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Abstract. We consider action domain descriptions whose meaning can be repre-
sented by transition diagrams. We introduce several semantic measuresto com-
pare such action descriptions, based on preferences over possible states of the
world and preferences over some given conditions (observations, assertions, etc.)
about the domain, as well as the probabilities of possible transitions. This pref-
erence information is used to assemble a weight which is assigned to an action
description. As an application of this approach, we study the problem of updating
action descriptions with respect to some given conditions. With a semantic ap-
proach based on preferences, not only, for some problems, we get more plausible
solutions, but also, for some problems without any solutions due to too strong
conditions, we can identify which conditions to relax to obtain a solution. We
conclude with computational issues, and characterize the complexity of comput-
ing the semantic measures.

1 Introduction

This paper discusses how to compare action descriptions, whose meaning can be rep-
resented by transition diagrams—a directed graph whose nodes correspond to states
and edges correspond to transitions caused by action occurrences and non-occurrences,
with respect to some given conditions. Comparison of actiondescriptions is important
for applications, when an agent has to prefer one description more than the others. One
such application is the action description update problem [1]: when an agent tries to
update an action description with respect to some given information, she usually ends
up with several possibilities and has to choose one of these action descriptions. Another
application is related to representing an action domain in an elaboration tolerant way
(for a definition of elaboration tolerance see, e.g., [2, 3]): among several action descrip-
tions representing the same action domain, which one is the most elaboration tolerant
one, with respect to some given conditions describing possible elaborations?

The preference of an agent over action descriptions may be based on a syntactic
measure, such as the number of formulas: the less the number of formulas contained
in an action description, the more preferred it is. A syntactic measure can be defined
also in terms of set containment with respect to a given action descriptionD: an action
description is more preferred if it is a maximal set among others that is contained in
D. For instance, according to the syntactic measure used in [1] for updating an action
descriptionD with some new knowledgeQ, an action descriptionD′ is more preferred
if D′ is a maximal set among others containingD and contained inD∪Q is maximum.
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Fig. 1.A transition diagram.

In this paper, we describe the preference of an agent over action descriptions, with
respect to some semantic measure. The idea is to describe a semantic measure by as-
signing weights (i.e., real numbers) to action descriptions, with respect to their transi-
tion diagrams and some given conditions; then, once the weights of action descriptions
are computed, to compare two descriptions by comparing their weights.

We consider action descriptions, in a fragment of the actionlanguageC [4], which
consists of “causal laws.” For instance, the causal law

causedPowerON after PushPBTV ∧ ¬PowerON , (1)

expresses that the actionPushPBTV causes the value of the fluentPowerON to change
from f to t; such causal laws describe direct effects of actions. The causal law

causedTvON if PowerON , (2)

expresses that if the fluentPowerON is caused to be true, then the fluentTvON is
caused to be true as well; such causal laws describe state constraints. The meaning of
an action descriptionD can be represented by a transition diagram, like in Fig. 1. In
this transition diagram, the nodes of the graph (shown by boxes) denote the states of the
world: (s) one where both the power and the TV is on, and (s′) the other where both the
power and the TV is off. The edges denote action occurrences.For instance, the edge
from s to s′ labeled by the action of pushing the power button on the TV describes that
executing this action ats leads tos′. The edges labeled by the empty set are due to the
law of inertia.

Suppose that we are given another action descriptionD′ describing the domain
above; and that the transition diagram ofD′ is almost the same as that ofD, ex-
cept that there is no outgoing edge from the state{PowerON ,TvON } with the la-
bel {PushPBRC}. Which action description should be preferred? In answeringthis
question, we also take givenconditions(observations, assertions, etc.) on the action do-
main into account. We describe conditions in an action querylanguage, like in [5], by
“queries.” For instance,

ALWAYS
∨

A∈2A
executableA, (3)

where2A denotes the set of all actions, expresses that, at every state, there is some
action executable. The query

SOMETIMES evolvesPowerON ; {PushPBRC };PowerON (4)

expresses that, at some state when the power is on, pushing the power button on the
remote control does not turn the power off.
The question we consider in this paper is then the following:



Given a setD of action descriptions and a setC of queries, which action
description inD is a most preferred one with respect toC?

