
The DMCS Solver for
Distributed Nonmonotonic Multi-Context Systems?

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and
Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

1 Introduction

The DMCS system is an implementation of the equilibrium semantics for heterogeneous
and nonmonotonic multi-context systems (MCS) [3], which feature contexts with het-
erogeneous and possibly nonmonotonic logics. Each context in an MCS comprises of
two parts: a local knowledge base and a set of bridge rules that can access the beliefs of
other contexts and add new information to the knowledge base. In this setting, contexts
are loosely coupled, and may model distributed information linkage applications; thus it
is natural to have a system that allows for the distributed evaluation of MCS.

In an MCS M = (C1, . . . , Cn), each context Ci is characterized by a knowledge
base kbi and a set of bridge rules bri. In our implementation, each kbi is in DLV syntax
as in [6]. The bri are sets of nonmonotonic rules

p0 ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm).

where the (ck : pk) are bridge atoms; the index ck refers to a context Cck and pk
is a possible belief of Cck ; intuitively, the atom is true if pk is in the belief set of
context Cck . If the body evaluates to true with respect to a belief state, which is a
sequence S = (S1, . . . , Sn) of belief sets Si of Ci, 1 ≤ i ≤ n, then p0 has to be added
to kbi. The semantics of M is then given in terms of stable belief sets (called equilibria).
Partial Equilibria are equilibria in a sub-MCS of M induced by a single context Ck resp.
a collection Ck1

, . . . , Ckj
of contexts.

Example 1. Consider an MCS M = (C1, C2), where C1, C2 have answer set programs
in the local knowledge bases; specifically

kb1 = {a1 ← b1;⊥ ← not b1} and br1 =
{
b1← (2 : a2)

}
;

kb2 =
{
a2 ∨ b2←

}
and br2 = ∅.

Then S = ({a1, b1}, {a2}) is the only equilibrium of M ; as well as the only partial
equilibrium of M w.r.t. C1. Note that w.r.t. C2, M has two partial equilibria: S(1) =
(ε, {a2}) and S(2) = (ε, {b2}) (here ε means the context is not reachable).

? This research has been supported by the Austrian Science Fund (FWF) project P20841 and by
the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

dmcsm

dmcsd
at Ck

dmcsd

dmcsd

dmcsd

dmcsc

models
registration

query

(a) System Architecture

dmcsc
dmcsd
at C1

dmcsd
at C2

dmcsm

(b) Components of Ex. 2

Fig. 1: DMCS System Architecture

The algorithm in [4] describes a generic distributed procedure for evaluating (partial)
equilibria of multi-context systems. It has been refined with an effective decomposition
technique in [1]. Our DMCS system comprises both algorithms and allows for MCS
with contexts that have propositional answer set programs as knowledge bases. Initial
experimental results with the DMCS system were shown in [1, 4].

The basic idea for our system [4] is to take the bridge rules and the knowledge base
of a context, compile them to a propositional theory, and use a SAT solver to compute the
models. The distributed algorithms then take care of combining the models and generate
equilibria at the context that initiated the computations.

DMCS is a purely distributed framework written in C++. It uses clasp [5] for local
model building. The system is available at

http://www.kr.tuwien.ac.at/research/systems/dmcs/.

2 System Architecture and Evaluation

The architecture of DMCS is outlined in Figure 1a, which has the following main
components: (i) a front-end dmcsc for querying the multi-context system; (ii) daemons
dmcsd, where each of them represents a context and interacts with the others; a daemon
has four modules, namely Loop Formula, SAT Solver, DMCS, and Network Interface
(cf. Figure 2b); and (iii) a component dmcsm holding meta information about the MCS
that has been collected from each context. The system has four stages which are briefly
described as follows:
System start-up. At this stage, all running dmcsd processes register at the dmcsm,
provide their own set of bridge rules, alphabet as well as port and host name (Figure 2a).
With this information, the dmcsm component identifies the topology of the system and
gets ready to answer any question regarding this meta knowledge.
Initialization of dmcsd. Upon initialization, each dmcsd utilizes the Loop Formula
module to transform its local knowledge base and bridge rules into a SAT theory denoted
by π(Ck) in DIMACS format (see [4] for details). Then, it starts listening for incoming
requests from other daemons, or from queries of dmcsc described next.

