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Abstract

Disjunction is generally considered to add expressive power
to logic programs under the stable model semantics, which
have become a popular programming paradigm for knowl-
edge representation and reasoning. However, disjunction is
often not really needed, in that an equivalent program with-
out disjunction can be given. In this paper, we consider the
question, given a disjunctive logic program,P , under which
conditions an equivalent normal (i.e., disjunction-free) logic
programP ′ exists. In fact, we study this problem under dif-
ferent notions of equivalence, viz. for ordinary equivalence
(considering the collections of all stable models of the pro-
grams) as well as for the more restrictive notions of strong
and uniform equivalence. We resolve the issue for proposi-
tional programs on which we focus here, and present a sim-
ple, appealing semantic criterion from which all disjunctions
can be eliminated under strong equivalence. Testing this cri-
terion is coNP-complete, but the class of programs satisfying
it has the same complexity as disjunctive logic programs in
general. We also show that under ordinary and uniform equiv-
alence, disjunctions can always be eliminated. In all cases,
we give constructive methods to achieve this. However, we
also provide evidence that disjunctive logic programs are a
more succinct knowledge representation formalism than nor-
mal logic programs under all these notions of equivalence.

Introduction
Disjunctive logic programming extends normal logic pro-
gramming by permitting disjunctions to appear in rule heads,
and is generally regarded to add expressive power to logic
programs under the stable model semantics. This view is
supported by results on the expressiveness of disjunctive
logic programs (DLPs) over finite structures, which show
that properties at the second level of the polynomial hierar-
chy can be expressed by inference from function-free (data-
log) DLPs (Eiter, Gottlob, & Mannila 1997), while normal
logic programs (NLPs) can express only properties at the
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first level of the polynomial hierarchy (Schlipf 1995). How-
ever, disjunction is often not really needed, in that an equiv-
alent normal logic program (i.e., without disjunction) can
be given. For example, Eiter & Gottlob (1997) showed that
in the presence of functions symbols, DLPs have over Her-
brand models the same expressive power as NLPs, which
is Π1

1.
Given the availability of efficient solvers for the stable

model semantics, such as DLV (Eiteret al. 2000), Smod-
els (Simons, Niemelä, & Soininen 2002), ASSAT (Lin &
Zhao 2002), or GnT (Janhunenet al. 2000), which utilize
efficient algorithms and methods, the approach to encode
solutions of a problem in terms of the stable models resp.
answer sets of a logic program (known asstable logic pro-
grammingor answer set programming), has become a pop-
ular paradigm for solving KR problems in different areas,
like, e.g., planning, inheritance reasoning, and diagnosis, to
mention just a few. This raised interest in the expressive-
ness of logic programs in terms of the whole collection of
their stable models (or answer sets) rather than their inter-
section or union as in cautious and brave reasoning, respec-
tively (Marek & Remmel 2003). Related to this is prelim-
inary work on the expressiveness of other well-known KR
formalisms, such as default logic and circumscription, in
terms of their extensions and models (Cadoliet al. 2000a;
Gogicet al. 1995; Marek, Treur, & Truszczýnski 1997).

Recently, different notions of equivalence between logic
programs have been studied. Besides the usual equiva-
lence between programs, i.e., checking whether two pro-
grams have the same stable models, the more refined notions
of strong equivalence(Lifschitz, Pearce, & Valverde 2001;
Turner 2001; 2003; Pearce, Tompits, & Woltran 2001;
Lin 2002; de Jongh & Hendriks 2003) anduniform equiv-
alence(Eiter & Fink 2003; Pearce & Valverde 2003; Eiter
et al. 2004) have been investigated. Formally, two DLPsP1

andP2 are strongly equivalent (resp., uniformly equivalent),
if, for any setR of rules (resp., atoms), the programsP1∪R
andP2 ∪R are equivalent in the usual sense.

Strong and uniform equivalence can be utilized for pro-
gram optimization (Turner 2003; Osorio, Navarro, & Ar-
razola 2001; Eiteret al. 2004), taking a possible incom-
pleteness of a program into account, where not all rules
are known at optimization time, and for varying input data
given by atomic facts, respectively. This is particularly help-



ful for optimizing components of a more complex logic
program. Note that, as recently discussed by Pearce &
Valverde (2003), uniform and strong equivalence are essen-
tially the only concepts of equivalence obtained by varying
the syntactic form of the program extensions.

A natural issue in this context is the expressiveness of dis-
junctions in rule heads, i.e., whether they really add expres-
sive power. This is indeed the case, as can be seen by the
simple example of the programP = {a ∨ b ←}: This pro-
gram is not strongly equivalent to any normal logic program
P ′ (cf. (Turner 2003)). However, as easily seen,P is equiv-
alent to the NLPP ′ = {a ← not b, b ← not a}, since for
both the stable models areX1 = {a} andX2 = {b}, and
furthermoreP is also uniformly equivalent toP ′.

This raises the question of a criterion which determines
when disjunctions can be eliminated, and a method for de-
ciding, given a DLPP , whether an equivalent NLPP ′ ex-
ists. We study this issue for propositional programs, on
which we focus here, and make the following contributions:

(i) We present a simple, appealing semantic characteri-
zation of the programs from which all disjunctions can be
eliminated under strong equivalence. In particular, the char-
acterization is based on the condition that, for each classical
modelY of a programP , the Gelfond-Lifschitz reductPY

of P is semantically Horn if models ofPY not contained in
Y are disregarded, i.e.,X, X ′ ⊆ Y being a model ofPY

implies thatX ∩X ′ is also a model ofPY .
(ii) We further show that under ordinary and uniform

equivalence, this elimination is always possible. In all three
cases, we obtain a constructive method to rewrite a DLP to
an equivalent normal logic program, by stepwise eliminating
disjunctions.

(iii) We show that testing whether for a given proposi-
tional DLP a strongly equivalent normal program exists is
coNP-complete, and, moreover, that the class of programs
possessing a strongly equivalent normal program has the
same complexity as general disjunctive logic programs.

(iv) Finally, we show that any equivalence-preserving
rewriting of a DLP to an NLP must lead in general to an ex-
ponential blow-up, providing the polynomial hierarchy does
not collapse. Thus, replacing a DLP by an equivalent NLP,
which is, in some sense, “easier” to evaluate (viz., with NP
or coNP complexity vs.ΣP

2 or ΠP
2 ) comes at a price. How-

ever, there are classes of programs for which rewriting is
efficiently possible.

Our results extend and complement recent results on sim-
plifying logic programs under different notions of equiv-
alence (Osorio, Navarro, & Arrazola 2001; Turner 2003;
Eiter et al. 2004). They might be used for deciding whether
a given disjunctive problem representation for a system
such as DLV (Eiteret al. 2000) or GnT (Janhunenet al.
2000) can, in principle, be replaced by an equivalent non-
disjunctive representation, and in particular for (automated)
rewriting. Furthermore, they contribute to the comparative
linguistics of KR formalisms in the sense of (Cadoliet al.
2000b; 2000a; Gogicet al. 1995), showing that DLPs are
more succinct than NLPs under different notions of equiva-
lence.

Preliminaries
We deal with propositional disjunctive logic programs, con-
taining rulesr of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where allai are atoms from a finite set of
propositional atoms,A, such thata1, . . . , al are pairwise
distinct, andnot denotes default negation. Theheadof r
is the setH(r) = {a1, . . . , al}, and thebodyof r is B(r)
= {al+1, . . . , am,not am+1, . . . , not an}. We also define
B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}.
Moreover, for a set of atomsA = {a1, . . . , an}, not A de-
notes the set{not a1, . . . ,not an}.

We call ruler normal, if l ≤ 1; (proper) disjunctive, if
l > 1; positive, if n = m; andHorn, if it is normal and
positive. IfH(r) = ∅ andB(r) 6= ∅, thenr is aconstraint;
if B(r) = ∅, r is afact, written asa1 ∨ · · · ∨ al if l > 0, and
as⊥ otherwise.

With some abuse of notation, we identify rules of form (1)
also byH(r)← B+(r),not B−(r).

A disjunctive logic program(DLP), P , is a finite set of
rules.P is called anormal logic program(NLP) (resp.,pos-
itive program, Horn program), if every rule inP is normal
(resp., positive, Horn). We useDLP andNLP to denote
the classes of DLPs and NLPs, respectively.

