
Decomposition of Declarative Knowledge Bases with External Functions∗

Thomas Eiter and Michael Fink and Thomas Krennwallner
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9–11, A-1040 Vienna, Austria
{eiter,fink,tkren}@kr.tuwien.ac.at

Abstract
We present a method to decompose a declarative
knowledge base, given by a logic program under An-
swer Set Semantics with access to external sources.
It overcomes the ineffectiveness of current methods
due to a lack of structural information about these
sources, viewed as black boxes, by exploiting in-
dependency information in accesses to them. To
this end, we develop a generic notion of domain
independence that allows to restrict the evaluation
domain and, as a consequence, to prune unnecessary
dependency assumptions between atoms. This leads
to increased decomposability; we demonstrate this
by an evaluation method for HEX-programs based
on program rewriting, which may yield large per-
formance gains. While developed for a particular
formalism, the notions and ideas of this paper might
be adapted to related formalisms as well.

1 Introduction
In the last years, there has been a steady increase of the desire
to integrate different information sources and software into
applications, in order to provide enhanced usability. To ad-
dress this need, some declarative knowledge representation
formalisms have been extended with the capability to access
external sources. Often, this is realized via an interface in
the style of an API; examples of rule based such formalisms
are various extensions of ASP solvers like DLV, XSB,1 Agent
Programs [Subrahmanian et al., 2000], dl-programs [Eiter et
al., 2008], defeasible description logic [Wang et al., 2004],
Prolog engines with an interface for external functions, etc.

However, the enhanced capabilities of such formalisms
come at a performance price. Indeed, structural dependency
information, which is usually exploited for efficient evalua-
tion, is blurred or completely lost by access through external
sources. This is an inevitable consequence of treating these
sources as black boxes, which causes one to cautiously assume
that numerous dependencies exists, even if this not true in
reality. This may in particular be detrimental in case of mutual

∗This work has been supported by the Austrian Science Fund
(FWF) projects P20840 and P20841.

1See www.dlvsystem.com, xsb.sourceforge.net

C1

C2

&Tr[a](X) &Tp[a](X)

&Tq[a](X)

d(X)

a(p, X) &Tnp[a](X)

a(np, X)

e e

ep

p
e e
p

ee
p n

n

e

Figure 1: Dependency graph of PN

dependency between the information in the knowledge base
and the external source, which can lead to almost universal
dependency assumptions. As a result, decomposing the knowl-
edge base into smaller, local parts for evaluation (like strongly
connected components or splitting sets [Lifschitz and Turner,
1994]) is hindered, and large parts have to be evaluated in an
uninformed generate and test manner.

We illustrate this on the canonical Nixon Diamond, couched
in HEX-programs [Eiter et al., 2006a], which extend Answer
Set Programming (ASP) with access to external sources via
external atoms, in a setting where default rules should be
imposed on top of an external ontology.
Example 1 (Nixon Diamond) Suppose T = {r(n), q(n),
∀x. np(x)≡¬p(x) } contains the facts that Nixon was a re-
publican (r(n)) and a quaker (q(n)); we further know that
(i) quakers are normally pacifists, while (ii) republicans are
normally not pacifists. In spirit of dl-programs [Eiter et al.,
2008], the HEX-program PN below encodes (i) and (ii) in the
rules (2) and (3), resp.; there, a(p,X) and a(np,X) encode
the (reified) assumptions that X is a pacifist resp. is not a
pacifist. The program accesses T via external atoms of form
&Tχ[a](X), which evaluate to true if, after adding all facts
π(c) to T such that a(π, c) is in the model of the program, the
atom χ(X) is true in T (d(X) is a simple domain predicate):

d(n). (1)
a(p,X)← d(X),&Tr [a](X),not &Tnp [a](X). (2)
a(np,X)← d(X),&Tq [a](X),not &Tp [a](X). (3)

Without explaining the semantics here in detail, PN has two
models, {d(n), a(p, n)} and {d(n), a(np, n)}, corresponding
to the views that Nixon is a pacifist resp. is not a pacifist.

Possible dependencies between atoms are shown in the de-
pendency graph of PN in Figure 1, where an arc from α to β

stands for a (possible) dependency of α from β, and “n” means
dependency through negation (“not”). All atoms except d(X)
mutually depend on each other, and form one component,
C2, for evaluation, which depends on the (singleton) com-
ponent C1. Now suppose we have m clones of Nixon and
d(n1), . . . , d(nm) instead of d(n) in (1). Then the respective
program PmN instantiates to m copies, and we have 2m models
that contain d(n1), . . . , d(nm) and one of a(p, ni), a(np, ni),
for each i = 1, . . . ,m. However, the dependency graph of
PmN ’s grounding, which traditionally is the basis for efficient
evaluation, is not the union of k copies of the dependency
graph of PN ’s grounding, as intuitively expected: there is,
e.g., an arc &Tp [a](n1) → a(p, n2), reflecting that a(p, n2)
could impact the query p(n1) to T with update a. In fact,
according to the dependency graph of PmN ’s grounding, all
atoms except the d(ni) are on negative cycles, in particular
all external atoms; a standard evaluation method thus has to
consider all these atoms at once, along with (exponentially
many) different guesses for possible input a to them. This
results in long execution times. 2

Due to the black box view, a traditional evaluation of PmN is
unaware that each external atom actually depends only on two
facts, e.g., &Tp [a](ni) on a(p, ni), a(np, ni), and that (as by
intuition) indeed a splitting of the PmN into k disjoint copies is
feasible which can be evaluated independently.

