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Abstract. We present a new semantics for Description Logic programs [1] (dl-
programs) that combine reasoning about ontologies in description logics with
non-monotonic rules interpreted under answer set semantics. Our semantics is
equivalent to that of [1], but is more logical in style, being based on the logic
QHT of quantified here-and-there that provides a foundation for ordinary logic
programs under answer set semantics and removes the need for program reducts.
Here we extend the concept of QHT-model to encompass dl-programs. As an
application we characterise some logical relations between dl-programs, by mat-
ing the idea of QHT-equivalence with the concept of query inseparability taken
from description logics.

1 Introduction

Amalgamating description logics and nonmonotonic logic programs in order to com-
bine rule-based reasoning with ontologies is a growing field of research in knowledge
representation and reasoning. Its relevance stems from the aim to build powerful AI
systems for Semantic Web reasoning, gradually extending the expressiveness and rea-
soning capabilities of their underlying formal framework. There have been several dif-
ferent proposals for merging description logics and logic programs into a more tightly
or a more loosely integrated semantical framework. Among the best known methods
are those based on stable model semantics or answer set programming (ASP); see eg.,
[1–6]. We shall focus on dl-programs [1] which are given as a pair D = (T ,P), where
T is a description logic (classical) knowledge base, and P is a set of so-called dl-rules.
Intuitively, the intended models are simply models of P . However the rules of P may
contain special expressions, called dl-atoms, that refer to concepts in T . These atoms
are evaluated in a candidate model for P by posing queries to the classical base T .

As for ordinary ASP, the semantics of dl-programs has been defined by means of
program reducts of P . However, it is more involved, since the meaning assigned to
concepts appearing in dl-atoms via T has to be taken into account as well, and the
interpretations of the two parts of the program are to some extent distinct. While we
can understand the T component roughly in the sense of classical logic, the answer set
semantics does not associate any logic to the P component and thus to the dl-program
as a whole. This is clearly an obstacle to studying intertheory relations and modularity
properties that are relevant for applications. It is therefore useful to try to reformulate
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the answer set semantics of dl-programs in a style that is closer to ordinary logical
semantics.

Fortunately there is a suitable logical foundation for ASP. Answer sets can be under-
stood as minimal models in an ordinary, monotonic logic: the logic of here-and-there.
In first-order form this logic, called the quantified logic of here-and-there, in symbols
QHT, provides a foundation for non-ground answer set programs [7]. In QHT one
can define a notion of minimal model, called equilibrium model [8], that exactly corre-
sponds to answer sets. The logic associated with just these minimal models is known
as equilibrium logic. An important feature of QHT is that equivalence in this logic is
a necessary and sufficient condition for two programs or nonmonotonic theories to be
strongly equivalent, meaning that they are inter-substitutable without loss in all con-
texts [15]. We may call this the strong equivalence property.

If hybrid theories like dl-programs are to become a successful, practical tool in
knowledge-based reasoning, we need to study how ontologies and rules can be com-
bined in a modular fashion. Knowing for instance in which contexts one hybrid theory
can be replaced by another without loss is important for formalising knowledge and
for transforming and simplifying theories. There has already been a strong interest re-
cently in developing logical treatments of modularity for ontologies reconstructed in
description logics (DL). An approach based on conservative extensions and entailment
and difference concepts can be found in [9–11]. On the other hand, in ASP, work on
(strong) equivalence relations between programs began already in [12], and the study
of variations of this basic concept has formed a very active area of research since, espe-
cially as a tool for program transformation and optimisation. Recently focus has turned
from propositional programs to theories and programs in first-order logic [13–15]. This
is important for the study of dl-programs where first-order languages are needed.

The aim of this paper is to provide a more logical style of semantics for dl-programs
by extending the concepts of QHT-model and equilibrium model to embrace dl-rules.
This helps to make the semantics simpler and more uniform. As an illustration of its use
we consider ways to define and study strong forms of equivalence between programs
that may be useful for combining ontologies and rules in a modular fashion. Briefly:

– We formulate different, logical semantics for dl-programs using QHT-models, re-
moving the need for program reducts.

– We combine the idea of QHT-equivalence with the concept of query inseparabil-
ity and apply the new semantics to characterise different notions of equivalence
between dl-programs.

