
A Framework for Declarative Update Specifications in Logic Programs

Thomas Eiter and Michael Fink and Giuliana Sabbatini and Hans Tompits
Institut für Informationssysteme, Abteilung Wissensbasierte Systeme 184/3,
Technische Universität Wien, Favoritenstrasse 9-11, A-1040 Vienna, Austria

E-mail:{eiter,michael,giuliana,tompits}@kr.tuwien.ac.at

Abstract

Recently, several approaches for updating knowl-
edge bases represented as logic programs have been
proposed. In this paper, we present a generic
framework for declarative specifications of update
policies, which is built upon such approaches. It
extends the LUPS language for update specifica-
tions and incorporates the notion of events into the
framework. An update policy allows an agent to
flexibly react upon new information, arriving as an
event, and perform suitable changes of its knowl-
edge base. The framework compiles update poli-
cies to logic programs by means of generic transla-
tions, and can be instantiated in terms of different
concrete update approaches. It thus provides a flex-
ible tool for designing adaptive reasoning agents.

1 Introduction
Updating knowledge bases is an important issue for the real-
ization of intelligent agents, since, in general, an agent is situ-
ated in a changing environment and must adjust its knowledge
base when new information is available. While for classical
knowledge bases this issue has been well-studied, approaches
to update nonmonotonic knowledge bases, like, e.g., updates
of logic programs[Alferes et al., 2000; Eiteret al., 2000;
Zhang and Foo, 1998; Inoue and Sakama, 1999] or of default
theories[Williams and Antoniou, 1998], are more recent.

The problem of updating logic programs, on which we fo-
cus here, deals with the incorporation of an updateP , given
by a rule or a set of rules, into the current knowledge base
KB . Accordingly, sequencesP1, . . . , Pn of updates lead to
sequences(KB , P1, . . . , Pn) of logic programs, which are
given a declarative semantics. To broaden this approach,
Alferes et al. [1999a] have proposed the LUPS update lan-
guage, in which updates consist of sets ofupdate commands.
Such commands permit to specify changes toKB in terms
of adding or removing rules from it. For instance, a typ-
ical command isassert a ← b when c, stating that rule
a← b should be added toKB if c is currently true in it. Sim-
ilarly, retract b expresses thatb must be eliminated from
KB , without any further condition.

However, a certain limitation of LUPS and the above men-
tioned formalisms is that while they handlead hocchanges

of KB , they are not conceived for handling ayet unknown
update, which will arrive as the environment evolves. In fact,
these approaches lack the possibility to specify how an agent
should react upon the arrival of such an update. For ex-
ample, we would like to express that, on arrival of the fact
best buy(shop1), this should be added toKB , while best-
buy information about other shops is removed fromKB .

In this paper, we address this issue and present a declar-
ative framework for specifying update behavior of an agent.
The agent receives new information in terms of a set of rules
(which is called anevent), and adjusts itsKB in accord to a
givenupdate policy, consisting of statements in a declarative
language. Our main contributions are summarized as follows:

(1) We present agenericframework for specifying update
behavior, which can be instantiated with different update ap-
proaches to logic programs. This is facilitated by alayered
approach: At the top level, the update policy is evaluated,
given an event and the agent’s current belief set, to single out
the update commandsU which need to be performed onKB .
At the next layer,U is compiled to a setP of rules to be in-
corporated toKB ; at the bottom level, the updated knowledge
base is represented as a sequence of logic programs, serving
as input for the underlying update semantics for logic pro-
grams, which determines the new current belief set.

(2) We define a declarative language for update poli-
cies, generalizing LUPS by various features. Most impor-
tantly, access to incoming events is facilitated. For example,
retract(best buy(shop1)) [[E : best buy(shop2)]] states that
if best buy(shop2) is told, thenbest buy(shop1) is removed
from the knowledge base. Statements like this may involve
further conditions on the current belief set, and other com-
mands to be executed (which is not possible in LUPS). The
language thus enables the flexible handling of events, such as
simply recording changes in the environment, skipping unin-
teresting updates, or applying default actions.

(3) We analyze some properties of the framework, using
the update answer set semantics of Eiteret al. [2000] as a
representative of similar approaches. In particular, useful
properties concerningKB maintenance are explored, and the
complexity of the framework is determined. Moreover, we
describe a possible realization of the framework in the agent
system IMPACT[Subrahmanianet al., 2000], providing evi-
dence that our approach is a viable tool for developing adap-
tive reasoning agents.