This calls for refined methods to decompose a declarative
knowledge base with access to external sources. In this paper,
we address this issue and make the following contributions.
• We consider domain independence information as a basis
for more effective decomposition of programs with access
to external sources. Domain independence means that the
evaluation of an external atom depends, for a given set of
arguments, only on a subset of the domain, and that other
elements in the domain can be safely ignored. Building on
this, the idea is to split the domain in different parts such that
external atoms can be evaluated independently in different
parts. This is formalized as greatest local split of a set of
ground atoms, which is algebraically defined in Section 3.
• Using greatest local splits, we refine the traditional method
of evaluating programs using the ground dependency graph,
by pruning unnecessary dependency assumptions of atoms
caused by external functions (Section 4).
• We develop a decomposition method for HEX-programs
that uses program rewriting on the non-ground level, based
on independency information (Section 4). The evaluation of
programs resorts then to standard technology, such that the
method can be realized with rather little effort (Section 5).

Some experiments with an implementation, in particular on
the program in Example 1 above, show that the rewriting may
lead to large performance gains and scalability.

2 Preliminaries
Partial orders and partitions. Recall that a poset (S,�) has
a binary relation � on a set S that is reflexive, anti-symmetric,
and transitive. For any X ⊆ S, an element u ∈ S is an upper
bound of X , if b � u for all b ∈ X , and is the least upper
bound of X , if u � u′ for all upper bounds u′ of X .

A partition π on a set S is collection of nonempty disjoint
subsets of S such that S =

⋃
π.

Syntax of HEX-Programs. Let C, X , and G be mutually dis-
joint sets whose elements are called constant names, variable
names, and external predicate names, respectively. Unless
explicitly specified, elements from X (resp., C) are denoted
with first letter in upper case (resp., lower case), while ele-
ments from G are prefixed with the “&” symbol. We note that
constant names serve both as individual and predicate names.

Elements from C ∪ X are called terms. A higher-order
atom (or atom) is a tuple (Y0, Y1, . . . , Yn), where Y0, . . . , Yn
are terms; n ≥ 0 is the arity of the atom. Intuitively, Y0 is
the predicate name; we thus use the more familiar notation
Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm) (4)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms
(called input and output lists, respectively), and &g ∈ G
is an external predicate name. We assume that &g has fixed
lengths in(&g) =n and out(&g) =m for input and output
lists, respectively. Intuitively, an external atom provides a way
for deciding the truth value of an output tuple depending on
the extension of a set of input predicates. For any set of atoms
A, we denote by &A the set of external atoms in A.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm,notβm+1, . . . ,notβn (5)

where m, k ≥ 0, each αi is an atom, and each βj is an atom or
an external atom. We let H(r) = {α1, . . . , αk} and B(r) =
B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βm} and B−(r)
= {βm+1, . . . , βn}. Rule r is a constraint, if H(r) = ∅ and
B(r) 6= ∅, and a fact, if B(r) = ∅ and H(r) 6= ∅.

A HEX-program (or program) is a finite set P of rules; it
is ordinary, if all its rules are ordinary, i.e., it contains only
ordinary atoms.

Example 2 The program PN for the Nixon Diamond above
consists of one fact and two rules that use negation “not”, and
they have external atoms &Tr [a](X), &Tnp [a](X), etc. 2

Semantics of HEX-Programs. The Herbrand base HBP of
a HEX-program P is the set of all possible ground instances
of atoms and external atoms in P using constants from C.
The grounding of a rule r, grnd(r), is analogous, and the
grounding of P is given by grnd(P) =

⋃
r∈P grnd(r). By

default, C, X , and G are implicitly given by P .
An interpretation of P is any subset I ⊆ HBP that contains

only ordinary atoms; we say that I is a model of

– an atom α ∈ HBP , denoted I |=α, if α ∈ I .
– a ground external atom α= &g [c2](c1) (denoted I |=α),
if f&g(I, c2, c1) = 1, where f&g is a (fixed) (n+m+1)-ary
Boolean function for &g , where n= in(&g), m= out(&g),
I ⊆ HBP , and c2 ∈Cn, c1 ∈Cm.
– a ground rule r (I |= r), if I |=H(r) or I 6|=B(r), where
(i) I |= H(r), if I |= α for some α ∈ H(r) and (ii) I |=B(r),
if I |=α for all α ∈ B+(r) and I 6|=α for all α ∈ B−(r).
– a program P (I |= P), iff I |= r for all r ∈ grnd(P).

The FLP-reduct [Faber et al., 2004] of a program P wrt. an
interpretation I is fPI = {r ∈ grnd(P) | I |= B(r)}; then I
is an answer set of P , if I is a ⊆-minimal model of fPI . For
ordinary P , this amounts to answer sets as in [Gelfond and
Lifschitz, 1991]. We denote by AS(P) the collection of all
answer sets of P .