– Besides strong and weak answer set semantics for dl-programs, we define an alter-
native semantics which precisely captures the semantics of dl-programs realised as
HEX programs, ie., under the so-called FLP-reduct [16].

In the next section we introduce necessary background, before characterising dl-
program semantics by means of QHT in Section 3. We study equivalence concepts for
dl-programs in Section 4, followed by a discussion of extensions to dl-programs under
HEX semantics and conclusions (Sections 5 and 6).



2 Preliminaries

Quantified Equilibrium Logic. In this paper we restrict attention to function-free lan-
guages with a single negation symbol, ‘¬’, working with a quantified version of the
logic here-and-there. In other respects we follow the treatment of [17, 7]. We consider
first-order languages L = 〈C, P 〉 built over a set of constant symbols, C, and a set of
predicate symbols, P . The sets of L-terms, ground L-terms, L-formulas, L-sentences
and atomic L-sentences are defined in the usual way. If D is a non-empty set of domain
constants, we denote by At(D,P ) the set of ground atomic sentences of 〈D,P 〉. By an
L-interpretation I over a set D we mean a subset of At(D,P ). A classical L-structure
can be regarded as a tuple M = 〈(D,σ), I〉 where I is an L-interpretation over D and
σ : C ∪D → D is a mapping, called the assignment, such that σ(d) = d for all d ∈ D.
If D = C and σ = id, M is an Herbrand structure.

A here-and-there L-structure with static domains, or QHT(L)-structure, is a tuple
M = 〈(D,σ), Ih, It〉 where 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures
such that Ih ⊆ It. We can think of a here-and-there structure M as similar to a first-
order classical model, but having two parts, or components, h and t, that correspond to
two different points or “worlds”, ‘here’ and ‘there’, in the sense of Kripke semantics
for intuitionistic logic [18], where the worlds are ordered by h ≤ t. At each world
w ∈ {h, t} one verifies a set of atoms Iw in the expanded language for the domain D.
We call the model static, since, in contrast to say intuitionistic logic, the same domain
serves each of the worlds. Since h ≤ t, whatever is verified at h remains true at t. The
satisfaction relation for M is defined so as to reflect the two different components, so
we write M, w |= ϕ to denote that ϕ is true in M with respect to the w component.
The recursive definition of the satisfaction relation forces us to consider formulas from
〈C ∪ D,P 〉. Evidently we should require that an atomic sentence is true at w just in
case it belongs to the w-interpretation. Formally, if p(t1, . . . , tn) ∈ At(C ∪ D,P ), r
and s are L-terms, and w ∈ {h, t} then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw.

M, w |= r = s iff σ(r) = σ(s)

The second clause means that our semantics satisfies the axiom of “decidible equality”

∀x∀y(x = y ∨ x 6= y).

Then |= is extended recursively using the usual Kripke truth conditions for ∧,∨,→
,¬,∀,∃ in intuitionistic logic bearing in mind our assumptions about the two worlds h
and t and the single domain D, see eg. [18, 7].

Truth of a sentence in a model is defined as follows:M |= ϕ iffM, w |= ϕ for each
w ∈ {h, t}. In a model M we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written in
the form 〈U, H, T 〉, where U = (D,σ). A structure 〈U, H, T 〉 is called total if H = T ,
whence it is equivalent to a classical structure.

The resulting logic is called Quantified Here-and-There Logic with static domains
and decidable equality, and denoted in [15] by SQHT=, where a complete axiomai-
sation can be found. To simplify notation we drop the labels for static domains and



equality and refer to this logic simply as quantified here-and-there, QHT. Quantified
equilibrium logic, or QEL, is based on a suitable notion of minimal model.

Definition 1. Among QHT-structures over a given language we define the order £

by: 〈(D,σ), H, T 〉 £ 〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′.
If the subset relation is strict, we write ‘¢’. Let Γ be a set of sentences and M =
〈(D,σ), H, T 〉 a model of Γ .M is said to be an equilibrium model of Γ if it is minimal
under £ among models of Γ , and it is total.

Answer sets. We assume the reader is familiar with the usual definitions of answer
set based on Herbrand models and ground programs, eg. [19]. Two variations of this
semantics, the open [20] and generalised open answer set [5] semantics, consider non-
ground programs and open domains, thereby relaxing the standard name assumption.
In addition, [21] offers a very general concept of stable model for arbitrary first-order
formulas, defining the property of being a stable model syntactically via a second-order
condition.

