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Abstract. We study finding similar or diverse solutions of a given computational
problem, in answer set programming, and introduce offline methods and online
methods to compute them using answer set solvers. We analyze the computational
complexity of some problems that are related to finding similar or diverse solu-
tions, and show the applicability and effectiveness of our methods in phylogeny
reconstruction.
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1 Introduction

Although, for many computational problems, the main concern is to find a best solu-
tion (e.g., a most preferred product configuration, a shortest plan, a most parsimonious
phylogeny), for some problems, computing a subset of good solutions that are diverse
or similar may be desirable. For instance, in product configuration, one could be inter-
ested in obtaining several diverse configurations of a product instead of checking all
possible configurations, to pick one. In planning, it may be desirable to compute a set
of plans that are similar to each other, so that, when the plan that is being executed fails,
one can switch to a most similar one. Motivated by such applications, we study the
problem of computing similar or diverse solutions in answer set programming (ASP),
and then show the applicability of our approach to another interesting problem: phy-
logeny reconstruction (i.e., computing leaf-labeled trees, called phylogenies, to model
the evolutionary history of a set of species).

Problems related to computing similar or diverse solutions have been studied in
the context of propositional logic [2], and constraint programming [12, 13]. On the
other hand, although there are many appealing ASP applications (e.g., product con-
figuration [22], planning [15], phylogeny reconstruction [4]), for which finding simi-
lar/diverse solutions could be useful, such problems have not been studied in ASP. The
methods we develop in this paper fulfill this need in ASP.

Phylogeny reconstruction is important for research areas as disparate as genetics,
historical linguistics, zoology, anthropology, archaeology. For example, a phylogeny
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of parasites may help zoologists to understand the evolution of human diseases [6]; a
phylogeny of languages may help scientists to better understand human migrations [23].
For a given set of taxonomic units, some existing phylogenetic systems, like that of
[5,4], generate more than one phylogeny that explains the evolutionary relationships
between the given taxonomic units. There are phylogenetic systems that compute a
summary of these phylogenies (a consensus tree [1] or a supertree [21]). However, in
such cases, especially when there are too many phylogenies computed by a system, an
expert needs to compare these phylogenies in detail, by analyzing the similar/diverse
ones with respect to some distance measure, to pick the most plausible ones. Although
there are precisely defined measures to find the distance between them [17, 3, 20, 14],
there is no phylogenetic system that helps experts to analyze phylogenies by comparing
them. The methods we develop in this paper fulfill this need in phylogenetics.

In particular, the main contributions of this paper are as follows.

We describe two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP (Section 2). Both kinds of
problems take as input an ASP program P that describes a problem, a distance
measure A that maps a set of solutions of the problem to a nonnegative integer,
and two nonnegative integers n and k. One problem asks for a set .S of size n that
contains k-similar (resp. k-diverse) solutions, i.e., A(S) < k (resp. A(S) > k); the
other problem asks, given a set S of n solutions, for a k-close (k-distant) solution
s(s¢S),ie, A(SU{s}) <k (resp. A(SU {s}) > k).

We study the computational complexity of these problems establishing complete-
ness results under reasonable assumptions for the problem parameters (Section 3).
We introduce an offline method to compute a set of n k-similar (or k-diverse) so-
lutions to a given problem, by computing all solutions in advance and then using
some clustering methods to find the similar (diverse) solutions (Section 4).

We introduce three online methods to compute a set of n k-similar (or k-diverse)
solutions to a given problem (Section 5). Online Method 1 reformulates the given
program to compute n-distinct solutions and formulates the distance function as an
ASP program, so that all n k-similar (k-diverse) solutions can be extracted from
an answer set for the union of these ASP programs. Online Method 2 does not
modify the given ASP program, but formulates the distance function as an ASP
program, so that a k-close (or k-distant) solution can be extracted from an answer
set for the union of these ASP programs and a previously computed solution; by
iteratively computing k-close (k-distant) solutions, we can compute online a set of
n k-similar (or k-diverse) solutions. Online Method 3 does not modify the given
program, and does not formulate the distance function as an ASP program, but it
modifies the ASP solver, in our case CLASP [10], to compute all n k-similar (or
k-diverse) solutions at once.

We illustrate the applicability of these approaches on the phylogeny reconstruction
problem, by defining new distance measures for a set of phylogenies (Section 6),
by describing how the offline method and the online methods are applied to find
similar/diverse phylogenies (Section 7). After that, we compare the efficiency and
effectiveness of these methods on the family of Indo-European languages studied
in [4] (Section 8).



ASP programs mentioned below are presented in an extended version http://people.
sabanciuniv.edu/esraerdem/papers/iclp09-extended.pdf.