We recall the stable model semantics for DLPs (Gelfond
& Lifschitz 1991; Przymusinski 1991). LetI be an interpre-
tation, i.e., a subset ofA. Then, an atoma is true underI,
symbolicallyI |= a, iff a ∈ I, andfalse underI otherwise.
For a ruler, I |= H(r) iff somea ∈ H(r) is true underI,
andI |= B(r) iff (i) each a ∈ B+(r) is true underI, and
(ii) eacha ∈ B−(r) is false underI. I satisfiesr, denoted
I |= r, iff I |= H(r) wheneverI |= B(r). Furthermore,I
is amodelof a programP , denotedI |= P , iff I |= r, for all
r ∈ P . As usual,P |= r iff I |= r, for each modelI of P .

TheGelfond-Lifschitz reductof a programP relative toa
set of atomsI is the positive program

P I = {H(r)← B+(r) | r ∈ P, B−(r) ∩ I = ∅}.
For a single ruler, we writerI instead of{r}I . An interpre-
tationI is astable modelof a programP iff I is a minimal
model (under set inclusion) ofP I . The set of all stable mod-
els ofP is denoted bySM(P ). Note that an empty program
has any interpretation as its model.

The following property will be required later on.

Proposition 1 Let P be a DLP andX, Y ⊆ Z interpreta-
tions. Then,X |= PY impliesX |= PZ .

The result is seen by the observation thatY ⊆ Z implies
PZ ⊆ PY . Thus,X |= PY impliesX |= PZ . In particular,
for X = Y , X |= PX iff X |= P , and thusX |= P implies
X |= PZ , for anyX ⊆ Z.

Several notions of equivalence between logic programs
have been considered in the literature (cf., e.g., (Lifschitz,
Pearce, & Valverde 2001; Maher 1988; Sagiv 1988)). Under
stable semantics, two DLPsP andQ are regarded as equiv-
alent, denotedP ≡ Q, iff SM(P ) = SM(Q). The more
restrictive forms ofstrong equivalenceanduniform equiva-
lenceare as follows:



Definition 1 LetP andQ be two DLPs. Then,

1. P andQ arestrongly equivalent, or s-equivalent, denoted
P ≡s Q, iff, for any setR of rules, the programsP ∪ R
andQ ∪R are equivalent, i.e.,P ∪R ≡ Q ∪R; and

2. P and Q are uniformly equivalent, or u-equivalent, de-
notedP ≡u Q, iff, for any setF of normal facts,P ∪ F
andQ ∪ F are equivalent, i.e.,P ∪ F ≡ Q ∪ F .

Obviously,P ≡s Q implies P ≡u Q, but the converse
does not always hold. Both notions of equivalence enjoy
interesting semantical characterizations (Lifschitz, Pearce,
& Valverde 2001; Turner 2001; 2003; Eiter & Fink 2003).
As shown by Lifschitz, Pearce, & Valverde (2001), strong
equivalence is closely related to the non-classical logic of
here-and-there, which was adapted to logic-programming
terms by Turner (2001; 2003):

Definition 2 A pair (X, Y ) with X, Y ⊆ A and X ⊆ Y
is called anSE-interpretation (overA). By INTA we de-
note the set of all SE-interpretations overA. Furthermore,
(X, Y ) ∈ INTA is an SE-model (overA) of a DLP P , if
Y |= P and X |= PY . The set of all SE-models ofP is
denoted byMA

s (P ) (or simply byMs(P ) if A is fixed).

Proposition 2 (Turner 2001; 2003) For every DLPP and
Q, P ≡s Q iff Ms(P ) = Ms(Q).

SE-models can also be used to determine the stable mod-
els of a program (Pearce 1997; Lifschitz, Pearce, & Valverde
2001).

Proposition 3 Let P be a DLP. Then,Y ∈ SM(P ) iff
(Y, Y ) ∈Ms(P ) and, for eachX ⊂ Y , (X, Y ) /∈Ms(P ).

Recently, the following pendant to SE-models, character-
izing uniform equivalence for (finite) logic programs, has
been defined (Eiter & Fink 2003).

Definition 3 LetP be a DLP and(X, Y ) an SE-model ofP .
Then,(X, Y ) is a UE-modelof P iff, for every(X ′, Y ) ∈
Ms(P ), it holds thatX ⊂ X ′ impliesX ′ = Y . ByMu(P )
we denote the set of all UE-models ofP .

Proposition 4 (Eiter & Fink 2003) For every DLPP and
Q, P ≡u Q iff Mu(P ) = Mu(Q).

This test can be reformulated as follows.

Proposition 5 For DLPsP andQ, P ≡u Q iff Mu(P ) ⊆
Ms(Q) andMu(Q) ⊆Ms(P ).
Proof. From Proposition 4,P ≡u Q iff both Mu(P ) ⊆
Mu(Q) andMu(Q) ⊆ Mu(P ) hold. Clearly,Mu(R) ⊆
Ms(R) holds for any DLPR, which immediately gives
the only-if direction. For the converse, supposeP 6≡u Q.
Hence, there exists an SE-interpretation(X, Y ) such that
either (i) (X, Y ) ∈ Mu(P ) and (X, Y ) /∈ Mu(Q), or
(ii) (X, Y ) ∈ Mu(Q) and (X, Y ) /∈ Mu(P ). We only
deal with Case (i); the second case proceeds analogously.
Assume therefore that (i) holds. Then, by the definition
of UE-models, there are two subcases to consider. First,
(X, Y ) /∈ Ms(Q). But then,Mu(P ) ⊆ Ms(Q) cannot
hold. Second, there exists a setX ′ with X ⊂ X ′ ⊂ Y
and such that(X ′, Y ) ∈ Mu(Q). But (X ′, Y ) /∈ Ms(P )
since(X, Y ) ∈ Mu(P ), henceMu(Q) ⊆ Ms(P ) cannot
hold. 2

In the sequel, we shall writeMα(r) instead ofMα({r}),
for a ruler andα ∈ {s, u}.

As a final result here, we characterize the set of SE-
models of a disjunctive rule.
Proposition 6 Letr be a disjunctive rule and(X, Y ) an SE-
interpretation. Then,(X, Y ) ∈ Ms(r) iff one of the follow-
ing conditions is satisfied:(i) X |= H(r); (ii ) Y 6|= B(r);
or (iii ) X 6|= B+(r) andY |= H(r).
Proof. By definition, (X, Y ) ∈ Ms(r) iff Y |= r and
X |= rY . The former holds iff either ofY |= H(r), Y 6|=
B+(r), or Y ∩ B−(r) 6= ∅ is satisfied.X |= rY holds iff
either ofX |= H(r), X 6|= B+(r), orY ∩B−(r) 6= ∅ holds.
Hence,(X, Y ) ∈Ms(r) iff Y ∩B−(r) 6= ∅, or

Y |= H(r) or Y 6|= B+(r), and (2)

X |= H(r) or X 6|= B+(r) (3)
jointly hold. Clearly,Y 6|= B+(r) impliesX 6|= B+(r), and
X |= H(r) impliesY |= H(r). From this, it is easily ver-
ified that(X, Y ) satisfies (2) and (3) iff eitherY 6|= B+(r)
andX |= H(r), or jointly X 6|= B+(r) andY |= H(r)
holds. Hence, we have that(X, Y ) ∈ Ms(P ) iff either
Y ∩ B−(r) 6= ∅, Y 6|= B+(r), (i), or (iii) holds. Finally,
Y ∩ B−(r) 6= ∅ or Y 6|= B+(r) holds exactly ifY 6|= B(r)
(i.e., (ii)) holds. 2

Equivalence Results
In what follows, we provide general characterizations for
eliminating disjunctions from programs. We first deal with
a criterion for eliminating disjunctions under strong equiv-
alence, and afterwards we show that such an elimination is
always possible under uniform and ordinary equivalence.

Strong Equivalence
We start our analysis with some informal discussion. Con-
sider the following logic programs, each of them having
r = a ∨ b← as its only disjunctive rule:

P1 = {a ∨ b←};
P2 = {a ∨ b←; a←};
P3 = {a ∨ b←; a← b};
P4 = {a ∨ b←; a←;← not b};
P5 = {a ∨ b←; a← b;← not b};
P6 = {a ∨ b←; a←; b←};
P7 = {a ∨ b←; a← b; b← a};
P8 = {a ∨ b←;← a, b};
P9 = {a ∨ b←;← not a;← not b}.