2 Preliminaries
We assume the reader familiar withextended logic programs
(ELPs)[Gelfond and Lifschitz, 1991]. For a ruler, we write
H(r) andB(r) to denote the head and body ofr, respectively.
Furthermore,not stands for default negation and¬ for strong
negation.LitA is the set of all literals over a set of atomsA,
andLA is the set of all rules constructible fromLitA.

An update program, P, is a sequence(P1, . . . , Pn) of
ELPs, wheren ≥ 1. We adopt an abstract view of the seman-
tics of ELPs and update programs, given as a mappingBel(·),
which associates with every sequenceP a setBel(P) ⊆ LA
of rules; intuitively,Bel(P) are the consequences ofP. Dif-
ferent instantiations ofBel(·) are possible, according to var-
ious proposals for update semantics. We only assume that
Bel(·) satisfies some elementary properties which any “rea-
sonable” semantics satisfies. In particular, we assume that
Pn ⊆ Bel(P) holds, and that the following property is satis-
fied: givenA ← ∈ Bel(P) andA ∈ B(r), thenr ∈ Bel(P)
iff H(r)← B(r) \ {A} ∈ Bel(P).

We use here the semantics of Eiteret al. [2000], which
coincides with the semantics of inheritance programs due to
Buccafurriet al.[1999]. The semantics of ELPsP and update
sequencesP with variables is defined as usual through their
ground versionsG(P) andG(P) over the Herbrand universe,
respectively. In what follows, letA, P , P, etc. be ground.

An interpretation is a setS ⊆ LitA which contains no
complementary pair of literals.S is a (consistent)answer
set of an ELP P iff it is a minimal model of thereduct
PS , which results fromP by deleting all rules whose body
contains some default literalnot L with L ∈ S, and by
removing all default literals in the bodies of the remaining
rules [Gelfond and Lifschitz, 1991]. By AS(P) we denote
the collection of all answer sets ofP . The rejection set,
Rej (S, P), of P with respect to the interpretationS is given
by Rej (S, P) =

⋃n
i=1 Rej i(S, P), whereRejn(S, P) = ∅,

and, forn > i ≥ 1, Rej i(S, P) contains every ruler ∈ Pi

such thatH(r′) = ¬H(r) andB(r) ∪ B(r′) ⊆ S, for some
r′ ∈ Pj \ Rej j(S, P) with j > i. Then,S is ananswer setof
P = (P1, . . . , Pn) iff S is an answer set of

⋃
i Pi \Rej (S, P).

We denote the collection of all answer sets ofP by AS(P).
Sincen = 1 impliesRej (S, P) = ∅, the semantics extends
the answer set semantics.[Eiteret al., 2000] describes a char-
acterization of the update semantics in terms of single ELPs.
Example 1 Let P0 = {b ← not a, a ← }, P1 = {¬a ← ,
c← }, andP2 = {¬c← }. Then,P0 has the single answer
setS0 = {a} with Rej (S0, P0) = ∅; (P0, P1) has answer
setS1 = {¬a, c, b} with Rej (S1, (P0, P1)) = {a ←}; and
(P0, P1, P2) possessesS2 = {¬a,¬c, b} as unique answer
set withRej (S2, (P0, P1, P2)) = {c← , a←}.

The belief setBelA(P) is the set of all rulesr ∈ LA
such thatr is true in eachS ∈ AS(P). We shall drop
the subscript “A ” if no ambiguity can arise. With a slight
abuse of notation, for a literalL, we writeL ∈ BelA(P) if
L←∈ BelA(P).

3 Update Policies
We first describe our generic framework for event-based
updating, and afterwards theEPI language (“the language

Bel(KS i−1) Belief set at stepi− 1

KB E1 . . . Ei−1 Ei Knowledge stateKS iw� U update policy

KB U1 . . . Ui−1 Ui Executable commandsw� tr compilation

P0 P1 . . . Pi−1 Pi Update sequencew� Bel update semantics

Bel(KS i) = Bel((P0, . . . , Pi)) Belief set at stepi

Figure 1: From knowledge state to belief set at stepi.

around”) for specifyingupdate policies.

3.1 Basic Framework
We start with the formal notions of aneventand of theknowl-
edge stateof an agent.

Definition 1 Anevent classis a collectionEC ⊆ 2LA of finite
sets of rules. The membersE ∈ EC are calledevents.