2 Computational Problems

We are interested in the following two sorts of problems related to computation of a
diverse/similar collection of solutions:

n k-SIMILAR SOLUTIONS (resp.n k-DIVERSE SOLUTIONS)

Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, decide whether a set .S of n solutions for P exists
such that A(S) < k (resp. A(S) > k).

k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION)

Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P, and a nonnegative integer k, decide whether a solution s (s & .S)
for P exists such that A(S U {s}) < k (resp. A(S U {s}) > k).

For instance, suppose that P describes the phylogeny reconstruction problem for Indo-
European languages. Then finding three diverse phylogenies is an instance of the former
problem. On the other hand, if we already have picked two phylogenies, then finding
another phylogeny that differs from these two is an instance of the latter.

The first kind of problems above has two parameters, n and k, so we can fix one
and try to minimize (resp. maximize) the distance between solutions to find the most
similar (resp. diverse) solutions.

MAXIMAL k-SIMILAR SOLUTIONS (resp.MAXIMAL k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, and a non-
negative integer k, find a maximal set S of solutions for P such that A(S) < k
(resp. A(S) > k) exists.

1 MOST SIMILAR SOLUTIONS (resp.n MOST DIVERSE SOLUTIONS)

Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, and a nonneg-
ative integer n, find a set .S of n solutions for P with the minimum (resp. maximum)
distance A(S).

Similarly, in the second class of problems, we can try to minimize (resp. maximize) the
distance k between a solution and a set of solutions, to find the most close (resp. distant)
solution.

MOST CLOSE SOLUTION (resp.MOST DISTANT SOLUTION)

Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, and a set S of
solutions for P, find a solution s (s ¢ .S) for P with the minimum (resp. maximum)
distance A(S U {s}).



Table 1. Complexity results for computing similar solutions.

#| Problem Complexity

1| n k-SIMILAR SOLUTIONS NP

2| k-CLOSE SOLUTION NP

3| MAXIMAL k-SIMILAR SOLUTIONS | FNP //log

4| n MOST SIMILAR SOLUTIONS FPY? (FNP//log)
5| MOST CLOSE SOLUTION FPNF (FNP//log)
6| k-CLOSE SET NP

We can generalize k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION) problems to sets
of solutions:

k-CLOSE SET (resp.k-DISTANT SET)

Given an ASP program P that formulates a computational problem P, a distance
measure A that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P, and a nonnegative integer k, decide whether a set S of solutions

for P exists such that |A(S) — A(S")| < k (resp. |A(S) — A(S)| > k).

3 Complexity Results

In this section, we turn our attention to the computational complexity of the problems
presented in Section 2. In order to do so, we first have to make some reasonable as-
sumptions on some of the problem parameters.

For the remainder of this section, let the ASP program P that formulates a compu-
tational problem P, be a propositional normal logic program. We assume that the given
number n of different solutions to consider (respectively the size of the set .S) in in-
stances of the problems n k-SIMILAR SOLUTIONS and 7 MOST SIMILAR SOLUTIONS
is polynomial in the size of the input.

Furthermore, we consider distance measures A that map a set of solutions for P
to a nonnegative integer (which is usually implicitly done when real values have to
be represented for computation). As for computing A(.S) for a set of solutions S, in
general we assume that deciding whether A(S) < k for a given k is in NP. Moreover,
we assume that the value of A(S) is bounded by an exponential in the size of S (and
thus has polynomially many bits in the size of \5).

Under these assumptions, the computational complexity (cf. [18] for a background
on the subject) of the problems concerning the computation of similar or diverse solu-
tions we are interested in, is given in Table 1. All entries are completeness results (under
usual reductions) and hardness holds even if A(S) is computable in polynomial time.
Moreover, the results are the same for the ‘symmetric’ problems, i.e., when SIMILAR is
replaced with DIVERSE, and CLOSE is replaced with DISTANT, respectively.

Membership for problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLU-
TIONS) follows from the fact that we can guess not only a candidate set S (since S
is polynomially bounded) but also a witness for A(S) < k (resp. A(S) > k), and
check in polynomial time whether every s € S is a solution and that A(S) < k (resp.



A(S) > k). For hardness, one simply reduces answer-set existence for normal, proposi-
tional programs to this problem, which is an NP-complete problem. However, hardness
holds also for nodal distance of trees (a distance measure introduced in Section 6 for
comparing phylogenies) encoded in a program (which naturally uses auxiliary atoms).

Theorem 1. Problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS) is
NP-complete. Hardness holds even if A(S) is computable in polynomial time.

For a hardness result resorting to partial Hamming distance confer [2]. By simi-
lar arguments we obtain NP-completeness for problem k£-CLOSE SOLUTION (resp. k-
DISTANT SOLUTION).