Let us first compute the SE-models (overA = {a, b}) of
these programs:1

Ms(P1) = { (ab, ab), (a, ab), (b, ab), (a, a), (b, b) };
Ms(P2) = Ms(P3) = { (ab, ab), (a, ab), (a, a) };
Ms(P4) = Ms(P5) = { (ab, ab), (a, ab) };
Ms(P6) = Ms(P7) = { (ab, ab) };
Ms(P8) = { (a, a), (b, b) };
Ms(P9) = { (ab, ab) (a, ab), (b, ab) }.

1We writeab instead of{a, b}, anda instead of{a}, etc.



A good approximation for obtaining strongly equivalent
normal logic programs is to replacea ∨ b ← by the two
rulesa ← not b andb ← not a, i.e., by applying the usual
shifting technique (Gelfondet al. 1991; Dix, Gottlob, &
Marek 1996). It is easy to see that this replacement works
for P2, P4, P6, andP8, but not forP1, P3, P5, P7, andP9.
As a matter of fact, for the latter programs, this replacement
yields an additional SE-model,(∅, ab).

In general, we have the following relation between the
SE-models of a disjunctive rule and its corresponding shifted
rules.

Proposition 7 For a disjunctive rule,r, define

r→ = {p← B(r),not (H(r) \ {p}) | p ∈ H(r)}; and

Sr = {(X, Y ) ∈ INTA | X 6|= H(r), X |= B+(r),
Y ∩B−(r) = ∅, |Y ∩H(r)| > 1}.

Then,Ms(r→) = Ms(r) ∪ Sr.

Proof. Let rp denote that rule inr→ with H(rp) = p.
We first show thatSr ⊆Ms(r→) andMs(r) ⊆Ms(r→).

The former relation is easily seen, for eachrp ∈ r→: If
(X, Y ) ∈ Sr, then|Y ∩H(r)| > 1. Thus,Y ∩ B−(rp) 6=
∅, yielding (X, Y ) ∈ Ms(r→). For the latter relation, let
(X, Y ) ∈ Ms(r). If Y 6|= B(r) then Y 6|= B(rp), for
eachrp ∈ r→. Hence,(X, Y ) ∈ Ms(r→). So assume
Y |= B(r), and thusY |= H(r). Then, there exists some
p ∈ Y such thatp ∈ H(r). Hence,Y |= rp. (X, Y ) ∈
Ms(rp) is easily seen by similar arguments. Moreover, both
X |= (r→)Y andY |= r→ hold, since for eachrq ∈ r→

with p 6= q, Y ∩B−(rq) 6= ∅ by definition.
It remains to show thatMs(r→) ⊆ Ms(r) ∪ Sr. There-

fore, consider some(X, Y ) ∈ Ms(r→), and suppose that
(X, Y ) /∈ Ms(r). We show that(X, Y ) ∈ Sr. To-
wards a contradiction, suppose that(X, Y ) /∈ Sr. Since
(X, Y ) /∈ Ms(r), we get by Proposition 6 thatX 6|= H(r),
Y |= B(r), and eitherX |= B+(r) or Y 6|= H(r).

We consider two cases. First, ifY 6|= H(r), i.e.,
|Y ∩ H(r)| = 0, then we have a contradiction to the as-
sumption that(X, Y ) ∈Ms(r→). Otherwise, ifY |= H(r),
we haveX |= B+(r), and we get|Y ∩ H(r)| = 1, oth-
erwise(X, Y ) ∈ Sr. Let Y ∩ H(r) = {p}, and consider
the rulerp. Obviously,Y ∩ B−(rp) = ∅. Moreover, we
haveX |= B+(rp) = B+(r). But then,X 6|= H(r) yields
p /∈ X, which in turn contradicts(X, Y ) ∈Ms(r→). 2

Observe thatMs(r) andSr are disjoint, in view of Propo-
sition 6. Therefore,Sr ∩ Ms(P \ {r}) is the (possibly
empty) set of additional SE-models generated by the shift-
ing process. In the above examples, we haver = a ∨ b ←,
r→ = {a← not b; b← not a}, andSr = {(∅, ab)}.

The question is how to eliminate these additional SE-
models. A possible method is to add suitable rules to the pro-
grams resulting from replacing disjunctive rules by shifted
ones. For the above examples, it can be shown that adding
a ← to P3, P5, andP7 does the job, since(∅, ab) is not an
SE-model of the rulea←, and, for each(X, Y ) ∈Ms(Pi),
(X, Y ) ∈ Ms(a←), for i ∈ {3, 5, 7}. However, forP1 and
P9, this does not work. The problem here is that both(a, ab)

and(b, ab) are contained inMs(P1) andMs(P9), and it is
not possible to “delete” the undesired interpretation(∅, ab)
without “deleting” one of the necessary models(a, ab) or
(b, ab) as well. Indeed, there is no normal logic program
which is strongly equivalent toP1 or toP9.

Now, what is the distinguishing feature in these exam-
ples? In all of the above programs, except forP1 or P9, we
have the property that with(X, Y ) and(X ′, Y ) being SE-
models,(X ∩X ′, Y ) is an SE-model too. To wit, in the case
of programsP1 andP9, the pair of SE-models(a, ab) and
(b, ab) violates this property, since(∅, ab) is not contained
in Ms(P1), resp.Ms(P9). This basic observation motivates
the following definition:

Definition 4 Let P be a DLP overA. We say thatP is
closed under here-intersection2 iff, for any pair (X, Y ) and
(X ′, Y ) of SE-models ofP , (X∩X ′, Y ) is also an SE-model
of P . We call(X ∩ X ′, Y ) thehere-intersection of(X, Y )
and(X ′, Y ), for any pair(X, Y ), (X ′, Y ) ∈ INTA.

Hence,P2–P8 are closed under here-intersection, whilst
P1 andP9 are not.

Lemma 1 Each normal logic program is closed under here-
intersection.

Proof. SinceP is normal,PY is Horn. Then,X |= PY

andX ′ |= PY immediately impliesX ∩ X ′ |= PY , since
each Horn programP ′ satisfies the following intersection
property: ifX |= P ′ andX ′ |= P ′, thenX ∩X ′ |= P ′. 2

Hence, we can state the following result:

Theorem 1 Let P be a DLP. If there exists a normal logic
programQ such thatP andQ are strongly equivalent, then
P is closed under here-intersection.

As discussed next, it turns out that closure under here-
intersection is also asufficientcondition for the existence
of a strongly equivalent normal program, given an arbitrary
DLP. To this end, we introduce the following objects:

Definition 5 Let P be a DLP overA, let r ∈ P be a dis-
junctive rule, and letP−

r = P \ {r}. Then,

Pr,s = P−
r ∪ r→ ∪ r̂Ps ,

where

r̂Ps
=

⋃
(X,Y,Z)∈S↑

r (P )

rX,Y,Z ;

rX,Y,Z = {p← X,not (A \ Z) | p ∈ Y }; and

S↑r (P ) = {(X, Y, Z) | (X, Z) ∈ Sr ∩Ms(P−
r ),

X ⊆ Y, (Y, Z) ∈Ms(P ),
∀Y ′ : X ⊆ Y ′ ⊂ Y ⇒ (Y ′, Z) /∈Ms(P )}.

2The term “ here-intersection” derives from the logical un-
derpinning of strong equivalence (Lifschitz, Pearce, & Valverde
2001), given by the logic of here-and-there (Pearce 1997), in which
the first component of an SE-interpretation refers to the world
“ here”.



Intuitively, S↑r (P ) collects, for each(X, Z) ∈ Sr which
is also an SE-model ofP−

r , the minimal SE-models(Y, Z)
of P “above” X (with fixed Z). Note that, by definition
of Sr, for any (X, Z) ∈ INTA, (X, X, Z) /∈ S↑r (P ), but
(X, Z) ∈ Sr implies the existence of an interpretationY
with X ⊆ Y ⊆ Z such that(X, Y, Z) ∈ S↑r (P ), since, at
least forY = Z, (Y, Z) ∈Ms(P ) holds (again by definition
of Sr).