Informally, EC describes the possible events (i.e., sets of
communicated rules) an agent may witness. For example, the
collectionF of all sets of facts from a subsetA′ ⊆ A of
atoms may be an event class. In what follows, we assume
that an event classEC has been fixed.

Definition 2 A knowledge stateKS = 〈KB ;E1, . . . , En〉
consists of an ELPKB (the initial knowledge base)and a
sequenceE1, . . . , En of eventsEi ∈ EC, i ∈ {1, . . . , n}. For
i ≥ 0, KS i = 〈KB ;E1, . . . , Ei〉 is the projection ofKS to
the firsti events.

Intuitively, KS describes the evolution of the agent’s
knowledge, starting from its initial knowledge base. When
a new eventEi occurs, the current knowledge stateKS i−1

changes toKS i = 〈KB ;E1, . . . , Ei−1, Ei〉, which requests
the agent to incorporate the eventEi into its knowledge base
and adapt its belief set.

The procedure for adapting the belief setBel(KS i−1)
on arrival of Ei is illustrated in Figure 1. Informally, at
step i of the knowledge evolution, we are given the be-
lief set Bel(KS i−1) and the knowledge stateKS i−1 =
〈KB ;E1, . . . , Ei−1〉, together with the new eventEi, and
we want to computeBel(KS i) in terms of the update pol-
icy U . First, a setUi of executable commandsis deter-
mined fromU . Afterwards, given the previously computed
setsU1, . . . , Ui−1, the sequence(KB ;U1, . . . , Ui) is com-
piled by the transformationtr into the update sequenceP =
(P0, P1, . . . , Pi). Then,Bel(KS i) is given byBel(P).

〈stat〉 ::= 〈comm〉 [if〈cond1〉] [[[〈cond2〉]]];
〈c name〉 ::= assert[event] | retract[event] |

always[event] | cancel | ignore ;
〈r id〉 ::= 〈rule〉 | 〈r var〉;
〈lit id〉 ::= 〈literal〉 | 〈lit var〉;
〈comm〉 ::= 〈c name〉(〈r id〉) ;
〈cond1〉 ::= [not] 〈comm〉 | [not] 〈comm〉, 〈cond1〉 ;
〈cond2〉 ::= 〈kb conds〉 | E : 〈ev conds〉 |

〈kb conds〉 , E : 〈ev conds〉;
〈kb conds〉 ::= 〈kb cond〉 | 〈kb cond〉 , 〈kb conds〉;
〈kb cond〉 ::= 〈r id〉 | 〈lit id〉 ;
〈ev conds〉 ::= 〈ev cond〉 | 〈ev cond〉 , 〈ev conds〉;
〈ev cond〉 ::= 〈lit id〉 | 〈r id〉 ;

Table 1: Syntax of an update statement inEPI.

3.2 LanguageEPI: Syntax
The languageEPI generalizes the update specification lan-
guage LUPS[Alfereset al., 1999a], by allowing update state-
ments to depend on other update statements in the sameEPI
program, and more complex conditions on both the current
belief set and the actual event (note that LUPS has no provi-
sion to support external events). These features make it suit-
able for implementing rational reactive agents, capable, e.g.,
of filtering incoming information.

The syntax ofEPI is given in Table 1. In what follows, we
usecmd to denote update commands andρ to refer to rules
or rule variables. In general, anEPI statement may have the
form

cmd1(ρ1) if [not]cmd2(ρ2), . . . , [not]cmdm(ρm)[[c1,E :c2]]

which states conditional assertion or retraction of a rule
ρ1, expressed bycmd1(ρ1), depending on other commands
[not]cmd2(ρ2), . . . ,[not]cmdm(ρm), and conditioned with
the proviso whetherc1 belongs to the current belief set and
whetherc2 is in the actual event. The basicEPI commands
are the same as those in LUPS (for their meaning, cf.[Alferes
et al., 1999a]), plus the additional commandignore, which
allows to skip unintended updates from the environment,
which otherwise would be incorporated into the knowledge
base. Each condition in[[·]], both of the formc1 andE :c2, can
be substituted by a list of such conditions. Note that in LUPS
no conditions on rules and external events can be explicitly
expressed, nor dependencies between update commands. We
also extend the language by permitting variables for rules and
literals in the update commands, ranging over the universe of
the current belief set and of the current event (syntactic safety
conditions can be easily checked). By convention, variable
names start with capital letters.

Definition 3 An update policyU is a finite set ofEPI state-
ments.

