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Abstract

Disjunction is generally considered to add expressive power
to logic programs under the stable model semantics, which
have become a popular programming paradigm for knowl-
edge representation and reasoning. However, disjunction is
often not really needed, in that an equivalent program with-
out disjunction can be given. In this paper, we consider the
question, given a disjunctive logic prograt, under which
conditions an equivalent normal (i.e., disjunction-free) logic
programP’ exists. In fact, we study this problem under dif-
ferent notions of equivalence, viz. for ordinary equivalence
(considering the collections of all stable models of the pro-
grams) as well as for the more restrictive notions of strong
and uniform equivalence. We resolve the issue for proposi-
tional programs on which we focus here, and present a sim-
ple, appealing semantic criterion from which all disjunctions
can be eliminated under strong equivalence. Testing this cri-
terion is coNP-complete, but the class of programs satisfying
it has the same complexity as disjunctive logic programs in
general. We also show that under ordinary and uniform equiv-
alence, disjunctions can always be eliminated. In all cases,
we give constructive methods to achieve this. However, we
also provide evidence that disjunctive logic programs are a
more succinct knowledge representation formalism than nor-
mal logic programs under all these notions of equivalence.

Introduction

Disjunctive logic programming extends normal logic pro-
gramming by permitting disjunctions to appear in rule heads,
and is generally regarded to add expressive power to logic
programs under the stable model semantics. This view is
supported by results on the expressiveness of disjunctive
logic programs (DLPs) over finite structures, which show
that properties at the second level of the polynomial hierar-
chy can be expressed by inference from function-free (data-
log) DLPs (Eiter, Gottlob, & Mannila 1997), while normal
logic programs (NLPs) can express only properties at the
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first level of the polynomial hierarchy (Schlipf 1995). How-
ever, disjunction is often not really needed, in that an equiv-
alent normal logic program (i.e., without disjunction) can
be given. For example, Eiter & Gottlob (1997) showed that
in the presence of functions symbols, DLPs have over Her-
braqd models the same expressive power as NLPs, which
is I1;.

Given the availability of efficient solvers for the stable
model semantics, such as DLV (Eiter al. 2000), Smod-
els (Simons, Niemé@l & Soininen 2002), ASSAT (Lin &
Zhao 2002), or GnT (Janhunex al. 2000), which utilize
efficient algorithms and methods, the approach to encode
solutions of a problem in terms of the stable models resp.
answer sets of a logic program (knownsiable logic pro-
grammingor answer set programminghas become a pop-
ular paradigm for solving KR problems in different areas,
like, e.g., planning, inheritance reasoning, and diagnosis, to
mention just a few. This raised interest in the expressive-
ness of logic programs in terms of the whole collection of
their stable models (or answer sets) rather than their inter-
section or union as in cautious and brave reasoning, respec-
tively (Marek & Remmel 2003). Related to this is prelim-
inary work on the expressiveness of other well-known KR
formalisms, such as default logic and circumscription, in
terms of their extensions and models (Cadnlal. 2000a;
Gogicet al. 1995; Marek, Treur, & Truszchski 1997).

Recently, different notions of equivalence between logic
programs have been studied. Besides the usual equiva-
lence between programs, i.e., checking whether two pro-
grams have the same stable models, the more refined notions
of strong equivalencéLifschitz, Pearce, & Valverde 2001;
Turner 2001; 2003; Pearce, Tompits, & Woltran 2001;
Lin 2002; de Jongh & Hendriks 2003) anthiform equiv-
alence(Eiter & Fink 2003; Pearce & Valverde 2003; Eiter
et al. 2004) have been investigated. Formally, two DURSs
and P, are strongly equivalent (resp., uniformly equivalent),
if, for any setR of rules (resp., atoms), the prograifisu R
and P, U R are equivalent in the usual sense.

Strong and uniform equivalence can be utilized for pro-
gram optimization (Turner 2003; Osorio, Navarro, & Ar-
razola 2001; Eiteet al. 2004), taking a possible incom-
pleteness of a program into account, where not all rules
are known at optimization time, and for varying input data
given by atomic facts, respectively. This is particularly help-



ful for optimizing components of a more complex logic
program. Note that, as recently discussed by Pearce &

Valverde (2003), uniform and strong equivalence are essen-

tially the only concepts of equivalence obtained by varying
the syntactic form of the program extensions.

A natural issue in this context is the expressiveness of dis-
junctions in rule heads, i.e., whether they really add expres-

Preliminaries

We deal with propositional disjunctive logic programs, con-
taining rules- of form

a1V -V ag < Qi -« G, MOt Ay, - .., DOt Ay, (1)

n>m>1>0, where alla; are atoms from a finite set of
propositional atoms,A, such thata,,...,a; are pairwise

sive power. This is indeed the case, as can be seen by thegistinct, andnot denotes default negation. Theadof

simple example of the prograf = {a VV b «}: This pro-
gram is not strongly equivalent to any normal logic program
P’ (cf. (Turner 2003)). However, as easily seéhis equiv-
alent to the NLPP' = {a < notb, b — nota}, since for
both the stable models a’é; = {a} and X, = {b}, and
furthermoreP is also uniformly equivalent t@”’.

This raises the question of a criterion which determines
when disjunctions can be eliminated, and a method for de-
ciding, given a DLPP, whether an equivalent NLP”’ ex-
ists. We study this issue for propositional programs, on
which we focus here, and make the following contributions:

(i) We present a simple, appealing semantic characteri-
zation of the programs from which all disjunctions can be
eliminated under strong equivalence. In particular, the char-
acterization is based on the condition that, for each classical
modelY of a programP, the Gelfond-Lifschitz reducP
of P is semantically Horn if models @P¥ not contained in
Y are disregarded, i.eX, X’ C Y being a model of?Y
implies thatX N X’ is also a model ofY .