Theorem 2. Problem k-CLOSE SOLUTION (resp. k-DISTANT SOLUTION) is NP-complete.
Hardness holds even if A(S) is computable in polynomial time.

When looking for maximal (wrt. subset inclusion) solutions, we face a function
problem; here we assume that any S of size larger than n is clipped to any subset S’
of S of size n. In particular, MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-
DIVERSE SOLUTIONS) is solvable in FNP //log. Intuitively, FNP //log is the class of
function problems solvable in polynomial time using a nondeterministic Turing Ma-
chine with output tape that may consult once an oracle that computes the optimal value
of an optimization problem solvable in NP. A requirement is that this value has loga-
rithmically many bits in the size of the input (see, e.g., [7, 9] for more information on
FNP //log and other function classes used in this section).

Membership can be shown by computing the cardinality of a maximal set of solu-
tions .S using the oracle. Note that since |S| is polynomially bounded in the size of the
input, it has logarithmically many bits as required. Then, one can nondeterministically
compute a set .S of respective size together with a witness for A(S) < k, and check in
polynomial time that this is indeed the case.

Hardness can be shown, e.g., for A(.S) that takes the maximal (resp. minimal) Ham-
ming distance between answer sets in S on a subset of the atoms; note that such a partial
Hamming distance is a natural measure for problem encodings, where the disagreement
on output atoms is measured. This measure is not unrelated to the ones introduced for
comparing phylogenies in Section 6; one can polynomially reduce nodal distance to par-
tial Hamming distance, and vice versa also partial Hamming distance to nodal distance
of trees (allowing auxiliary atoms in the LP encoding).

Theorem 3. Problem MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-DIVERSE
SOLUTIONS) is FNP //log-complete. Hardness holds even if A(S) is computable in
polynomial time.

FPNP_membership of n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SO-
LUTIONS) is obtained by first using the NP-oracle to compute the minimum distance
using binary search (deciding polynomially many n k-SIMILAR SOLUTIONS problems).
Then, the oracle is used to compute .S in polynomial time. Hardness follows from a
reduction of the Traveling Salesman Problem (TSP). Notably, if the distances are poly-
nomial in the size of the input, i.e., if the value of A(.S) is polynomially bounded in the
size of .S, then the problem is FNP //log-complete.



Theorem 4. Problem n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SOLU-
TIONS) is FPNY-complete, and FNP //log-complete if the value of A(S) is polynomial
in the size of S. Hardness holds even if A(S) is computable in polynomial time.

Proceeding similarly as before, completeness for FPNF (resp. FNP //log if A(S) is
small) is obtained for MOST CLOSE SOLUTION (and for MOST DISTANT SOLUTION).

Theorem 5. Problem MOST CLOSE SOLUTION (7esp. MOST DISTANT SOLUTION) is
FPNF_complete, and FNP //log-complete if the value of A(S) is polynomial in the size
of S. Hardness holds even if A(S) is computable in polynomial time.

For the generalization of k-CLOSE SOLUTION (resp. of k-DISTANT SOLUTION) to
sets, namely k£-CLOSE SET (resp. k-DISTANT SET), NP-completeness holds by similar
arguments as for the former problem(s).

Theorem 6. Problem k-CLOSE SET (resp. k-DISTANT SET) is NP-complete. Hardness
holds even if A(S) is computable in polynomial time.

4 Offline Methods

We introduce an offline method to compute a set of n k-similar (resp. k-diverse) solu-
tions to a given problem, by computing all solutions in advance and then using some
clustering methods to find the similar (diverse) solutions. The idea is to make clusters
of n solutions, measure the distance of the set of solutions in each cluster, and pick the
cluster whose distance is less (resp. greater) than k.

We can solve this problem by means of a graph problem: build a complete graph
G whose nodes correspond to solutions and edges are labeled by distances between the
corresponding solutions; and decide whether there is a clique C of size n in G whose
weight (i.e., the distance of the set of solutions denoted by the clique) is less than &
(resp. greater than k). The set of vertices in the clique represents n k-similar phyloge-
nies. Such a clique can be computed using ASP, or one of the existing exact/approximate
algorithms.

5 Online Methods

We introduce three online methods to compute a set of n k-similar (or k-diverse) solu-
tions to a given problem P, given an ASP program P that represents P and a distance
function A that maps a set of solutions of P to a nonnegative integer.