Our main contributions are briefly summarized as follows.

• We provide an answer to the above question with respect to mainly four semantically-
orientedapproaches, by assigning weights to action descriptions inD, based on their
transition diagrams. The weights express preferences of the agent over possible states
of the world and preferences over conditions, as well as the probabilities of possible
transitions.
A simple weight measure is to count the number of queries inC which an action de-
scriptionD entails. In the example above,D entails according to its transition diagram
(3) and (4), soD has weight 2;D′ entails according to its transition diagram only (3),
soD′ has weight 1. Hence,D is preferred overD′.

• We apply these approaches to the problem of updating an action description, and
observe two benefits. First, if a problem has many solutions with the syntactic approach
of [1], a semantic approach can be used to pick one. Second, ifa problem does not
have any solution with any of the approaches due to too strongconditions, a semantic
approach can be used to identify which conditions to relax tofind a solution.

• We characterize the computational cost of computing the weight assignments, which
lays the foundations for efficient computation.

For space reasons, we omit the definitions of transition diagrams and action descrip-
tions.They are as in [1] and given in an extended version [6],1 which contains further
explanation of the examples, additional examples, anotherapplication, and a detailed
discussion of the complexity results and algorithms.

2 Action Queries

To talk about observations of the world, or assertions aboutthe effects of the execution
of actions, we use an action query language consisting of queries described as follows.
We start withbasic queries: (a)static queriesof the form

holds F , (5)

whereF is a fluent formula; (b)dynamic queriesof the form

necessarilyQ after A1; . . . ;An, (6)

whereQ is a basic query and eachAi is an action; and (c) every propositional combi-
nation of basic queries. Anexistential queryis an expression of the form

SOMETIMES Q, (7)

whereQ is a basic query; auniversal queryis of the form

ALWAYS Q, (8)

whereQ is a basic query. Aqueryq is a propositional combination of existential queries
and universal queries.

1 Available athttp://www.kr.tuwien.ac.at/research/ad-cmp.pdf.



As for the semantics, letT = 〈S, V,R〉 be a transition diagram, with a setS of
states, a value functionV mapping, at each states, every fluentP to a truth value, and
a setR of transitions. Ahistoryof T of lengthn is a sequence

s0, A1, s1, . . . , sn−1, An, sn (9)

where each〈si, Ai+1, si+i〉 (0 ≤ i < n) is in R. We say that a states ∈ S satisfies
a basic queryQ′ of form (5) (resp. (6)) relative toT (denotedT, s |= Q′), if the in-
terpretationP 7→ V (P, s) satisfiesF (resp. if, for every historys = s0, A1, s1, . . . ,
sn−1, An, sn of T of lengthn, basic queryQ is satisfied at statesn). For other forms
of basic queriesQ, satisfactionis defined by the truth tables of propositional logic. If
T is described by an action descriptionD, then the satisfaction relation betweens and
a basic queryQ can be denoted byD, s |= Q as well.

Note that, for every states and for every fluent formulaF , D, s |= holds F iff
D, s |= ¬holds¬F . For every states, every fluent formulaF , and every action sequence
A1, . . . , An (n ≥ 1), if D, s |= necessarily(holds F ) after A1; . . . ;An thenD, s |=
¬necessarily(¬holds F ) after A1; . . . ;An.

We say thatD entailsa queryq (denotedD |= q) if one of the following holds:

– q is an existential query (7) andD, s |= Q for some states ∈ S;
– q is a universal query (8) andD, s |= Q for every states ∈ S,
– q = ¬q′ andD 6|= q′;
– q = q1 ∧ q2 andD |= q1 andD |= q2; or
– q = q1 ∨ q2 andD |= q1 or D |= q2.

