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Abstract. In recent research on nonmonotonic logic programming, repeatedly
strong equivalence of logic programsP andQ has been considered, which holds
if the programsP ∪ R andQ ∪ R have the same stable models for any other
programR. This property strengthens equivalence ofP andQ with respect to
stable models (which is the particular case forR = ∅), and has an application
in program optimization. In this paper, we consider the more liberal notion of
uniform equivalence, in whichR ranges only over the sets of facts rather than
all sets of rules. This notion, which is well-known, is particularly useful for as-
sessing whether programsP andQ are equivalent as components in a logic pro-
gram which is modularly structured. We provide semantical characterizations of
uniform equivalence for disjunctive logic programs and some restricted classes,
and analyze the computational cost of uniform equivalence in the propositional
(ground) case. Our results, which naturally extend to answer set semantics, com-
plement the results on strong equivalence of logic programs and pave the way for
optimizations in answer set solvers as a tool for input-based problem solving.

Keywords: uniform equivalence, strong equivalence, stable models, answer set seman-
tics, computational complexity, program optimization.

1 Introduction

In the last years, logic programming with non-monotonic negation, and in particular
stable semantics, as a problem solving tool has received increasing attention, which led
to application in several fields. To a great deal, this is due to the availability of several
advanced implementations of the stable semantics such as smodels [18], DLV [11], or
ASSAT [15]. In turn, the desire of more efficient stable models solvers has raised the
need for sophisticated optimization methods by which logic programs can be simplified
and processed more efficiently. In this direction, properties of logic programs under the
stable semantics have been investigated which may aid in optimization.

A particular useful such property isstrong equivalence[12, 23]: Two logic programs
P1 andP2 are strongly equivalent, if by adding any set of rulesR to bothP1 andP2,
the resulting programsP1 ∪ R andP2 ∪ R are equivalent under the stable semantics,
i.e., have the same set of stable models. Thus, if a programP contains a subprogram
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Q which is strongly equivalent to a programQ′, then we may replaceQ by Q′, in
particular if the resulting program is simpler to evaluate than the original one.

However, strong equivalence is a very restrictive concept. As for optimization, it is
not very sensitive to a modular structure of logic programs which naturally emerges by
splitting them into layeredcomponentsthat receive input from lower layers by facts and
in turn output facts to a higher layer [13, 5], nor to the usage of the same logic program
to compute solutions over varying inputs given as sets of facts.

In this paper, we study the more liberal notion ofuniform equivalence[22, 16],
which is better suited in this respect: Two logic programsP1 andP2 are uniformly
equivalent, if by adding any set offactsF to bothP1 andP2, the resulting programs
P1 ∪ F andP2 ∪ F have the same set of stable models. Thus, a componentC within a
programP may be (offline) replaced by a uniformly equivalent set of rulesC ′, provided
the global component structure of the program is not affected (a simple syntactic check).

That strong equivalence and uniform equivalence are different concepts is illustrated
by the following simple example.

Example 1.Let P = {a ∨ b} andQ = {a ← not b; b ← not a}. ThenP andQ are
not strongly equivalent, sinceP ∪ {a← b; b← a} has the stable model{a, b}, which
is not a stable model ofQ ∪ {a ← b; b ← a}. However, it can be seen thatP andQ
are uniformly equivalent.

Moreover, this holds even for programs without disjunction.

Example 2.Let P = {a ← not b; a ← b} andQ = {a ← not c; a ← c}. Then, it is
easily verified thatP andQ are uniformly equivalent. However, they are not strongly
equivalent: ForP ∪ {b ← a} andQ ∪ {b ← a}, we have thatS = {a, b} is a stable
model ofQ ∪ {b← a} but not ofP ∪ {b← a}.

While strong equivalence of logic programs under stable semantics has been con-
sidered in a number of papers [3, 4, 14, 12, 19, 23, 24], to our knowledge uniform equiv-
alence of has not been considered. Sagiv [22] has studied the property in the context
of definite Horn datalog programs, where he showed decidability of uniform equiva-
lence testing, which contrasts with the undecidability of equivalence testing for datalog
programs. Maher [16] considered the property for definite general Horn programs, and
reported undecidability. Moreover, both [22, 16] showed that uniform equivalence co-
incides for the respective programs with Herbrand logical equivalence.

In this paper we focus on propositional logic programs (to which general programs
reduce). Our main contributions are briefly summarized as follows.

• We provide characterizations of uniform equivalence of logic programs. In particu-
lar, we use the concept of strong-equivalence models (SE-models) [23, 24] and thus give
characterizations which appeal to classical models and the Gelfond-Lifschitz reduct [9,
10]. Our characterizations of uniform equivalence will elucidate the differences be-
tween strong and uniform equivalence in the examples above such that they immedi-
ately become apparent.
• For the finitary case, we provide a simple and appealing characterization of a logic
program with respect to uniform equivalence in terms of itsuniform equivalence models
(UE models), which is a special class of SE-models. The associated notion of conse-
quence can be fruitfully used to determine redundancies under uniform equivalence.
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• We consider restricted subclasses, in particular positive programs, head-cycle free
programs [1], and Horn programs, and consider the relationship between uniform and
strong equivalence on them.
• We analyze the computational complexity of deciding uniform equivalence of two
given programsP andQ. We show that the problem isΠP

2 -complete in the general
propositional case, and thus harder than deciding strong equivalence ofP andQ, which
is in coNP [19, 24]. However, the complexity of testing uniform equivalence decreases
on important fragments; in particular, it iscoNP-complete for positive and head-cycle
free programs, while it is polynomial for Horn programs. In the nonground case, the
complexity increases by an exponential for function-free programs.
• Finally, we address extensions to extended and to nested logic programs.