dmcsm

dmcsd
at C1

dmcsd
at Cn

br1Σ1

brn Σn

(a) Start-up

DMCS

SAT Solver

Network
interface

request belief states

request belief states

Loop
Formula

Ck

dmcsmM

belief
states

π(Ck)

Πk

dmcsd at Ck

(b) dmcsd System Architecture

Fig. 2: DMCS System

Querying the system. When the user wants to know all partial equilibria of the system
w.r.t. a starting context Ck, she uses dmcsc to pose the query. She may specify variables,
which will be provided as the initial request to Ck. First, dmcsc inquiries the dmcsm
component about Ck and gets back the connection settings of this context. Then, dmcsc
sends the query to the respective dmcsd representing Ck and waits for the results.
Evaluating the System. After dmcsc has sent a query to the dmcsd process that rep-
resents the starting context Ck, the daemon computes partial belief states w.r.t. interface
variables and projects unwanted variables away. If Ck needs beliefs from neighboring
contexts, it sends a request to them and awaits their belief states, which will be con-
sistently combined with the local beliefs of Ck. Essentially, those requests look just as
queries sent from dmcsc, and every dmcsd will process them in a uniform manner.
After all neighbors have been addressed, Ck returns the partial equilibria to the client,
who presents them to the user.

The algorithm used in dmcsd is an ASP logic instance of the generic DMCS al-
gorithm presented in [4]. Alternatively, dmcsd may use an adapted version of this
algorithm, DMCSOPT, which exploits dependencies in the MCS, uses economically
small representations of them, and uses minimal interface variables needed for minimiz-
ing data transmission (see [1]). Here, query plans Πk w.r.t. Ck are key for guiding the
evaluation process and may be provided by dmcsm.

3 System Usage

For a concrete usage scenario of DMCS, we reconsider the MCS in the example above.

Example 2 (cont’d). In order to evaluate our example, one has to set up a system as
illustrated in Figure 1b, by executing two start up calls, possibly on different machines.

$ dmcsd --context=1 --kb=C1.kb --br=C1.br --manager=HOST:PORT
$ dmcsd --context=2 --kb=C2.kb --br=C2.br --manager=HOST:PORT

The command-line argument --context tells the daemon the context id that it will
represent. The knowledge base and the bridge rule files are provided via --kb and --br,
resp. The --manager option is used to set up the location of the dmcsm component.

To compute equilibria of M w.r.t. context C1, the user queries the dmcsm to get the
connection settings for the dmcsd representing C1 using the following command (the
parameters have the same meaning as above).

$ dmcsc --context=1 --manager=HOST:PORT

After dmcsd at C1 finishes its computations, it delivers the result back to dmcsc.
A list of the equilibria is then enumerated to the user:

({a1,b1}, {a2})
Total Number of Equilibria: 1

It is possible to specify for DMCS a set of atoms of interest; other atoms will then
be discarded. Unless such a set is given, dmcsc will assume its default settings and
proceed with standard operations.

4 Conclusions

The DMCS system is, to the best of out knowledge, the first implementation of a fully
distributed algorithm to evaluate heterogeneous and nonmonotonic multi-context systems.
Other related systems like the one in [7] does not allow cyclic references in bridge rules,
and the system in [2] is based on a query evaluation approach.

The method for computing partial equilibria induced by some context can be easily
extended to compute equilibria of the whole system; this, however, may be of less interest
from the perspective of an individual context (e.g., in a peer-to-peer style evaluation).

Our ongoing work aims at further extending the implementation and optimization,
as well as on dynamic configuration of MCS by instantiating generic bridge rules.

References

1. Bairakdar, S., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of distributed
nonmonotonic multi-context systems. In: JELIA’10. Springer (September 2010)

2. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in
ambient intelligence. Knowl Inf Syst. (2010), published online: 9 April 2010

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI’07. pp. 385–390. AAAI Press (July 2007)

4. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR’10. pp. 60–70. AAAI Press (May 2010)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI’07. pp. 386–392. AAAI Press (January 2007)

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)

7. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In:
ESWC’05. pp. 361–376. Springer (May 2005)