The rulesrX,Y,Z , added in accord to the elements of
S↑r (P ), behave as follows:

Proposition 8 For any setsX, Y, Z ⊆ A, we have that
(X ′, Y ′) ∈ INTA is an SE-model ofrX,Y,Z iff one of the
following conditions holds:(i) Y ⊆ X ′; (ii ) X 6⊆ Y ′;
(iii ) Y ′ 6⊆ Z; or (iv) X 6⊆ X ′ andY ⊆ Y ′.

Proof. Forp ∈ Y , let rp denote the corresponding rule in
rX,Y,Z with H(rp) = p. Note that all rules inrX,Y,Z have
the same body,B = (X,not (A \ Z)). Clearly,(X ′, Y ′) ∈
Ms(rX,Y,Z) iff (X ′, Y ′) ∈Ms(rp), for eachp ∈ Y . Apply-
ing Proposition 6 to eachrp yields(X ′, Y ′) ∈ Ms(rX,Y,Z)
iff (1) Y ′ 6|= B, or (2) for eachp ∈ Y , X ′ |= H(rp)
or jointly X ′ 6|= B+(rp) and Y ′ |= H(rp) holds. Ob-
serve that (1) holds exactly ifX 6⊆ Y ′ (i.e., Condition (ii)),
or Y ′ ∩ (A \ Z) 6= ∅ (i.e., Condition (iii)) holds. It suf-
fices to show that (2) is satisfied iff (i) or (iv) holds. Since
B+(rp) = X, for eachp ∈ Y , we proceed as follows. As-
sumeX ′ 6|= X, i.e.,X 6⊆ X ′. Then, eitherX ′ |= H(rp) or
Y ′ |= H(rp), for eachp ∈ Y . However,Y ′ |= H(rp) holds
wheneverX ′ |= H(rp). Hence, in this case,Y ′ |= H(rp)
holds for all p ∈ Y . We thus arrive atX 6⊆ X ′ and
Y ⊆ Y ′, i.e., the properties of (iv). Otherwise, ifX ⊆ X ′,
X ′ |= H(rp) must hold, for allp ∈ Y . Thus,Y ⊆ X ′, i.e.,
Condition (i) holds. 2

Note thatrX,Y,Z may contain redundant rules, e.g., if
we haveX ⊆ Y . It can be shown that thenrX,Y,Z ≡s

rX,Y \X,Z , which reduces the number of rules. However, for
technical reasons we subsequently do not pay attention to
this potential optimization.

Lemma 2 If P is a DLP closed under here-intersection,
thenMs(P ) = Ms(Pr,s), for any disjunctive ruler ∈ P .

Proof. First observe that, by Proposition 7, we have

Ms(Pr,s) = Ms(P−
r ∪ r→ ∪ r̂Ps

) =
= Ms(P−

r ) ∩Ms(r→) ∩Ms(r̂Ps
)

= Ms(P−
r ) ∩ (Ms(r) ∪ Sr) ∩Ms(r̂Ps

)
=

(
Ms(P−

r ) ∩Ms(r) ∩Ms(r̂Ps
)
)
∪(

Ms(P−
r ) ∩ Sr ∩Ms(r̂Ps

)
)

=
(
Ms(P ) ∩Ms(r̂Ps

)
)
∪(

Ms(P−
r ) ∩ Sr ∩Ms(r̂Ps

)
)
.

The strategy for the remainder of the proof is as follows.
We first show thatT = Ms(P−

r ) ∩ Sr ∩ Ms(r̂Ps) = ∅.
This leads us toMs(Pr,s) = Ms(P ) ∩Ms(r̂Ps), and thus it
remains to show thatMs(P ) = Ms(P )∩Ms(r̂Ps), i.e., that
Ms(P ) ⊆Ms(r̂Ps) holds.

We showT = ∅. Let (X, Z) ∈ Sr. If (X, Z) /∈Ms(P−
r ),

we have(X, Z) /∈ T . So suppose(X, Z) ∈Ms(P−
r ). Then,

there exists a triple(X, Y, Z) ∈ S↑r (P ). Hence, we can
assumerX,Y,Z ⊆ r̂Ps

. Moreover, we haveX ⊂ Y ⊆ Z. We
now show that(X, Z) /∈ Ms(rX,Y,Z). Assume(X, Z) ∈
Ms(rX,Y,Z). Then, by Proposition 8, one of the following
conditions has to hold: (i)Y ⊆ X, (ii) X 6⊆ Z, (iii) Z 6⊆ Z,
or (iv) X 6⊆ X andY ⊆ Z. Condition (i) does not hold since
we haveX ⊂ Y ; (ii) does not hold since we getX ⊂ Z
from X ⊂ Y ⊆ Z; and (iii) and (iv) do not hold trivially.
We arrive at a contradiction, and we getT = ∅.

We now show thatMs(P ) ⊆ Ms(r̂Ps
) holds. Clearly, if

r̂Ps is empty, we are done, since then each SE-interpretation
is also an SE-model of̂rPs . So, supposêrPs 6= ∅. We
show(X ′, Z ′) ∈ Ms(rX,Y,Z), for each(X ′, Z ′) ∈ Ms(P )
and eachrX,Y,Z ⊆ r̂Ps . Towards a contradiction, con-
sider somerX,Y,Z ⊆ r̂Ps

and some(X ′, Z ′) ∈ Ms(P )
such that(X ′, Z ′) /∈ Ms(rX,Y,Z). On the one hand, from
rX,Y,Z ⊆ r̂Ps

, we have(X, Y, Z) ∈ S↑r (P ), which implies
that (a)(X, Z) ∈ Sr ∩Ms(P−

r ); (b) (Y, Z) ∈ Ms(P ); and
(c) X ⊂ Y ⊆ Z. On the other hand, by Proposition 8,
we know from(X ′, Z ′) /∈ Ms(rX,Y,Z) that (1)Y 6⊆ X ′,
(2) X ⊆ Z ′, (3) Z ′ ⊆ Z, and (4)X ⊆ X ′ or Y 6⊆ Z ′.

By assumption,(X ′, Z ′) ∈ Ms(P ). Hence,X ′ |= PZ′

andZ ′ |= PZ′
. Moreover, by (3),Z ′ ⊆ Z holds. By Propo-

sition 1, we getX ′ |= PZ andZ ′ |= PZ , and from (b) we
get Z |= P . Therefore,(X ′, Z) ∈ Ms(P ) and(Z ′, Z) ∈
Ms(P ). Now, P is closed under here-intersection, yielding
(Y ∩ X ′, Z) ∈ Ms(P ) and (Y ∩ Z ′, Z) ∈ Ms(P ). We
use (4) to distinguish between the following two cases:

First, assumeX ⊆ X ′. By (c), X ⊂ Y , and thusX ⊆
(Y ∩ X ′). From (1), we have thatY 6⊆ X ′. This implies
(Y ∩ X ′) ⊂ Y . Hence,X ⊆ (Y ∩ X ′) ⊂ Y follows.
Together with (a) and(Y ∩ X ′, Z) ∈ Ms(P ), we obtain
(X, Y ∩X ′, Z) ∈ S↑r (P ), contradicting(X, Y, Z) ∈ S↑r (P ).

Now assumeX 6⊆ X ′. Similarly, from (4), we getY 6⊆
Z ′, yielding (Y ∩ Z ′) ⊂ Y . Moreover, by (2),X ⊆ Z ′,
and by (c),X ⊂ Y . Thus,X ⊆ (Y ∩ Z ′). Again, we have
X ⊆ (Y ∩ Z ′) ⊂ Y , and by (a) and(Y ∩ Z ′, Z) ∈Ms(P ),
we arrive at a contradiction to(X, Y, Z) ∈ S↑r (P ). 2

Hence, by applying the above transformation successively
for all disjunctive rules in a given DLPP , we eventually
obtain a normal logic program strongly equivalent toP .

Theorem 2 Let P be a DLP overA. If P is closed under
here-intersection, then there exists a normal logic program
Q overA such thatP andQ are strongly equivalent.

Therefore, in view of Theorem 1, a DLPP possesses a
strongly equivalent NLPprecisely ifP is closed under here-
intersection.

For illustration, let us apply the construction ofPr,s to the
examplesP2 andP3 from the above, withr = a ∨ b ←.
ConsiderS↑r (P2). Clearly,Sr ∩Ms((P2)−r ) = ∅, andr is
just replaced byr→. But Sr ∩ Ms((P3)−r ) = {(∅, ab)},
and by the SE-models ofP3, we getS↑r (P3) = {(∅, a, ab)}.
Hence, we exchanger in P3 by r→∪r∅,a,ab, wherer∅,a,ab =
{a ←} (under the assumption thatA = {a, b}). For the
other programs, the construction is similar.