Our results complement the results on strong equivalence of logic programs, and
pave the way for optimization of logic programs under stable negation by exploiting
uniform equivalence. For space reasons, some proofs are omitted here (see [6] for an
extended version).

2 Preliminaries

We deal with disjunctive logic programs, which allow the use of default negationnot
in rules. A ruler is a triple 〈H(r), B+(r), B−(r)〉, whereH(r) = {A1, . . . , Al},
B+(r) = {Al+1, . . . , Am}, B−(r) = {Am+1, . . . , An}, where0 ≤ l ≤ m ≤ n and
Ai, 1 ≤ i ≤ n, are atoms from a first-order language. Throughout, we use the traditional
representation of a rule as an expression of the form

A1 ∨ . . . ∨Al ← Al+1, . . . , Am,not Am+1, . . . ,not An.

We callH(r) theheadof r, andB(r) = {Al+1, . . . , Am,not Am+1, . . . ,not An}
the bodyof r. If H(r) = ∅, thenr is a constraint. As usual,r is a fact if B(r) = ∅,
which is also represented byH(r) if it is nonempty, and by⊥ (falsity) otherwise. A
ruler is normal(or non-disjunctive), ifl ≤ 1; definite, if l = 1; andpositive, if n = m.
A rule isHorn if it is normal and positive.

A disjunctive logic program(DLP) P is a (possibly infinite) set of rules. A program
P is anormal logic program(NLP) (resp., definite, positive, or Horn), if all rules inP
are normal (resp., definite, positive, or Horn). Furthermore, a programP is head-cycle
free(HCF) [1], if its dependency graph (which is defined as usual) has no directed cycle
that contains two atoms belonging to the head of the same rule.In the rest of this paper,
we focus on propositional programs over a set of atomsA – programs with variables
reduce to their ground (propositional) versions as usual.

We recall the stable model semantics forDLPs [10, 21], which generalizes the sta-
ble model semantics forNLPs [9]. An interpretationI, viewed as subset ofA, models
the head of a ruler, denotedI |= H(r), iff A ∈ I for someA ∈ H(r). It models
B(r), i.e., I |= B(r) iff ( i) eachA ∈ B+(r) is true inI, i.e., A ∈ I, and (ii) each
A ∈ B−(p) is false inI, i.e., A 6∈ I. Furthermore,I models ruler, iff I |= H(r)
wheneverI |= B(r), andI |= P , for a programP , iff I |= r, for all r ∈ P .

Thereductof a ruler relative toa set of atomsI, denotedrI , is the positive ruler′

such thatH(r′) = H(r) andB+(r′) = B+(r) if I∩B−(r) = ∅, and is void otherwise.
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TheGelfond-Lifschitz reductP I , of a programP , isP I={rI | r ∈ P andI∩B−(r) =
∅}. An interpretationI is astable modelof a programP iff I is a minimal model (under
inclusion⊆) of P I . By SM(P ) we denote the set of all stable models ofP .

Equivalences.Several notions for equivalence of logic programs have been considered,
cf. [12, 16, 22]. Under stable semantics, twoDLPsP andQ are regarded as equivalent,
denotedP ≡ Q, iff SM(P ) = SM(Q).

The more restrictive forms of strong equivalence [12] and uniform equivalence [22,
16] are as follows.

Definition 1. LetP andQ be twoDLPs, Then

(i) P and Q are strongly equivalent, denotedP ≡s Q, iff for any rule setR, the
programsP ∪R andQ ∪R are equivalent, i.e.,P ∪R ≡ Q ∪R.

(ii) P and Q are uniformly equivalent, denotedP ≡u Q, iff for any set of non-
disjunctive factsF , the programsP∪F andQ∪F are equivalent, i.e.,P∪F ≡ Q∪F .

One of the main results of [12] is a semantical characterization of strong equivalence
in terms of the non-classical logic HT. For characterizing strong equivalence in logic
programming terms, Turner introduced the following notion of SE-models [23, 24]:

Definition 2. Let P be aDLP , and letX, Y be sets of atoms such thatX ⊆ Y . The
pair (X, Y ) is an SE-model ofP , if Y |= P andX |= PY . BySE (P ) we denote the
set of all SE-models ofP .

Strong equivalence can be characterized as follows.

Proposition 1 ([23, 24]).For everyDLPsP andQ, P ≡s Q iff SE (P ) = SE (Q).

Example 3.ReconsiderP = {a ← not b; a ← b} andQ = {a ← not c; a ← c}.
Recall thatP ≡u Q. However,P 6≡s Q, as(∅, {a, b}) is in SE (P ) but not inSE (Q).

3 Characterizations of Uniform Equivalence

After the preliminary definitions, we now turn to the issue of characterizing uniform
equivalence between logic programs in model-theoretic terms. As restated above, strong
equivalence can be captured by the notion of SE-model (equivalently, HT-model [12])
for a logic program. The weaker notion of uniform equivalence can be characterized in
terms of SE-models as well, by imposing further conditions.

We start with a seminal lemma, which allows us to derive simple characterizations
of uniform equivalence.

Lemma 1. TwoDLPs P andQ are uniformly equivalent, i.e.P ≡u Q, iff for every
SE-model(X, Y ), such that(X, Y ) is an SE-model of exactly one of the programs
P and Q, it holds that (i) Y |= P ∪ Q, and (ii) there exists an SE-model(M,Y ),
X ⊂M ⊂ Y , of the other program.