Online Method 1 (Fig. 1) reformulates the given program P to compute n-distinct
solutions, formulates the distance function A as an ASP program D, and formulates
constraints on the distance function as an ASP program C, so that all n k-similar (k-
diverse) solutions can be extracted from an answer set for the union of these ASP pro-
grams, P U D U C. Such a reformulation of P can be obtained in two stages. First, we
copy every rule of the program n times: the ¢’th copy of the rule is obtained from r by
replacing every atom p(ty, ta, ..., t,) in r with p(i, t1, ta, ..., t, ). Now we have a pro-
gram that computes n solutions to the problem P. Then, we add a constraint to ensure
that no two solutions are same.
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Fig. 2. Computing n k-similar solutions, with Online Method 2. Initially S = (. In each run, a
solution is computed and added to S, until |S| = n. The distance function and the constraints in
the program ensures that when we add the computed solution to S, the set stays k-similar.
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Fig. 3. Computing n k-similar solutions, with Online Method 3. We implement the distance func-
tion into the ASP reasoner, so that the ASP reasoner becomes biased to compute similar solutions.
Each computed solution is stored by the reasoner until a set of n k-similar solutions is computed.

Online Method 2 (Fig. 2) does not modify the given ASP program P, but formulates
the distance A(.S) of a given set .S of solutions as an ASP program D, and constraints



on the distance function as an ASP program C, so that a k-close (or k-distant) solution
can be extracted from an answer set for P U D U C. By iteratively computing a k-close
(k-distant) solution, we can compute online a set of n k-similar (or k-diverse) solutions.

Online Method 3 (Fig. 3) does not modify the given program, and does not formu-
late the distance function as an ASP program, but it modifies the ASP solver CLASP to
compute all n k-similar (or k-diverse) solutions at once.

6 Distance Measures for Similar or Diverse Phylogenies

A phylogenetic tree (phylogeny) for a set of taxonomic units is a finite rooted leaf-
labeled binary tree. To compare a set of phylogenies, and analyze the similar or diverse
ones in this set, we can measure the distance of a set of phylogenies by some function A.
In the following, we introduce a distance function to measure the similarity/diversity of
a set of phylogenies, in terms of a distance function for two phylogenies. We present
the trees in the Newick format, where the sister subtrees are enclosed by parentheses.

Two distance functions for two phylogenies Among the existing functions for measur-
ing the distance between two trees [17, 3, 20, 14], we consider the distance function of
[3] based on the nodal distances in trees. The nodal distance NDp(x,y) between two
leaves x and y in a tree T is the number of edges contained in the shortest path from one
leaf to the other. For example, consider the tree (a, (b, ¢)); the nodal distance between
a and b is 3, whereas the nodal distance between b and c is 2. Intuitively, the nodal
distance between two leaves in a tree represents the degree of their relationship in that
tree. After defining the nodal distance, [3] measures the distance D,,(T,T") between
two leaf-labeled trees 7" and 7", both with the same set L of leaves, as follows:

Dn(T7T/) = Z |NDT(x7y)_NDT'(x7y)‘
(z,y)€L

The difference of the nodal distances of two leaves in two trees represents the con-
tribution of these leaves to the distance between the trees. Let 77 = (a, (b,¢)) and
Ty = (¢, (a,b)) be two trees. In order to compute the distance between T and Ts, we
compute the nodal distances of the pairs {a, b}, {a, ¢} and {b, ¢} for both trees and take
the sum of the differences. In this case the distance between 17 and 75 is 2.

The second distance function we consider is introduced specifically for languages,
based on our discussions with the historical linguist Don Ringe. For each vertex x of a
tree (V, E), let desc(x) denote its descendants and depth(x) its depth. To define the sim-
ilarity of two phylogenies (V, E) and (V’, E’), let us first define the similarity of two
vertices v € V and v’ € V': f(v,v") = 1if desc(v) # desc(v'); and f(v,v") = 0 oth-
erwise. Let weight be a function mapping every depth to a nonnegative integer. Then we
can define the similarity of two trees I’ = (V, E) and T = (V', E'), with the roots R
and R’ respectively, at depth ¢ (0 < ¢ < min{max,cy depth(v), max, ¢y depth(v')}),
by the following measure:

90,7, T') = weight(0) x f(R, R
g(i +1,T, T/) = g(i, T, T’) + weight(i + 1) X Exev,ye\/’,deplh(x):dEPIh(y):i+1 f(mv y)



and the similarity of two trees as follows:

Dy(T, T = g(min{ma&cdepth(v), max depth(v')}, T, T").
veE v'ev’

For instance, for 71 = (a, (b, (¢, (d,€)))) and T> = (a, (d, (¢, (b,€)))), D;(T1,T2) = 8.
The idea is to assign bigger weights to smaller depths so that two phylogenies are more
similar if the diversifications closer to the root are more similar. This is motivated by
that reconstructing the evolution of languages closer to the root is more important for
historical linguists.

