are
false, such thatA, , M,) violates uniform equivalence @ and@ via (i) just if there
is no way to make alD; false by some assignmento Y. These candidate models for
spoiling uniform equivalence are eliminated iff formulaevaluates to false. Sinde
and(@ are obviously constructible in polynomial time, our result follows. ad

The previous result shows that deciding uniform equivalenc®bPs P and Q
is more complex than deciding strong equivalence, which i®NP [19, 24]. Thus,
the more liberal notion of uniform equivalence comes at higher computational cost in
general. However, for important classes of programs, it has the same complexity

Theorem 11. Let P and @ be DL Ps without simultaneous negation and head-cycles
(i.e., each program is either positive or head-cycle freehen, deciding? =* Q@ is
coNP- complete, whereoNP-hardness holds iP is either positive or aVLP, and@Q

is Horn.

Note that Sagiv showed [22] that decidify =" @ for given definite Horn pro-
gramsP and(is polynomial. This clearly generalizes to arbitrary Horn programs. We
further remark that fo’VL Ps deciding strong equivalence is alsoNP-hard.

Finally, we complement the results on uniform equivalence and UE-model checking
with briefly addressing the complexity of UE-consequence.

Theorem 12. Given aDLP P and a ruler, decidingP |=, r is (i) I13-complete in
general, {i) coNP-complete ifP is either positive or head-cycle free, and:j polyno-
mial if P is Horn.

Proof. (Sketch) The complementary problef, %, r, is in X'¥ for generalP and in

NP for head-cycle fred?, since a guess for a UE-modgeX, Y') of P which violatesr
can, by Theorem 9 be verified with a call t&\&-oracle resp. in polynomial time. In

12

case of a positive®, by Theorem 5P =, r iff P |= r, which is incoNP for general
P and polynomial for HornP. The hardness results can be obtained by adapting the
constructions in hardness proofs of previous results. O

We conclude this section with some remarks on the complexity of programs with
variables. For such programs, in case of a given finite Herbrand universe the complexity
of equivalence checking increases by an exponential. Intuitively, this is explained by the
exponential size of the ground instance of a program over the universe. Note that Lin
reported [14], without a full proof, that checking strong equivalence for programs in
this setting is incoNP, and thus has the same complexity as in the propositional case;
however, this is not correct. Unsurprisingly, uniform equivalence of logic programs over
an arbitrary Herbrand universe is undecidable according to Maher [16].

6 Extensions

Our results easily carry over to extended logic programs, i.e., programs where classical
(also called strong) negation is allowed as well. If the inconsistent answer set is disre-
garded, i.e., an inconsistent program has no models, then, as usual, the extension can be
semantically captured by representing strongly negated atofnBy a positive atom

A’ and adding constraints- A, A’, for every atomA, to any program.

Furthermore, since the proofs of our main results are generic in the use of reducts,
they can be easily generalized to nested logic programs considered in [12, 23, 24,19],
i.e., we get the same characterizations and the same complBXity (

However, if in the extended setting the inconsistent answer set is taken into account,
then the given definitions have to be slightly modified such that the characterizations
of uniform equivalence capture the extended case properly. The same holds true for
the characterization of strong equivalence by SE-models as illustrated by the following
example. Note that the redefinition &f* and=? is straightforward.

Let Lit 4={A,-~A | A € A} denote the set of all literals using strong negation oer
Example 11.Consider the extended logic prografs= {aVb «— ; —a < a; —b < b}
and@ = {a < notb; b — nota; —a «— a; —b «— b}. They both have no SE-model;
hence, by the criterion of Prop. B, =° @ would hold, which impliesP =* @ and
P = Q. However,P has the inconsistent answer g6t 4, while Q has no answer set.
Thus formally,P and@ are not even equivalent ffit 4 is admitted as answer set.

Since [23,12, 24] made no distinction between no answer set and inconsistent an-
swer set, we start adapting the definition of SE-models.

Definition 6. A pair (X,Y), X C Y C Lity, is an SEE-model of an extend&d.P
P, if each ofX andY is either consistent or equalsit 4 andY = P A X | PY.

From previous characterizations we get more general characterizations in terms of

SEE-models for extended programs.

Theorem 13. Two extendedLPs P and(are

— strongly equivalent iff they have the same SEE-models, and
— uniformly equivalent iff

(?) (X, X)is an SEE-model aP iff it is an SEE-model of), and

13

(7) (X,Y), X CY,isan SEE-model aP (resp.Q) iff there exists a set/, such
thatX C M C Y, and(M,Y) is an SEE-model af (resp.P).

For positive programs, uniform and strong equivalence coincide also in the extended
case.

Theorem 14. Let P and @ be positive, extendef L Ps. ThenP =* Q iff P =* Q.

As a consequence of previous complexity results, checkieg* @ (resp.P =°)
for extended logic programg, andqQ, is 111 -hard (respcoNP-hard).

However, not all properties do carry over. As Example 11 reveals, in general a head-
cycle free extended L P P is no longer equivalent, and hence not uniformly equiva-
lent, to its shiftP<—. However, under the condition bela=" P holds as well. Call
any DL P contradiction-fregif Lit 4 is not an answer set of it.

