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Abstract of KB, they are not conceived for handlingyat unknown
update, which will arrive as the environment evolves. In fact,
doe b ted as lodi h b these approaches lack the possibility to specify how an agent
edge bases repreésented aslogic programs have DeeNn g, 14 react upon the arrival of such an update. For ex-
]E)roposedl.(f Indth|? pzta_per, we.f_pret'sent a; gecr;etnc ample, we would like to express that, on arrival of the fact
ramework for declarative specifications of update best_buy(shop; ), this should be added t&B, while best-
policies, which is built upon such approaches. It v intormation about other shops is removed fréif.
extends the LUPS language for update specifica- In this paper, we address this issue and present a declar-
tions and incorporates the notion of events into the . paper, g P
framework. An update policy allows an agent to ative framework for spequmg updatg behavior of an agent.
flexibly react upon new information, arriving as an The' agent receives new mforma'tlon In terms of a set of rules
event, and perform suitable changes of its knowl- (V.Vh'Ch is called _areven),_ a_nd adjusts its(5 n accord to a
edge 'base The framework compiles update poli- givenupdate policy consisting of statements in a declarative
cies to logic programs by means of generic transla- language. Our main con'trlbutlons are summa'rlz.ed as follows:
tions, and can be instantiated in terms of different (1) We present gener_lcframework f(_)r sp_e0|fy|ng update
concrete update approaches. It thus provides a flex- behavior, which can be instantiated with different update ap-
ible tool for designing adaptive reasoning agents. proaches to logic programs. This is facilitated biagered
approach At the top level, the update policy is evaluated,
) given an event and the agent’s current belief set, to single out
1 Introduction the update commands which need to be performed dnB.

Updating knowledge bases is an important issue for the reafit the next layerlJ is compiled to a sef> of rules to be in-
ization of intelligent agents, since, in general, an agent is situcorporated td<B; at the bottom level, the updated knowledge:
ated in a changing environment and must adjust its knowledgBase is represented as a sequence of logic programs, serving
base when new information is available. While for classical@s input for the underlying update semantics for logic pro-
knowledge bases this issue has been well-studied, approacH#&ms, which determines the new current belief set.
to update nonmonotonic knowledge bases, like, e.g., updates (2) We define a declarative language for update poli-
of logic programg|Alferes et al, 2000; Eiteret al, 2000;  cies, generalizing LUPS by various features. Most impor-
Zhang and Foo, 1998; Inoue and Sakama, 1999f default  tantly, access to incoming events is facilitated. For example,
theoried Williams and Antoniou, 1998 are more recent. retract (best_buy(shop;)) [E : best_buy(shopz)] states that
The problem of updating logic programs, on which we fo-if best_buy(shopy) is told, thenbest_buy(shop;) is removed
cus here, deals with the incorporation of an upd@igiven  from the knowledge base. Statements like this may involve
by a rule or a set of rules, into the current knowledge baséurther conditions on the current belief set, and other com-
KB. Accordingly, sequenceB, ..., P, of updates lead to mands to be executed (which is not possible in LUPS). The
sequence$KB, Py,..., P,) of logic programs, which are language thus enables the flexible handling of events, such as
given a declarative semantics. To broaden this approacisimply recording changes in the environment, skipping unin-
Alfereset al. [19994 have proposed the LUPS update lan- teresting updates, or applying default actions.
guage, in which updates consist of setsipflate commands (3) We analyze some properties of the framework, using
Such commands permit to specify changeddB in terms  the update answer set semantics of Eéeal. [2004 as a
of adding or removing rules from it. For instance, a typ- representative of similar approaches. In particular, useful
ical command isassert a <« b when ¢, stating that rule properties concerningg B maintenance are explored, and the
a < bshould be added t& B if cis currently true init. Sim- complexity of the framework is determined. Moreover, we
ilarly, retract b expresses that must be eliminated from describe a possible realization of the framework in the agent
KB, without any further condition. system IMPACT{Subrahmaniaet al., 2004, providing evi-
However, a certain limitation of LUPS and the above men-dence that our approach is a viable tool for developing adap-
tioned formalisms is that while they handie hocchanges tive reasoning agents.