For instance, theEPI statement

assert(R) if not ignore(R)[[E : R]] (1)

means that all rules in the event have to be incorporated into
the new knowledge base, except if it is explicitly specified

that the rule is to be ignored. Similarly, the commandretract
forces a rule to be deactivated. The optionevent states that
an assertion or retraction has only temporary value and is not
supposed to persist by inertia in subsequent steps. The precise
meaning of the different update commands will be made clear
in the next section.

Example 2 Consider a simple agent selecting Web shops in
search for some specific merchandise. Suppose its knowledge
base,KB , contains the rules

r1 : query(S)← sale(S), up(S),not ¬query(S);

r2 : try query ← query(S);

r3 : notify ← not try query ;

and a factr0 : date(0) as an initial time stamp. Here,r1

expresses that a shopS, which has a sale and whose Web site
is up, is queried by default, andr2, r3 serve to detect that no
site is queried, which causes ‘notify ’ to be true. Assume that
an event,E, might be any consistent set of facts or ground
rules of the formsale(s) ← date(t), stating that shops has
a sale on datet, such thatE contains at most one time stamp
date(·).

An update policyU may be defined as follows. Assume it
contains the incorporate-by-default statement(1), as well as:

always(sale(S)← date(T)) if assert(sale(S)← date(T));
cancel(sale(S)← date(T))[[date(T), T 6= T ′,E :date(T ′)]];
retract(sale(S)← date(T))[[date(T), T 6= T ′,E :date(T ′)]].

Informally, the first statement repeatedly confirms the infor-
mation about a future sale, which guarantees that it is ef-
fective on the given date, while the second statement revokes
this. The third one removes information about a previously
ended sale(assuming the time stamps increase). Further-
more,U includes also the following statements:

retract(date(T))[[date(T), T 6= T ′,E : date(T ′)]];
ignore(sale(s1))[[E : sale(s1)]];
ignore(sale(s1)← date(T))[[E : sale(s1)← date(T)]].

The first statement keeps the time stampdate(t) in KB
unique, and removes the old value. The other statements sim-
ply state that sales information about shops1 is ignored.

3.3 LanguageEPI: Semantics
According to the overall structure of the semantics ofEPI,
as depicted in Figure 1, at stepi, we first determine the
executable commandUi given the current knowledge state
KS i−1 = 〈KB ;E1, . . . , Ei−1〉 and its associated belief set
Bel(KS i−1) = Bel(Pi−1), wherePi−1 = (P0, . . . , Pi−1).
To this end, we evaluate the update policyU over the new
eventEi and the belief setBel(Pi−1).

LetG(U) be the grounded version ofU over the languageA
underlying the given update sequence and the received events.
Then, the setG(U)i of reduced update statements at stepi is
given by

G(U)i = { cmd(ρ) if C1 | cmd(ρ) if C1[[C2]] ∈ G(U), where
C2 = c1, . . . , cl,E : r1, . . . , rm, and such that
c1, . . . , cl ∈ Bel(Pi−1) andr1, . . . , rm ∈ Ei }.

The update statements inG(U)i are thus of the form
cmd1(ρ1) if [not] cmd2(ρ2), . . . , [not] cmdm(ρm). Se-
mantically, we interpret them as ordinary logic program rules

cmd1(ρ1) ← [not]cmd2(ρ2), . . . , [not]cmdm(ρm). The
programΠU

i is the collection of all these rules, givenG(U)i,
together with the following constraints, which exclude con-
tradictory commands:

← assert[event](R), retract[event](R);

← always[event](R), cancel(R).

Definition 4 Let KS = 〈KB ;E1, . . . , En〉 be a knowledge
state andU an update policy. Then,Ui is a set ofexecutable
update commands at stepi (i ≤ n) iff Ui is an answer set of
the groundingG(ΠU

i) of ΠU
i .

Since update statements do not contain strong negation,
executable update commands are actuallystable modelsof
G(ΠU

i) [Gelfond and Lifschitz, 1988]. Furthermore, since
programs may in general have more than one answer set, or
no answer set at all, and the agent must commit itself to a sin-
gle set of update commands, we assume a suitableselection
function, Sel(·), returning a particularUi if an answer set ex-
ists, or, otherwise, returningUi = {assert(⊥i ←)}, where
⊥i is a reserved atom. These atoms are used for signaling
that the update policy encountered inconsistency. They can
easily be filtered out fromBel(·), if needed, restricting the
outcomes of the update to the original language.

