
A Tool for Answering Queries on Action Descriptions ⋆

Thomas Eiter, Michael Fink, and Ján Senko

Institute of Information Systems, Vienna University of Technology, Vienna, Austria, Email:
(eiter| michael| jan)@kr.tuwien.ac.at

1 Introduction

Action languages [1] are a formal tool for reasoning about actions, where an agent’s
knowledge about a domain in question is represented by a declarative action description
that consists of logical formulas. For instance, consider alight bulb with a switch. When
the light is off, then toggling the switch turns the light on;this can be expressed in the
action description languageC [2] by the dynamic causal law:

caused Light after Toggle ∧ ¬Light . (1)

On the other hand, at every state, if the light bulb is broken then the light is off. This
can be expressed by the static causal law:

caused ¬Light if Broken. (2)

Other pieces of knowledge, like laws of inertia, may be also included:

inertial Light ,¬Light ,Broken,¬Broken. 1 (3)

The meaning of such an action description,D, can be represented by a transition
diagram,T (D)—a directed graph whose nodes correspond to the states of the world,
S(D), and the edges to the transitions,R(D), describing action occurrences. For in-
stance, the transition diagram of the above action description is shown in Figure 1.2

We consider the problem of revising action descriptions in the presence of conflicts
between the action description and a set of conditions (axioms or observations) rep-
resented in an action query language [1]. For example, when the light bulb is broken,
toggling the switch may lead to a state where the light is off;this is expressed by:

possibly ¬Light after Toggle if Broken. (4)

Since at the state where the light bulb is broken and the lightis off, toggling the light
switch is not possible, There is a conflict between the actiondescription and this condi-
tion. Moreover, under further conditions, like the following query:

necessarily ¬Light after Toggle if Light , (5)

the conflict cannot be resolved just by dropping laws. In general, it is difficult to for-
malize the process of arriving at appealing “repairs”, which often depend on additional
knowledge or intuitions of the designer. We aim at supporting a designer in conflict
and modification analysis and developed a tool that allows a user to issue a number of

⋆ Work supported by the Austrian Science Fund (FWF) under grant P16536-N04.
1 Hereinertial L1, ..., Lk stands for the causal lawscaused Li if Li after Li for i ∈ {1, ..., k}.
2 The action description is “buggy” (the effects of toggling the switch are improperly described).

¬Broken
Light

Broken
¬Light

¬Broken
¬Light

{} {}{}, {Toggle}

{Toggle}

Fig. 1. Transition diagram of the action description{ (1), (2), (3)}.

relevant tests on an action description inC and its associated transition diagram in the
presence of conditions. The tool computes answers to these tests by answer-set pro-
gramming, revealing possible causes of conflicts or effectsof certain modifications.

2 Tests

The tests a designer can issue by our tool, resemble the questions about a set of queries
(conditions),Q, andD, respectivelyT (D), as identified in [3] (see also below). Al-
though the formal statement of these questions served as thebasis for implementing a
corresponding test library for the system, we confine here toan informal treatment and
refer to [3] for details. As there, focusing on dynamic aspects,S(D) is assumed to be
correct and hence static laws need not be modified.

Tests on queries and causal laws.To better understand the reasons for conflicts, the
designer may want to check whether the given queriesQ make sense with respect to
each other, find out which causal laws violate certain queries, or whether repairing
an action description can be done without modifying some causal laws, resp. whether
certain causal laws need to be modified:

D1: IsQ contradictory relative toD?
D2: If D does not satisfy a particularnecessarily-queryq in Q, which dynamic
causal laws inD violateq?

D3: Can we resolve a conflict betweenD andQ, without modifying a setD0 of
causal laws inD?

D4: Do we have to modify a setD0 of dynamic causal laws inD to resolve a
conflict betweenD andQ?

Example 1.In our running example, ifQ consisted of the querypossibly Light ∧
Broken after Toggle if True then,Q would be contradictory relative toD (no state
in S(D) satisfiesLight andBroken), whileQ = {(4)(5)}, is not contradictory (D1).

Tests on states and transitions.Alternatively, the designer may want to extract informa-
tion fromT (D). For instance, information about states, respectively transitions, violat-
ing a queryq inQ, or information about candidates for transitions, that do not constitute
transitions due tounder-specification(i.e., not every fluent is causally explained):

T1: Which states ofT (D) that satisfy a given formulaφ, violateq?
T2: Given formulasψ andφ, which transitions〈s,A, s′〉 of T (D) such thats sat-
isfiesφ ands′ satisfiesψ, violateq?

T3: Given a literalL, for every states of T (D) such thats satisfiesφ, is there some
under-specified transition candidatetc = 〈s,A, s′〉 forD such thats′ satisfiesψ∧L
andL is under-specified relative totc?