For every basic queryQ, D |= SOMETIMES Q iff D |= ¬ALWAYS ¬Q. For a
setC of queries, we say thatD entailsC (denotedD|=C) if D entailsevery query in
C. Consider, e.g., the action description consisting of (1),(2), and

caused¬PowerON after PushPBTV ∧ PowerON

caused¬TvON if ¬PowerON

inertial PowerON ,¬PowerON ,TvON ,¬TvON

(10)

encoding how a TV system operates; hereinertial L1, . . . , Lk stands for the causal laws
causedLi if Li after Li (1 ≤ i ≤ k). It does not entail any set of queries containing

ALWAYS necessarily(holds¬TvON ) after {PushPBRC}

because this query is not satisfied at the state{TvON ,PowerON }; but, it entails the
queries:

ALWAYS holds PowerON ≡ TvON ,

ALWAYS holds PowerON ∧ TvON ⊃
¬necessarily(holdsTvON ) after {PushPBTV }.

(11)

In the rest of the paper, an expression of the form

possiblyQ after A1; . . . ;An,

whereQ is a basic query and eachAi is an action, stands for the dynamic query
¬necessarily¬Q after A1; . . . ;An; an expression of the form

evolvesF0;A1;F1; . . . ;Fn−1;An;Fn, (12)



where eachFi is a fluent formula, and eachAi is an action, stands forholds F0 ∧
possibly(holds F1 ∧ possibly(holds F2 ∧ ...) after A2) after A1; and

executableA1; . . . ;An,

where eachAi is an action, stands forpossiblyTrue after A1; . . . ;An. We sometimes
dropholds from static queries appearing in dynamic queries.

Queries allow us to express various pieces of knowledge about the domain. For
instance, we can express the existence of states where a formula F holds by means of
the querySOMETIMES holds F. Similarly, we can express the existence of a transition
from some state where a formulaF holds to another state where a formulaF ′ holds, by
the execution of an actionA:

SOMETIMES holds F ∧ possiblyF ′ after A .

In general, the existence of a history (9) such that, for eachsi of the history, the inter-
pretationP 7→ V (P, si) satisfies some formulaFi is expressed by the query:

SOMETIMES evolvesF0;A1;F1; . . . ;Fn−1;An;Fn. (13)

For instance, the query

SOMETIMES evolves PowerON ; {PushPBTV };
¬PowerON ; {PushPBTV };PowerON .

(14)

describes the presence of the following history in Fig. 1:

{PowerON ,TvON }, {PushPBTV },
{¬PowerON ,¬TvON }, {PushPBTV }, {PowerON ,TvON }.

(15)

That at some state where formulaF holds no action is possible is expressed by

SOMETIMES holds F ∧
∧

A∈2A
necessarilyFalse after A.

Like in [1], executability of an action sequenceA1, . . . , An (n ≥ 1) at every
state can be described byALWAYS executable A1; . . . ;An; mandatory effects of a se-
quenceA1, . . . , An (n ≥ 1) of actions in a given context byALWAYS holds G ⊃
necessarilyF after A1; . . . ;An; and possible effects of a sequence of actions in a con-
text by ALWAYS holds G ⊃ possiblyF after A1; . . . ;An. In the last two queries,F
describes the effects andG the context.

3 Weight Assignments for Action Descriptions

To compare action descriptions with respect to their semantics, we can assign weights to
them, based on their transition diagrams and a given set of conditions. We present below
four weight assignments, each with a different motivation expressing some appeal of
the action description, however, without an a priori epistemic meaning. They are by
no means exhaustive, i.e., many more are conceivable, but allow to specify preferences
over the main semantic constituents—states, transitions, queries, and a combination
thereof. Corresponding orders are total and, unlike more general preferences (partial
orders), beneficial wrt. discrimination of choices or component-wise comparability.

3.1 Weighted states

We can specify our preference over states of a transition diagram〈S, V,R〉 by assigning
a weight to each state inS, by a functiong. Such a function assigning real numbers to



states of the world can be considered as autility function, as in decision theory. If one
state of the world is preferred to another state of the world then it has higher utility
for the agent; here “utility” is understood as “the quality of being useful” as in [7].
Alternatively, the functiong can be viewed as areward function: being at a states will
give a reward ofg(s) to the agent.