Uniform Equivalence
If we change from strong to uniform equivalence, and re-
taining our overall strategy, the intuitive problems are very
similar to those observed in the case of strong equivalence.
But now an SE-model(X, Y ) from Sr comes into play only
if it is also a UE-model of the remaining program. Thus,
if we want to eliminate such an SE-model, the problem of
eliminating further SE-models, which should be retained,
is less complicated compared to the case of strong equiv-
alence. Roughly speaking, because of this difference, we
arealwaysable to construct a uniformly equivalent normal
program. For instance, all our example programsP1–P9

exceptP7 are uniformly equivalent to the program result-
ing from Pi by replacingr = a ∨ b ← by its shifting
r→. For the programP7 = {r; a ← b; b ← a}, how-
ever, we obtain(∅, ab) as additional SE-and UE-model of
(P7 \ {a ∨ b←}) ∪ {a← not b; b← not a}. Adding rules
a ← or b ← (or both of them) circumvents this problem.
Hence, in some cases, but in fewer than for strong equiva-
lence, we again have to add further rules to achieve our goal.
To wit, only rulesrX,Y,Z , for (X, Y, Z) ∈ S↑r (P ), are used
whereY = Z.

Definition 6 LetP , r, P−
r , S↑r (P ), andrX,Y,Z be as in Def-

inition 5, and define

Pr,u = P−
r ∪ r→ ∪ r̂Pu , for r̂Pu =

⋃
(X,Z,Z)∈S↑

r (P )

rX,Z,Z .

In contrast to the case of strong equivalence, this transfor-
mation is always applicable in order to retain uniform equiv-
alence.

Lemma 3 Given a DLPP with r ∈ P disjunctive, it holds
thatMu(P ) = Mu(Pr,u).

Proof. First of all, observe that, analogously to the proof
of Lemma 2, we get thatMs(Pr,u) is given by(

Ms(P ) ∩Ms(r̂Pu
)
)
∪

(
Ms(P−

r ) ∩ Sr ∩Ms(r̂Pu
)
)
. (4)

We showMu(P ) = Mu(Pr,u). By Proposition 5, this
holds iff bothMu(P ) ⊆Ms(Pr,u) andMu(Pr,u) ⊆Ms(P )
hold.

We first showMs(P ) ⊆Ms(Pr,u), which clearly implies
Mu(P ) ⊆Ms(Pr,u). Note that ifr̂Pu is empty, we are done,
since thenMs(P ) ⊆ Ms(P ) ∩Ms(r̂Pu) holds trivially. So
considerr̂Pu 6= ∅. We show(X ′, Y ′) ∈ Ms(rX,Y,Y ), for
each(X ′, Y ′) ∈ Ms(P ) and eachrX,Y,Y ⊆ r̂Pu . Towards
a contradiction, considerrX,Y,Y ⊆ r̂Pu

and (X ′, Y ′) ∈
Ms(P ) such that(X ′, Y ′) /∈Ms(rX,Y,Y ). On the one hand,
sincerX,Y,Y ⊆ r̂Pu

, we have (a)(X, Y ) ∈ Sr ∩Ms(P−
r ),

(b) X ⊂ Y , and (c) for each SE-interpretation(Z, Y ) with
X ⊆ Z, (Z, Y ) ∈ Ms(P ) implies Z = Y . By Proposi-
tion 8, on the other hand,(X ′, Y ′) /∈ Ms(rX,Y,Y ) yields
(i) Y 6⊆ X ′, (ii) X ⊆ Y ′, (iii) Y ′ ⊆ Y , and (iv)X ⊆ X ′ or
Y 6⊆ Y ′. We use (iv) for distinguishing between the follow-
ing two cases:

First, assumeX ⊆ X ′. Clearly,X ′ ⊆ Y ′. By (i), X ′ 6=
Y , and by (iii), Y ′ ⊆ Y . We thus getX ⊆ X ′ ⊂ Y .
Moreover,X ′ |= PY ′

holds, since(X ′, Y ′) ∈ Ms(P ). By

Proposition 1, we getX ′ |= PY . Furthermore,Y |= P
holds by (a). Hence(X ′, Y ) ∈ Ms(P ), which clearly is in
contradiction to (c).

Second, assumeX 6⊆ X ′. By (iv), Y 6⊆ Y ′. Together
with (iii), we thus haveY ′ ⊂ Y . Moreover,X ⊆ Y ′ holds
by (ii). Since(X ′, Y ′) ∈ Ms(P ), Y ′ |= PY ′

holds. Propo-
sition 1 yieldsY ′ |= PY , and sinceY |= P , we have
(Y ′, Y ) ∈ Ms(P ) with X ⊆ Y ′ ⊂ Y . Again, this is in
violation to (c).

It remains to show thatMu(Pr,u) ⊆ Ms(P ). In particu-
lar, we show thatMu(Pr,u) ∩ T = ∅ holds, where

T = Ms(P−
r ) ∩ Sr ∩Ms(r̂Pu).

By inspecting (4), it can be seen thatMu(Pr,u) ∩ T = ∅
impliesMu(Pr,u) ⊆ Ms(P ) ∩Ms(r̂Pu), which proves the
claim sinceMs(P ) ∩Ms(r̂Pu

) ⊆Ms(P ) holds trivially.
To derive Mu(Pr,u) ∩ T = ∅, we show that for any

(X, Y ) ∈ Sr ∩ Ms(P−
r ), either (X, Y ) /∈ Mu(Pr,u) or

(X, Y ) /∈ Ms(r̂Pu
) holds. Fix a(X, Y ) ∈ Sr ∩Ms(P−

r ).
We consider two cases.

Assume(X, Y, Y ) /∈ S↑r (P ). Hence, there exists a
set X ⊆ X ′ ⊂ Y such that(X ′, Y ) ∈ Ms(P ). We
know that (X, X, Y ) /∈ S↑r (P ). Thus, X ⊂ X ′. We
already have shown thatMs(P ) ⊆ Ms(Pr,u), yielding
(X ′, Y ) ∈ Ms(Pr,u). But then,(X, Y ) /∈ Mu(Pr,u), since
X ⊂ X ′ ⊂ Y .

So assume(X, Y, Y ) ∈ S↑r (P ), and thusrX,Y,Y ⊆ r̂Pu .
However, we have(X, Y ) /∈ Ms(rX,Y,Y ), since none of
the following conditions, which hold by Proposition 8, is
satisfied: (i)Y ⊆ X, (ii) X 6⊆ Y , (iii) Y 6⊆ Y , or (iv) X 6⊆
X and Y ⊆ Y . For (i) and (ii), this is seen by the fact
that (X, Y ) ∈ Sr, and thusX ⊂ Y ; and (iii) and (iv) fail
trivially. Hence,(X, Y ) /∈Ms(r̂Pu

). 2

Theorem 3 For each DLPP , there exists a normal program
Q such thatP ≡u Q.

As already discussed above, the only program from our
examplesP1–P9 which is not uniformly equivalent after re-
placingr = a ∨ b ← by r→ is P7. However, sinceP7 is
closed under here-intersection, we already know how to de-
rive a strongly (and thus uniformly) equivalent normal logic
program. In fact, one can verify that(P7)r,s = (P7)r,u.
For an example programP which is not closed under here-
intersection and such that̂rPu

6= ∅, with r ∈ P disjunc-
tive, considerP = {a ∨ b ←; a ← c, b; b ← c, a} over
A = {a, b, c}. The SE-models ofP are given as follows:

Ms(P ) = {(abc, abc), (ab, abc), (ab, ab), (a, abc),
(a, ab), (a, a), (b, abc), (b, ab), (b, b)}.

Indeed,P is not closed under here-intersection.Sr is given
by {(∅, ab), (∅, abc), (c, abc)}, and Sr ∩ Ms(P−

r ) = Sr

holds. Observe that in contrast to(c, abc), the remaining
elements inSr, i.e., (∅, ab) and (∅, abc), are not problem-
atic, since adding them toMs(P ) does not change the set of
UE-models.S↑r (P ) is given by the set

{(∅, a, ab), (∅, b, ab), (∅, a, abc), (∅, b, abc), (c, abc, abc)},



but only the last triple,(c, abc, abc), is applied in the con-
struction ofr̂Pu . In fact, we have to add

rc,abc,abc = {a← c; b← c; c← c}
to P−

r ∪ r→. For the resulting normal programPr,u, we
then haveMs(Pr,u) = Ms(P ) ∪ {(∅, ab), (∅, abc)}, but the
“critical” SE-interpretation,(c, abc), has been eliminated. In
fact, Mu(P ) = Mu(Pr,u) holds, since neither(∅, ab) nor
(∅, abc) is a UE-model ofPr,u.