T4: Which transition candidatestc = 〈s,A, s′〉 for D such thats satisfiesφ ands′

satisfiesψ are under-specified?

Example 2.In Ex. 1, if we just consider states where the light is on (i.e., φ = Light).
Then the only state at which a query ofQ is violated is{Light ,¬Broken} (T1).

3 Implementation

To compute test answers, we use disjunctive logic programming (DLP) – disjunction
is actually needed due toΣp

2
-completeness of most of the tests [3]. We translate action

description, queries, and test into a DL program, and call the DLP solver DLV3 to
compute the models of this program, which encode the answer of the test performed.

data flow control flow

...
...

DLP Translator

DLV

Model parser Test Answer

Queries (Q) Action Description (D)

TranslatedD+Q

Meta-program T4

Meta-program D1

Fig. 2. Tool Architecture.

The translation of an action description and
queries into a logic program is uniform for all
tests, and each test has been encoded in a ‘meta-
program’ which operates on these translations,
i.e., input programs. Figure 2 depicts the archi-
tecture of our tool. It is a command-line ori-
ented Perl script consisting of two main parts:
the DLP Translatorand aModel parser. After
pre-processing the input and translation to a DLP,
calls to DLV are executed and their output is
post-processed into human-readable form by the
Model parser. The tool operation is controlled
by the first command-line parameter that speci-
fies the type of test to perform (e.g.-T1). The
remaining parameters are supposed to be input
files, i.e., text files, where each line either starts

with one of the following keywords:

Action/Fluent: declares a new action or fluent literal;
Inertial/Caused: describes an inertia, static or dynamic law;
Possibly/Necessarily: describes a respective type of query;
Initial/Successor: describes a condition on a state (φ andψ in tests);

or, otherwise, is directly copied to the output (e.g., to addbackground knowledge).
TheDLP Translatorcompiles the inputD andQ into a DLP representation on a file,

which is combined with the fixed meta-program for the issued test to a single program
on which DLV is invoked. The output of DLV (i.e., the answer sets) is then processed
by the Model parser.

Model parsing is specific for each test: some tests yield yes/no answers by means
of inconsistency (no model). E.g., no model for testD1 means that the queries are not
contradictory, whereas for some tests models encode test results such as violating states
(T1,T3), violating transitions (T2), dynamic causal laws that violate a query (D2), etc.

3 http://www.dlvsystem.com

While this information is encoded in DLP atoms, the Model parser prints the essential
information in a human-readable format.

For user convenience, our implementation allows for generic statements as short-
cuts in an action description using fluents and rules with parameters (i.e., variables).
E.g., to extend our example to multiple light bulbs, one may re-write (1) as:

caused light(X) after toggle, -light(X) requires bulb(X).

where the keywordrequires marks type information for variableX, provided by the
background, e.g.:bulb(green). bulb(yellow). bulb(red).

4 Usage of the System

We now demonstrate a possible session of a designer using ourtool. We assume that the
action description consisting of (1), (2), and (3) is provided in a fileexample.in, and
that the queries (4) and (5) are in filesexample.pos andexample.nec, respectively.

First, the designer wants to check whether a query is violated at all (T1 andT2):
./ad-query -T1 example.in example.pos

VIOLATING STATE: broken. −light.

./ad-query -T2 example.in example.nec

VIOLATING TRANSITION: (−broken. light.), (−broken. light.)

Since both queries are violated, she wonders whether they are contradictory (D1):
./ad-query -D1 example.in example.nec example.pos

The set of queries is not contradictory.

Thus, the action description can be repaired such that both queries are satisfied. How-
ever, is it inevitable to modify the existing causal laws (issueD4 with D0 = D)?

Because the answer is ‘yes’ ((4) is violated at state (broken,−light)), she might ask
whether at least the inertia laws can be kept by running testD3 with D0 = D−{(1)}.
From the answer, ‘yes’, she eventually knows that the dynamic causal law (1) has to be
modified (indeed, this law does not properly reflect the effects when the bulb is broken).

5 Conclusion

Our tool ad-query, which is available atwww.kr.tuwien.ac.at/research/
ad-query/, is to our knowledge the first tool to answer queries on actiondescriptions
in C in the context of revision and design as described. The current version implements
a common fragment ofC and queries (heads of laws are literals and other formulas are
conjunctions of literals). Ongoing work will extend the language and consider addi-
tional tests, as well as a methodology for using the tool.

References

1. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelli-
gence3 (1998) 195–210

2. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proc. AAAI ’98, AAAI Press (1998) 623–630

3. Eiter, T., Erdem, E., Fink, M., Senko, J.: Resolving conflicts in action descriptions. In: Proc.
ECAI 2006. Seehttp://www.kr.tuwien.ac.at/research/ecai06.pdf.