Given a utility function for a setS of states, the highly preferred states relative to
a given numberl are states with a weight greater thanl. Then, one way to define the
weight of an action descriptionD relative tog andl is as follows:

weights(D) = |{s : s ∈ S, g(s) > l}|.

With respect to this definition, the more the number of statesthat are highly pre-
ferred by the agent, the more preferred the action description is.

For instance, consider the transition diagram in Fig. 1 described byD. Take, for
eachs ∈ S,

g(s) =

{

2 if PowerON ∈ s
1 otherwise.

(16)

Takel = 1. Thenweights(D) = 1.

3.2 Weighted queries

We can assign weights to queries to specify preferences overconditions they express:
Let C be a set of queries, along with a weight functionf mapping each query inC

to a real number. Then one way to define the weight ofD (relative toC andf ) is by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the weights of queries
shows how much the setC of given preferable queries are satisfied. (Note thatf can
easily express a threshold function as well.)With this definition, the more the highly
preferred queries are satisfied, the more preferred the action description is.

For instance, suppose thatC consists of (14) and

ALWAYS executable{PushPBRC}, (17)

with weights 1 and 2 respectively. For the descriptionD with the transition diagram in
Fig. 1,weightq(D) = 3.

3.3 Weighted histories

In a transition diagramT = 〈S, V,R〉, we will say that a history (9) of lengthn is
desiredwith respect to a given query (13), if, for eachi, the interpretationP 7→ V (P, si)
satisfiesFi.

Let D be an action description, andT = 〈S, V,R〉 be the transition diagram de-
scribed byD. Let C be a set of queries, along with a weight functionf mapping each
condition inC to a number. LetHC be the set of pairs(w, c) such thatw is a desired
history inT with respect to the queryc of form (13) inC. Let us denote byst(w) the
starting states0 of a historyw of form (9). We define a functionh mapping each desired
historyw appearing inHC to a real number, in terms of the utilityu(w) of statest(w)
with respect tow:



h(w) = u(w) ×
∑

(w,c)∈HC
f(c).

The functionu mapping a historyw of form (9) to a real number can be defined
in terms of a sequence of functionsui. Given a utility function (or a reward function)
g mapping each state inS to a real number, and atransition modelm mapping each
transition〈s,A, s′〉 in R to a probability (i.e., the probability of reachings′ from s after
execution ofA):

un(w) = g(sn)
ui(w) = g(si) + m(〈si, Ai+1, si+1〉) × ui+1(w) (0 ≤ i < n)
u(w) = u0(w).

These equations are essentially obtained from the equations used for value determina-
tion in the policy-iteration algorithm described in [7, Chapter 17]: take{s0, . . . , sn} as
the set of states,〈si, Ai+1, si+1〉 as the possible transitions, the mappingsi 7→ Ai+1 as
the fixed policy,U asu, Ui asui, R asg, andM asm. Then we can define the weight of
D in terms of the weights of desired historiesw1, . . . , wz appearing inHC as follows:

weighth(D) =
∑z

i=1
h(wi).

The more the utilities of desired histories (or trajectories) satisfied by the action de-
scription, the more preferred the action description is.

For instance, suppose thatC consists of query (14), with weight 3. Consider the
transition diagramT = 〈S, V,R〉 in Fig. 1. Let us denote history (15) byw, and
query (14) byc. ThenHC contains(w, c). Takeg(s) as in (16). Takel = 1. Suppose
that, for each transition〈s,A, s′〉 in R,

m(〈s,A, s′〉) =

{

0.5 if s = {PowerON ,TvON } ∧ |A| = 1
1 otherwise.

(18)

Thenu(w) is computed as 3.5. andh(w) = u(w)×
∑

(w,c)∈HC
f(c) = 3.5×3 = 10.5.

Henceweighth(D) = 10.5.

3.4 Weighted queries relative to weighted states

The three approaches above can be united by also consideringto what extent each uni-
versal query inC is entailed by the action description. The idea is while computing the
weight of a description relative to weighted queries, to take into account the states at
which these queries are satisfied.