Ordinary Equivalence
Finally, we discuss the case of ordinary equivalence. Since
uniform equivalence implies ordinary equivalence, in view
of Theorem 3, for any DLPP , there always exists an NLP
Q such thatP andQ are equivalent. Moreover, the normal
program obtained by successive applications of transforma-
tion Pr,u clearly does the job. Hence:

Theorem 4 For each DLPP , there exists a normal program
Q such thatP ≡ Q.

In fact, this result is also obtained by an enumeration of
stable models.

Theorem 5 LetP be a DLP andrX,Y,Z as in Definition 5.
Then,SM(P ) = SM(P̃ ), with P̃ =

⋃
Y ∈SM(P ) r∅,Y,Y .

Proof. To begin with, we note the following property,
which is a simple consequence of Proposition 8:

(∗) For anyY ⊆ A, Ms(r∅,Y,Y ) is given by{(X ′, Y ′) ∈
INTA | Y ⊆ X ′ or Y ′ 6⊆ Y }.

ConsiderY ∈ SM(P ). Then, for eachY ′ ∈ SM(P ),
eitherY 6⊆ Y ′ or Y = Y ′. By (∗), (Y, Y ) ∈ Ms(P̃ ). To-
wards a contradiction, supposeY /∈ SM(P̃ ). By Proposi-
tion 3, there exists aX ⊂ Y such that(X, Y ) ∈ Ms(P̃ ).
In particular, we must have(X, Y ) ∈ Ms(r∅,Y,Y ). But
by (∗), this is impossible in view ofX ⊂ Y . Therefore,
Y ∈ SM(P̃ ). This provesSM(P ) ⊆ SM(P̃ ).

Suppose there is someY ∈ SM(P̃ ) such thatY /∈
SM(P ). That is,(X, Y ) ∈ Ms(P ) for someX ⊂ Y . By
Proposition 1, we get(X, Z) ∈ Ms(P ) for eachY ⊆ Z.
Thus, for eachY ′ ∈ SM(P ), Y 6⊆ Y ′ holds. Hence,
we have(X, Y ) ∈ Ms(r∅,Y ′,Y ′), for eachY ′ ∈ SM(P ),
by (∗). Thus,(X, Y ) ∈ Ms(P̃ ) with X ⊂ Y But this con-
tradictsY ∈ SM(P̃ ), and thusSM(P ) = SM(P̃ ) must
hold. 2

Finally, we also note the following transformation for or-
dinary equivalence, following the line ofPr,s andPr,u, but
being more compact with respect to ordinary equivalence.

Lemma 4 Let P , r, P−
r , S↑r (P ), andrX,Y,Z be as in Defi-

nition 5, and define

Pr,e = P−
r ∪ r→ ∪ r̂Pe ,

where
r̂Pe

=
⋃

(X, Z, Z) ∈ S↑
r (P ),

Z ∈ SM(P )

rX,Z,Z .

Then,SM(P ) = SM(Pr,e).

Proof. We first show that,

(∗) for eachY ⊆ A, Y |= P iff Y |= Pr,e.

Indeed, from Lemma 3, we haveMu(P ) = Mu(Pr,u), and
thusY |= P iff Y |= Pr,u. By definition,Pr,e ⊆ Pr,u, from
which the only-if direction is an immediate consequence.
For the proof of the if-direction, assumeY |= Pr,e. Then,
Y |= P−

r ∪ r→. By classical logic, this clearly implies
Y |= P .

We proceed with the proof of the lemma. First, fix some
Y ∈ SM(P ). Then,Y |= P , and by (∗), Y |= Pr,e. It
remains to show that noX ⊂ Y yields an SE-model(X, Y )
of Pr,e. Towards a contradiction, suppose someX ⊂ Y
exists such that(X, Y ) ∈ Ms(Pr,e). Clearly, (X, Y ) ∈
Ms(P−

r ), hence, sinceY ∈ SM(P ), (X, Y ) /∈Ms(r) must
hold. Then, by Proposition 7,(X, Y ) ∈ Sr. Therefore,
(X, Y ) ∈ Sr ∩Ms(P−

r ) andY ∈ SM(P ), and we thus get
rX,Y,Y ∈ Pr,e by construction. By Proposition 8,(X, Y ) ∈
Ms(rX,Y,Y ) only if X = Y . Thus (X, Y ) /∈ Ms(Pr,e),
which is a contradiction. Hence,Y ∈ SM(Pr,e), which
provesSM(P ) ⊆ SM(Pr,e).

Now consider someY ∈ SM(Pr,e). By (∗), we getY |=
P . AssumeY /∈ SM(P ), i.e., there exists a setX ⊂ Y
such that(X, Y ) ∈ Ms(P ). By Proposition 7,(X, Y ) ∈
Ms(P−

r ∪ r→). SinceY |= P , and thusY |= PY , we get
by Proposition 1 thatY |= PY ′

, for eachY ′ with Y ⊆ Y ′.
Hence,Y 6⊆ Y ′, for eachY ′ ∈ SM(P ). By Proposition 8,
(X, Y ) ∈ Ms(rX,Y ′,Y ′), for eachY ′ with Y 6⊆ Y ′. Hence,
(X, Y ) ∈Ms(Pr,e). By Proposition 3, this contradictsY ∈
SM(Pr,e). ThusY ∈ SM(P ) must hold, which proves
SM(Pr,e) ⊆ SM(P ). 2

To summarize, given a DLPP with r ∈ P disjunctive,
we are able to construct (via a replacement ofr by normal
rules)

• a logic programPr,e which is ordinary equivalent toP ;

• a programPr,u which is uniformly equivalent toP ; and

• a programPr,s which is strongly equivalent toP , when-
everP is closed under here-intersection.

All these programs are of the form

Pr,α = P−
r ∪ r→ ∪ r̂Pα , for α ∈ {e, u, s},

and satisfy
Pr,e ⊆ Pr,u ⊆ Pr,s.

Recall that successive applications of these rulewise trans-
formations, for all disjunctive rules in a given program, leads
to a normal logic program. Hence, our method can be seen
as a uniform framework for obtaining normal logic programs
from disjunctive logic programs with respect to all important
notions of equivalence. Moreover, our results extend and
generalize methods based on shifting techniques, since the
outcome of these methods coincides with the present rewrit-
ing Pr,α, whenever̂rPα

is empty. In particular, concerning
equivalence in terms of stable models, we present a semantic
criterion (in contrast to the syntactic criterion of head-cycle
freeness as discussed by Ben-Eliyahu & Dechter (1994))
which allows for shifting. Moreover, in terms of uniform



equivalence, we generalized also an observation made by
Eiter & Fink (2003) (cf. Theorem 4.3 of their paper).

We note that the size of the outcoming programs in our
method is in general exponential in the size of the input pro-
gram. However, as we discuss in the next section, this ex-
ponential increase is, in a certain sense, unavoidable from a
complexity-theoretic point of view.

Complexity Issues
This section deals with complexity issues related to the re-
sults discussed above. We first analyse the complexity of
checking closure of a DLP under here-intersection. Af-
terwards, we investigate the expressiveness of the class of
DLPs closed under here-intersection. As we show, this class
resides at the same level of the polynomial hierarchy (PH)
as the class of arbitrary DLPs. Finally, we show that the ex-
ponential increase of program size in the worst case of our
general rewriting method is unavoidable, providing the PH
does not collapse.

Checking Closure under Here-Intersection
We can express testing a DLPP for being closed under here-
intersection via the following normal logic program, which
is linear in the size ofP . To this end, for any ruler, letr′i de-
note the rule obtained fromr by replacing each occurrence
of an atompi in r by p′i.