Proof. For the only-if direction, supposeP ≡u Q. If Y neither modelsP , norQ, then
(X, Y ) is not an SE-model of any of the programsP andQ. Without loss of generality,
assumeY |= P andY 6|= Q. Then, since in this caseY |= PY and no strict subset of
Y modelsP ∪ Y , Y ∈ SM(P ∪ Y ), while Y 6∈ SM(Q ∪ Y ). This contradicts our
assumptionP ≡u Q. Hence, item (i) must hold.
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To show (ii), assume first that(X, Y ) is an SE-model ofP but not ofQ. In view of
(i), it is clear thatX ⊂ Y must hold. Suppose now that for every setM , X ⊂M ⊂ Y , it
holds that(M,Y ) is not an SE-model ofQ. Then, since no subset ofX modelsQY ∪X,
(Y, Y ) is the only SE-model ofQ ∪X of form (·, Y ). Thus,Y ∈ SM(Q ∪X) in this
case, whileY 6∈ SM(P ∪ X) (X |= PY impliesX |= (P ∪ X)Y , so (X, Y ) is an
SE-model ofP ∪X). However, this contradictsP ≡u Q. Thus, it follows that for some
M such thatX ⊂ M ⊂ Y , (X, Y ) is an SE-model ofQ. The argument in the case
where(X, Y ) is an SE-model ofQ but not ofP is analogous. This proves item (ii).

For the if direction, assume that (i) and (ii) hold for every SE-model(X, Y ) which
is an SE-model of exactly one ofP andQ. Suppose that there exist sets of atomsA and
X, such that w.l.o.g.,X ∈ SM(P ∪ A) \ SM(Q ∪ A). SinceX ∈ SM(P ∪ A), we
have thatA ⊆ X, and, moreover,X |= P . Consequently,(X, X) is an SE-model of
P . SinceX 6∈ SM(Q ∪ A), eitherX 6|= (Q ∪ A)X , or there existsX ′ ⊂ X such that
X ′ |= (Q ∪A)X .

Let us first assumeX 6|= (Q∪A)X , then, since(Q∪A)X = QX ∪A andA ⊆ X,
it follows thatX 6|= QX . This impliesX 6|= Q and hence,(X, X) is not an SE-model
of Q. Thus,(X, X) is an SE-model of exactly one program,P , but(X, X) violates (i)
sinceX 6|= Q; this is a contradiction.

It follows thatX |= (Q ∪ A)X must hold, and that there must existX ′ ⊂ X such
thatX ′ |= (Q∪A)X = QX∪A. So we can concludeX |= Q and that(X ′, X) is an SE-
model ofQ but not ofP . To see the latter, note thatA ⊆ X ′ must hold. So if(X ′, X)
were an SE-model ofP , then it would also be an SE-model ofP ∪ A, contradicting
the assumption thatX ∈ SM(P ∪A). Again we get an SE-model,(X ′, X), of exactly
one of the programs,Q in this case. Hence, according to (ii), there exists an SE-model
(M,X) of P , X ′ ⊂ M ⊂ X. However, because ofA ⊂ X ′, it follows that(M,X) is
also an SE-model ofP ∪A, contradicting our assumption thatX ∈ SM(P ∪A).

This proves that, given (i) and (ii) for every SE-model(X, Y ) such that(X, Y ) is
an SE-model of exactly one ofP andQ, no sets of atomsA andX exists such thatX
is a stable model of exactly one ofP ∪A andQ ∪A. That is,P ≡u Q holds. ut

From Lemma 1 we immediately obtain the following characterization of uniform
equivalence between logic programs.

Theorem 1. TwoDLPs,P andQ are uniformly equivalent,P ≡u Q, iff

(i) (X, X) is an SE-model ofP iff it is an SE-model ofQ, and
(ii) (X, Y ), whereX ⊂ Y , is an SE-model ofP (respectivelyQ) iff there exists a set

M , such thatX ⊆M ⊂ Y , and(M,Y ) is an SE-model ofQ (respectivelyP ).

Example 4.Reconsider the programsP = {a∨ b} andQ = {a← not b; b← not a}.
By Theorem 1, we can easily verify thatP andQ are uniformly equivalent: Their SE-
models differ only in(∅, {a, b}), which is an SE-model ofQ but not ofP . Thus, items
(i) and (ii) clearly hold for all other SE-models. Moreover,({a}, {a, b}) is an SE-model
of P , and thus item (ii) also holds for(∅, {a, b}).

Note thatP andQ are strongly equivalent after adding the constraint← a, b,
which enforces exclusive disjunction. Uniform equivalence does not require such an
addition.
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Example 5.Let P andQ as in the previous example. SinceSE (R ∪ S) = SE (R) ∩
SE (S) for any programsP andS, the pair(∅, {a, b}) is no longer an SE-model of
Q ∪ {c : ← a, b} (because{a, b} 6|= c). Hence,P ∪ {c} ≡s Q ∪ {c}.

For finite programs, we can derive from Theorem 1 the following characterization
of uniform equivalence.

Theorem 2. Two finiteDLPs P andQ are uniformly equivalent, i.e.,P ≡u Q, iff the
following conditions hold:

(i) (X, X) is an SE-model ofP iff it is an SE-model ofQ for everyX, and
(ii) for every SE-model(X, Y ) ∈ SE (P ) ∪ SE (Q) such thatX ⊂ Y , there exists an

SE-model(M,Y ) ∈ SE (P ) ∩ SE (Q) (=SE (P ∪Q)) such thatX ⊆M ⊂ Y .

Proof. Since (i) holds by virtue of Theorem 1, we only need to show (ii). Assume
(X, Y ), whereX ⊂ Y , is in SE (P ) ∪ SE (Q).