Let D be an action description. LetT = 〈S, V,R〉 be the transition diagram de-
scribed byD, along with a weight functiong mapping each state inT to a real number.
Let C be a set of queries such that every queryq in C is an existential query, a universal
query, or a disjunction of both.

First, for each states in S, we compute its new weightg′(s), taking into account
utilities of the desired histories starting withs. Let HC be the set of pairs(w, c) such
thatw is a desired history inT with respect to the queryc of form (13) inC. Let W
be the set of histories that appear inHC . Let u be a function mapping a historyw to
a real number, describing the utility of states with respect tow. Then the new weight
functiong′ is defined as follows:



g′(s) =

{

g(s) if 6 ∃w(w ∈ W ∧ st(w) = s)
∑

w∈W,st(w)=s u(w) otherwise.

Next, for each queryc in C, we compute its new weightf ′(c). Let f be a function
mapping each condition inC to a real number. We will denote bySD(B) the set of
statess such thatD, s |= B. Then we definef ′ as follows:

f ′(q) =















f ′(q′) + f ′(q′′) if q = q′ ∨ q′′

β if q = ALWAYS B
γ if q = SOMETIMES B ∧ |SD(B)| > 0
0 if q = SOMETIMES B ∧ |SD(B)| = 0,

whereβ = f(q) ×
∑

s∈SD(B) g′(s) and γ = f(q) × [(
∑

s∈SD(B) g′(s))/|SD(B)|].
Intuitively, f ′ describes to what extent each preferable queryq is satisfied.

Then the weight ofD (relative toC andf ′) is the sum:

weightqs(D) =
∑

q∈C
f ′(q).

Intuitively, weightqs(D) describes how much and to what extent the given preferable
queries are satisfied byD. For instance, supposeC consists of three queries:

ALWAYS executable{PushPBTV }, (19)

SOMETIMES ¬executable{PushPBRC ,PushPBTV }, (20)

and query (14), denoted byc1, c2 and c3 respectively. Consider an action descrip-
tion D, with the transition diagram in Fig. 1. Let us denote history(15) by w; then
HC = {(w, c3)}. Take the utility functiong as in (16), and the transition modelm as
in (18). Takef(c1) = 1, f(c2) = 2, f(c3) = 3. Theng′({PowerON ,TvON }) = 3.5,
g′({¬PowerON ,¬TvON }) = 1, andf ′(c1) = 4, f ′(c2) = 4, f ′(c3) = 10.5. There-
fore,weightqs(D) = 18.5.

Further discussion and additional examples considering the weight functions in dif-
ferent action domains are given in the extended version [6].

4 Application: Updating an Action Description

Suppose that an action descriptionD consists of two parts:Du (unmodifiable causal
laws) andDm (modifiable causal laws); and a setC of conditions is partitioned into
two: Cm (must) andCp (preferable). We define anAction Description Update (ADU)
problem by an action descriptionD = (Du,Dm), a setQ of causal laws, a setC =
(Cm, Cp) of queries, all with the same signature, and a weight function weight map-
ping an action description to a number. The weight function can be defined relative to
a set of queries, a utility function, or a transition model, as seen in the previous sec-
tion. We say that a consistent action descriptionD′ is asolutionto the ADU problem
(D,Q,C,weight) if

(i) Q ∪ Du ⊆ D′ ⊆ D ∪ Q,
(ii) D′ |= Cm,



(iii) there is no other consistent action descriptionD′′ such thatQ ∪ Du ⊆ D′′ ⊆
D ∪ Q, D′′ |= Cm, andweight(D′′) > weight(D′).

The definition of an ADU problem in [1] is different from the one above mainly
in two ways. First,Cp = ∅. Second, instead of (iii) above, the following syntactic
condition is considered: there is no consistent action description D′′ such thatD′ ⊂
D′′ ⊆ D ∪ Q, andD′′ |= C.