A distance function for a set of phylogenies We define a distance function for mea-
suring the distance of a set S of phylogenies, based on a distance function D for two
phylogenies: for similarity (resp. diversity) we take the maximum (resp. minimum) of
the distances between pairs of phylogenies in S

AD(S) = maX{D(Tl,Tg) | T,T, € S}

In the following, we show the applicability of the offline methods and online methods,
with the distance functions Ap_ and Ap,.

7 Computation of Similar or Diverse Phylogenies

We can find n k-similar (resp. k-diverse) phylogenies for a set of taxonomic units,
with an offline method as described in Section 4. Consider, for instance, a family of
languages as the taxonomic units. With the approach of [4], we can compute all the
phylogenies for a given set of languages. Then we build a complete graph G whose
nodes denote these phylogenies, and the edges are labeled by the distances between
phylogenies. Then we can find a clique of size n in G, such that the distance of the set
of phylogenies denoted by this clique is less than or equal to k, as follows: remove each
edge in G whose label is greater than k; and, ignoring the weights of the edges in the
resulting graph, find a clique of size n. The set of vertices in the clique represents n
k-similar phylogenies for the given set of taxonomic units.

In the online methods, we consider the ASP program phylogeny—-improved.lp
described in [4], to reconstruct phylogenies.

Online Method 1 suggests finding n k-similar (resp. k-diverse) phylogenies, by re-
formulating the given ASP program for phylogeny reconstruction, and using an answer
set solver to compute all these solutions. A reformulation of phylogeny—-improved. 1p,
as suggested by the first online method, can be obtained as follows:

1. We specify the number of solutions: solution(1..n).

2. In each rule of the program, we replace each atom p (T1, T2, ..., Tm) (except the
ones specifying the input, like atoms describing the leaves, the labels of the leaves,
characters, and states of characters) withp (N, T1, T2. . ., Tm), and add to the body
solution (N).

3. Now we have a program that computes n phylogenies. To ensure that they are
distinct, for each atom specifying a solution, in this case atoms describing the edges
of a phylogeny, we add the rules



Algorithm 1 CLASP
Input: An ASP program I7
Output: An answer set A for IT
A «— () // current assignment of literals
7 < 0 /I set of conflicts
while no answer set found do
UNIT-PROPAGATION(II, A, /) // propagate according to the current assignment and con-
flicts, and update the current assignment
if there is a conflict in the current assignment then
RESOLVE-CONFLICT(/I, A,\7) //learn and update the conflict set and do backtracking
else
if current assignment does not yield an answer set then
SELECT(II, A,s7) // select a literal to continue search
else
return A
end if
end if
end while

different (S1,S2) :- edge(S1l,X1,Y), edge(S2,X2,Y),
vertex (X2;X1;Y), solution(S1;S2), S1 != S2, X1 != X2.
:— not different (S1,S82), solution(S1;S2), S1 != S2.

Online Method 2 suggests finding n k-similar (resp. k-diverse) phylogenies, by
iteratively computing a k-close (resp. k-distant) phylogeny. Here we implement a perl
script that calls the ASP solver repeatedly, with the phylogeny reconstruction program
phylogeny-improved. lp and a distance function program, until we compute all n
k-similar solutions.

Online Method 3 suggests finding n k-similar (resp. k-diverse) phylogenies, by
modifying the ASP solver. Consider for instance the answer set solver CLASP [10].
CLASP does a conflict-driven DPLL-like [8, 16] Branch & Bound search to find an an-
swer set (solution) of the program: at each level, it does propagation followed by back-
tracking or selection of new literals according to the current conflicts. A rough working
principle of CLASP is shown in Algorithm 1. As can be seen, CLASP goes through three
main steps to find an answer set. In the UNIT-PROPAGATION step, it decides the literals
that have to be included in the answer set due to the current assignment and conflicts. In
the RESOLVE-CONFLICT step, it tries to resolve the conflicts encountered in the previous
step. If there is a conflict, then CLASP learns it and does backtracking to an appropriate
level. If there is no conflict and the currently selected literals do not represent an answer
set, then, in SELECT, CLASP selects a new literal (based on BERKMIN’s heuristic [11])
to continue search.

