A Tool for Answering Querieson Action Descriptions*

Thomas Eiter, Michael Fink, ancd Senko

Institute of Information Systems, Vienna University of Technology, Wi@nAustria, Email:
(eiter| michael| jan)@kr.tuwien.ac.at

1 Introduction

Action languages [1] are a formal tool for reasoning abotibas, where an agent’s
knowledge about a domain in question is represented by ardgivk action description
that consists of logical formulas. For instance, considigihd bulb with a switch. When
the light is off, then toggling the switch turns the light @his can be expressed in the
action description languagg[2] by the dynamic causal law:

caused Light after Toggle N\ —Light. (1)

On the other hand, at every state, if the light bulb is brokemthe light is off. This
can be expressed by the static causal law:

caused — Light if Broken. (2
Other pieces of knowledge, like laws of inertia, may be atmtuded:
inertial Light, ~Light, Broken, —Broken.* 3)

The meaning of such an action descriptid@h, can be represented by a transition
diagram,T'(D)—a directed graph whose nodes correspond to the states ofofthe, w
S(D), and the edges to the transitior®(D), describing action occurrences. For in-
stance, the transition diagram of the above action degmmijx shown in Figure 12

We consider the problem of revising action descriptiondi@gresence of conflicts
between the action description and a set of conditions faxior observations) rep-
resented in an action query language [1]. For example, wirefight bulb is broken,
toggling the switch may lead to a state where the light istaff is expressed by:

possibly = Light after Toggle if Broken. 4)

Since at the state where the light bulb is broken and the igybff, toggling the light
switch is not possible, There is a conflict between the act@scription and this condi-
tion. Moreover, under further conditions, like the followgi query:

necessarily —Light after Toggle if Light, (5)

the conflict cannot be resolved just by dropping laws. In gané is difficult to for-

malize the process of arriving at appealing “repairs”, wtoéten depend on additional
knowledge or intuitions of the designer. We aim at suppgrandesigner in conflict
and modification analysis and developed a tool that allowsea to issue a number of

* Work supported by the Austrian Science Fund (FWF) under grant3&L804.
! Hereinertial L1, ..., Ly, stands for the causal lawaused L; if L, after L; fori € {1,...,k}.
2 The action description is “buggy” (the effects of toggling the switch are aperly described).

{}, {Toggle} {3 {3
—Broken —Broken Broken
Light {Toggle} —Light —Light
NPT 4

Fig. 1. Transition diagram of the action descriptifril), (2), (3)}.

relevant tests on an action descriptiorCiand its associated transition diagram in the
presence of conditions. The tool computes answers to tiease by answer-set pro-
gramming, revealing possible causes of conflicts or effectgrtain modifications.

2 Tests

The tests a designer can issue by our tool, resemble thd@pseabout a set of queries
(conditions),Q, and D, respectivelyl’(D), as identified in [3] (see also below). Al-
though the formal statement of these questions served dm#ie for implementing a
corresponding test library for the system, we confine heentmformal treatment and
refer to [3] for details. As there, focusing on dynamic aspeg(D) is assumed to be
correct and hence static laws need not be modified.

Tests on queries and causal law$o better understand the reasons for conflicts, the
designer may want to check whether the given quefiesake sense with respect to
each other, find out which causal laws violate certain qaeide whether repairing
an action description can be done without modifying somesaklaws, resp. whether
certain causal laws need to be modified:

D1: Is @ contradictory relative td?

D2: If D does not satisfy a particularecessarily-queryq in @, which dynamic
causal laws inD violate¢?

D3: Can we resolve a conflict betwedn and @, without modifying a setD, of
causal laws inD?

D4: Do we have to modify a seb, of dynamic causal laws i) to resolve a
conflict betweenD and@Q?

Example 1.In our running example, if) consisted of the querpossibly Light A
Broken after Toggle if True then,@ would be contradictory relative t& (no state
in S(D) satisfiesLight and Broken), while @ = {(4)(5)}, is not contradictory[@1).

Tests on states and transition<ernatively, the designer may want to extract informa-
tion from T'(D). For instance, information about states, respectivehsit®ns, violat-
ing a query in @, or information about candidates for transitions, that doconstitute
transitions due tainder-specificatioli.e., not every fluent is causally explained):

T1: Which states of (D) that satisfy a given formula, violateq?

T2: Given formulas) and¢, which transitiongs, A4, s’) of T'(D) such thats sat-
isfies¢ ands’ satisfies), violateq?

T3: Given aliteralL, for every state of T'(D) such that satisfiesy, is there some
under-specified transition candidate= (s, A, s’) for D such thak’ satisfiea) AL
and L is under-specified relative t@?

T4: Which transition candidates = (s, A, s’) for D such thats satisfiesp ands’
satisfies) are under-specified?