Definition 7 LetP be a DLP over atomsV . For each atom
v ∈ V , let v̄, v′1, v̄′1, v′2, v̄′2, v′3 be pairwise distinct new
atoms, and letu be a new atom. DefinePQ as the program
containing the following items:

1. for eachv ∈ V and eachi ∈ {1, 2},

v ← not v̄; v̄ ← not v; (5)

v′i ← v,not v̄′i; v̄′i ← not v′i; (6)

2. for eachr ∈ P and eachi ∈ {1, 2},

← B(r),not H(r); (7)

← B+(r′i),not B−(r),not H(r′i); (8)

3. for eachv ∈ V ,

v′3 ← v′1, v
′
2; (9)

4. for eachr ∈ P ,

u ← B+(r′3),not B−(r),not H(r′3); (10)

and
5. the constraint

← not u. (11)

Intuitively, the programPQ works as follows. Rules
of form (5) guess an interpretationY of P , and rules of
form (7) check thatY is a model ofP . Similarly, rules
of form (6) guess subsetsX1 andX2 of Y such that both
are models ofPY , which is enforced by the constraints of
form (8). Hence, the program consisting of all rules of
form (5)–(8) “computes” all pairs of SE-models(X1, Y ) and
(X2, Y ) of P .

Now, the rules of form (9) compute the intersectionX1 ∩
X2, and via the rules of form (10) the new atomu can be
derived iff the intersection does not satisfyPY , i.e., iff (X1∩
X2, Y ) is no SE-model ofP . The constraint (11) eliminates
all models ofPQ for which this is not the case, i.e., for which
(X1 ∩ X2, Y ) is an SE-model ofP . Thus, items (9)–(11)
ensure thatPQ has no stable model iffP is closed under
here-intersection. Formally, we have:

Lemma 5 A DLP P is closed under here-intersection iff
SM(PQ) = ∅.

Based on this, we derive the following complexity result.

Theorem 6 Checking closure under here-intersection, for a
given DLP, iscoNP-complete.

Proof. By Lemma 5 and the linear encoding from Def-
inition 7, we get that closure under here-intersection is in
coNP.

We show coNP-hardness by a reduction to the coNP-
complete problem of deciding whether a given interpretation
is the unique model of a positive DLP as follows:

Let P be a positive DLP over atomsV = {v1, . . . , vn},
let q, q′ be new atoms, and consider the program

Q = P ∪ {q ∨ q′ ←; q ← v1, . . . , vn; q′ ← v1, . . . , vn}.

We show thatQ is closed under here-intersection iffV is the
unique model ofP .

First, if V is the unique model ofP then, by construc-
tion, V ∪ {q, q′} is the unique model ofQ, and sinceQ
is positive—and hence constant under reduction—Q is triv-
ially closed under here-intersection.

Second, for the only-if direction, assume thatQ is closed
under here-intersection. Towards a contradiction, assume
that there is a modelM ⊂ V of P . Then, bothM ∪{q} and
M ∪{q′} are models ofQ, and thus also both(M ∪{q}, V ∪
{q, q′}) and(M ∪ {q′}, V ∪ {q, q′}) are SE-models ofQ.
However,(M,V ∪ {q, q′}) is not an SE-model ofQ, since
M 6|= q ∨ q′ ←. This contradicts our assumption thatQ
is closed under here-intersection. Hence,V is the unique
model ofP . 2

In view of Theorem 2, the above result immediately im-
plies the following property:

Corollary 1 Checking whether, for a given DLPP , there
exists a normal programQ such thatP andQ are strongly
equivalent, iscoNP-complete.

Expressiveness of Here-Intersection closed DLPs
We now consider the expressiveness of the class of DLPs
closed under here-intersection. We show that this class of
programs possesses the same worst-case complexity as arbi-
trary DLPs. More specifically, the relevant reasoning tasks
in the context of DLPs are

• checking the existence of a stable model of a given DLP
(“consistency problem”);

• checking whether a given atom belongs to at least one
stable model of a given DLP (“brave reasoning”); and



• checking whether a given atom belongs to all stable mod-
els of a given DLP (“cautious reasoning”).

As shown by Eiter & Gottlob (1995), for arbitrary dis-
junctive programs, the consistency problem and brave rea-
soning areΣP

2 -complete, whilst cautious reasoning isΠP
2 -

complete. Moreover, the respective hardness results for
these problems hold even for a quite restricted class of DLPs.
This class comprises DLPs where each disjunctive rule is a
fact and where each stable model contains anexact hitting
set3 for the collection of disjunctive facts inP .

We define the following kinds of programs:

Definition 8 A DLPP is called

1. adisjunctive-fact program (DFP) iff each disjunctive rule
in P has an empty body, i.e., for eachr ∈ P , |H(r)| > 1
impliesB(r) = ∅; and

2. a hitting-set programiff, for each stable modelI ∈
SM(P ), |H(r)∩I| = 1, for each disjunctive ruler ∈ P .

DLPs satisfying both conditions are calledhitting-set
DFPs (HDFPs).

Observe that HDFPs are in generalnot closed under here-
intersection, as seen by the program{a∨b←}. However, we
construct a polynomial-time translation mapping each DFP
P into a DLPQ (over an extended alphabet) such that (i)Q
is closed under here-intersection and (ii) there is a one-to-
one correspondence (over the original alphabet) between the
stable models ofP and the stable models ofQ, wheneverP
is also a HDFP. From this, we derive the same lower com-
plexity bounds for DLPs closed under here-intersection as
for arbitrary DLPs.

We employ the following notation: For a given alphabet
A,A = {p | p ∈ A} is a set of globally new disjoint atoms.
Accordingly, for a ruler, r is the rule resulting fromr by
replacing each atomp in r by p. Finally, letA∗ = A ∪A.

Definition 9 For a DLP P overA, let P+ be the program
resulting fromP by adding{p← p | p ∈ A} and, for eachr
with |H(r)| > 1, adding(r)→∪{← p, q | p, q∈H(r), p 6=q}.
Lemma 6 For a DFP P , we have thatMA∗

s (P+) is given
by those(X, Y ) ∈ INTA∗ which satisfy the following con-
ditions:

1. (X, Y ) ∈MA∗

s (P );
2. X ∩ A ⊆ (X ∩ A), Y ∩ A ⊆ (Y ∩ A); and
3. for eachr ∈ P with |H(r)| > 1,

X ∩H(r) = Y ∩H(r) = {p}.

Proof. First,MA∗

s (P ∪{p← p | p ∈ A}) is clearly given
by those(X, Y ) ∈ INTA∗ which satisfy Conditions 1 and 2.
Furthermore, consider a disjunctive factr ∈ P . Applying
Proposition 7, we getMA∗

s ((r)→) = MA∗

s (r) ∪ Sr, which
in turn is given by

{(X, Y ) ∈ INTA∗ | H(r) ∩X 6= ∅ or
H(r) ∩X = ∅; |Y ∩H(r)| > 1}.

3Theexact hitting setproblem is as follows. Given a collection
C of subsets of a setS, decide whether there exists a subsetS′ ⊆ S
such that|S′ ∩ C′| = 1, for eachC′ ∈ C. This problem is known
to be NP-complete (Karp 1972).

In the construction ofP+, it remains to consider the rules
R = {← p, q | p, q ∈ H(r), p 6= q} having as its SE-models
(overA∗)

{(X, Y ) ∈ INTA∗ | |Y ∩H(r)| ≤ 1}.

Putting things together, for each disjunctive factr ∈ P , we
get as SE-models (overA∗) of rulesr→ ∪ R exactly those
(X, Y ) ∈ INTA∗ which satisfy Condition 3. 2

For illustration, reconsiderP1 = {a ∨ b ←} overA =
{a, b}. We getP+

1 given by

{a ∨ b←; a← a; b← b; a← not b; b← not a; ← a, b}.

The set of SE-models (over{a, b, a, b}) of P+
1 is then given

by
{(aa, aa), (bb, bb), (aa, aba),
(bb, abb), (aba, aba), (abb, abb)}.

Observe thatP+
1 is closed under here-intersection, whilstP1

is not. This example mirrors the following general property:

Lemma 7 For any DFPP , P+ is closed under here-inter-
section.