Example 3 In the Nixon example, the semantics of external
atoms may be formally given as f&Tχ(I, c

′, c) = 1 iff T ∪
{d(d′) | c′(d, d′) ∈ I} |= χ(n), for all c, c′ ∈ C = {n, p,
np, a}. Then, I = {d(n), a(p, n)} is an answer set of PN :
clearly, I |= fPN

I , and fPN
I includes (1) and the instance of

(2) for X=n; hence, each model J ⊆ I of fPN
I fulfills J ⊇ I .

In the rest of this paper, we assume w.l.o.g. that all input
terms in external atoms are viewed as predicate symbols.

We next recall the notions of dependency graph and global
splitting sets of a program [Eiter et al., 2006a], which provides
a basis for efficient HEX-program evaluation.

For a program P and atoms α, β occurring in P , we say

(a) α depends positively on β (α→p β), if either

(i) some rule r∈P has α∈H(r) and β ∈B+(r);
(ii) there are rules r1, r2 ∈ P such that α ∈ B(r1) and

β ∈ H(r2) and there exists a partial substitution θ of
variables in α such that either αθ = β or α = βθ; or

(iii) some rule r ∈ P has α, β ∈ H(r).
(b) α depends externally on β (α→e β), if α is is of form
&g [X1, . . . , Xn](Y), β is of form p(Z), and Xi = p for
some i ∈ {1, . . . , n}.
(c) α depends negatively on β (α→n β), if there is some rule
r ∈ P such that either α ∈ H(r) and β ∈ B−(r) or β is a
nonmonotonic external atom (i.e., I ⊆ I ′ and I |= β does not
entail I ′ |= β).

We say that α depends on β, if α→β, where → is the union
of →p , →e , and →n .

The dependency graphGP = (VP , EP) of P has as vertices
VP all atoms occurring in P and as edges EP all dependency
relations →p , →e , and →n for P

A global splitting set for a HEX-program P is a set of atoms
A occurring in P such that α∈A, β occurs in P , and α → β
implies β ∈A. The bottom of P wrt. a set of atoms A is the
set of rules bA(P) = {r ∈ P | H(r) ∩A 6= ∅}.
Example 4 Figure 1 shows the dependency graph of PN ; note
that all external atoms are monotonic, and C1 ∪C2 (all atoms)
and C1 are global splitting sets. 2

3 Domain Independence
In this section, we develop our notion of domain independence.
The idea is to partition the elements of the domain into dis-
joint sets, such that the evaluation of an external atom only
depends on the elements that are in the sets associated with
the arguments of the atom. We call a suitable such partitioning
a basis. For program decomposition, we need to take the struc-
ture of the rules into account, respecting syntactic dependency
of atoms and arguments according to the dependency graph,
assuming that elements in the same partition are mutually de-
pendent. This leads us to a refinement of the basis (i.e., sets

are further partitioned) to a unique greatest local split of a set
of atoms. The latter is defined algebraically.
Notation. We start with fixing some notation. In what follows,
let D = C (for domain).

Let (D,�) be the poset of the lattice of partitions of D,
where for any two partitions π1, π2 ∈ D, π1 � π2 iff ∀x ∈
π1 ∃y ∈ π2 : x ⊆ y (i.e., � is the usual refinement order).

For any set S ⊆ D and m-ary predicate symbol p, we let
p[S] = {p(c) | c ∈ Sm}, and for a list p = p1, . . . , pk of
predicate symbols, we let p[S] = p1[S] ∪ · · · ∪ pk[S].

We now define the notion of a basis for an external atom.
Definition 1 (Basis) Let B ⊆ D, let α = &g [p](c) be a
ground instance of an external atom over D with Boolean
function f&g . We call B a basis for α, if for all interpretations
I and B′ ⊇ B, f&g(I ∩ p[B],p, c) = f&g(I ∩ p[B′],p, c).2

Example 5 Let D be a domain, I = {p(a), p(b), q(a)} be an
interpretation, and p = p, q. Let B1 = {a} and B2 = {b, c}
be two subsets of D. Then, I ∩ p[B1] = {p(a), q(a)} and
I ∩p[B2] = {p(b)}. Now suppose α = &g [p](a) is such that
for all interpretations I , f&g(I, p, a) = 1 iff p(a) ∈ I . Then,
B1 is a basis for α, and f&g(I, p, a) = f&g(I ∩ p[B1], p, a).

Given an external atom α, define for any a, b ∈ D that
a ∼α b iff a, b ∈ B for basis B for α, and c ∼α c for every
c ∈ D. Then ∼α is an equivalence relation, whose quotient
set D/∼α forms a partition of D.

The notion of greatest local split is now defined as follows.
Definition 2 (Greatest Local Split) For any set of ground
atoms A, the greatest local split of A, denoted gls(A), is
the partition π ∈ D which is the least upper bound of
B = {D/∼α | α ∈ &A } in (D,�) (recall &A from above).