If (X, Y ) ∈ SE (P )∩SE (Q), then the statement holds. Otherwise, by virtue of The-
orem 1, there exists(M1, Y ), X ⊆M1 ⊂ Y , such that(M1, Y ) is in SE (P )∪SE (Q).
By repeating this argument, we obtain a chain of SE-models(X, Y ) = (M0, Y ),
(M1, Y ), . . . , (Mi, Y ), . . . such that(Mi, Y ) ∈ SE (P ) ∪ SE (Q) andMi ⊆ Mi+1,
for all i ≥ 0. Furthermore, we may chooseM1 such thatM1 coincides withY on
all atoms which do not occur inP ∪ Q (and hence allMi, i ≥ 1, do so). SinceP
andQ are finite, it follows thatMi = Mi+1 must hold for somei ≥ 0 and hence
(Mi, Y ) ∈ SE (P ) ∩ SE (Q) must hold. This proves the result. ut

Note that the previous theorem remains valid even if only one ofP andQ is finite.
In the light of this result, we can capture uniform equivalence of finite programs by

the notion of UE-model defined as follows.

Definition 3 (UE-model).Let P be aDLP . Then, any(X, Y ) ∈ SE (P ) is a uniform
equivalence(UE) model ofP , if for every(X ′, Y ) ∈ SE (P ) it holds thatX ⊂ X ′

impliesX ′ = Y . ByUE (P ) we denote the set of all UE-models ofP .

That is, the UE-models comprise all SE-models of aDLP which correspond to
classical models ofP (for Y = X), plus all its maximal ’non-classical’ SE-models,
i.e., UE (P ) = {(X, X) ∈ SE (P )} ∪ max≥{(X, Y ) ∈ SE (P ) | X ⊂ Y }, where
(X ′, Y ′) ≥ (X, Y )⇔ Y ′ = Y ∧X ⊆ X ′.

By means of UE-models, we then can characterize uniform equivalence of finite
logic programs by the following simple condition.

Theorem 3. Two finiteDLPs P andQ are uniformly equivalent, i.e.,P ≡u Q, if and
only if UE (P ) = UE (Q).

Proof. By Theorem 2 we have to show that Conditions (i) (X, X) |= P ⇔ (X, X) |=
Q and (ii) (X, Y ) |= P ∧X ⊂ Y ⇒ ∃M , X ⊆M ⊂ Y : (M,Y ) |= P ∪Q hold iff
UE (P ) = UE (Q).

For the if direction assumeUE (P ) = UE (Q). Then (i) holds by definition of
UE-models. Now let(X, Y ) be an SE-model ofP , such thatX ⊂ Y . There are two
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possibilities: If(X, Y ) is maximal, then(X, Y ) ∈ UE (Q) as well and thus (ii) holds
(M = X); otherwise,(X, Y ) is not maximal, which means that there exists some
(X ′, Y ) ∈ UE (P ) such thatX ⊂ X ′ ⊂ Y , and sinceUE (P ) = UE (Q) Condition
(ii) holds again (M = X ′).

For the only-if direction letP ≡u Q. Then by Condition (i) UE (P ) andUE (Q)
coincide on models(X, X). Assume w.l.o.g. that(X, Y ), X ⊂ Y , is inUE (P ), but not
in UE (Q). By (ii) there exists(M,Y ), X ⊆ M ⊂ Y , which is an SE-model of both
P andQ. SinceX ⊂ M contradicts(X, Y ) ∈ UE (P ), let M = X, i.e.,(X, Y ) is an
SE-model ofQ as well, but it is not inUE (Q). Hence, there exists(X ′, Y ) ∈ UE (Q),
X ⊂ X ′ ⊂ Y and by (ii) there exists(M ′, Y ), X ′ ⊆ M ⊂ Y , which is an SE-model
of P . This again contradicts(X, Y ) ∈ UE (P ). Hence,UE (P ) = UE (Q). ut

This result shows that UE-models capture the notion of uniform equivalence, in
the same manner as SE-models capture strong equivalence. That is, the essence of a
programP with respect to uniform equivalence is expressed by a semantic condition
onP alone.

Example 6.Each SE-model of the programP = {a ∨ b} satisfies the condition of an
UE-model, and thusUE (P ) = SE (P ). The programQ = {a ← not b; b ← not a}
has the additional SE-model({}, {a, b}), and all of its SE-models except this one are
UE-models ofQ. Thus,UE (P ) = UE (Q) = {({a}, {a}), ({b}, {b}), ({a}, {a, b}),
({b}, {a, b}), ({a, b}, {a, b})}.

Note that the strong equivalence betweenP andQ fails because(∅, {a, b}) is not
an SE-model ofP . This SE-model is enforced by the intersection property ((X1, Y )
and (X2, Y ) in SE (P ) implies (X1 ∩ X2, Y ) ∈ SE (P )) which the Horn program
QY enjoys, which however is not satisfied by the disjunctive programPY (=P ). The
maximality condition of UE-models eliminates this intersection property.

Example 7.ReconsiderP = {a← not b; a← b}, which has classical models{a}∪Y ,
Y ⊆ {b, c}. Its UE-models are of form({a}∪X, {a}∪Y ) whereX ∈ {Y, Y \{b}, Y \
{c}}. Note that the atomsb andc have symmetric roles inUE (P ). Consequently, the
program obtained by exchanging the roles ofb andc, Q = {a ← not c; a ← c} has
the same UE models. Hence,P andQ are uniformly equivalent.

Like Theorem 2, also Theorem 3 remains valid if only one ofP andQ is finite.
However, the following example shows that it fails if bothP andQ are infinite.