Next we compile the executable commandsU1, . . . , Ui into
an update sequence(P0, . . . , Pi), serving as input for the be-
lief function Bel(·). This is realized by means of a trans-
formationtr(·), which is a generic and adapted version of a
similar mapping introduced by Alfereset al.[1999a]. In what
follows, we assume a suitable naming function for rules in the
update sequence, enforcing that each ruler is associated with
a unique namenr.

Definition 5 Let KS = 〈KB ;E1, . . . , En〉 be a knowl-
edge state andU an update policy. Then, fori ≥ 0,
tr(KB ;U1, . . . , Ui) = (P0, P1, . . . , Pi) is inductively de-
fined as follows, whereU1, . . . , Ui are the executable com-
mands according to Definition 4:

i = 0 : SetP0 = {H(r) ← B(r), on(nr) | r ∈ KB} ∪
{on(nr) ← | r ∈ KB}, whereon(·) are new atoms.
Furthermore, initialize the setsPC0 of persistent com-
mandsandEC0 of effective commandsto ∅.

i ≥ 1 : ECi, PCi andPi are as follows:

ECi = {cmd(r) | cmd(r) ∈ Ui ∧ ignore(r) /∈ Ui};
PCi = PCi−1 ∪ {always(r) | always(r) ∈ ECi}

∪ {always event(r) | always event(r) ∈ ECi

∧ always(r) /∈ ECi ∪ PCi−1}
\ ({always event(r) | always(r) ∈ ECi}
∪ {always[event](r) | cancel(r) ∈ ECi});

Pi = {on(nr)← , H(r)← B(r), on(nr) |
assert[event](r) ∈ ECi

∨ always[event](r) ∈ PCi}
∪ {on(nr)← | retract event(r) ∈ ECi−1

∧ retract[event](r) /∈ ECi}
∪ {¬on(nr)← | (retract[event](r) ∈ ECi

∧ always[event](r) /∈ PCi)
∨ (always event(r) ∈ PCi−1

∧ cancel(r) ∈ ECi

∧ assert[event](r) /∈ ECi)

∨(assert event(r) ∈ ECi−1

∧ always[event](r) /∈ PCi

∧ assert[event](r) /∈ ECi)}.
On the basis of this compilation, we can define the belief

set for a knowledge stateKS :

Definition 6 Let KS and U be as in Definition 5, and let
U1, . . . , Un be the corresponding executable commands ob-
tained from Definition 4. Then, thebelief setof KS is given
byBel(KS) = Bel(tr(KB ;U1, . . . , Un)).
Example 3 Reconsider Example 2 and suppose the event
E1 = {sale(s0), date(1)} occurs atKS = 〈KB〉. Then,

G(U)1 = {assert(sale(s0)) if not ignore(sale(s0)),
assert(date(1)) if not ignore(date(1)),
retract(date(0))}.

The corresponding programΠU
1 has the single answer set

{assert(sale(s0)), assert(date(1)), retract(date(0))},
which is compiled, via functiontr(·), to PC1 = PC0 \
{assert [event](date(0))} = ∅ and P1 = {sale(s0) ←
on(r′1); on(r′1) ← ; date(1) ← on(r′2); on(r′2) ← ;
¬on(r0) ← }. As easily seen, the belief setBel(〈KB ;E1〉)
= Bel((P0, P1)) containssale(s0) andquery(s0).

4 Properties
In this section, we discuss some properties ofBel(KS) for
particular update policies, using the definition ofBel(·) based
on the update answer sets approach of Eiteret al. [2000], as
explained in Section 2. We stress that the properties given
below are also satisfied by similar instantiations ofBel(·),
like, e.g., dynamic logic programming[Alfereset al., 2000].

First, we note some basic properties:

• If U = ∅ (calledempty policy), thenKB will never be
updated; the belief set is independent ofE1, . . . , En, and
thus static. Hence,Bel(KS i) = Bel(KB), for each
i = 1, . . . , n.

• If U = {assert(R)[[E :R]]} (calledunconditional as-
sert policy), then all rules contained in the received
events are directly incorporated into the update se-
quence. Thus,Bel(KS i) = Bel((KB , E1, . . . , Ei)),
for eachi = 1, . . . , n.

• If Ui is empty, then the knowledge is not updated, i.e.,
Pi = ∅. We thus haveBel(KS i) = Bel(KS i−1).
• Similarly, if Ui = {assert(⊥i)← }, thenBel(KS i) =

Bel(KS i−1).