The correspondence between QEL and answer set semantics is by now quite well
known and has been described in several works (see [22, 17, 7, 21]). By the usual con-
vention, when P is a logic program with variables we consider the models of its univer-
sal closure expressed as a set of logical formulas. It follows that if P is a logic program
(of any form), a total QHT model 〈U, T, T 〉 of P is an equilibrium model of P iff it is
a stable model of P in the sense of [21]. Moreover, two logic programs P1 and P2 are
strongly equivalent iff they coincide on their QHT-models. Placing additional restric-
tions on QHT models, we obtain a correspondence to other notions of answer set such
as those based on a standard name assumption.

DL-programs. Turning to dl-programs [1, 23], we start without restricting the syntax
of the classical part or the knowledge base that is combined with logic program rules;
later on we shall consider some concepts and properties that apply to dl-programs based
on (particular) description logics (for a background and corresponding notation used
cf. [24]). In other words, we consider arbitrary function-free first-order theories that are
combined with dl-rules and, for the moment, we allow for arbitrary formulas as queries
in dl-atoms. Moreover, disjunction is allowed in rule heads, while we require that the
classical theory and the logic program share a single set of constants.

More formally, let LT = 〈C, PT 〉 and LP = 〈C, PP〉 be function-free first-order
languages, such that PT ∩ PP = ∅. Symbols in PT , respectively in PP , are called
classical predicates and rule predicates, respectively. A dl-atom is of the form

DL[S1op1p1, . . . , Smopmpm; Q](t1, . . . , tn), (1)

where Si ∈ PT and pi ∈ PP are k-ary predicate symbols, opi ∈{], −∪, −∩}, Q is an
n-ary classical predicate or a formula in LT with n free variables, and t1, . . . , tn are
terms. A dl-rule is like a logic program rule of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn → h1 ∨ . . . ∨ hl (2)

with the restriction that head atoms h1, . . . , hl are equality-free atoms of LP , and body
atoms b1, . . . , bn are either atoms of LP or dl-atoms. The positive body {b1, . . . , bm}



and the negative body {bm+1, . . . , bn} of a dl-rule r are denoted by B+(r) and B−(r),
respectively. The expression h1 ∨ . . . ∨ hl is abbreviated by Hd(r). A dl-program over
L = 〈C, PT ∪PP〉 is a pair D = (T ,P), where T is a finite first-order theory over LT
and P is a set of dl-rules.

Example 1. Consider the following vocabulary dealing with wine: constants frb and
ldm are used for ‘Freixenet Brut’ and ‘Lambrusco di Modena’, respectively; the classi-
cal predicates W (x), R(x), S(x), and L(x), represent the concepts of White Wine, Red
Wine, Sparkling Wine, and Lambrusco; w(x), r(x), s(x), and l(x) are rule predicates
intended to reason about the above concepts in rules; an additional rule predicate sc(x)
encodes whether a wine is served cold.

Now, let (T ,P) be the following dl-program over this vocabulary.

T P
L v R u S l(ldm) sc(X) ∨ ¬sc(X)

¬W u ¬R v ⊥ s(frb) l(X) → ¬sc(X)
R uW v ⊥ DL[S ] s, L ] l; R](X) → r(X) ¬r(X) → w(X)

Intuitivey, the dl-rule says: in T add to S the contents of s and add to L the contents of
l; if R(X) now follows (in the enlarged T ), then r(X). 2

Turning to the formal semantics of dl-programs, let us denote the set of dl-atoms in
a rule r, respectively in a set of rules P , by DL(r) and DL(P), respectively, and let
|=c denote classical entailment.

An Herbrand structure M = 〈U, I〉 (with U = (D,σ)) is a model of a literal
l under T if l ∈ I . It is a model of a ground dl-atom of the form (1) under T if
T ∪

⋃m
i=1 Ai(I) |=c Q(t1, . . . , tn), where

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ],
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪,
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩,

and e = e1, . . . , en are ground terms.
As usual, M is a model of a ground dl-rule r under T if M is a model of some

hi ∈ {h1, . . . , hl} under T , whenever M is a model of all bi ∈ {b1, . . . , bm} under T
and it is no model of any bi ∈ {bm+1, . . . , bn} under T . M is a model of a dl-program
D = (T ,P) if M is a model of every r ∈ grU (P) under T .