Recently, several approaches for updating knowl-



2 Preliminaries

We assume the reader familiar witlktended logic programs
(ELPs)[Gelfond and Lifschitz, 1991 For a ruler, we write
H(r) andB(r) to denote the head and bodyrofespectively.
Furthermorenot stands for default negation andor strong
negation.Lit 4 is the set of all literals over a set of atods
and/. 4 is the set of all rules constructible frobit 4.

An update program P, is a sequencéP;,...,P,) of

ELPs, wherex > 1. We adopt an abstract view of the seman-

tics of ELPs and update programs, given as a mappisig- ),
which associates with every sequeita setBel(P) C L4
of rules; intuitively, Bel(P) are the consequences®f Dif-
ferent instantiations oBel(-) are possible, according to var-

ious proposals for update semantics. We only assume that
Bel(+) satisfies some elementary properties which any “rea-
sonable” semantics satisfies. In particular, we assume that

P,, C Bel(P) holds, and that the following property is satis-
fied: givenA «— € Bel(P) andA € B(r), thenr € Bel(P)
iff H(r)— B(r)\ {A} € Bel(P).

We use here the semantics of Eitral. [200d, which

coincides with the semantics of inheritance programs due to

Buccafurriet al.[1999. The semantics of ELPB and update

Bel(KS;—1) Belief set at step — 1
KB Ex Ei 1 | E; Knowledge statésS;
Ju update policy
KB U Ui—1 | U Executable commands
| tr compilation
P P P | P Update sequence

|} Bel

Bel(KS;) = Bel((Py, . ..

update semantics

, B)) Belief set at step

Figure 1: From knowledge state to belief set at step

sequence® with variables is defined as usual through their 3round") for specifyingipdate policies

ground versiong(P) andG(P) over the Herbrand universe,
respectively. In what follows, let, P, P, etc. be ground.

An interpretationis a setS C Lit4 which contains no
complementary pair of literals.S is a (consistentanswer
setof an ELP P iff it is a minimal model of thereduct
PS, which results fromP by deleting all rules whose body
contains some default literalot L with L € S, and by
removing all default literals in the bodies of the remaining
rules[Gelfond and Lifschitz, 1991 By AS(P) we denote
the collection of all answer sets d?. The rejection set
Rej (S, P), of P with respect to the interpretatia$iis given
by RQ](S, P) = Uz;l Re]z(Sv P)v WhereRejn(Sa P) = (D’
and, forn > i > 1, Rej (S, P) contains every rule € P,
such thatd (r') = -H(r) andB(r) U B(+') C S, for some
r’" € P;\ Rej;(S,P) with j > 4. Then,S is ananswer sebf
P=(P,...,P,)iff Sisananswer set ¢f], P; \ Rej(S,P).
We denote the collection of all answer setsPoby AS(P).
Sincen = 1 implies Rej (S, P) = 0, the semantics extends
the answer set semanti¢g&iteret al,, 200q describes a char-

3.1 Basic Framework

We start with the formal notions of aventand of theknowl-
edge statef an agent.

Definition 1 Anevent classs a collection£C C 244 of finite
sets of rules. The membelse £C are calledevents

Informally, £C describes the possible events (i.e., sets of
communicated rules) an agent may witness. For example, the
collection F of all sets of facts from a subset’ C A of
atoms may be an event class. In what follows, we assume
that an event clasSC has been fixed.