Physical removal of rules
An important issue is the growth of the agent’s knowledge
base, as the modular construction of the update sequence
through transformationtr(·) causes some rules and facts to
be repeatedly inserted. This is addressed next, where we dis-
cuss the physical removal of rules from the knowledge base.

Lemma 1 LetP = (P0, . . . , Pn) be an update sequence. For
everyr ∈ Pi, r

′ ∈ Pj with i < j, the following holds: if
(i) r = r′, or (ii) r = L ← andr′ = ¬L ← , or (iii) r′ =
L ← such that no ruler′′ ∈ Pk with H(r′′) = ¬L exists,
wherek ∈ {j + 1, . . . , n}, and¬L ∈ B(r), thenBelA(P) =
BelA(P0, . . . , Pi−1, Pi \ {r}, Pi+1, . . . , Pn).

The following property holds:

Theorem 1 Let KS be a knowledge state andBel(KS) =
Bel(P), whereP = (P0, . . . , Pn). Furthermore, letP∗ result
from P after repeatedly removing rules as in Lemma 1, and
let P− = (P−

0 , . . . , P−
n), where

P−
i ={H(r)← B(r) \ {on(nr)} | r ∈ P∗i , on(nr)←∈ P∗}\
{on(ns)←| on(ns)←∈ P}.

Then,BelA(KS) = BelA(P−).

Thus, we can purge the knowledge base and remove dupli-
cates of rules, as well as all deactivated (retracted) rules.

History Contraction
Another relevant issue is the possibility, for some special
case, tocontract the agent’s update history, and compute
its belief set at stepi merely based on information at step
i−1. Let us callU a factual assert policyif all assert[event]
and always[event] statements inU involve only facts. In
this case, the compilationtr(·) for a knowledge stateKS =
〈KB ;E1, . . . , En〉 can be simplified thus: (1)P0 = KB ,
and (2) the construction of eachPi involves factsL ← and
¬L← instead ofon(nr)← and¬on(nr)← , respectively.

For such sequences, the following holds:

Lemma 2 LetP = (P0, . . . , Pn) be an update sequence such
thatPi contains only facts, for1 ≤ i ≤ n. Then,BelA(P) =
BelA(P0, Pun), wherePu1 = P1, andPui+1 = Pi+1∪(Pui \
{L← | ¬L←∈ Pi+1}).

We can thus assert the following proposition for history
contraction:

Theorem 2 Let U be a factual assert policy andP =
(P1, . . . , Pn) be the compiled sequence obtained fromKS by
the simplified method described above. Then,BelA(KS) =
BelA((KB , Pun)), wherePun is as in Lemma 2.

Simple examples show that Theorem 2 does not hold in
general. The investigation of classes of policies for which
similar results hold are a subject for further research.

Computational Complexity
Finally, we briefly address the complexity of reasoning about
a knowledge stateKS . An update policyU is calledstratified
iff, for all EPI statementscmd(ρ) if C1[[C2]] ∈ U , the asso-
ciated rulescmd1(ρ) ← C ′

1 form a stratified logic program,
whereC ′

1 results fromC1 by replacing theEPI declaration
not by default negationnot .

For stratifiedU , anyΠU
i has at most one answer set. Thus,

the selection functionSel(·) is redundant. Otherwise, the
complexity cost ofSel(·) must be taken into account. If
Sel(·) is unknown, we consider all possible return values
(i.e., all answer sets ofΠU

i) and thus, in a cautious rea-
soning mode, all possibleBel(KS) = Bel((P0, . . . , Pn))
from Figure 1. Clearly, for update answer sets, deciding
r′ ∈ Bel((Q0, . . . , Qm)) is in coNP; it is polynomial, ifQ0

is stratified and eachQi, 1 ≤ i ≤ m, contains only facts.