The semantic approach above has mainly two benefits, compared to the syntactic
approach of [1]. First, there may be more than one solution tosome ADU problems
with the syntactic approach. In such cases, a semantic approach may be applied to pick
one of those solutions. Example 1 illustrates this benefit. Second, for an ADU prob-
lem, if no consistent action descriptionD′ satisfying (i) satisfies the must queries (Cm),
there is no solution to this problem with either syntactic orsemantic approach. In such
a case, we can use the semantic approach with weighted queries, to relax some must
queries inCm (e.g., move them toCp). The idea is first to solve the ADU problem
((Du,Dm), Q, (∅, C ′

m),weight), whereC ′
m is obtained fromCm by complementing

each query, and where the weights of queries inC ′
m are equal to some very small nega-

tive integer; and then to identify the queries ofC ′
m satisfied in a solution and add them

Cp, with weights multiplied by -1. This process of relaxing some conditions ofCm to
find a solution is illustrated in Example 2.

Example 1.Consider, for instance, an action descriptionD = (Dm,Du), whereDm =
{(1), (2)} andDu is (10), that describes a TV system with a remote control. Suppose
that, later the following information,Q, is obtained:

causedTvON after PushPBRC ∧ PowerON ∧ ¬TvON

caused¬TvON after PushPBRC ∧ TvON .

Suppose that we are given the setC = (Cm, Cp) of queries whereCm consists of the
queries (3) and

SOMETIMES evolves¬TvON ; {PushPBTV };¬TvON , (21)

andCp consists of the queries (14), (20), (19), (17), (4), denotedby c1, . . . , c5 respec-
tively. WhenQ is added toD, the meaning ofD ∪Q can be represented by a transition
diagram almost the same as in that ofD (Fig. 1), except that there is no outgoing edge
from the state{PowerON ,TvON } with the label{PushPBRC}; thus only (3), (21),
and (14) inC are entailed byD ∪ Q. The question is how to updateD by Q so that
the must conditions,Cm, are satisfied, and the preferable conditions,Cp, are satisfied
as much as possible.

The consistent action descriptions for which (i) holds areD(1) = D ∪ Q, D(2) =
Du ∪ Q ∪ {(2)}, D(3) = Du ∪ Q ∪ {(1)}, D(4) = Du ∪ Q. With the syntactic ap-
proach of [1], we have to choose betweenD(2) andD(3), since they have more causal
laws. Consider the semantic approach based on weighted histories (i.e.,weight =
weighth), with (16) as the utility functiong, (18) as the transition modelm, andf(c1) =
3, f(c2) = 1, f(c3) = 4, f(c4) = 3, f(c5) = 2. Let us consider the statess0 =
{PowerON ,TvON }, s1 = {PowerON ,¬TvON }, s2 = {¬PowerON ,¬TvON };
and the histories



{PushPBT V , PushPBRC}PowerON

TvON

{}

¬TvON

¬PowerON

{PushPBRC}
{}

{PushPBT V }

{PushPBT V , PushPBRC}

{PushPBT V }

Fig. 2.Transition diagram ofD(2) = Du ∪ Q ∪ {(2)}.

{PushPBT V , PushPBRC}

¬TvON

PowerON

{}

¬PowerON

¬TvON

PowerON

TvON

{}

{PushPBT V , PushPBRC}
{PushPBT V }

{}
{PushPBRC}

{PushPBRC}

{PushPBRC}

{PushPBT V }

{PushPBT V }

Fig. 3.Transition diagram ofD(3) = Du ∪ Q ∪ {(1)}.

w0 = s0, {PushPBRC}, s1, w2 = s0, {PushPBTV }, s2, {PushPBTV }, s1,
w1 = s1, {PushPBRC}, s0, w3 = s1, {PushPBTV }, s2, {PushPBTV }, s1

with utilities u(w0) = 3, u(w1) = 4, u(w2) = 3.5, u(w3) = 5.
ForD(2) (Fig. 2), sinceHCp

= ∅, weighth(D(2)) = 0. ForD(3) (Fig. 3), sinceHCp

contains(w0, c5), (w1, c5), (w2, c3), and(w3, c3), weighth(D(3)) = 48. ThusD(3) is
the solution.
Example 2.Let D, Q, Cp, andD(1)–D(4) as in Example 1 andCm consist of