Example 8.Consider the programsP andQ overA = {a} ∪ {bi | i ≥ 1}, defined by

P = {a← , bi ← | i ≥ 1}, and Q = {a← not a, bi ← bi+1, bi ← a | i ≥ 1}.

Both P andQ have the single classical modelM = {a, bi | i ≥ 1}. Furthermore,P
has no “incomplete” SE-model(X, Y ) such thatX ⊂ Y , while Q has the incomplete
SE-models(Xi,M), whereXi = {b1, . . . , bi} for i ≥ 0. Both P and Q have the
same maximal incomplete SE-models (namely none), and hence they have the same
UE-models.

However,P 6≡u Q, since e.g.P has a stable model whileQ has obviously not. Note
that this is caught by our Theorem 1, item (ii): for (X0,M), which is an SE-model ofQ
but not ofP , we cannot find an SE-model(X, M) of P between(X0,M) and(M,M).
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Based on UE-models, we define an associated notion of consequence underuniform
equivalence. Recall that(X, Y ) models a ruler iff Y |= r andX |= rY .

Definition 4 (UE-consequence).A rule, r, is an UE-consequenceof a programP ,
denotedP |=u r, if (X, Y ) |= r for all (X, Y ) ∈ UE (P ).

Clearly,P |=u r for all r ∈ P , and∅ |= r iff r is a classical tautology. The next
result shows that a program remains invariant under addition of UE-consequences.

Proposition 2. For any finite programP and ruler, if P |=u r thenP ∪ {r} ≡u P .

From this proposition, we obtain an alternative characterization of uniform equiva-
lence in terms of UE-consequence. As usual, we writeP |=u R for any set of rulesR
if P |=u r for all r ∈ R.

Theorem 4. LetP andQ be any finiteDLPs. ThenP ≡u Q iff P |=u Q andQ |=u P .

Proof. For the if-direction, we apply Prop. 2 repeatedly and obtainP ≡u P ∪Q ≡u Q.
For the only-if direction, we haveUE (P )=UE (Q) if P ≡u Q by Theorem 3, and thus
P andQ have the same UE-consequences. Since(X, Y ) |= P (resp.(X, Y ) |= Q), for
all (X, Y ) ∈ UE (P ) (resp.(X, Y ) ∈ UE (Q), it follows Q |=u P andP |=u Q. ut

We note that with respect to uniform equivalence, every programP has a canonical
normal form,P ∗, given by its UE-consequences, i.e.,P ∗ = {r | P |=u r}.

Clearly,P ⊆ P ∗ holds for every programP , andP ∗ has exponential size. Applying
optimization methods which build on UE-consequence,P resp.P ∗ may be transformed
into smaller uniform equivalent programs; we leave this for further study.

As for the relationship of UE-consequence to classical consequence and cautious
consequence under stable semantics, we note the following hierarchy. Let|=c denote
consequence from the stable models, i.e.,P |=c r iff M |= r for everyM ∈ SM(P ).

Proposition 3. For any finite programP and ruler, (i) P |=u r impliesP ∪ A |=c r,
for each set of factsA; (ii) P ∪ A |=c r, for each set of factsA, impliesP |=c r; and
(iii)P |=c r impliesP |= r.

This hierarchy is strict, i.e., none of the implications holds in the converse direction.
(For (i), note that{a ← not a} |=c a but {a ← not a} 6|=u a, since the UE-model
(∅, {a}) violatesa.)

We next present a semantic characterization in terms of UE-models, under which
UE-and classical consequence and thus all four notions of consequence coincide.

Lemma 2. Let P be a finiteDLP . Suppose that(X, Y ) ∈ UE (P ) impliesX |= P
(i.e.,X is a model ofP ). Then,P |= r impliesP |=u r, for every ruler.

Lemma 3. LetP be a finiteDLP . Then,P |=u r impliesP |= r, for every ruler.

Theorem 5. LetP be any finiteDLP . Then the following conditions are equivalent:

(i) P |=u r iff P |= r, for every ruler.
(ii) For every(X, Y ) ∈ UE (P ), it holds thatX |= P .
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Proof. (ii)⇒ (i) Follows immediately from Lemmas 2 and 3.
(i) ⇒ (ii) SupposeP |=u r iff P |= r, for every ruler, but there exists some UE-
model (X, Y ) of P such thatX 6|= P . HenceX 6|= r for some ruler ∈ P . Let
r′ be the rule which results fromr by shifting the negative literals to the head, i.e.,
H(r′) = H(r) ∪ B−(r), B+(r′) = B+(r), andB−(r′) = ∅. Then,X 6|= r′. On the
other hand,r ∈ P implies (X, Y ) |= r. Hence,Y |= r and thusY |= r′. Moreover,
B−(r′) = ∅ implies thatr′ ∈ PY , and henceX |= r′. This is a contradiction. It follows
thatX |= P for each UE-model(X, Y ) of P . ut

An immediate corollary to this result is that for finite positive programs, the notion
of UE-consequence collapses with classical consequence, and hence uniform equiv-
alence of finite positive programs amounts to classical equivalence. We shall obtain
these results as corollaries of more general results in the next section, though.

4 Restricted Classes of Programs

After discussing uniform equivalence of general propositional programs, let us now
consider two prominent subclasses of programs, namely positive and head-cycle free
programs.

4.1 Positive programs

While for programs with negation, strong equivalence and uniform equivalence are dif-
ferent, the notions coincide for positive programs, as shown next.

Proposition 4. LetP andQ be positiveDLPs. ThenP ≡u Q iff P ≡s Q.