Obviously, gls(A) is unique and always exists.
Example 6 Let ∼α = {(a, a), (b, b), (c, c), (d, d)} and
∼β = {(a, a), (a, b), (b, a), (b, b), (c, c), (d, d)} be equiv-
alence relations over D = {a, b, c, d} for α and β, respec-
tively. Then, D/∼α = {{a}, {b}, {c}, {d}} and D/∼β =
{{a, b}, {c}, {d}}. Now let A be a set of ground atoms such
that α, β ∈ A. We obtain gls(A) = D/∼β = {{a, b}, {c},
{d}}, whenever all possible∼ of external atoms inA are equal
to ∼α or to ∼β . 2

The following result then, whose proof is not difficult, forms
the basis for exploiting joint dependency information.
Proposition 1 Let &g [p](c) be an external atom, let A be
a set of atoms such that &g [p](c) ∈ grnd(A), and let I
be an interpretation. Then, for every partition π such that
gls(A) � π, there exists some B′ ∈ π such that

f&g(I,p, c) = f&g(I ∩ p[B′],p, c).
By this proposition, we can partition the domain, at different

levels of granularity, in a way such that we can evaluate the
atoms in A in different sets of the partition.

Note that computing the greatest local split is inexpensive.
Proposition 2 Given a set of atoms A and B as in Def. 2, we
can compute gls(A) in linear time in the size of A and B.

Indeed, we can compute gls(A), e.g., as connected compo-
nents of a graph that we construct from B in linear time.

2As f&g only depends on p, f&g(I ∩p[B],p, c) = f&g(I,p, c).

4 Rewriting with Domain Independence
In this section, we apply the results obtained in the previous
section in order to improve the evaluation of HEX-programs by
taking dependency information of external atoms into account.
The idea is to first prune unnecessary ground dependencies
from the dependency graph GP of a given program P , like
for &Tp [a](n1)→ a(p, n2) in the grounding of PmN with m
Nixon clones. In a second step, we rewrite the program into
an equivalent program, such that the evaluation of strongly
connected components is restricted to relevant subdomains
whenever possible. Intuitively, this step accounts for unneces-
sary dependencies between non-ground atoms.

In this section, we assume that the domain D is finite; note
that even for a basically infinite set C, P may be equivalent to
its grounding over a finite subset of C; e.g., domain-expansion
safe programs [Eiter et al., 2006a] have this property.
Step 1: Dependency Graph Pruning. We assume that we
are given a HEX-program without higher order atoms—note
that w.l.o.g. higher order atoms can be removed by partial
grounding—and that every ground external atom α in the
program has an associated basis Bα in D. Furthermore, for a
proper treatment of the dependency between input and output
of a ground external atom, we assume bases Bα, such that all
elements of the output c of α are in Bα.

We first reduce the dependency graph GP to a graph G′P
as follows. For any graph G, let SCC (G) be the set of
strongly connected components in G. Consider any com-
ponent C ∈SCC (GP) and gls(grnd(C)) (which is uniquely
determined by the bases of external atoms in grnd(C)). We
remove every arc &g [p](c1)→ p(c2) from C, such that c1

and c2 are variable-free and there is an element in c2 which
does not belong to the partition of c1 in gls(grnd(C)). Let
G′P denote the resulting graph. Then we can evaluate P using
G′P instead of GP . More formally, this is detailed as follows.

Let Comp = {C1, . . . , Cn} be a partitioning of the atoms
occurring in P such that all grnd(Ci) are pairwise disjoint,
and let PCi contain all rules r ∈ grnd(P) such that H(r) ∩
grnd(Ci) 6= ∅, i = 1, . . . , n. A partial ordering E(P) =
(Comp,v) is then an evaluation ordering for P , if H(r) ⊆
grnd(Ci), for each r ∈ PCi , i = 1, . . . , n, and the following
property (6) holds. Let PCi↓ =

⋃
CjvCi PCj ; then

AS (PCi↓) =
⋃

Mj∈AS(PCij
↓),

j=1,...,ni

AS (PCi ∪
ni⋃
j=1

Mj); (6)

where {Ci1 , . . . , Cini } = {Cj @ Ci | ∀Cj′ : Cj v Cj′ @
Ci ⇒ Cj = Cj′} are the maximal sets Cj smaller than Ci.
That is, the answer sets of the rules associated with Ci and all
Cj below are obtained as the answer sets of the rules associated
with Ci to which the answer sets of the rules associated with
Cj and all C ′j below are added.

Then, given that Ci1 , . . . , Cil are the maximal elements of
E(P) and Pcon are all constraints in P , it holds that

AS (P) =
{
N =

⋃l
j=1Mij |Mij ∈ AS(PCij↓),

1 ≤ j ≤ l, N |= Pcon

}
.

It is well-known that SCC (GP) is an evaluation ordering for
P , cf. [Eiter et al., 2006a]. We similarly have:

Proposition 3 SCC (G′P) is an evaluation ordering for P .
Intuitively, the strongly connected components ofG′P refine

those of GP by removing unnecessary input dependencies
of external atoms. We note that coarser evaluation orderings
can be obtained e.g. by collapsing suitable components in
SCC (GP) resp. SCC (G′P). As for us the precise evaluation
ordering is immaterial, we work in the sequel with a generic
given evaluation ordering E(P).