SOMETIMES ¬
∨

A∈2A
executableA, (22)

ALWAYS ¬evolves¬TvON ; {PushPBTV };¬TvON , (23)

denoted byc′1 andc′2 respectively. None of the descriptionsD(1) – D(4) entailsCm.
Therefore, there is no solution to the ADU problem above witheither the syntactic
approach of [1] or any of the semantic approaches above. To identify which queries in
Cm we shall move toCp, first we obtainC ′

m from Cm by negating each query inCm,
and assigning a very small negative integer, say –100, as their weights. SoC ′

m consists
of the queries (3) and (21), denoted byc′′1 andc′′2 , with weights -100. With the semantic
approach based on weighted queries (i.e.,weight = weightq),

weightq(D
(1)) = f(c′′1) = −100,

weightq(D
(2)) = weightq(D

(3)) = f(c′′1) + f(c′′2) = −200,
weightq(D

(4)) = f(c′′1) + f(c′′2) = −200

the descriptionD(1) is the solution to the ADU problem given by((Du,Dm), Q,
(∅, C ′

m), weightq). This suggests relaxing the must query (22) (i.e., adding the query
(22) to Cp with the weight 100) and solving the new ADU problem,((Du,Dm), Q,
{(23)}, Cp ∪ {(22)},weightq), for which the descriptionDu ∪ Q is the solution.



Table 1.Complexity of computing weights (completeness).

Input / Weightweights weightq weighth weightqs

D, C #P FPSPACE GapP∗ FPSPACE

D, C, S polynomial

Dpol
∗∗, C in FPNP

‖

∗ #P for non-negativeg(s),f(q); ∗∗ |S| is polynomially bounded

Other semantic approaches to action description updates.Given a consistent action
descriptionE, condition (iii) of an ADU problem(D,Q,C,weight) can be replaced by

(iii) ′ there is no other consistentD′′ such thatQ∪Du ⊆ D′′ ⊆ D∪Q, D′′ |= Cm,
and|weight(D′′) − weight(E)| < |weight(D′) − weight(E)|

to express that, among the consistent action descriptionsD′ for which (i) and (ii) hold,
an action description that is “closest” to (or most “similar” to) E is picked. Here, for
instance,E may beD ∪ Q, to incorporate as much of the new information as possible,
althoughD ∪Q may not entailC. What is meant by closeness or similarity is based on
the particular definition of the weight function. For instance, based on the weights of
the states only, withg(s) = 1 if s is a state ofE, and 0 otherwise, the closeness of an
action description toE is defined in terms of the common world states.

A further application of weight-based comparison of actiondescriptions to assess
the elaboration tolerance of different representations ofan action domain is considered
in [6].

5 Computational Aspects

We confine here to discuss the complexity, in order to shed light on the cost of com-
puting the weight measures. We assume that the basic functionsg(s), f(q), as well as
m(〈s,A, s′〉) are computable in polynomial time. For a background on complexity, we
refer to the literature (see e.g. [8]).2

Apparently, none of the different weights above is polynomially computable from
an input action descriptionD and a setC of queries in general. Indeed, deciding whether
S has any states is NP-complete, thus intractable. Furthermore, evaluating arbitrary
queriesq on D (D |= q) is a PSPACE-complete problem. Indeed,q can be evaluated
by a simple recursive procedure in polynomial space. On the other hand, evaluating
Quantified Boolean Formulas, which is PSPACE-complete, canbe reduced to deciding
D |= q.