Proof. The if-direction is immediate asP ≡s Q impliesP ≡u Q.
For the only-if-direction, we show that ifP andQ are not strongly equivalent then

P andQ are not uniformly equivalent. To start with, observe thatPX = P holds for
any positive programP and any set of literalsX.

W.l.o.g., let(X, Y ) be an SE-model ofP but not ofQ. By definition of SE-model
we haveX |= PY , i.e.X |= P . On the other hand, since(X, Y ) is not SE-model ofQ,
either (i) X 6|= QY , i.e.,X 6|= Q, or (ii) Y 6|= Q.

(i) Consider the programsPX = P ∪X andQX = Q ∪X. Clearly,X |= PX and
for eachX ′ ⊂ X, X ′ 6|= PX = PX

X . Hence,X is an answer set ofPX . On the other
hand,X 6|= Q and thusX 6|= QX . Hence,X cannot be an answer set ofQX .

(ii) Consider the programsPY = P ∪ Y andQY = Q ∪ Y . Clearly,Y |= PY and
for eachY ′ ⊂ Y , Y ′ 6|= PY = PY

Y . Hence,Y is an answer set ofPY . On the other
hand,Y 6|= Q and thusY 6|= QY . Hence,Y cannot be an answer set ofQY .

In any case we must conclude thatP andQ are not uniformly equivalent. ut

As known and easy to see from the main results of [12, 23, 24], on the class of
positive programs classical equivalence and strong equivalence coincide. By combining
this and the previous result, we obtain

Theorem 6. Let P andQ be positiveDLPs. ThenP ≡u Q if and only ifP |= Q and
Q |= P , i.e.,P andQ have the same set of classical models.
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Note that Sagiv [22] showed that uniform equivalence of datalog programsΠ and
Π ′ is equivalent to equivalence ofΠ ′ andΠ over Herbrand models; this implies the
above result for definite Horn programs. Maher [16] showed a generalization of Sagiv’s
result for definite Horn logic programs with function symbols.

Example 9.Consider the positive programsP = {a ∨ b; c ← a; c ← b} andQ =
{a ∨ b; c}. Their classical models are{a, c}, {b, c}, and{a, b, c}. Hence,P andQ are
uniformly equivalent, and even strongly equivalent (due to Prop. 4).

4.2 Head-cycle free programs

The class of head-cycle free programs generalizes the class ofNLPs by permitting a
restricted form of disjunction. Still, it is capable of expressing nondeterminism such as
a guess for the value of an atoma, which does not occur in the head of any other rule.

As shown by Ben-Eliyahu and Dechter, each head-cycle free program can be rewrit-
ten to anNLP , obtained by shifting atoms from the head to the body, which has the
same stable models. More formally, let us define the following notation:

Definition 5. For any rule r, let r→ = {r′ | H(r′) = {a}, a ∈ H(r), B+(r′) =
B+(r), B−(r′) = B−(r) ∪ H(r) \ {a}} if H(r) 6= ∅ andr→ = {r} otherwise. For
anyDLP P , let P→ =

⋃
r∈P r→.

It is well-known that for any head-cycle free programP , it holds thatP ≡ P→ (cf.
[1]). This result can be strengthened to uniform equivalence.

Theorem 7. For any head-cycle free programP , it holds thatP ≡u P→.

Proof. For any set of factsA, it holds that(P ∪A)→ = P→ ∪A and that this program
is head-cycle free. Thus,P ∪A ≡ (P ∪A)→ ≡ P→ ∪A. Hence,P ≡u P→. ut

We emphasize that a similar result for strong equivalence fails, as shown by the
canonical counterexample in Example 1. Moreover, the programP = {a ∨ b ← .} is
not strongly equivalent to anyNLP . Thus, we can not conclude without further consid-
eration that a simple disjunctive “guessing clause” like the one inP (such thata and
b do not occur in other rule heads) can be replaced in a more complex program by the
unstratified clausesa ← not b andb ← not a; addition of a further constraint← a, b
is required. However, we can conclude this under uniform equivalence taking standard
program splitting results into account [13, 5].

We close this section with the following result, which provides a characterization of
arbitrary programs which are strongly equivalent to their shift variant.

Theorem 8. Let P be anyDLP . Then,P ≡s P→ if and only if for every disjunctive
rule r ∈ P it holds thatP→ has no SE-model(X, Y ) such that (i) |H(r)∩Y | ≥ 2 and
(ii) X ∩H(r) = ∅ andX |= B+(r), i.e.,X violates the reduced rulerY .

Example 10.ReconsiderP = {a ∨ b ←}. ThenP→ = {a ← not b, b ← not a} has
the SE-model(∅, {a, b}), which satisfies the conditions (i) and (ii) for r : a ∨ b ←.
Note that also the extended programP ′ = {a ∨ b ←, a ← b, b ← a} is not strongly
equivalent to its shifted programP ′→. Indeed,(∅, {a, b}) is also an SE-model ofP ′→.
Furthermore,P is also not uniformly equivalent toP ′→, since(∅, {a, b}) is moreover a
UE-model ofP ′→, butP has the single SE-model (and thus UE-model)({a, b}, {a, b}).
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5 Complexity

In this section, we address the computational complexity of uniform equivalence. While
our main interest is with the problem of deciding uniform equivalence between two
given programs, we also consider the related problems of UE-model checking and UE-
consequence.

For UE-model checking, we have the following result. Let‖α‖ denote the size of
an objectα.

Theorem 9. Given a pair of sets(X, Y ) and a programP , deciding whether(X, Y ) ∈
UE (P ) is (i) coNP-complete in general, and (ii) feasible in polynomial time with re-
spect to‖P‖+ ‖X‖+ ‖Y ‖, if P is head-cycle free. Hardness in case (i) holds even for
positive programs.