Furthermore, given a dl-program D = (T ,P), the weak dl-transform of P relative
to T and a model M of P , denoted wPMT , is the logic program obtained from grU (P)
by deleting

– each r∈ grU (P) such that either M is not a model of some α∈ B+(r)∩DL(r),
or a model of some α∈B−(r), and

– all literals in B−(r) ∪ (B+(r) ∩DL(r)) from each remaining r ∈ grU (P).

If M is an answer set of the logic program wPMT , then M is a weak answer set of D.
Now assume that, D = (T ,P) has an associated set of ground dl-atoms DL+(P)

known to be monotonic, and for any ground rule r, let DL?(r) = DL(r) \DL+(P).
The strong dl-transform of P relative to T and a model M of P , denoted sPMT , is the
logic program obtained from grU (P) as before replacing DL(r) by DL?(r). If M is
the least model of (T , sPMT ), then M is a strong answer set of D.



3 Logical Semantics

We reformulate the semantics for dl-programs in a style that is closer to ordinary logical
semantics and in particular to the logic QHT. This makes it easier to characterise
logical properties of dl-programs and relations between them.

Dl-atoms and rules are defined as above in (1), (2). We use the usual semantics for
QHT, so the truth conditions for ordinary atoms, conjunctions, disjunctions, negation
and implications in a model M = 〈U, H, T 〉 are the same as before. For dl-atoms we
define three semantics, the last two of which correspond to weak and strong answer sets
respectively. Informally these semantics work as follows. The truth of a dl-atom (1) is
checked as before by inspecting whether the query Q follows classically from a certain
extension of the theory T . The difference is that, as a base model for computing the
Ai, as well as for defining the truth of a dl-atom, we now use a QHT model instead
of a classical Herbrand model. This allows a more uniform treatment of the different
operators. We begin with a semantics that corresponds to a variation of strong answer
sets.

Definition 2 (models of dl-atoms). Let α be a ground dl-atom of the form (1) and let
M = 〈U,H, T 〉 be a QHT structure. Then,M is a model of α under T iffM, w |= α
for w = h, t; where M, w |= α iff T ∪

⋃m
i=1 Ai(w) |=c Q(t1, . . . , tn), where

– Ai(w) = {Si(e) | M, w |= pi(e)}, for opi = ],
– Ai(w) = {¬Si(e) | M, w |= pi(e)}, for opi = −∪,
– Ai(w) = {¬Si(e) | M, w |= ¬pi(e)}, for opi = −∩,

and e = e1, . . . , en are ground terms.

Definition 3 (weak models of dl-atoms). Let α be a ground dl-atom of the form (1)
and let M = 〈U, H, T 〉 be a QHT structure. Then we say that M is a weak model of
α under T iff M, w |= α for w = h, t; where M, t |= α is defined as in the semantics
of Definition 2 and M, h |= α ⇔M, t |= α.

Observe that now (U, T ) need not be an Herbrand model. Notice that in the first seman-
tics operators are evaluated at both worlds h and t in the model, while in the second,
weak semantics they are essentially evaluated only at t which then determines the value
at h.

Finally we introduce a variant of the first semantics that corresponds to strong an-
swer sets. For this we need to distinguish between atoms known to be monotonic and
others. As before we use the symbols DL+(P) and DL?(P) for these. Let us adopt the
convention that all atoms containing an occurrence of the operator opi = −∩ belong to
DL?(P), while all others are in DL+(P).

Definition 4 (strong models of dl-atoms). Let α be a ground dl-atom of the form (1)
and let M = 〈U, H, T 〉 be a QHT structure. Then we say that M is a strong model
of α under T iff M, w |= α for w = h, t; where for all atoms α, M, t |= α is defined
as in the semantics of Definition 2, while M, h |= α is defined as in the semantics of
Definition 2 if α ∈ DL+(P), and as in Definition 3, ie. by M, h |= α ⇔ M, t |= α,
otherwise.



A dl-rule r is true in a model M under T , in symbols M |=T r, if the rule is
satisfied according to the usual QHT semantics. We may suppress the subscript T if
the context is clear. The following property is important but easy to verify.

Proposition 1 (persistence). For any model M and rule r, M, h |= r ⇒ M, t |= r,
for each of the semantics.