Definition 2 A knowledge state(S = (KB;E,...,E,)
consists of an ELRB (the initial knowledge baseand a
sequencé, ..., E, ofeventd; € £C,i € {1,...,n}. For
i >0, KS; = (KB; Fy,...,E;) is the projection ofKS to
the firsti events.

acterization of the update semantics in terms of single ELPs, Intuitively, K describes the evolution of the agent's

Example 1 Let Py = {b «— nota,a «— }, P, = {-a «—
¢+ },andP, = {-c < }. Then,P, has the single answer
setSy = {a} with Rej(So, Py) = 0; (Fo, P1) has answer
setS, = {—a,c, b} with Rej(S1, (Po, P1)) = {a < }; and
(Po, P1, Py) possesseS; = {—a, —c,b} as unique answer
set WIthRe](Sg, (f)o7 Pl,PQ)) = {C —,a <—}

The belief setBel 4(P) is the set of all rules: € L4
such thatr is true in eachS € AS(P). We shall drop
the subscript A" if no ambiguity can arise. With a slight
abuse of notation, for a literdl, we write L € Bel 4(P) if
L+—¢€ BelA(P).

3 Update Policies

knowledge, starting from its initial knowledge base. When
a new evently; occurs, the current knowledge sta&&;
changes td(S; = (KB; F1,...,E;_1, E;), which requests
the agent to incorporate the evdtitinto its knowledge base
and adapt its belief set.

The procedure for adapting the belief sBel(KS;_1)
on arrival of E; is illustrated in Figure 1. Informally, at
stepi of the knowledge evolution, we are given the be-
lief set Bel(KS;_1) and the knowledge stat&s,; ;
(KB;Ey,...,FE;_1), together with the new everf;, and
we want to computdBel(KS;) in terms of the update pol-
icy U. First, a setU; of executable commands deter-
mined fromy{. Afterwards, given the previously computed
setsUy,...,U;—1, the sequencéKB;Uy,...,U;) is com-

We first describe our generic framework for event-basediled by the transformatioty into the update sequen&—=

updating, and afterwards tHeP| language (“the language

(P, P1,...,P;). Then,Bel(KS,;) is given byBel(P).



(stat) = (comm) [if (cond1)] [[(cond2)]]; that the rule is to be ignored. Similarly, the commaettact
(c.name) = assert|event] | retract|.event] | forces a rule to be deactivated. The optmrentstates that

always|_event] | cancel | ignore ; an assertion or retraction hgs_only temporary value and is not
(rid) = (rule) | (rvar); suppqsed to persist by inertia in subsequent steps. The precise
(Litid) = (iteral) | (litvar); meaning of the _dlfferent update commands will be made clear
(comm) = {c.name)((rid)) : in the next sectlo'n. . . '
(condl) = [not] (comm) | [not] (comm), (condl) ; Example 2 Consider a simple agent selecting Web shops in

’ search for some specific merchandise. Suppose its knowledge
{cond2) = E:Zmnjsi [E: éev,con;ls; | base,KB, contains the rules
_conds) , E : (ev_conds);

(kb-conds) ::= (kb-cond) | (kb_cond) , (kb-conds); - tquery(S) - sale(S?S,'u.p(S), not ~query(S);
(kb_cond) = (r_id) | (lit-id) : = ’"y*q“f.’“ v qu‘;’f’( i
(ev_conds) ::= (ev_cond) | {ev_cond) , (ev_conds); " notify — not try-query;
(

ev_cond) = éliu@ | (r_d) ; and a factry : date(0) as an initial time stamp. Here;;
expresses that a shdf) which has a sale and whose Web site
is up, is queried by default, and, r3 serve to detect that no
site is queried, which causesdtify’ to be true. Assume that
an event,FZ, might be any consistent set of facts or ground
3.2 LanguageEPI: Syntax rules of the formsale(s) < date(t), stating that shop has

The languageEPI generalizes the update specification lan-2 sale on date, such thatE' contains at most one time stamp
guage LUPSAIfereset al., 19994, by allowing update state- date(). _ _ _
ments to depend on other update statements in the E&ine AN update policy/ may be defined as follows. Assume it
program, and more complex conditions on both the currengOntains the incorporate-by-default statemekt as well as:
belief set and the actual event (note that LUPS has no provi-always(sale(S) «— date(T)) if assert(sale(S) <« date(T));
sion to support external events). These features make it suit-cancel(sale(S) — date(T))[[date(T), T # T', E: date(T")];

able for implementing rational reactive agents, capable, e.9.,retract(sale(S) — date(T))[date(T),T # T', E: date(T")].