Step 2: Program Rewriting. We proceed by introducing
a rewriting of P wrt. E(P) in order to further improve the
evaluation of non-ground programs. The idea is to restrict the
applicability of rules with external atoms to relevant ground in-
stances given respective domain independence information. To
avoid inhibiting the application of relevant ground instances,
and to keep the rewriting general and simple, we consider here
the maximal number k = k(P) of distinct variables in a rule
r ∈ P as a bound for potential dependencies.3

In the following, we let for every p ∈ C be ps a fresh symbol
with arity of p. For a set of atoms A, let
const(A) = {c1, . . . , cn | p(c1, . . . , cn) ∈ A \&A} ∩ C.

The i-restricting substitution in A is the partial substitution
σiA = {p/pi | p(t) ∈ A},

which maps predicates p of every ordinary atom p(t) in A
to pi. An i-restriction of A in P , short P iA, is the set of rules
{H(r)σi

A ← B(r)σi
A, dom

i(X1), . . . , dom
i(Xr) | r ∈ bA(P)},

where domi is a unary predicate symbol and X1, . . . , Xr are
all output variables which occur in some external atoms in
B(r). Furthermore, let
πk∪(A) = {S1 ∪ · · · ∪ Sk ∪ const(A) | S1, . . . , Sk ∈ π}

be the k-fold union of a partition π augmented with const(A).
Definition 3 (Decomposition dC(P)) Let C ∈ E(P) and
gls(grnd(C))k∪(C) = {D1, . . . , D`} for k = k(P). The
decomposition of P wrt. C, denoted dC(P), is defined asS

1≤i≤` P
i
C ∪ {α← αi | α ∈ H(r), r ∈ bC(P)} ∪ domi[Di] .

Example 7 Reconsider the cloned version PmN of Example 1
and an evaluation order with the components C1, C2 in Fig-
ure 1, where C1 @ C2. Note that this is the evaluation order
given by the strongly connected components of GP (which is
not affected by the pruning step). Given that &Tχ[a](ni) only
depends on a(p, ni), a(np, ni), for 1 ≤ i ≤ m, we obtain that
gls(grnd(C2))1∪(C2) = {{ni, p, np} | 1 ≤ i ≤ m}.

Thus, the decomposition of PmN wrt. C2 contains m rewrit-
ings of rule (2), e.g., for i = 1 given by
a1(p,X)← d(X),&Tr [a

1](X), not &Tnp [a
1](X), dom1(X),

where dom1 ranges over D1 = {n1, p, np}. Similarly for
rule (3). This reduces the applicability of the two rules to the
corresponding domain Di of the respectively rewritten rules,
which intuitively amounts to removing any dependencies to
ordinary ground atoms (inputs) in other subdomains. 2

We denote by r and ri ground rules from grnd(bC(P))
and grnd(dC(P)), resp., such that there is a rule r′ ∈
bC(P) and a ground substitution θ yielding r = r′θ and

3This is a cautious overestimate, and often k may be smaller.

ri = H(r′)σiCθ ← B(r′)σiCθ, dom
i(X1)θ, . . . , domi(Xr)θ.

Moreover, ri is called Di-applicable iff c ∈ Di for every
domi(c) ∈ B(ri). GivenC ∈ E(P), with gls(grnd(C))k∪(C)
= {D1, . . . , D`} for k = k(P), and a set N ⊆ HBP of
ground ordinary atoms, letM(N) be the set

M(N) = N ∪
⋃`
i=1(N

i ∪ domi[Di]),
whereN i = {pi(c) | p(c) ∈ N ∧ (ϕa∨ϕb)}, with conditions

ϕa = ∃ p(c′) ∈ grnd(C) ∧ p(c) 6∈ grnd(C), and
ϕb = ∃ ri ∈ grnd(dC(P)) : ri is Di-applicable ∧ pi(c) ∈

H(ri) ∪B(ri) ∧ N |= B(r) \ (grnd(C) ∪&B(r).

Furthermore, for any set M of ground ordinary atoms, M |C =
{p(c) ∈M | p ∈ C}. Obviously, if M is of the formM(N),
then N = M |C .

Informally, given a set N of ground ordinary atoms, in
addition to the original atoms and a respective domain closure
(i.e., domi[Di] atoms)M(N) contains a rewritten atom pi(c)
for some p(c) ∈ N : If p(c) is an atom that is modified by the
rewriting and appears in a potentially applicable rule in P iC
(Condition ϕb), or if p(c) is an input atom, i.e., one that is not
modified by the rewriting, such that the predicate p is subject
to rewriting, however (Condition ϕa). The latter guarantees
that it is taken into account as (potential) input for rewritten
external atoms (as it is for the respective unmodified external
atoms). Towards correctness of the rewriting technique, we
first establish the following lemma.

Lemma 4 Let C ∈ E(P), let r ∈ grnd(bC(P)), and let
ri ∈ grnd(dC(P)) such that ri is Di-applicable. Suppose
N ⊆ HBP consists of ordinary ground atoms such that, for
every &g [p](c) ∈ B(r) ∩ grnd(C) and ground atom α, it
holds that α ∈ N ∩ p[Di] iff ασiC ∈ M(N) ∩ pσiC [Di].
Then, N |= B(r) iffM(N) |= B(ri).

Note that the condition on α could be weakened exploiting
information on external atoms in bC(P), e.g., monotonicity.