The notions of model (resp. weak and strong model) and equilibrium model (resp.
weak, strong equilibrium model) are now defined in the obvious way.

Definition 5. A QHT structure M = 〈U, H, T 〉 is a model (resp. weak model, strong
model) of a dl-program D = (T ,P) if M |=T r for each r ∈ P under the semantics
(resp. the weak, the strong semantics) for dl-atoms. It is said to be an equilibrium model
(resp. weak, strong equilibrium model) ofD if H = T andM is a minimal model (resp.
weak, strong model) of P under T wrt £, ie. there is no model of D (resp. weak model,
strong model of D) of the form 〈U,H ′, T 〉 where H ′ is a proper subset of H .

For reasons of space we do not give a detailed proof of our main theorem, Proposi-
tion 2 below, which established the correctness of our semantics. However the proof is
based on the following two lemmas which are fairly routine. We formulate for the case
of strong models; similar properties hold for weak models.

Lemma 1. Let M = 〈U, H, T 〉 be a QHT strong Herbrand model of P under T .
Then 〈H,T 〉 |= sPMT .

Lemma 2. Let M = 〈U, H, T 〉 be a QHT strong Herbrand model of P under T .
Then M is a minimal model of P under T wrt £ if and only if 〈U, H〉 is a minimal
model of (T , sPMT ).

From these properties we can derive:

Proposition 2. A total Herbrand QHT structure M = 〈U, T, T 〉 is a weak (resp.
strong) equilibrium model of a dl-program D = (T ,P) iff 〈U, T 〉 is a weak (resp.
strong) answer set of D.

Example 2. Reconsider D = (T ,P) from Example 1 with universe U = ({frb, ldm},
id). The structuresM = 〈U, T, T 〉 andM = 〈U, T ′, T ′〉, where T = {s(frb), l(ldm),
w(frb), r(ldm)} and T ′ = T ∪ {sc(frb)}, are weak and strong equlibrium models of
D (note that the only dl-atom is monotone, and that, for every {l(ldm)} ⊆ H ⊂ T ′,
the dl-atom is true for ldm). They are also weak, as well as strong, answer sets of D. 2

Although the alternative semantics is therefore equivalent to the original one, there
are several features worth emphasising. First, since we have removed the need for
reducts, we can extend the semantics to more general types of rules and formulas just
using the usual truth conditions for QHT models.3 Secondly, although we shall con-
sider here just the usual dl-programs with Herbrand models, our semantics is not limited
to this and we could in principle consider non-Herbrand interpretations, as in the case

3 In principle we could extend the syntax of rules r to any formula providing that Proposition 1
continues to hold.



of hybrid knowledge bases. Thirdly, we now have a more homogeneous and logical
semantics that may help us derive logical properties of dl-programs.

Finally, an advantage of the first semantics is that, by using QHT structures, we
do not have to distinguish semantically between monotone and possibly non-monotone
operators. All operators are treated similarly. The difference between models and weak
models is merely that the former evaluate dl-atoms by looking only at the t-world.
Notice that although we apply the words ‘weak’ and ‘strong’ to models, these labels
are really used to reflect the difference between weak and strong equilibrium models or
answer sets. For example, while every strong equilibrium model is also a weak one, not
every strong model (or ordinary model) need be a weak one. Observe that if all dl-atoms
containing opi = −∩ are ‘pure’, in the sense that they do not contain occurrences of ] or
−∪, then the first semantics and the strong semantics coincide.

4 Equivalence Concepts

To illustrate the use of the new semantics, we introduce and study some concepts of
equivalence between dl-programs. We can consider different equivalence relations be-
tween dl-programs according to how the different components, T and P , are allowed to
vary. If D = (T ,P) is a dl-program, T ’ is a classical theory and P’ is a set of dl-rules,
then D ∪ T ′ stands for the program (T ∪ T ′,P) and D ∪ P ′ stands for the program
(T ,P ∪ P ′).
Definition 6 (Equivalence for dl-programs). Two dl-programsD1 andD2 are said to
be equivalent if they have the same equilibrium models, they are T -equivalent ifD1∪T
and D2 ∪ T are equivalent for any T , they are P-equivalent if D1 ∪P and D2 ∪P are
equivalent for any P , and they are strongly equivalent if D1 ∪ T ∪ P and D2 ∪ T ∪ P
are equivalent for any T and P .