We can modify CLASP as in Algorithm 2, to compute n k-similar phylogenies.
The modified solver, CLASP-NK, has some additional procedures: DISTANCE-ANALYZE
identifies the partial phylogeny formed by the currently selected literals, and then com-
putes a lower bound for the distance between a phylogeny that contains this partial
phylogeny and the previously computed full phylogenies. Computing an exact lower
bound requires enumerating all possible completions of the partial phylogeny, so we



Algorithm 2 CLASP-NK
Input: An ASP program I, nonnegative integers n, and k, and a set C' of atoms considered in
computation of the distance function
Output: A set X of n phylogenies that are k similar (n k-similar phylogenies)
X «— 0 // computed phylogenies
A «— () // current assignment of literals
v «— 0 /I set of conflicts
while | X| < n do
PartialSolution < CurSelCon(A,C)  // the atoms that are marked as considered and that
are currently selected constitute a partial solution
d < DISTANCE-ANALYZE(X, PartialSolution)  // compute a lower bound for the distance
between partial solution and previously computed phylogenies
if d > k then
RESOLVE-CONFLICT(/I, A, /)
end if
UNIT-PROPAGATION(II, A, /)
if there is a conflict in the current assignment then
RESOLVE-CONFLICT(IT, A, V)
else
if current assignment does not yield an answer set then
SELECT(II, A, )
else
X—XUA
A« () // start searching for a new solution
end if
end if
end while
return X

compute an approximate lower bound by a heuristic function LB(T,T") that estimates
the distance (from below) between a complete phylogeny 7" and a complete phylogeny
that contains a partial phylogeny 7" with leaves L'

LB(T,T')= Y_ |NDr(z,y) — NDp(z,y)|.
(w,y)el’

Since this heuristic function is admissible (i.e., its value is always less than or equal to
the exact lower bound), CLASP-NK does not miss a solution (n k-similar phylogenies) if
one exists. This function is also monotonic in the number of leaves in partial phylogeny:
if the partial phylogeny grows, then the distance increases also. If the lower bound
LB(T,T')is greater than k, then there is no need for CLASP-NK to search for a solution.
In such a case, CLASP-NK marks the currently selected literals as a conflict, learns this
conflict, and does the necessary backtracking. The rest of the algorithm is the same as
that of CLASP except that CLASP-NK searches until it finds n solutions.

We can use other distance functions for CLASP-NK or we can compute similar/diverse
solutions to other problems (e.g., planning, product configuration). For that, we need to
modify CLASP-NK: we need to implement a suitable admissible distance measure, and
change the DISTANCE-ANALYZE function of CLASP-NK.



8 Experimental Results

We applied the computational methods described above (i.e., the offline method, and
the three online methods) to reconstruct similar/diverse phylogenies for Indo-European
languages. We used the dataset assembled by Don Ringe and Ann Taylor [19]. As in [4],
to compute such phylogenies, we considered the language groups Balto-Slavic (BS),
Italo-Celtic (IC), Greco-Armenian (GA), Anatolian (AN), Tocharian (TO), Indo-Iranian
(IIR), Germanic (GE), and the language Albanian (AL). While computing phylogenies,
we also took into account some domain-specific information about these languages.

Let us first examine the results of experiments, considering the distance measures
Ap, ., based on the nodal distance (Table 2). We present the results for the follow-
ing computations: 2 most similar solutions, 2 most diverse solutions, 3 most simi-
lar solutions, 3 most diverse solutions, 6 most similar solutions. We solve these op-
timization problems by iteratively solving the corresponding decision problems (n k-
SIMILAR/DIVERSE SOLUTION). For each method, we present the computation time,’
the size of the memory used in computation, and the optimal value of k.

Let us first compare the online methods. In terms of both computation time and
memory size, Online Method 3 performs the best, and Online Method 2 performs better
than Online Method 1. These results conforms with our expectations: Online Method 1
requires an ASP representation of computing n k-similar/diverse phylogenies, and such
a program may be too large for an answer set solver to compute an answer set for.
Online Method 2 relaxes this requirement a little bit so that the answer set solver can
compute the solutions more efficiently: it requires an ASP representation of phylogeny
reconstruction, and an ASP representation of the distance measure, and then computes
similar/diverse solutions one at a time. However, since the answer set solver needs to
compute the distances between every two solutions, the computation time and the size
of memory do not decrease much, compared to those for Online Method 1. Online
Method 3 deals with the time consuming computation of distances between solutions,
not at the representation level but at the search level; so it does not require an ASP
representation of the distance function but requires a modification of the solver.

The offline method takes into account the previously computed 8 phylogenies for
Indo-European languages (with at most 17 incompatible characters), and computes sim-
ilar/diverse solutions using ASP as explained in Section 7. The offline method is more
efficient, in terms of both computation time and memory, than Online Methods 1 and 2
since it does not compute phylogenies. On the other hand, the offline method is less
efficient, in terms of both computation time and memory, than Online Method 3, since
it requires both representation and computation of distances between solutions.