Corollary 1. UE-model checking for Horn programs is polynomial.

We now consider the problem of our main interest, namely deciding uniform equiv-
alence. By the previous theorem, the following upper bound on the complexity of this
problem is obtained.

Lemma 4. Given twoDLPsP andQ, deciding whetherP ≡u Q is in the classΠP
2 .

Recall thatΠP
2 = coNPNP is the class of problems such that the complementary

problem is nondeterministically decidable in polynomial time with the help of anNP
oracle (i.e., inΣP

2 = NPNP).

Proof. To show that twoDLPsP andQ are not uniformly equivalent, we can by Theo-
rem 3 guess an SE-model(X, Y ) such that(X, Y ) is an UE-model of exactly on of the
programsP andQ. By Theorem 9, the guess for(X, Y ) can be verified in polynomial
time with the help of anNP oracle. This provesΠP

2 -membership ofP ≡u Q. ut

This upper bound has a complementary lower bound proved in the following result.

Theorem 10. Given twoDLPsP andQ, decidingP ≡u Q is ΠP
2 -complete.

Proof. (Sketch) Membership inΠP
2 has already been established in Lemma 4. To show

ΠP
2 -hardness, we provide a polynomial reduction of evaluating a quantified Boolean

formula (QBF) from a fragment which is knownΠP
2 -complete to deciding uniform

equivalence of twoDLPsP andQ.
Consider aQBF 2,∃ F of form F = ∃X∀Y

∨i=l
i=1 Di, where eachDi is a conjunct

of at most three literals over the boolean variables inX ∪ Y , X = {xi | 1 ≤ i ≤ n}
andY = {yi | 1 ≤ i ≤ m}. Deciding whether a given suchF is true is well-known to
beΣP

2 -complete; thus deciding whetherF is false isΠP
2 -complete.

W.l.o.g., we assume that eachDi contains some literal overY . Now letP andQ be
the following programs:

P =
{

xi ∨ x′i ← . 1 ≤ i ≤ n;
yi ∨ y′i ← yj . 1 ≤ i 6= j ≤ m;
yi ∨ y′i ← y′j . 1 ≤ i 6= j ≤ m;

11



w0 ← xi, x
′
i. 1 ≤ i ≤ n; w1 ← yi, y

′
i. 1 ≤ i ≤ m;

xi ← w0. 1 ≤ i ≤ n; w1 ← D∗i . 1 ≤ i ≤ l;
x′i ← w0. 1 ≤ i ≤ n; yi ← w1. 1 ≤ i ≤ m;
yi ← w0. 1 ≤ i ≤ m; y′i ← w1. 1 ≤ i ≤ m;
y′i ← w0. 1 ≤ i ≤ m; w1 ← not w1.

w1 ← w0.
}

,

and Q = P ∪ {y1 ∨ y′1 ← .},

whereD∗i results fromDi by replacing literals¬xi and¬yi by x′i andy′i, respectively.
Informally, the disjunctive clauses withxi andx′i in the head resp.yi andy′i serve

for selecting a truth assignment to the variablexi (resp.,yi). The atomw0 serves for
handling a spoiled assignment to somexi, which occurs if bothxi andx′i are true, and
enforces the maximal interpretation as the unique model ofP , by the rules withw0

in the body. Similarly,w1 recognizes a spoiled assignment to some variableyi or that
some disjunctDj of the QBF is true, and enforces for all atomsyi, y′i andw1 the unique
value true. However, forP the selection of a truth assignment is conditional to the truth
of any atomyi or y′i, while for Q it is mandatory by the additional ruley1 ∨ y′1 ←. This
difference leads to a suite of candidate SE-models(Aχ,Mχ) of P which do not satisfy
Q, whereχ corresponds to a truth assignment toX and all atoms not inX ∪ X ′ are
false, such that(Aχ,Mχ) violates uniform equivalence ofP andQ via (ii) just if there
is no way to make allDj false by some assignmentµ to Y . These candidate models for
spoiling uniform equivalence are eliminated iff formulaF evaluates to false. SinceP
andQ are obviously constructible in polynomial time, our result follows. ut

The previous result shows that deciding uniform equivalence ofDLPs P andQ
is more complex than deciding strong equivalence, which is incoNP [19, 24]. Thus,
the more liberal notion of uniform equivalence comes at higher computational cost in
general. However, for important classes of programs, it has the same complexity

Theorem 11. Let P andQ beDLPs without simultaneous negation and head-cycles
(i.e., each program is either positive or head-cycle free). Then, decidingP ≡u Q is
coNP- complete, wherecoNP-hardness holds ifP is either positive or aNLP , andQ
is Horn.

Note that Sagiv showed [22] that decidingP ≡u Q for given definite Horn pro-
gramsP andQ is polynomial. This clearly generalizes to arbitrary Horn programs. We
further remark that forNLPs deciding strong equivalence is alsocoNP-hard.

Finally, we complement the results on uniform equivalence and UE-model checking
with briefly addressing the complexity of UE-consequence.

Theorem 12. Given aDLP P and a ruler, decidingP |=u r is (i) ΠP
2 -complete in

general, (ii) coNP-complete ifP is either positive or head-cycle free, and (iii) polyno-
mial if P is Horn.