For the simple rewriting to be applicable, we require the
following condition. Given bC(P) and a set of ground or-
dinary (input) atoms I , such that I ∩ grnd(C) = ∅, we
call dC(P) a unique split wrt. I , iff for every ordinary
atom p(c) ∈ grnd(C) the following holds: If pi(c) ∈
H(ri) ∪ B(ri) for some Di-applicable rule ri ∈ dC(P),
and I |= B(ri) \ (grnd(C)σiC ∪&B(r i) ∪ domi[Di]), then
(i) pj(c) ∈ H(rj) ∪B(rj) for some Dj-applicable rule rj ∈
dC(P), and I |= B(rj)\(grnd(C)σiC∪&B(r j)∪domj [Dj])
implies i = j, and (ii) p(c) ∈ p[Dj] implies i = j. In
this condition, (i) warrants that there is a unique index i of
rewritten rules that can potentially infer a rewritten atom pi(c),
and (ii) ensures that such atoms can constitute relevant input
for external atoms in P iC only. This could be weakened by
more advanced rewriting techniques, taking into account (i)
dependencies introduced by the rules in bC(P) rather than
the projective rules α ← αi, and (ii) further (monotonicity)
information concerning the external atoms in bC(P).

For the setting studied in this paper a 1-to-1 correspondence
between the answer sets of bC(P) and the answer sets of its
decomposition wrt. C, dC(P), holds for unique splits. More
precisely, the correctness of the rewriting in this regard is
expressed formally as follows.

Proposition 5 Let C ∈E(P), and let I be any set of ground
ordinary atoms such that I ∩ grnd(C) = ∅. If dC(P) is a
unique split wrt. I , then M ∈ AS(dC(P) ∪M(I)) implies
that M |C ∈ AS(bC(P) ∪ I) and M =M(M |C).

On the other hand, the rewriting technique is complete for
unique splits, i.e., given an answer set ofN ofAS(bC(P)∪I),
if dC(P) is a unique split wrt. I , thenM(N) is an answer set
of dC(P) ∪M(I).

Proposition 6 Let C ∈ E(P), and let I be any set of ground
ordinary atoms such that I ∩ grnd(C) = ∅. If dC(P) is
a unique split wrt. I , then N ∈ AS(bC(P) ∪ I) implies
M(N) ∈ AS(dC(P) ∪M(I)).

Applying the global splitting theorem of [Eiter et al., 2006a]
and the previous results, we can compute answer sets of P iter-
atively. Given an evaluation ordering E(P) = (Comp,v), let
E1, . . . , Ed be pairwise disjoint sets of components, such that⋃d
i=1Ei = Comp and for every C ∈ Ei, C ′ ∈ Ej , and i < j,

it holds that C ′ 6@ C. For an iterative evaluation, we recur-
sively define sets I of sets of ground ordinary atoms as follows:
I0 = {∅}, and Ij+1 =

⋃
I∈Ij{N | N =

⋃
C∈Ej+1

NC(I)},
where NC(I) = M |C if M ∈ AS(dC(P) ∪ M(I)) and
dC(P) is a unique split wrt. I , and NC(I) = M for some
M ∈ AS(bC(P) ∪ I), otherwise. We eventually obtain the
following correspondence.

Theorem 7 Let P be a HEX-program. Then N ∈ AS(P) if
and only if N ∈ Id and N |= {r ∈ P | H(r) = ∅}.

This result establishes the correct application of the rewrit-
ing technique for the evaluation of a program.

Example 8 Reconsider the cloned version PmN of Example 1
with the evaluation order C1 @ C2. For C1, which is a set of
facts, we obtain a single answer set of dC1(P

m
N)∪∅: NC1(∅) =

{d(ni) | 1 ≤ i ≤ m}. Since dC2(P
m
N) is a unique split

wrt. NC1(∅), the we can compute the answer sets of PmN as
the sets M |C , where M ∈ AS(dC2(P

m
N) ∪M(NC1(∅))). 2

Observe that for ground programs P , k(P) = 0, i.e., rule
application cannot be further constrained by domain restric-
tions. This is reflected in the rewriting, which decomposes P
into a single copy for every component without any dom pred-
icates in the body. However, for ground programs, the pruning
of dependencies as described in Step 1 is most effective, and
captures the cases otherwise handled by the rewriting.

On the other hand, for non-ground programs, the evaluation
may be improved by partial grounding, which reduces k(P)
(thus the number of domain partitions to be joined in a k-fold
union). We leave a more fine-grained analysis of the program
in order to reduce k(P) as further work for optimization.

5 Realization and Experimentation
The standard algorithm to evaluate a given HEX-program P
was shown in [Eiter et al., 2006b]. Its principal idea is to break
up the computation into smaller tasks, and, in spirit of [Lifs-
chitz and Turner, 1994], to perform a bottom-up evaluation of
the using the strongly connected components of GP . The pro-
cedure uses a subroutine eval(P,C, I), which helps creating
the models wrt. a component C and an interpretation I: eval

C1

a(np, X)a(p, X)

. . .

d(X)

. . .
dom1(X) dom`(X)

C0

C`+1

C`

(a) Schematic view of dPm
N for m = `

4

8

12

16

20

24

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ev
al

ua
tio

n
tim

e
(s

ec
s)

Nixon Diamond with m individuals

dPmN

b b b b b b b b b b b b b b
b

bb
oPmN

?
?