Having the same equilibrium models is to be understood under any of the given
semantics. However, unless our results are specific to one semantics, we don’t further
specify which one. We also say that D1 and D2 are QHT-equivalent if they have the
same QHT models (in any of the given senses). Lastly, it is useful to introduce rela-
tivised versions of these concepts. Thus, if Σ is a signature or vocabulary and P is a set
of dl-rules, we say that P is a set of Σ-dl-rules if all classical predicates appearing in
any dl-atom are from Σ.

Definition 7 (Σ-equivalence for dl-programs). Given a signature Σ, two dl-programs
D1 and D2 are said to be Σ-T -equivalent if D1 ∪T and D2 ∪T are equivalent for any
theory T in Σ, they are Σ-P-equivalent if D1 ∪ P and D2 ∪ P are equivalent for any
set of Σ-dl-rules P , and they are strongly Σ-equivalent if D1 ∪T ∪P and D2 ∪T ∪P
are equivalent for any T and P , such that T in Σ and P is a set of Σ-dl-rules.

A first, simple observation is that if two ordinary answer set programs are strongly
equivalent they cannot be separated by additional dl-rules.

Proposition 3. Let Π1, Π2 be two strongly equivalent logic programs. Let R be any
set of dl-rules and let (T ,P1), (T ,P2) be dl-programs where P1 = Π1 ∪ {R} and
P2 = Π2∪{R}. Then (T ,P1) and (T ,P2) are equivalent under all the given semantics
for dl-programs.



This simple observation can be generalised. Notice that we keep T fixed in each case
since otherwise a given rule r ∈ R could have a completely different interpretation in
one of the extended dl-programs than it does in the other.

Proposition 4. Two dl-programs, (T ,P1) and (T ,P2), areP-equivalent (under a given
semantics) if and only if they are QHT-equivalent (under the same semantics).

Proof (Sketch). For the ‘if’ direction the argument is the same as for Proposition 3:
if (T ,P1) and (T ,P2) have the same QHT models, then, whatever set of dl-rules R
that is added to them will yield the same set of QHT models in each case, and hence
the same equilibrium models. For the ‘only if’ direction we can use the proofs of strong
equivalence theorems found in [15]. The only additional property we need to check for
the case of dl-rules is that if M = 〈U, H, T 〉 is a QHT model of a program P under
T , then M = 〈U, T, T 〉 is also a QHT model of P under T . But this is guaranteed by
the persistence property stated in Proposition 1. 2

We now turn to the case of a varying knowledge base. To deal with the situation
where T is allowed to vary, we consider an equivalence concept drawn from the area of
ontologies reconstructed in description logics (DL). We assume the reader is familiar
with the standard notions of TBox and ABox (see eg. the following references). In the
papers [9–11] on modular ontologies there are several slightly different terminologies
and notations. However, basically these works consider an ontology to be represented
by a TBox, while a knowledge base is a combination of a TBox together with an ABox.
We state here a definition from [11, 25]. To simplify notation we assume that some DL
is given, while Σ is a vocabulary or signature.4 Let T1 and T2 be TBoxes.

Definition 8. The Σ-query difference between T1 and T2, in symbols DiffΣ(T1, T2), is
the set of pairs (A, Q(x)) where A is an ABox and Q(x) ∈ Σ is a query such that
(T1,A) 6|=c Q(a) and (T2,A) |=c Q(a), for some tuple a of object names from A. We
say that T1 Σ-query entails T2 if DiffΣ(T1, T2) = ∅. Furthermore we say that T1 and
T2 are Σ-query inseparable if each Σ-query entails the other.

In other words, query inseparability means equivalence for all ABoxes and Σ-queries.
Let us turn to dl-programs and let us suppose for the moment that their classical part
comprises an ontology or TBox, so a dl-program has the form (T ,P) for some TBox,
T . Now the way in which a ground dl-atom is evaluated in an Herbrand interpretation
M is similar to the effect of adding an ABox A to T and then checking whether a
ground query Q(a) follows from (T ,A). This yields the following property. From now
on we make the assumption that the same syntactic class of queries is allowed in each
case of TBoxes and dl-programs, for example arbitrary queries, conjunctive queries or
some intermediate class.5

Proposition 5. Suppose that T1 and T2 are Σ-query inseparable TBoxes, and let P be
any set of Σ-dl-rules. Then the dl-programs (T1, P ) and (T2, P ) are equivalent.