Here both the offline method and Online Method 1 guarantee to find an optimal so-
lution, by iteratively solving the corresponding decision problems. On the other hand,
Online Methods 2 and 3 compute similar/diverse solutions with respect to the first com-
puted solution, and thus may not find the optimal value for k, as observed in the com-
putation of 3 most similar phylogenies.

3 All CPU times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).



Table 2. Results of experiments, using the distance Ap,, based on the nodal distance.

Problem Offline Method | Online Method 1 | Online Method 2 | Online Method 3
2 most similar 12.39 sec. 26.23 sec. 19.00 sec. 1.46 sec.
32MB 430MB 410MB 12MB
k=12 k=12 k=12 k=12
2 most diverse 11.81 sec. 21.75 sec. 18.41 sec. 1.01 sec.
32MB 430MB 410MB 15MB
k=232 k=32 k=24 k=232
3 most similar 11.59 sec. 60.20 sec. 43.56 sec. 1.56 sec.
32MB 730MB 626MB 15MB
k=15 k=15 k=15 k=16
3 most diverse 11.91sec. 46.32 sec. 44.67 sec. 0.96 sec.
32MB 730MB 626MB 15MB
k=26 k=26 k=21 k=26
6 most similar 11.66sec. 327.28 sec. 178.96 sec. 1.96 sec.
32MB 1.8GB 1.2GB 15MB
k=25 k=25 k=29 k=25

Table 3. Results of experiments, using the distance Ap, based on preferred diversifications.

Problem

Offline Method

Online Method 1

Online Method 2

2 most similar

365.16 sec. (4.2GB)

16.11 sec. (236MB)

16.23 sec. (212MB)

3 most diverse

368.59 sec. (4.2GB)

46.11 sec. (659MB)

44.21 sec. (430MB)

6 most similar

368.45 sec. (4.2GB)

137.31 sec. (1.8GB)

212.59 sec. (1.1GB)

Now, let us consider the distance measures Ap,, based on preference over diversi-
fications (Table 3): two phylogenies are more similar if the diversifications closer to the
root are more similar. Here we consider the similarities of diversifications until depth 3
(inclusive). We present the results for the following computations: 2 most similar solu-
tions, 3 most diverse solutions, 6 most similar solutions. In Table 3, for each method,
we present the computation time, the size of the memory used in computation, and the
optimal value of k. Unlike what we have observed in Table 2, the offline method takes
more time/space to compute similar/diverse solutions; this is due to the computation
of distances with respect to Ap, which requires summations, and representing sum-
mations in the language of LPARSE is not trivial. Other results are similar to the ones
presented in Table 2.

In [4], after computing all 34 plausible phylogenies, the authors examine them man-
ually and come up with three forms of tree structures, and then “filter” the phylogenies
with respect to these tree structures. For instance, in Group 1, the trees are of the form
(AN, (TO, (AL, (IC, (a tree formed for GE, GA, BS, IIR))))); in Group 2, the trees are
of the form (AN, (TO, (IC, (a tree formed for GE, GA, BS, IIR, AL)))); in Group 3, the
trees are of the form (AN, (TO, ((AL, IC), (a tree formed for GE, GA, BS, IIR)))). The
results of our experiments with the distance measure Ap, comply with these group-
ings. For instance, the 2 most similar phylogenies computed by Online Method 1 are in
Group 1; the 3 most diverse phylogenies computed by Online Method 2 are in different
groups. Likewise, the 6 similar phylogenies computed by our methods fall into Group 2.



9 Related Work

Finding similar or diverse solutions has been studied in propositional logic [2], and in
constraint programming [13, 12].

In [2], the authors propose two algorithms, DPgisance and DP jisance +iasso, tO SOlve
DISTANCE-SAT—determining that a propositional CNF formula has a model that dis-
agrees with a given partial interpretation on at most d variables. Our modification of
CLASP’s algorithm is similar to the first algorithm in that both algorithms check whether
a partial interpretation computed in the DPLL-like search obeys the given distance con-
straints. On the other hand, unlike DP j;snce, CLASP also uses conflict-driven learning:
when it learns a conflicting set of literals, it will never try to select them in the later
stages of the search. DP jisunce+1asso Offers manipulations while selecting a new variable:
it creates a set of candidate variables with respect to the distance function, computes
weights of these variables relative to the distance function, and selects one with the
maximum weight. On the other hand, in SELECT, CLASP creates a set of candidate
variables, and selects one of the candidates to continue the search. Using the idea of
D Pistance+lasso» We can modify CLASP further to manipulate the selection of variables
with respect to the distance function. However, in the phylogeny reconstruction prob-
lem, since the domain of the distance function consists of the edge atoms which are far
outnumbered by many auxiliary atoms, in SELECT the set of candidate variables gen-
erally consists of only auxiliary variables; due to these cases, the manipulation of the
selection of variables is not expected to improve the computational efficiency.