?

?

(b) oPm
N vs. dPm

N (all answer sets)

Figure 2: Nixon decomposition and experiment

Algorithm 1: decomp-eval(P,C, S, I): Compute the an-
swer sets of a component C and greatest local split S in P
wrt. I

Input: HEX-program P , component C,
S = gls(grnd(C)), interpretation I

Result: collection of answer sets N
(a) Compute Sk∪(C) = {D1, . . . , D`}

P ′ = I
(b) for j := 1, . . . , ` do

Set σjC = {p/pj | p(t) ∈ C}
P ′=P ′∪P jC ∪ {α←ασjC | α ∈ H(r), r ∈ bC(P)}∪

domj [Dj]
end

(c) Evaluate P ′ and store the answer sets of it in N
return N

keeps track of cycles in C and chooses the appropriate solv-
ing strategy for it, and generates models compliant with the
external atoms in C (see [Eiter et al., 2006b] for the details).

We realize the evaluation of our decomposition method
by adapting the standard evaluation algorithm. For that,
we introduce the refined component evaluation subroutine
decomp-eval(P,C, S, I) shown in Algorithm 1. The major
changes for the overall refined HEX-program evaluation are:
(1) after creating the dependency graph GP , we create from

SCC (GP) = {C1, . . . , Cn} the greatest local splits Si =
gls(grnd(Ci)), i = 1, . . . , n.

(2) we generate the pruned dependency graph G′P and per-
form the bottom-up evaluation wrt. SCC (G′P);

(3) then, while evaluating the components, we check for each
Ci whether dCi(P) is a unique split wrt. I and call then

(i) decomp-eval(P,Ci, Si, I) instead of eval in order
to evaluate a component Ci with greatest local split
Si in a HEX-program P wrt. an interpretation I ,
and take, transparently to the evaluation procedure,
dependency information into account; otherwise,

(ii) if dCi(P) is not a unique split wrt. I , we just call
eval(P,Ci, I).

Regarding (2), we prune GP to G′P by stripping ground
dependencies in Ci wrt. Si as described in Section 4. The
resulting dependency graph G′P then consists of components
Comp′. The further evaluation of P , which is kept as is, will
be performed with Comp′.

After preprocessing the components of P outlined as above,
the refined components will be evaluated in the usual way. To
this end, we may call decomp-eval(P,Ci, Si, I) as described
in (3i), provided that dCi(P) is a unique split wrt. I (see
step (3)). Alternatively, we fall back to the standard HEX-
program evaluation procedure eval(P,C, I), as done in (3ii).

Let C ∈SCC (G′P), S= gls(grnd(C)), and I be an inter-
pretation. In decomp-eval(P,C, S, I) from above, we first
generate the k-fold union of S in step (a), create dC(P) in
step (b), and then evaluate the decomposed program in step (c).
The result is stored inN . The following states the correctness.
Proposition 8 Given a HEX-program P , component C, great-
est local split S = gls(grnd(C)), and interpretation I , we
have N ∈ AS (bC(P) ∪ I) iffM(N) ∈ N , where N is the
output of Algorithm 1.

For experimental evaluation, we adapted the development
version of the dlvhex prototype system,4 which is an open
source reasoner for HEX-programs.

We have realized our running example, the Nixon diamond,
using external atoms that query a description logic knowl-
edge base (DL-KB) in spirit of dl-atoms in description logic
programs [Eiter et al., 2008]. To this end, we encoded T as
DL-KB. The external atoms &Tχ[a](c) are then realized as
instance retrieval queries over T using a DL-reasoner (Racer-
Pro 1.9.2beta).5 All tests have been conducted on a P4 3GHz
Linux system with 1GB of main memory. For a program
P , we write short oP for the standard HEX-program evalu-
ation strategy, whereas dP denotes our new decomposition
evaluation strategy using decomp-eval.

We fixed a ∼α a for all individuals a and all ground external
atoms α for PmN ’s. In the decomposed program evaluation of
PmN we have m+2 components (see Figure 2a for a schematic
view). We computed all 2m answer sets of the test programs,

4
www.kr.tuwien.ac.at/research/systems/dlvhex/

5
www.racer-systems.com/

Table 1: Nixon experiments, avg. running time in seconds
m 1 2 3 4 8 16 32 64

oPm
N 0.21 1.63 14.5 — — — — —

dPm
N 0.22 0.43 0.65 0.91 2.33 28.12 — —

oPm
nra 0.21 1.53 14.2 — — — — —

dPm
nra 0.23 0.41 0.61 0.85 2.12 5.81 16.27 49.83

and the experimental results are displayed in Figure 2b. They
show the effectiveness of the method; we gain an exponential
speed-up with our decomposed evaluation strategy dPmN .