Offlllr:insnygn;gioorgg?ilsn;?\:;nnait:]o.?ébIe 1. In what follows. we Informally, the first statement repeatedly confirms the infor-
usecmd to denote update commandé anth refer to ru’les mation about a future sale, WhICh guarantees that it is ef-
or rule variables. In general, &iP| statement may have the feptlve on th_e given date, whl!e the sepond statement revokes
form : ' this. The third one removes information about a previously
ended salgassuming the time stamps increasd~urther-
emdy (pr) if [not]emdz(p2), . . ., [notlemdm (pm)[c1, E :c2] more,l{ includes also the following statements:

which states conditional assertion or retraction of a rule retract(date(T))[date(T), T # T, E : date(T")];

p1, expressed bymd; (p1), depending on othe.r. comma_nds ignore(sale(s1))[E : sale(s1)];

[EOt]CmC_b (PQ)H . h ,[nog]ﬁmdm(pm)ﬁ and Condtljtl?_n$d with d ignore(sale(s1) « date(T))[E : sale(s1) «— date(T)].
the proviso whether, belongs o the current beliet set an The first statement keeps the time stardwpe(t) in KB

whetherc;, is in the actual event. The badt®| commands . .
are the same as those in LUPS (for their meaning/dferes ~ Unidue, and removes the old value. The other statements sim-
et al, 19994), plus the additional commarignore, which ply state that sales information about shepis ignored.

allows to skip unintended updates from the environmentg 3 | anguageEPI: Semantics
which otherwise would be incorporated into the knowledg
base. Each condition if], both of the fornt; andE :c,, can

Table 1: Syntax of an update statemenERmi.

eAccording to the overall structure of the semanticsEéf,

be substituted by a list of such conditions. Note that in LU Psaie?:iggtlidc:)nmlr:rlngﬁg 1}\/2:] St:]eep (‘)’:’J?ré'rr]ftkggsare”&m: sTaete
no conditions on rules and external events can be explicitlf i 9 9

expressed, nor dependencies between update commands. ?,éi—l = (KB;E,...,FE;_1) and its associated belief set

also extend the language by permitting variables for rules an oelt(h[igs Ze7n h) TveBee\igIDljétl 2} ' t\évgirsgé{é ;Il(ef];g;/.e'r. ir%irh)a;/v
literals in the update commands, ranging over the universe o ventE; and the belief seBel(P; ).

the current belief set and of the current event (syntactic safet9 LetG (i) be the grounded version afover the languagel
conditions can Ee e"’,‘S'H checked). By convention, variablg,erying the given update sequence and the received events.
names start with capital letters. Then, the seG(U)’ of reduced update statements at stép
Definition 3 An update policyi/ is a finite set oEPI state-  given by

ments. GU)* = { emd(p) if C1 | emd(p) if C1[C2] € G(U), where
For instance, th&P| statement Co=ci,...,c, B, mm, and such that
C1,...,C € Bel(Pifl) andm, e, tm € FE; }
assert(R) if not ignore(R)[E : R] (1) _ _
The update statements iG(L/)* are thus of the form
means that all rules in the event have to be incorporated intemd; (p;) if [not] cmds(p2), ..., [not] emd,,(py). Se-
the new knowledge base, except if it is explicitly specifiedmantically, we interpret them as ordinary logic program rules



cmdi(p1) < [not]emda(pz2), ..., [not]emdy,(pm). The V(assert_event(r) € ECi_;

programI1¥ is the collection of all these rules, giveri/)?, A always[_event](r) ¢ PC;
together with the following constraints, which exclude con- A assert[-event|(r) ¢ EC;)}.
tradictory commands: On the basis of this compilation, we can define the belief
«— assert[_event]|(R), retract[_event|(R); set for a knowledge stats:
«— always|_event]|(R), cancel(R). Definition 6 Let KS and U/ be as in Definition 5, and let
Uy, ...,U, be the corresponding executable commands ob-