Proof. (Sketch) The complementary problem,P 6|=u r, is in ΣP
2 for generalP and in

NP for head-cycle freeP , since a guess for a UE-model(X, Y ) of P which violatesr
can, by Theorem 9 be verified with a call to aNP-oracle resp. in polynomial time. In

12



case of a positiveP , by Theorem 5,P |=u r iff P |= r, which is incoNP for general
P and polynomial for HornP . The hardness results can be obtained by adapting the
constructions in hardness proofs of previous results. ut

We conclude this section with some remarks on the complexity of programs with
variables. For such programs, in case of a given finite Herbrand universe the complexity
of equivalence checking increases by an exponential. Intuitively, this is explained by the
exponential size of the ground instance of a program over the universe. Note that Lin
reported [14], without a full proof, that checking strong equivalence for programs in
this setting is incoNP, and thus has the same complexity as in the propositional case;
however, this is not correct. Unsurprisingly, uniform equivalence of logic programs over
an arbitrary Herbrand universe is undecidable according to Maher [16].

6 Extensions

Our results easily carry over to extended logic programs, i.e., programs where classical
(also called strong) negation is allowed as well. If the inconsistent answer set is disre-
garded, i.e., an inconsistent program has no models, then, as usual, the extension can be
semantically captured by representing strongly negated atoms¬A by a positive atom
A′ and adding constraints← A,A′, for every atomA, to any program.

Furthermore, since the proofs of our main results are generic in the use of reducts,
they can be easily generalized to nested logic programs considered in [12, 23, 24, 19],
i.e., we get the same characterizations and the same complexity (ΠP

2 ).
However, if in the extended setting the inconsistent answer set is taken into account,

then the given definitions have to be slightly modified such that the characterizations
of uniform equivalence capture the extended case properly. The same holds true for
the characterization of strong equivalence by SE-models as illustrated by the following
example. Note that the redefinition of≡u and≡s is straightforward.
Let LitA={A,¬A | A ∈ A} denote the set of all literals using strong negation overA.

Example 11.Consider the extended logic programsP = {a∨b← ; ¬a← a; ¬b← b}
andQ = {a ← not b; b ← not a; ¬a ← a; ¬b ← b}. They both have no SE-model;
hence, by the criterion of Prop. 1,P ≡s Q would hold, which impliesP ≡u Q and
P ≡ Q. However,P has the inconsistent answer setLitA, while Q has no answer set.
Thus formally,P andQ are not even equivalent ifLitA is admitted as answer set.

Since [23, 12, 24] made no distinction between no answer set and inconsistent an-
swer set, we start adapting the definition of SE-models.

Definition 6. A pair (X, Y ), X ⊆ Y ⊆ LitA, is an SEE-model of an extendedDLP
P , if each ofX andY is either consistent or equalsLitA andY |= P ∧X |= PY .

From previous characterizations we get more general characterizations in terms of
SEE-models for extended programs.

Theorem 13. Two extendedDLPsP andQ are

– strongly equivalent iff they have the same SEE-models, and
– uniformly equivalent iff

(i) (X, X) is an SEE-model ofP iff it is an SEE-model ofQ, and
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(ii) (X, Y ), X ⊂ Y , is an SEE-model ofP (resp.Q) iff there exists a setM , such
thatX ⊆M ⊂ Y , and(M,Y ) is an SEE-model ofQ (resp.P ).

For positive programs, uniform and strong equivalence coincide also in the extended
case.

Theorem 14. LetP andQ be positive, extendedDLPs. ThenP ≡s Q iff P ≡u Q.

As a consequence of previous complexity results, checkingP ≡u Q (resp.P ≡s Q)
for extended logic programs,P andQ, is ΠP

2 -hard (resp.coNP-hard).
However, not all properties do carry over. As Example 11 reveals, in general a head-

cycle free extendedDLP P is no longer equivalent, and hence not uniformly equiva-
lent, to its shiftP←. However, under the condition belowP ≡u P← holds as well. Call
anyDLP contradiction-free, if LitA is not an answer set of it.

Proposition 5. LetP be a head-cycle free and contradiction-free extendedDLP . Then
P ≡u P← iff for eachA ⊆ LitA, the programP∪A is contradiction-free if the program
{r ∈ P | |H(r)| ≤ 1} ∪A is contradiction-free.

As shown in [6], “A ⊆ LitA” can be equivalently replaced by “A ⊆ LitA such that
DH(P ) 6⊆ A,” whereDH(P ) = {L | L ∈ H(r), |H(r)| > 1, r ∈ P}.

We finally note that Pearce and Valverde have given, inspired by our work, a gener-
alization of our results on UE-models to equilibrium logic [20].

7 Conclusion

Uniform equivalence of logic programs, which has been considered earlier for data-
log and general Horn logic programs [22, 16], under stable semantics is an interesting
concept which can be exploited for program optimization. We have presented character-
izations of uniform equivalence in terms of Turner’s SE-models [23, 24] (equivalently,
HT models [12]), and we have analyzed the computational cost for testing uniform
equivalence and related problems.

While we have presented a number of results, there are several issues which remain
to be considered. We have found a simple and appealing characterization of uniform
equivalence in terms of UE-models for finitary programs, which single out from the SE-
models certain maximal models. However, in case of infinite programs, such maximal
models need not exist. It thus would be interesting to see whether also in this case
uniform equivalence can be captured by a set of SE-models, or whether a completely
novel notion of model (like SE-model for strong equivalence) is needed. Researching
this issue is part of our ongoing work.

Another direction of research is to investigate the usage of uniform equivalence for
program replacement and program rewriting in optimization. To this end, in follow-up
works [7, 8] we analyzed compliances with current optimization techniques and gave
characterizations of programs possessing equivalent programs belonging to syntactic
subclasses of disjunctive logic programs under both, uniform and strong equivalence.
Furthermore we gave encodings of our characterizations in answer-set programming
and investigated the computational complexity of program simplification and determin-
ing semantical equivalence.
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