Proposition 5. Let P be a head-cycle free and contradiction-free extenBéd. Then
P =" P iffforeachA C Lit 4, the programPU A is contradiction-free if the program
{reP| |H(r)|<1}UA is contradiction-free.

As shown in [6], “A C Lit 4" can be equivalently replaced byl“C Lit 4 such that
Dy (P) Z A whereDy(P)={L|Le€ H(r),|H(r)| > 1,r € P}.

We finally note that Pearce and Valverde have given, inspired by our work, a gener-
alization of our results on UE-models to equilibrium logic [20].

7 Conclusion

Uniform equivalence of logic programs, which has been considered earlier for data-
log and general Horn logic programs [22, 16], under stable semantics is an interesting
concept which can be exploited for program optimization. We have presented character-
izations of uniform equivalence in terms of Turner's SE-models [23, 24] (equivalently,
HT models [12]), and we have analyzed the computational cost for testing uniform
equivalence and related problems.

While we have presented a number of results, there are several issues which remain
to be considered. We have found a simple and appealing characterization of uniform
equivalence in terms of UE-models for finitary programs, which single out from the SE-
models certain maximal models. However, in case of infinite programs, such maximal
models need not exist. It thus would be interesting to see whether also in this case
uniform equivalence can be captured by a set of SE-models, or whether a completely
novel notion of model (like SE-model for strong equivalence) is needed. Researching
this issue is part of our ongoing work.

Another direction of research is to investigate the usage of uniform equivalence for
program replacement and program rewriting in optimization. To this end, in follow-up
works [7, 8] we analyzed compliances with current optimization techniques and gave
characterizations of programs possessing equivalent programs belonging to syntactic
subclasses of disjunctive logic programs under both, uniform and strong equivalence.
Furthermore we gave encodings of our characterizations in answer-set programming
and investigated the computational complexity of program simplification and determin-
ing semantical equivalence.

14

Acknowledgments. We thank the anonymous referees for their valuable comments.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligenck2:53-87, 1994.

R. Ben-Eliyahu and L. Palopoli. Reasoning with minimal models: Efficient algorithms and
applications. IrProc. KR'94 pp. 39-50, 1994.

. P. Cabalar. A three-valued characterization for strong equivalence of logic programs. In

Proc. AAAI’02 pp. 106-111, 2002.

. D.J. de Jongh and L. Hendriks. Characterizations of strongly equivalent logic programs in

intermediate logicsTheory and Practice of Logic Programmingy(3):259—-270, 2003.

. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalo§CM TODS 22(3):364—-417,

1997.

. T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model seman-

tics. Tech. Rep. INFSYS RR-1843-03-08, Instr informationssysteme, TU Wien, 2003.

. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under uniform

and strong equivalence. Manuscript, submitted, July 2003.

. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Eliminating disjunction from propositional

logic programs under stable model preservation. Manuscript, submitted, August 2003.

. M. Gelfond and V. Lifschitz. The stable model semantics for logic programmingodic

Programming: Proc. Fifth Int'l Conference and Symposjyap. 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing:365-385, 1991.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, C. Koch, C. Mateis, S. Perri, and F. Scar-
cello. The DLV system for knowledge representation and reasoning. Tech. Rep. INFSYS
RR-1843-02-14, Instiir Informationssysteme, TU Wien, 2002.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic prograk@V Trans.

on Computational Logic2(4):526-541, 2001.

V. Lifschitz and H. Turner. Splitting a logic program. Pnoc. ICLP-94 pp. 23-38, 1994.

F. Lin. Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. InProc. KR-2002pp. 170-176, 2002.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers. In
Proc. AAAI-2002pp. 112-117, 2002.

M. J. Maher. Equivalences of logic programs. In Minker [17], pp. 627—658.

J. Minker, editor.Foundations of Deductive Databases and Logic Programmixgrgan
Kaufmann, 1988.

I. Nieme&, P. Simons, and T. Symien. Smodels: A system for answer set programming. In
Proc. 8th Int'l Workshop on Non-Monotonic Reason{iNVR'2000, 2000.

D. Pearce, H. Tompits, and S. Woltran. Encodings for equilibrium logic and logic programs
with nested expressions. Rroc. EPIA 2001LNCS 2258, pp. 306—320, 2001.

D. Pearce and A. Valverde. Some types of equivalence for logic programs and equilibrium
logic. In Proc. Joint Conf. Declarative Programming (APPIA-GULP-PRODE)03.

T. Przymusinski. Stable semantics for disjunctive prograNewy Generation Computing
9:401-424, 1991.

Y. Sagiv. Optimizing datalog programs. In Minker [17], pp. 659—698.

H. Turner. Strong equivalence for logic programs and default theories (made edyc.In
LPNMR-01 LNCS 2173, pp. 81-92, 2001.

H. Turner. Strong equivalence made easy: nested expressions and weight conBhradams.

and Practice of Logic Programmin@(4-5):609-622, 2003.

15