Example 2.In Ex. 1, if we just consider states where the light is on (ile= Light).
Then the only state at which a query@fis violated is{ Light, = Broken} (T1).

3 Implementation

To compute test answers, we use disjunctive logic programriLP) — disjunction

is actually needed due tb%-completeness of most of the tests [3]. We translate action
description, queries, and test into a DL program, and callDhP solver DLV?3 to
compute the models of this program, which encode the ansitie dest performed.

The translation of an action description and
queries into a logic program is uniform for all
tests, and each test has been encoded in a ‘meta-
program’ which operates on these translations,

[Queries Q) } Action Description D)

Nl

=)

e i.e., input programs. Figure 2 depicts the archi-
DLP Transiator '- tecture of our tool. It is a command-line ori-
v ented Perl script consisting of two main parts:
DLV ” the DLP Translatorand aModel parser After
T pre-processing the input and translatipn toa DITP,
Model parser |-+ calls to DLV are executed and their output is
post-processed into human-readable form by the
data flow control flow Model parser. The tool operation is controlled
T - by the first command-line parameter that speci-
Fig. 2. Tool Architecture. fies the type of test to perform (e.gT1). The

remaining parameters are supposed to be input
files, i.e., text files, where each line either starts
with one of the following keywords:

Action/Fluent: declares a new action or fluent literal;
Inertial/Caused: describes an inertia, static or dynamic law;

Possi bl y/ Necessarily: describes a respective type of query;
Initial/Successor: describes a condition on a stategndv in tests);

or, otherwise, is directly copied to the output (e.g., to bddkground knowledge).

TheDLP Translatorcompiles the inpub and@ into a DLP representation on a file,
which is combined with the fixed meta-program for the issuesd to a single program
on which DLV is invoked. The output of DLV (i.e., the answetsjds then processed
by the Model parser.

Model parsing is specific for each test: some tests yieldhgeahswers by means
of inconsistency (no model). E.g., no model for tBdtmeans that the queries are not
contradictory, whereas for some tests models encode &dtysuch as violating states
(T1,T3), violating transitionsT2), dynamic causal laws that violate a queB2}, etc.

Shttp://ww. dl vsystem com

While this information is encoded in DLP atoms, the Model pagxints the essential
information in a human-readable format.

For user convenience, our implementation allows for gensdtements as short-
cuts in an action description using fluents and rules wittapaters (i.e., variables).
E.g., to extend our example to multiple light bulbs, one neyrite (1) as:

caused light(X) after toggle, -light(X) requires bul b(X).
where the keyword equi r es marks type information for variabl&, provided by the
background, e.g.:bul b(green). bul b(yel | ow). bul b(red).

4 Usage of the System

We now demonstrate a possible session of a designer usinigauve assume that the
action description consisting of (1), (2), and (3) is pr@ddn a fileexanpl e. i n, and
that the queries (4) and (5) are in filesanpl e. pos andexanpl e. nec, respectively.

First, the designer wants to check whether a query is vidlatall (T1 andT?2):
./ ad-query -T1 exanple.in exanple.pos
VI OLATI NG STATE: broken. —light.
.lad-query -T2 exanple.in exanple. nec
VI OLATI NG TRANSI TION: (—broken. light.), (—broken. light.)
Since both queries are violated, she wonders whether tiesyostradictory D1):
./ ad-query -Dl1 exanple.in exanpl e. nec exanpl e. pos
The set of queries is not contradictory.
Thus, the action description can be repaired such that hahag are satisfied. How-
ever, is it inevitable to modify the existing causal lawsieD4 with Dy = D)?
Because the answer is ‘'yes’ ((4) is violated at stateien, —light)), she might ask
whether at least the inertia laws can be kept by runningd8swith Dy = D—{(1)}.
From the answer, ‘yes’, she eventually knows that the dyoaeuiisal law (1) has to be
modified (indeed, this law does not properly reflect the ¢ffetren the bulb is broken).

5 Conclusion

Our tool ad-query, which is available aswv. kr .t uwi en. ac. at/research/

ad- query/ , is to our knowledge the first tool to answer queries on aa&striptions

in C in the context of revision and design as described. The ouwersion implements

a common fragment af and queries (heads of laws are literals and other formutas ar
conjunctions of literals). Ongoing work will extend the ¢arage and consider addi-
tional tests, as well as a methodology for using the tool.

References

1. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transacdtion Artificial Intelli-
gence3 (1998) 195-210

2. Giunchiglia, E., Lifschitz, V.: An action language based on caugalbestion: Preliminary
report. In: Proc. AAAI '98, AAAI Press (1998) 623-630

3. Eiter, T., Erdem, E., Fink, M., Senko, J.: Resolving conflicts in actiescriptions. In: Proc.
ECAI 2006. Sedt t p: / / ww. kr. t uwi en. ac. at/ resear ch/ ecai 06. pdf .