4 For [11, 25] the signature does not include constant symbols.
5 In general the concept of query inseparability depends not only on the vocabulary Σ but also

on the given query language or syntax; different ones have been considered in the literature. To
save space we leave this variable implicit and merely suppose that the query language operating
over T in the DL is the same one that is used for evaluating dl-atoms in the dl-program.



In order to explore the notion of Σ-T -equivalence we can make use of the concept
of strong query entailment from [11]. The strong Σ-query difference between T1 and
T2, in symbols sDiffΣ(T1, T2), is the set of triples (T ,A, q(x)) such that T is a Σ-
TBox and (A, q(x)) ∈ DiffΣ(T1∪T , T2∪T ). Then T1 strongly Σ-query entails T2 if
sDiffΣ(T1, T2) = ∅, and T1 and T2 are strongly Σ-query inseparable if each strongly
Σ-query entails the other. Moreover, we say that T1 and T2 are strongly query insepara-
ble if they are Σ-query inseparable for any Σ. This leads to the following observation
by an obvious extension to the argument for Proposition 5.

Proposition 6. Suppose that T1 and T2 are strongly Σ-query inseparable TBoxes, and
let P be any set of Σ-dl-rules. Then (T1, P ) and (T2, P ) are Σ-T -equivalent.

An interesting result of [11] is that in some DLs, such as DL-Litebool, query and strong
query inseparability coincide and are equivalent to the notion of strong concept insep-
arability (also defined there). In that case we would have the consequence that if T1 T2

are Σ-query inseparable then the dl-programs (T1,P) and (T2,P) are Σ-T -equivalent.
By combining ideas from Propositions 4 and 5 we can obtain some sufficient con-

ditions for Σ-P-equivalence under varying TBoxes.

Proposition 7. LetD1 = (T1,P1) andD2 = (T2,P2) be QHT-equivalent dl-programs
where T1 and T2 are Σ-query inseparable TBoxes. ThenD1 andD2 are Σ-P-equivalent.

Analogous to Proposition 6, we obtain a ‘strong’ version of Proposition 7 by replacing
Σ-query inseparability by strong Σ-query inseparability.

Proposition 8. LetD1 = (T1,P1) andD2 = (T2,P2) be QHT-equivalent dl-programs
where T1 and T2 are strongly Σ-query inseparable TBoxes. Then the dl-programs D1

and D2 are strongly Σ-equivalent.

The following corollary that drops reference to Σ is straightforward. It also gener-
alises Proposition 4.

Corollary 1. Suppose T1 and T2 are strongly query inseparable. Then (T1,P1) and
(T2,P2) are strongly equivalent iff they are QHT-equivalent.

Further generalisations may be possible by applying the concept of relativised program
equivalence, but we leave this for future work.

To illustrate the above concepts, let us consider a simple example.

Example 3. Using the vocabulary of Example 1, let D1 = (T1,P1) and D2 = (T2,P2)
be dl-programs given by:

T1 T2 P ′
L v R u S l(ldm)

¬W u ¬R v ⊥ s(frb)
R uW v ⊥ R v ¬W sc(X) ∨ ¬sc(X)

W v ¬R l(x) → ¬sc(x)

and P1 = P ′ ∪ {r11 , r21 , r3}, P2 = P ′ ∪ {r12 , r22 , r3}, where r11 = w(X) → sc(X),
r12 = w(X) ∧ ¬sc(X) → ⊥, r3 =DL[S ] s, L ] l; S](X) ∧ ¬r(X) → w(X),
r21 = DL[S ] s, L ] l; R](X) → r(X), r22 = DL[S ] s, L ] l;¬W ](X) → r(X).