Definition 4 Let KS — (KB; E,, ..., E,) be a knowledge tained from Definition 4. Then, tHeelief setof K5 is given

state and/ an update policy. Ther/; is a set ofexecutable by Bel(KS) = Bel(%‘r(KB; Ui,-..,Un))-
update commands at stegi < n) iff U; is an answer set of Example 3 Reconsider Example 2 and suppose the event

the groundingg (T1¢) of TI¥. E; = {sale(sy), date(1)} occurs atK S = (KB). Then,

Since update statements do not contain strong negationd(U)" = {assert(sale(so)) if not ignore(sale(sy)),
executable update commands are actustgble modelof assert(date(1)) if not ignore(date(1)),
G(I¥) [Gelfond and Lifschitz, 1998 Furthermore, since retract(date(0))}.

programs may in general have more than one answer set, §he corresponding prograrfily’ has the single answer set
no answer set at all, and the agent must commit itself to a sinfassert (sale(sy)), assert(date(1)), retract(date(0))},
gle set of update commands, we assume a suit#lEtion  which is compiled, via functionr(-), to PC; = PCy \
function Sel(-), returning a particulal; if an answer setex-  ({assert_[event](date(0))} = 0 and P, = {sale(sy) «—
ists, or, otherwise, returning; = {assert(L; — )}, where  on(;1): on(r]) — : date(1) — on(rhy); on(r}) «— ;
Li is a reserved atom. These atoms are used for signaling,y, () < }. As easily seen, the belief sBtl((KB; E;))

that the update policy encountered inconsistency. They cad Bel((Py, P,)) containssale(sy) and query(so).
easily be filtered out fronBel(-), if needed, restricting the

outcomes of the update to the original language. 4 Properties
Next we compile the executable comma#ds. . . , U; into

an update sequencé, . . ., FP;), serving as input for the be-

lief function Bel(-). This is realized by means of a trans-

formationtr(-), which is a generic and adapted version of a

similar mapping introduced by Alferes al.[19994. In what

follows, we assume a suitable naming function for rules in th

update sequence, enforcing that each ruteassociated with

a unigque name,..

Definition 5 Let KS = (KB;F., ..., E,) be a knowl-
edge state and/ an update policy. Then, foi > 0,
tr(KB;Uy,...,U;) = (P, P1,...,P;) is inductively de-

In this section, we discuss some propertiesBel (KS) for
particular update policies, using the definition®l(-) based
on the update answer sets approach of Hiteal. [200d, as
explained in Section 2. We stress that the properties given
elow are also satisfied by similar instantiationsii(-),

ike, e.g., dynamic logic programmiri@lfereset al., 2004.

First, we note some basic properties:

o If U = () (calledempty policy, then KB will never be

updated; the belief setis independentnf. . ., E,,, and
thus static Hence,Bel(KS;) = Bel(KB), for each

fined as follows, wheré&/, ..., U, are the executable com- i=1...,m N
mands according to Definition 4: o IfU = I_{B;)Sseﬁt(R) [I[IE 51:3]]} (called UZCQndﬁlonm as- .
. B sert policy, then all rules contained in the receive
L= 0{'()7ls(it])3°<__| {ng)KE} BV\(IE)E’TZT(L)(TLTL{)) a|1rg neewatg) rﬁs events are directly incorporated into the update se-
Furthermore, initialize the set®C), of persistent com- ?oure;;fr-}i IhlusBeléKSi) = Bel(KB, By, ..., Ey)),
mandsand EC, of effective commandw (). P o "'r']’ ' he knowledae i dated. |
) ) ‘ A ‘ i . ; is empty, then the knowledge is not updated, i.e.,
i1 >1: EC;, PC; and P; are as follows: P, = 0. We thus haveBel(KS;) — Bel(KS;_1).
EC: = {emd(r) | emd(r) € Ui 1 ignore(r) ¢ Us}; o Similarly, if U; = {assert(L;) — }, thenBel(KS,) =
PC; = PC;_1 U{always(r) | always(r) € EC;} Bel(KS;_1).
U {always_event(r) | always_event(r) € EC; i
A always(r) ¢ EC; UPCi_1} Physical removal of rules
\ ({always_event(r) | always(r) € EC;} An important issue is the growth of the agent’s knowledge
U {always[_event|(r) | cancel(r) € EC;}); base, as the modular construction of the update sequence
P; = {on(n,) — ,H(r) — B(r),on(n,) | through transformatiomr(-) causes some rules and facts to
assert[_event](r) € EC; be repeatedly inserted. This is addressed next, where we dis-
V always[_event|(r) € PC;} cuss the physical removal of rules from the knowledge base.
U {on(n,) — | retract_event(r) € EC; Lemmal LetP = (P, ..., P,) be an update sequence. For