Theorem 3 Let Bel(·) be the update answer set seman-
tics, and Sel(·) polynomial-time computable with anNP
oracle. Then, given a ground ruler and groundKS =
〈KB ;E1, . . . , En〉, the complexity of deciding whetherr ∈

Bel(KS) is as follows(entries denote completeness results;
the case of unknownSel(·) is given at the right of “/”):

KB \ U fact. assert & strat. stratified general

stratified P PNP PNP/ ΠP
2

general PNP PNP PNP/ ΠP
2

Similar results hold, e.g., for dynamic logic programming.
The results can be intuitively explained as follows. Each

Ui andPi as in Figure 1 can be computed iteratively (1 ≤
i ≤ n), where at stepi polynomially many problemsr′ ∈
Bel((P0, . . . , Pi−1)) must be solved to constructΠU

i . From
Ui = Sel(ΠU

i) and previous results,Pi is easily computed
in polynomial time. SincePi contains less than|U| rules,
step i is feasible in polynomial time with an NP oracle.
Thus, P = (P0, . . . , Pn) is polynomially computable with
an NP oracle, andr ∈ Bel(P) is decided with another oracle
call. Updating a stratifiedP0 such that only sets of factsP1,
P2, . . . may be added preserves polynomial decidability of
r′ ∈ Bel((P0, . . . , Pi−1)); this explains the polynomial de-
cidability result. In all other cases,PNP-hard problems such
as computing the lexicographically maximal model of a CNF
formula are easily reduced to the problem.

If Sel(·) is unknown, each possible result ofSel(ΠU
i) can

be nondeterministically guessed and verified in polynomial
time. This leads to coNPNP = ΠP

2 complexity.

5 Implementational Issues
An elegant and straightforward realization of update policies
is possible through IMPACT agent programs. IMPACT[Sub-
rahmanianet al., 2000] is a platform for developing soft-
ware agents, which allows to build agents on top of legacy
code, i.e., existing software packages, that operates on arbi-
trary data structures. Thus, in accordance with our approach,
we can design ageneric implementationof our framework,
without committing ourselves to a particular update seman-
ticsBel(·).

Since every update policyU is semantically reduced to
a logic program, the corresponding executable commands
can be computed using well-known logic programming en-
gines likesmodels, DLV, or DeRes. Hence, we may assume
that a software package,SP, for updating and querying a
knowledge baseKB is available, and thatKB can be ac-
cessed through a functionbel() returning the current belief
setBel(KS). Moreover, we assume thatSP has a function
event(), which lists all rules of a current event. Then, an
update policyU can be represented in IMPACT as follows.

(1) Conditions on the belief set and the event can be mod-
eled by IMPACTcode call atoms, i.e. atomsin(t, bel()),
not in(t, bel()), andin(t, event()), wheret is a constant
r or a variableR. In IMPACT, in(r, f()) is true if constantr
is in the result returned byf(); a variableR is bound to allr
such thatin(r, f()) is true; “not in” is negation.

(2) Update commands can be easily represented as IM-
PACT actions. An action is implemented by a body of code
in any programming language (e.g., C); its effects are speci-
fied in terms of add and delete lists (sets of code call atoms).
Thus, actions likeassert(R), retract(R), etc., whereR is
a parameter, are introduced.

(3) EPI statements are represented as IMPACT action rules

Do(cmd1(ρ1)) ← [¬]Do(cmd2(ρ
′)), . . . , [¬]Do(cmdm(ρ′)),

code call atoms(cond),

wherecode call atoms(cond) is the list of the code call
atoms for the conditions on the belief set and the event in
cond as described above.

The semantics of IMPACT agent programs is defined
throughstatus sets. A reasonable status setS is equivalent
to a stable model of a logic program, and prescribes the agent
to perform all actionsα whereDo(α) is in S. Thus,S repre-
sents the executable commandsUi of Figure 1 in accord with
U , and the respective action execution affects the computation
of Pi via tr(·). For more details, cf.[Eiteret al., 2001].

6 Related Work and Conclusion
Our approach is similar in spirit to the work in active
databases (ADBs), where the dynamics of a database is speci-
fied throughevent-condition-action(ECA) rules triggered by
events. However, ADBs have in general no declarative se-
mantics, and only one rule at a time fires, possibly causing
successive events. In[Baral and Lobo, 1996], a declarative
characterization of ADBs is given, in terms of a reduction to
logic programs, by using situation calculus notation.

Our language for update policies is also related toaction
languages, which can be compiled to logic programs as well
(cf., e.g., [Lifschitz and Turner, 1999]). A change to the
knowledge base may be considered as an action, where the
execution of actions may depend on other actions and condi-
tions. However, action languages are tailored for planning
and reasoning about actions, rather than reactive behavior
specification; events would have to be emulated. Further-
more, a state is, essentially, a set of literals rather than a be-
lief set as we define it. Investigating the relationships of our
framework to these languages in detail—in particular con-
cerning embeddings—is an interesting issue for further re-
search.