Proof. If P is an NLP, thenP+ is clearly closed under
here-intersection. So suppose thatP ∈ DLP \ NLP, and
assume thatP+ is not closed under here-intersection. Then,
there exist SE-models(X, Y ) and(Z, Y ) of P+ such that
(X∩Z, Y ) /∈Ms(P+). LetP1 consist of all normal rules in
P+ andP2 of all disjunctive rules inP+. We know thatP1 is
closed under here-intersection, i.e.,(X ∩ Z, Y ) ∈ Ms(P1).
Moreover, by Proposition 6, for allr ∈ P2, we have that
X |= H(r) andZ |= H(r), since each bodyB(r) is empty.
Fix such anr (observe thatP2 6= ∅ by hypothesis and more-
overP2 ⊆ P by definition). By Lemma 6, we get

X ∩H(r) = Z ∩H(r) = Y ∩H(r) = {p},

X∩A ⊆ (X ∩ A), andZ∩A ⊆ (Z ∩ A). By p ∈ H(r), we
obtainp ∈ X ∩ Z, and thusX ∩ Z |= H(r). Consequently,
(X ∩ Z, Y ) ∈ Ms(r). Since this holds for allr ∈ P2, we
end up with(X ∩ Z, Y ) ∈ Ms(P2). We already know that
(X ∩ Z, Y ) ∈ Ms(P1), and so(X ∩ Z, Y ) ∈ Ms(P+).
This, however, is a contradiction to(X ∩Z, Y ) /∈Ms(P+).
Hence,P+ must be closed under here-intersection. 2

Lemma 8 LetP be a HDFP overA. Then,

1. if I ∈ SM(P ), then there exists aK ⊆ A such thatI∪K
is a stable model ofP+; and

2. if I ∈ SM(P+), thenI ∩ A is a stable model ofP .

Proof. To show Part 1, letI ∈ SM(P ) and letK be
constructed by anyK ⊆ I satisfying|K ∩ H(r)| = 1, for
each disjunctive factr ∈ P . SuchK exists sinceP is an
HDFP. Clearly,I ∪K |= P since no atoms fromA occur in
P andI |= P . Moreover,

I ∪K |= {p← p | p ∈ A}

sinceK ⊆ I by definition. LetR be the collection of the
rules (r)→ and{← p, q | p, q ∈ H(r), p 6= q}, for each



disjunctive factr ∈ P . Then,I ∪K |= R, by the assump-
tion thatK satisfies|K ∩ H(r)| = 1, for eachr ∈ P with
|H(r)| > 1. HenceI ∪K |= P+.

It remains to show that no proper subsetJ of I ∪ K is
a model of(P+)I . Suppose(J ∩ A) ⊂ (I ∩ A). Then
J |= (P+)I would imply thatJ |= P I , contradictingI ∈
SM(P ). Now suppose(J ∩A) ⊂ (I ∩A). Then,J 6|= RI ,
since we would have at least one rule from(r)→ which is
not satisfied byJ .

Concerning Part 2, assumeI ∈ SM(P+). SinceP ⊆
P+ and no atoms fromA occur inP , we haveI ∩ A |= P .
Again, it remains to show that noJ ⊂ (I ∩ A) exists, such
thatJ |= P I holds. Towards a contradiction, letJ ⊂ (I∩A)
be a model ofP I . We show that then there exists aK ⊆ A
such that both(J ∪K) ⊂ I andJ ∪K |= (P+)I holds, thus
contradictingI ∈ SM(P+). First, sinceI ∈ SM(P+),
we have(I, I) ∈ MA∗

s (P+), and from Lemma 6 we get
I ∩A ⊆ (I ∩ A). Now letK = J ∩ (I ∩A). Consequently,
(J ∪K) ⊂ I, andJ ∪K |= {p← p | p ∈ A}I . Moreover,
for each disjunctive factr ∈ P , we have|J ∩ H(r)| ≥ 1
(otherwiseJ 6|= P I ) as well as|I ∩ H(r)| = 1 (otherwise
I 6|= P+). SinceJ ⊂ I andI ∩ A ⊆ (I ∩ A) holds by
I ∈ SM(P+), we finally getJ ∪ K |= RI . Hence, we
deriveJ ∪K |= (P+)I . 2

The relations from Lemmas 7 and 8 guarantee a faithful
reduction (from arbitrary HDFPs to DLPs closed under here-
intersection) of the relevant reasoning tasks in the context of
logic programming. As already mentioned, the hardness re-
sults by Eiter & Gottlob (1995) carry over for HDFPs. We
thus obtain our next result which shows that DLPs closed
under here-intersection possess the same worst-case com-
plexity as general DLPs.

Theorem 7 Both the consistency problem and brave rea-
soning for DLPs closed under here-intersection isΣP

2 -
complete, and cautious reasoning for DLPs closed under
here-intersection isΠP

2 -complete.

Succinctness of DLPs
Finally, we discuss the size of the rewriting of a given DLP
P into an equivalent NLPQ (if it exists).

Theorem 8 There is no rewritingf : DLP → NLP such
that (i) P ≡α f(P ), and(ii ) f(P ) is polynomial in the size
of P , for everyP ∈ DLP, with α ∈ {u, s}, unless the PH
collapses.

Proof. Assume that a polynomial-size rewritingf of the
described kind exists. Consider theΠP

2 -hard problem of
checking whether, for a given positive DLPP and a given
atoma, not a is a cautious consequence ofP , i.e., whether
a is not contained in any stable model ofP (Eiter & Gottlob
1995).

DefineP1 = P+ if α = s, andP1 = P if α = u. Then,
not A is a cautious consequence ofP iff it is a cautious con-
sequence ofP1. By the existence off , we can guess an NLP
P ′ in nondeterministic polynomial time such thatP ′ ≡α P1

(α ∈ {u, s}). CheckingP ′ ≡α P1 is in coNP (Eiter &

Fink 2003), and checking whethernot a is a cautious con-
sequence ofP ′ is in coNP (sinceP ′ is normal). Thus, the
ΠP

2 -hard problem of deciding whethernot a is a cautious
consequence ofP is in ΣP

2 , which is a contradiction unless
the PH collapses. 2

Also for rewritings under ordinary equivalence we can-
not avoid an exponential blowup unless the PH collapses, as
shown from results by Cadoliet al. (2000a; 2000b).

Proposition 9 There exists no polynomial-size rewritingf :
DLP → NLP such thatP ≡ f(P ), for everyP ∈ DLP,
unless the PH collapses.

Clearly Theorem 8 is implied by Proposition 9, but the proof
of the latter refers to non-uniform complexity classes, while
ours is from first principles. In particular, a direct proof
of Proposition 9 would show that a polynomial-size rewrit-
ing f : DLP → NLP such thatP ≡ f(P ) implies
coNP⊆ P/poly (P/poly is the class of problems decidable
in polynomial time with polynomial advice), which in turn
implies a collapse of the PH. Furthermore, Proposition 9 re-
mains true for generalized rewritingsf which admit projec-
tive extra variables, i.e.,P ≡ f(P )|A, wheref(P ) is de-
fined over atomsA′ ⊇ A andf(P )|A denotes the restriction
of the stable models off(P ) to the original atomsA. This is
a consequence of combining results by Cadoliet al.(2000a)
and the facts that (i) model checking for NLPs is polynomial
and (ii) model checking for circumscription (which is hard
for the non-uniform compilability variant of coNP) is a spe-
cial case of model checking for DLPs (both rely on minimal
model checking).

We remark that, in terms of (Gogicet al. 1995), DLPs
are, because of the exponential blow up, a stronger KR for-
malism than NLPs, unless the PH collapses, regardless of
the notion of equivalence considered.

Conclusion
In this paper, we derived new results concerning the elim-
ination of disjunctions in logic programs under the stable
model semantics with respect to strong, uniform, and ordi-
nary equivalence. We showed that under uniform and or-
dinary equivalence, disjunctions can always be eliminated,
whereas for strong equivalence, this is precisely possible in
case a certain semantic criterion is satisfied, viz. that the
given program is closed under here-intersection. We also
provide an explicit, uniform method to rewrite a given DLP
into an equivalent NLP (if such an NLP exists, in case of
strong equivalence). Although the resultant NLPs are in gen-
eral exponentially larger than the input DLPs, we showed
that this increase is in some sense unavoidable, thus provid-
ing further insight on thesuccinctnessof DLPs.

Our ongoing and future work concerns a closer investiga-
tion of the newly derived class of DLPs closed under here-
intersection, as well as extending our results to the function-
free first-order (datalog) case. Furthermore, it remains to
explore how our results can be applied for optimizations of
algorithms used in disjunctive logic programming engines
such as DLV and GnT.
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