[13,12] study various computational problems related to finding similar/diverse
solutions, considering Hamming distance as in [2]. They present an offline method
(similar to our method) that applies clustering methods, and two online methods: one
based on reformulation (similar to Online Method 1), the other based on a greedy al-
gorithm (similar to Online Method 2) that iteratively computes a solution that maxi-
mizes similarity to previous solutions. The computation of a k-close solution is due to
a Branch & Bound algorithm (similar to the idea behind Online Method 3) that propa-
gates some similarity/diversity constraints specific to the given distance function. Our
offline/online methods are inspired by these methods of [13, 12], but are not confined
to only polynomial-time distance functions with polynomial range.

10 Conclusion

We have studied two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP: one problem asks for a set of
n solutions that are k-similar (resp. k-diverse); the other one asks for a solution that
is k-close (k-distant) to a given set of solutions. We have analyzed the computational
complexity of these problems, and introduced offline/online methods to solve them.
We have applied these methods to the phylogeny reconstruction problem, and observed
their effectiveness in comparing many phylogenies for Indo-European languages.

There are many appealing ASP applications (e.g., product configuration, planning)
for which finding similar/diverse solutions could be useful; on the other hand, no exist-
ing phylogenetic system can analyze phylogenies by comparing them. In this sense, our
methods are useful both for ASP and for phylogenetics.



Acknowledgments Thanks to Martin Gebser and Benjamin Kaufmann for their help
with CLASP.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

E.N. Adams. Consensus techniques and the comparison of taxonomic trees. Syst. Zool,
21:390-397, 1972.

O. Bailleux and P. Marquis. DISTANCE-SAT: complexity and algorithms. In Proc. of AAAI,
pages 642-647, 1999.

. J. Bluis and D-G. Shin. Nodal distance algorithm: Calculating a phylogenetic tree compari-

son metric. In Proc. of BIBE, page 87, 2003.

. D.R. Brooks, E. Erdem, S.T. Erdogan, J.W. Minett, and D. Ringe. Inferring phylogenetic

trees using answer set programming. JAR, 39(4):471-511, 2007.

. D.R. Brooks, E. Erdem, J.W. Minett, and D. Ringe. Character-based cladistics and answer

set programming. In Proc. of PADL, pages 37-51, 2005.

. D.R. Brooks and D.A. McLennan. Phylogeny, Ecology, and Behavior: A Research Program

in Comparative Biology. University of Chicago Press, Chicago, IL, 1991.

. Z-Z. Chen and S. Toda. The Complexity of Selecting Maximal Solutions. Information and

Computation, 119:231-239, 1995.

. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-

munications of the ACM, 5:394-397, 1962.

. T. Eiter and V.S. Subrahmanian. Heterogeneous active agents, ii: Algorithms and complexity.

Artif. Intell., 108(1-2):257-307, 1999.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proc. of IJCAI, pages 386392, 2007.

E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Discrete Appl. Math.,
155(12):1549-1561, 2007.

E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in
constraint programming. In Proc. of AAAIL pages 372-377, 2005.

E. Hebrard, B. O’Sullivan, and T. Walsh. Distance constraints in constraint satisfaction. In
Proc. of IJCAI, pages 106-111, 2007.

W-K. Hon, M-Y. Kao, and T-W. Lam. Algorithms and Computation, chapter Improved Phy-
logeny Comparisons: Non-shared Edges, Nearest Neighbor Interchanges, and Subtree Trans-
fers, pages 369-382. Springer Berlin / Heidelberg, 2000.

V. Lifschitz. Action languages, answer sets and planning. In The Logic Programming
Paradigm: a 25-Year Perspective, pages 357-373. Springer Verlag, 1999.

J. Marques-Silva and K. Sakallah. A search algorithm for propositional satisfiability. /EEE
Trans. Computers, 5:506-521, 1999.

T.M. Nye, P. Lio, and W.R. Gilks. A novel algorithm and web-based tool for comparing two
alternative phylogenetic trees. Bioinformatics, 22(1):117-119, January 2006.

C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

D. Ringe, T. Warnow, and A. Taylor. Indo-European and computational cladistics. Transac-
tions of the Philological Society, 100(1):59-129, 2002.

D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Bio-
sciences, 53(1-2):131-147, February 1981.

C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied Mathematics,
105:147-158, 2000.

T. Soininen and I. Niemeld. Developing a declarative rule language for applications in prod-
uct configuration. In Proc. of PADL, pages 305-319, 1998.

J.P White and J.F. O’Connell. A Prehistory of Australia, New Guinea, and Sahul. Academic,
San Diego, CA, 1982.