A development in the area of action languages, with pur-
poses similar to those ofEPI, is the policy description lan-
guagePDL [Lobo et al., 1999]. It extends traditional action
languages with the notion ofevent sequences, and serves for
specifying actions as reactive behavior in response to events.
A PDL policy is a collection of ECA rules, interpreted as a
function associating with an event sequence a set of actions.
PDL seems thus to be more expressive thanEPI; possible
embeddings ofEPI intoPDL remain to be explored.

TheEPI language could be extended with several features:
(1) Special atomsin(r) telling whetherr is actually part of

KB (i.e., activated byon(nr)), allowing to access the “exten-
sional” part ofKB .

(2) Rule terms involving literal constants and variables,
e.g., “H ← up(s1), B”, whereH,B are variables andup(s1)
is a fixed atom, providing access to the structure of rules.
Combined with (1), commands such as “remove all rules in-
volving up(s1)” can thus be conveniently expressed.

(3) More expressive conditions on the knowledge base are
conceivable, requesting for more complex reasoning tasks,
and possibly taking the temporal evolution into account. E.g.,
“prev(a)” expressing thata was true at the previous stage.

In concluding, our generic framework, which extends other
approaches to logic program updates, represents a convenient
platform for declarative update specifications and could also
be fruitfully used in several applications. Exploring these is-
sues is part of our ongoing research.

Acknowledgements
This work was partially supported by the Austrian Science
Fund (FWF) under grants P13871-INF and N Z29-INF.

References
[Alfereset al., 1999a] J. Alferes, L. Pereira, H. Przymusin-

ska, and T. Przymusinski. LUPS - A language for updat-
ing logic programs. InProc. LPNMR’99, LNAI 1730, pp.
162-176. Springer, 1999.

[Alfereset al., 2000] J. Alferes, J. Leite, L. Pereira, H. Przy-
musinska, and T. Przymusinski. Dynamic updates of non-
monotonic knowledge bases.J. Logic Programming, 45(1-
3):43-70, 2000.

[Baral and Lobo, 1996] C. Baral and J. Lobo. Formal char-
acterization of active databases. InProc. LID’96, LNCS
1154, pp. 175-195. Springer, 1996.

[Buccafurriet al., 1999] F. Buccafurri, W. Faber, and
N. Leone. Disjunctive logic programs with inheritance.
In Proc. ICLP’99, pp. 79-93. MIT Press, 1999.

[Eiteret al., 2000] Th. Eiter, M. Fink, G. Sabbatini, and
H. Tompits. Considerations on updates of logic programs.
In Proc. JELIA’00, LNAI 1919, pp. 2-20. Springer, 2000.

[Eiteret al., 2001] Th. Eiter, M. Fink, G. Sabbatini, and
H. Tompits. Declarative knowledge updates through
agents. InProc. AISB’01 Symp. on Adaptive Agents and
Multi-Agent Systems, York, UK, pp. 79-84. AISB, 2001.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proc. ICSLP’88, pp. 1070-1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive data-
bases.New Generation Computing, 9:365-386, 1991.

[Inoue and Sakama, 1999] K. Inoue and C. Sakama. Updat-
ing extended logic programs through abduction. InProc.
LPNMR’99, LNAI 1730, pp. 147-161. Springer, 1999.

[Lifschitz and Turner, 1999] V. Lifschitz and H. Turner. Re-
presenting transition systems by logic programs. InProc.
LPNMR’99, LNAI 1730, pp. 92-106. Springer, 1999.

[Loboet al., 1999] J. Lobo, R. Bhatia, and S. Naqvi. A pol-
icy description language. InProc. AAAI/IAAI’99, pp. 291-
298. AAAI Press / MIT Press, 1999.

[Marek and Truszczýnski, 1998] W. Marek and M. Trusz-
czyński. Revision programming.Theoretical Computer
Science, 190:241-277, 1998.

[Subrahmanianet al., 2000] V.S. Subrahmanian, J. Dix,
Th. Eiter, P. Bonatti, S. Kraus, F. Ozcan, and R. Ross.Het-
erogeneous Agent Systems. MIT Press, 2000.

[Williams and Antoniou, 1998] M.-A. Williams and G. An-
toniou. A strategy for revising default theory extensions.
In Proc. KR’98, pp. 24-35. Morgan Kaufmann, 1998.

[Zhang and Foo, 1998] Y. Zhang and N. Foo. Updating logic
programs. InProc. ECAI’98, pp. 403-407. 1998.