Computation givenD and C. As it turns out, all four weights are computable in poly-
nomial space. This is because each weight is a sum of (in some cases exponentially
many) terms, each of which can be easily computed in polynomial space, using exhaus-
tive enumeration. In some cases, the computation is also PSPACE-hard, but in others
supposedly easier:

2 See alsohttp://qwiki.caltech.edu/wiki/Complexity Zoo



Theorem 1. Given an action descriptionD, a setC of queries, and polynomial-time
computable basic functionsg(s), f(q), andm(〈s,A, s′〉),

(i) Computingweights(D) relative tog is, #P-complete;
(ii) Computingweightq(D) relative toC andf is FPSPACE-complete;

(iii) Computingweighth(D) relative toC, f , g andm is #P-complete (modulo a nor-
malization, which casts the problem to one on integers), if the range off andg are
nonnegative numbers, and GapP-complete for arbitraryf andg;

(iv) Computingweightqs(D) relative toC, f , g andm is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P[8] is the class of the
problems where the output is an integer that can be obtained as the number of the runs
of an NP Turing machine accepting the input, and GapP [9, 10] is the closure of #P
under subtraction (equivalently, the functions expressible as the number of accepting
computations minus the number of rejecting computations ofan NP Turing machine).
These problems are trivially solvable in polynomial time with an oracle #P, and no such
problem is believed to be PSPACE-hard.

Computation given D, C, and statesS of D. Informally, a source of complexity is
thatD may specify an exponentially large transition diagramT . If T is given, then all
four weights are polynomially computable. In fact, not all of T is needed, but only a
relevant part, denotedTC(D), which comprises all states and all transitions that involve
actions appearing inC.

Now if the state setS is known (e.g., after computation withCCALC [11]) or com-
putable in polynomial time, thenTC(D) is constructible in polynomial time. Indeed, for
each statess, s′ ∈ S and each actionA occurring in some query, we can test in polyno-
mial time whether〈s,A, s′〉 is a legal transition with respect toD; the total number of
such triples is polynomial in|S|. Then the following result (the second row of Table 1)
holds.

Theorem 2. Given an action descriptionD, the setS of states described byD, a
set C of queries, and polynomial-time computable basic functions g(s), f(q), and
m(〈s,A, s′〉). Thenweights(D) (relative to g), weightq(D) (relative to C and f ),
weighth(D) (relative toC, f , g and m), and weightqs(D) (relative toC, f , g and
m), are all computable in polynomial time.

Intuitively, for weightq(D) this holds since we can decide whether a queryq from
C holds with respect toTC(D) in polynomial time using standard labeling methods
from model checking [12]. We can computeweighth(D) with similar labeling tech-
niques, reshuffling the weight and utility functionsh(w) andu(w), respectively, such
that considering exponentially many paths inTC(D) explicitly is avoided.

Computation given D and C for polynomial state setS. Finally, if the state space
S is not large, i.e.,|S| is polynomially bounded,S is computable with the help of an
NP-oracle in polynomial time; in fact, this is possible withparallel NP oracles queries,
and thus computingS is in the respective class FPNP

‖ . From Theorem 2, we thus obtain
the following results (the third row of Table 1):



Theorem 3. Given an action descriptionD such that|S| is polynomially bounded,
a setC of queries, and polynomial-time computable basic functions g(s), f(q), and
m(〈s,A, s′〉), Then computing each of the weight functions,weights(D) (relative to
g), weightq(D) (relative toC and f ), weighth(D) (relative toC, f , g and m), and
weightqs(D) (relative toC, f , g andm), is in FPNP

‖ .

On the other hand, tractability of any of the weight functions in the case where
|S| is polynomially bounded is unlikely, since solving SAT under the assertion that the
given formulaF has at most one model (which is still considered to be intractable) is
reducible to computingweightp(D) for eachp ∈ {s, q, h, qs}.

6 Conclusion

We have presented four ways of assigning weights to action descriptions, based on the
preferences over states, preferences over conditions, andprobabilities of transitions, so
that one can compare the action descriptions by means of their weights. To the best
of our knowledge, this paper is the first attempt in this direction. Moreover, we have
characterized the computational cost of the weight assignments, providing a basis for
efficient algorithms.

We have illustrated the usefulness of such a semantically-oriented approach of com-
paring action descriptions, on the problem of updating an action description, in com-
parison with the syntactic approach of [1]. Further examples and applications are con-
sidered in the extended version of this paper [6].

Further work will aim at implementations of the weight measures, based on the com-
plexity characterizations and algorithms obtained (cf. [6]) and to investigate restricted
problem classes. Another issue is to explore further measures.
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