We have created another example by slightly adapting Ex-
ample 1. If we add to PmN the additional rule

a(p,X)← d(X),not &Tnra [](X).
we obtain a program Pmnra that disables the applicability of
rule (3) and forces all Nixons to be pacifists. As above, we
have fixed a ∼α a for all individuals and all ground external
atoms α for Pmnra ’s. The evaluation with our decomposed pro-
grams then consists again of m+2 components. We computed
the single answer set of each of these test programs.

The detailed outcome of both Nixon test series is listed in
Table 1, where “—” means timeout (1 min). The results show
that both oPmN and oPmnra evaluation have an early breakdown
(m=4) while all runs of the dPmN evaluation up to m=16, and
dPmnra up to m=64, finished in time.

The check for uniqueness of the split dC(P) was fast (a few
msecs) on our examples by employing a non-recursive datalog
program.

Due to space limitations, we only report here the Nixon
example. We have looked at similar encodings, like the Tweety
example, and the experiments show a similar picture.

To get a better understanding of the improvements of the
evaluation, notice that implementations that feature external
functions usually adopt a guess and check strategy when an
external atom α = &g [y](x) appears in a (negative) cycle
in the dependency graph. A guess represents a model of the
cyclic program component and this model has to comply with
the function f&g for α, which may be expensive to evaluate.
The guesses must be made wrt. a domain of individuals (in
the worst case, all constants). Using our theory of domain
independence, we can rewrite the program such that compo-
nents range over smaller domains. This not only effects that
fewer guesses are made for the external atoms, but also that
the number of (costly) compliance checks decreases.

6 Discussion and Conclusion
We have presented a method to decompose declarative knowl-
edge bases with access to external sources, formalized as
HEX-programs, by using domain independence information.
The method may lead to a large (exponential) improvement in
performance, as evidenced by examples. While our method
has been developed for HEX-programs, the underlying ideas
and principles are generic and may be adapted for other similar
KR formalisms (cf. Introduction).

To the best of our knowledge, program optimization based
on domain independence about external sources, with possible
non-monotonic negation, has not been addressed before. Note

that domain independence is well-known in databases [Abite-
boul et al., 1995]. It is related to active domain semantics and
usually enforced by safety of queries and rules. Domain de-
composition techniques are also used in constraint processing
[Cohen and Jeavons, 2003], but in a different setting.

Several issues remain for further investigation. One issue
is a more involved analysis of dependencies, to make the set
of atoms for which greatest local splits are computed smaller,
e.g., by respecting unifiability over transitive arcs or respecting
syntactic conditions (cf. [Costantini, 2006]). Also the notions
of greatest local split and k-fold union may be refined. An
orthogonal direction is predicate splitting, where input predi-
cates p are removed from external atoms &g [. . . , p, . . .](X)
whose values are independent of pwrt. relevant interpretations;
this may be applied as a post processing after domain splitting.

Another issue is how to obtain dependency information.
Clearly, this depends on the nature of the external sources, and
there is no general recipe apart from (expensive) verification
of the definitions. However, often the knowledge engineer has
insight in dependency information that she can supply, like in
the Nixon diamond example. To some extent, (in)dependency
information may also be obtained by (semi-)automated analy-
sis of external sources. For logic knowledge bases, notions of
relevance for reasoning might be exploited, and for others (e.g.,
wordnet ontologies, URL lists) specific methods developed.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu. Foun-

dations of Databases. Addison-Wesley, 1995.
[Cohen and Jeavons, 2003] D. Cohen and P. Jeavons. Constraint

Processing, R. Dechter (ed.), chapter Tractable Constraint Lan-
guages. Morgan Kaufmann, 2003.

[Costantini, 2006] S. Costantini. On the existence of stable models
of non-stratified logic programs. Theory Pract. Log. Program.,
6(1–2):169–212, 2006.

[Eiter et al., 2006a] T. Eiter, G. Ianni, R. Schindlauer, and H. Tom-
pits. Effective Integration of Declarative Rules with external Eval-
uations for Semantic Web Reasoning. In ESWC’06, pp. 273–287.
Springer, 2006.

[Eiter et al., 2006b] T. Eiter, G. Ianni, R. Schindlauer, and H. Tom-
pits. Towards efficient evaluation of HEX programs. In NMR’06,
pp. 40–46. 2006.

[Eiter et al., 2008] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schind-
lauer, and H. Tompits. Combining answer set programming with
description logics for the semantic web. Artif. Intell., 172(12-
13):1495–1539, 2008.

[Faber et al., 2004] W. Faber, N. Leone, and G. Pfeifer. Recursive
aggregates in disjunctive logic programs: semantics and complex-
ity. In JELIA’04, pp. 200–212. Springer, 2004.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classi-
cal negation in logic programs and disjunctive databases. New
Gener. Comput., 9:365–385, 1991.

[Lifschitz and Turner, 1994] V. Lifschitz and H. Turner. Splitting a
logic program. In ICLP’94, pp. 23–37. MIT Press, 1994.

[Subrahmanian et al., 2000] V.S. Subrahmanian, P. Bonatti, J. Dix,
T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Heterogeneous Agent
Systems: Theory and Implementation. MIT Press, 2000.

[Wang et al., 2004] K. Wang, D. Billington, J. Blee, and G. Anto-
niou. Combining description logic and defeasible logic for the
Semantic Web. In RuleML’04, pp. 170–181. Springer, 2004.