Suppose that T1 and T2 are TBoxes in DL-Litebool. If Σ is the classical language as
given in Example 1, then T1 and T2 are Σ-query equivalent and therefore strongly Σ-
query equivalent by the results of [11]. Moreover, D1 and D2 are QHT-equivalent. To
see the latter, first observe that the ordinary rules in each of the programs are strongly
equivalent. Secondly, the dl-atom DL[S ] s, L ] l; R](X) has the same models under
T1 as the dl-atom DL[S ] s, L] l;¬W ](X) has under T2, because in both theories the
concepts R and ¬W are equivalent. Therefore, D1 and D2 are strongly equivalent. 2

5 HEX Programs

Another type of hybrid theory, called HEX program, was introduced in [6]. This com-
bines answer set programs with higher-order atoms and external atoms. In particular,
the external atoms can refer, as in dl-programs, to concepts belonging to a classical
knowledge base or ontology. In such a case one can compare the semantics of the HEX
program with that of the corresponding dl-program. Although both are based on an-
swer sets, the two semantics are only partially in agreement. Specifically, as shown in
[6], they agree on programs all of whose external atoms (dl-atoms) contain only mono-
tone operators. Then, the answer sets of the HEX program coincide with the strong
answer sets of the dl-program.

The study of equivalence concepts for HEX programs in general is beyond the scope
of this work. However, we can easily deal with the case where such programs contain
external atoms having precisely the form of dl-atoms (monotonic or otherwise). For in
this case the HEX semantics is in agreement with our first, alternative semantics for dl-
programs, given in Definition 2. Without giving a detailed account of HEX programs,
we indicate briefly why this is so.

Formally, external atoms in HEX programs have their own special notation and
semantics. However, since dl-atoms can easily be simulated in HEX programs, for the
purposes of our comparison let us keep the usual notation as for dl-programs. In that
case, a HEX program is just a disjunctive logic program P containing rules of form
(2) whose bodies can contain dl-atoms of form (1). The interpretation of such rules is
similar to that of dl-programs except that a different form of program reduct is used. In
[6] this is called FLP-reduct following the first use of this notion in [16].

Assume that we are given such a HEX program P along with some knowledge base
T with respect to which the external atoms are evaluated (in what follows we shall
leave the T component as implicit). Then the truth of an external atom of form (1) in a
classical Herbrand model M is defined as for dl-programs in Section 4 above. Ground
rules are also satisfied in M in the same way. Given P and a classical Herbrand model
M = 〈U, T 〉, the reduct of P wrt. M, denoted by PM, is the set of all r ∈ grU (P)
such that M |= B(r). Then M is said to be an answer set of P iff it is a minimal
model of PM.

Proposition 9. Let P be a HEX program as above with external atoms in the form of
dl-atoms. A QHT Herbrand structure 〈U, T, T 〉 is an equilibrium model of P under
the semantics of Definition 2 if and only if 〈U, T 〉 is an answer set of P .



All our observations and results about equivalences of dl-programs hold for any of the
three semantics given. By Proposition 9 they carry over to HEX programs with external
access to a TBox T .

6 Conclusion

The logic QHT of quantified here-and-there provides a foundation for the answer set
semantics of logic programs, and sharing the same QHT-models is a necessary and
sufficient condition for two programs or theories to be strongly equivalent. In this paper
we have shown how the concept of QHT-model can be extended to embrace also dl-
programs interpreted under answer set semantics, removing the need for reducts and
allowing a more logical style of semantics. Slight variations in the concept of QHT-
model give rise to the weak and the strong answer set semantics as well as to a variation
based on HEX programs.

As an application of the new semantics we considered some strong forms of equiv-
alence between dl-programs as a first step towards the modular combination of ontolo-
gies and rules. Since a dl-program is a pair (T ,P), strong forms of equivalence are
obtained by considering theory extensions, which can be relativised to either the T
component or the P component.

As in ordinary answer set programmming, the property that two theories have the
same QHT models is again significant. This property is a necessary and sufficient
condition for the P-equivalence of dl-programs, if they are based on the same classical
theory T or on possibly different but query inseparable TBoxes.

For the other main kind of equivalence, where the T component may vary, the situa-
tion is as follows. For dl-programs based on TBoxes we can use the idea of Σ-query in-
separability to characterise forms of T -equivalence for dl-programs based on the same
P component or on QHT-equivalent programs. The concept of Σ-query inseparability
has been studied for description logics such as DL-Lite and EL and model-theoretic
characterisations are available and in some cases implemented [11, 26, 9, 25].

One direction of future work is to study modularity issues and equivalence concepts
and their properties for dl-programs based on specific DLs such as EL. Such properties
may include algorithmic aspects and an analysis of computational complexity. Another
direction of work is the study of more specific and relativised notions of equivalence
between programs.
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