U {Q\Of('gjci[f‘('f;ﬂ;?tﬁeggrﬁ](r) c EC, everyr € P;,r" € P; withi < j, the following holds: if

A always|_event](r) ¢ PC;) (i) r =7/, or(ii)r =L — andr’ =L« or (i) r' =

V (always_event(r) € PC;_; L « such that no rule”’ € P, with H(r") = —L exists,
A cancel(r) € EC; wherek € {j+1,...,n},and-L € B(r), thenBel 4(P) =
A assert|[_event|(r) ¢ EC;) Bely(Py,...,Pi—1, P\ {r}, Pix1,..., Ppn).



The following property holds: Bel(KS) is as follows(entries denote completeness results;

Theorem 1 Let KS be a knowledge state anblel(KS) = the case of unknowsfikl(-) is given at the right of “/"):
Bel(P), whereP = (Fy, ..., P,). Furthermore, leP" result [ KB\ U | fact. assert&strat. _stratified  general
from P after repeatedly removing rules as in Lemma 1, and — T N —=F
letP~ = (P.,..., P, ), where stratified P P PY/TI,
02 9 n /s general pNP pNP PNP/TIY

Pr={H(r) — B(r)\ {on(n,)} | r € P, on(n,) — € P*}\

[on(n) | on(n.) —e P}. Similar results hold, e.g., for dynamic logic programming.

The results can be intuitively explained as follows. Each
Then,Bel 4(KS) = Bel4(P7). U; and P; as in Figure 1 can be computed iteratively €

1 < n), where at step polynomially many problems’ e
Thus, we can purge the knowledge base and remove dUplBel((Z)DO, o Pit) n?ugt bye solvegto co)rqsr':ruﬁl?. From

cates of rules, as well as all deactivated (retracted) rules. U, = Sel(T!) and previous results?; is easily computed

History Contraction in polynomial time. SinceP; contains less thafi{| rules,
Another relevant issue is the possibility, for some speciabtepi is feasible in polynomial time with an NP oracle.
case, tocontract the agent’s update historand compute Thus,P = (P, ..., P,) is polynomially computable with

its belief set at step merely based on information at step an NP oracle, and € Bel(P) is decided with another oracle
i—1. Letus call/ afactual assert policyf all asserf_evenf  call. Updating a stratified% such that only sets of facts,,
and alwayq_even{ statements i/ involve only facts. In  F%,... may be added preserves polynomial decidability of
this case, the compilatiotr(-) for a knowledge stat&’S = 7' € Bel((F, ..., Pi—1)); this explains the polynomial de-
(KB;E1,...,FE,) can be simplified thus: (1P, = KB, cidability result. In all other case®NF-hard problems such
and (2) the construction of eadh involves factsL « and  as computing the lexicographically maximal model of a CNF
-L « instead ofon(n,) < and—on(n,) < , respectively. ~formula are easily reduced to the problem.

For such sequences, the following holds: If Sel(-) is unknown, each possible result §¢/(I1) can
be nondeterministically guessed and verified in polynomial

Lemma 2 LetP = (P, ..., P,) be an update sequence such . R .
that 2; contains only facts, fot < i < n. Then,Bel(P) =  UMe: This leads to coNP” = T1§’ complexity.
Bela(Py, Py, ), whereP,, = Pj,andP,,,, = P 1U(P,,\ .
{L —|-L—eP}). 5 Implementational Issues

We can thus assert the following proposition for historyAn elegant and straightforward realization of update policies
contraction: is possible through IMPACT agent programs. IMPA{Sub-

rahmanianet al, 2004 is a platform for developing soft-
ware agents, which allows to build agents on top of legacy
co X code, i.e., existing software packages, that operates on arbi-
the simplified method described above. ThBr4(KS) = a1y data structurges. Thus, irF: acco%dance witﬁ our approach,
Bela((KB, Py, )), whereP,, is as in Lemma 2. we can design generic implementationf our framework,

Simple examples show that Theorem 2 does not hold inwithout committing ourselves to a particular update seman-
general. The investigation of classes of policies for whichtics Bel(-).
similar results hold are a subject for further research. Since every update policy/ is semantically reduced to
a logic program, the corresponding executable commands
can be computed using well-known logic programming en-
Tgines likesmodels, DLV, or DeRes. Hence, we may assume
that a software packag&P, for updating and querying a
knowledge basd(B is available, and thakB can be ac-
cessed through a functidsel() returning the current belief
setBel(KS). Moreover, we assume th&P has a function
event(), which lists all rules of a current event. Then, an
'update policy/ can be represented in IMPACT as follows.

(1) Conditions on the belief set and the event can be mod-

Theorem 2 Let &/ be a factual assert policy an® =
(Py,...,P,) be the compiled sequence obtained fr&i$ by

Computational Complexity
Finally, we briefly address the complexity of reasoning abou
a knowledge stat&'S. An update policy/ is calledstratified
iff, for all EPI statementsmd(p) if C1[C2]] € U, the asso-
ciated rulessmd, (p) «+ C4 form a stratified logic program,
where C1 results fromC; by replacing theEPI declaration
not by default negatiomot .

For stratified/, anyII¥’ has at most one answer set. Thus
the selection functiorSel(-) is redundant. Otherwise, the

complexity cost ofSel(-) must be taken into account. If giaq’yy IMPACT code call atomsi.e. atomsin(t, bel()),
Sel(-) is unknown, we cgnader all possible return valuesnotiin(mbel()), andin(t, event()), wheret is a7constant
(ie., all answer sets oflf) and thus, in a cautious rea- . o5 yariableR. In IMPACT, in(r, £()) is true if constant
soning mode, all possibl&el(KS) = Bel((F, ..., Fa)) isin the result returned bg(); a variableR is bound to all-
fr/om Figure 1. Clearly! fpr updatg answer sets, qec'd'ngsuch thatin(r, £()) is true; “‘not_in" is negation.

re B.d((QO"“’Qm)) IS 1n CoNP; It is _polynom|al, Qo (2) Update commands can be easily represented as IM-
is stratified and eac;, 1 < i < m, contains only facts. PACT actions An action is implemented by a body of code
Theorem 3 Let Bel(-) be the update answer set seman-in any programming language (e.g., C); its effects are speci-
tics, and Sel(-) polynomial-time computable with aNP  fied in terms of add and delete lists (sets of code call atoms).
oracle. Then, given a ground rule and groundKS =  Thus, actions likessert(R), retract(R), etc., whereR is
(KB; FEr, ..., E,), the complexity of deciding whethere  a parameter, are introduced.



(3) EPI statements are represented as IMPACT action rules In concluding, our generic framework, which extends other
D d 1D do(o)). . T=ID Ao (o approaches to logic program updates, represents a convenient
o(emdi(pr)) = [co]di(cﬂit(fm)z’(conh[) IPo(emdn (). platform for declarative update specifications and could also

) ) be fruitfully used in several applications. Exploring these is-
where code,call,atoms(ccnd) is the list of the code call sues is part of our Ongoing research.
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