(i) We further show that under ordinary and uniform
equivalence, this elimination is always possible. In all three
cases, we obtain a constructive method to rewrite a DLP to
an equivalent normal logic program, by stepwise eliminating
disjunctions.

(iii) We show that testing whether for a given proposi-
tional DLP a strongly equivalent normal program exists is

coNP-complete, and, moreover, that the class of programs
possessing a strongly equivalent normal program has the

same complexity as general disjunctive logic programs.

(iv) Finally, we show that any equivalence-preserving
rewriting of a DLP to an NLP must lead in general to an ex-
ponential blow-up, providing the polynomial hierarchy does
not collapse. Thus, replacing a DLP by an equivalent NLP,
which is, in some sense, “easier” to evaluate (viz., with NP
or coNP complexity vsl or I12") comes at a price. How-
ever, there are classes of programs for which rewriting is
efficiently possible.

Our results extend and complement recent results on sim-
plifying logic programs under different notions of equiv-
alence (Osorio, Navarro, & Arrazola 2001; Turner 2003;
Eiteret al. 2004). They might be used for deciding whether
a given disjunctive problem representation for a system
such as DLV (Eiteret al. 2000) or GnT (Janhuneet al.
2000) can, in principle, be replaced by an equivalent non-
disjunctive representation, and in particular for (automated)
rewriting. Furthermore, they contribute to the comparative
linguistics of KR formalisms in the sense of (Cadetial.
2000b; 2000a; Gogiet al. 1995), showing that DLPs are
more succinct than NLPs under different notions of equiva-
lence.

is the setH (r) = {a1,...,a}, and thebody of r is B(r)

={ai41, -, Qm, not a1, ..., nota,}. We also define
BY(r) = {aj41,---,am} and B~ (r) = {ams1,---,an}-
Moreover, for a set of atomd = {aq,...,a,}, not A de-

notes the sefnot aq,...,not a,}.

We call ruler normal if I < 1; (proper) disjunctive if
I > 1; positive if n = m; andHorn, if it is normal and
positive. If H(r) = @ andB(r) # 0, thenr is aconstraint
if B(r) =10, ris afact, writtenasa; V---Va; if { > 0, and
as_| otherwise.

With some abuse of notation, we identify rules of form (1)
also byH (r) < B™(r), not B~ (r).

A disjunctive logic program(DLP), P, is a finite set of
rules. P is called anormal logic program(NLP) (resp. pos-
itive program Horn progranj, if every rule in P is normal
(resp., positive, Horn). We usBLP and NLP to denote
the classes of DLPs and NLPs, respectively.

We recall the stable model semantics for DLPs (Gelfond
& Lifschitz 1991; Przymusinski 1991). Ldtbe an interpre-
tation, i.e., a subset od. Then, an atona is true underI,
symbolically! = a, iff a € I, andfalse underl otherwise.
Foraruler, I = H(r) iff somea € H(r) is true undet,
and! = B(r) iff (i) eacha € B*(r) is true under/, and
(i) eacha € B~ (r) is false unded. I satisfiesr, denoted
I = r, iff I = H(r) wheneverl = B(r). Furthermore/
is amodelof a programP, denoted’ = P, iff I =, forall
r € P. Asusual,P |= riff I = r, for each model of P.

The Gelfond-Lifschitz reduadf a programp relative toa
set of atomd is the positive program

Pl ={H(r) < B*(r)|re P, B (r)nI =10}

For a single rule’, we writer! instead of{r}?. An interpre-
tation I is astable modebf a programP iff I is a minimal
model (under set inclusion) @#/. The set of all stable mod-
els of P is denoted bys M(P). Note that an empty program
has any interpretation as its model.

The following property will be required later on.

Proposition 1 Let P be a DLP andX,Y C Z interpreta-
tions. ThenX = PY impliesX = PZ.

The result is seen by the observation thatC Z implies
PZ C PY. Thus,X | PY impliesX | PZ. In particular,
for X =Y, X | PYiff X  P,andthusX = P implies
X = PZ, foranyX C Z.

Several notions of equivalence between logic programs
have been considered in the literature (cf., e.g., (Lifschitz,
Pearce, & Valverde 2001; Maher 1988; Sagiv 1988)). Under
stable semantics, two DLH3 and( are regarded as equiv-
alent, denoted® = Q, iff SM(P) = SM(Q). The more
restrictive forms oftrong equivalencanduniform equiva-
lenceare as follows:



Definition 1 Let P and@ be two DLPs. Then, In the sequel, we shall writ&/,, (r) instead ofM,, ({r}),

1. P and(Q arestrongly equivalentor s-equivalentdenoted for aruler andar € {s, u}. _
P =, Q, iff, for any setR of rules, the program® U R As a final result here, we characterize the set of SE-
andQ U R are equivalent, i.e.PUR = Q U R; and models of a disjunctive rule.

2. P and Q are uniformly equivalent or u-equivalent de- Proposition 6 Letr be a disjunctive rule andX,Y’) an SE-
notedP =, Q, iff, for any setF of normal facts,P U F interpretation. Then(X,Y’) € M(r) iff one of the follow-
andQ U F are equivalent,i.e.PUF = QU F. ing conditions is satisfied(i) X = H(r); (i) Y (&= B(r);

.
Obviously, P =, Q implies P =, @, but the converse or (iil) X j= B (r) andY’ = H(r).

does not always hold. Both notions of equivalence enjoy PO v By definition, (X,Y) € M(r) iff Y |= r and
interesting semantical characterizations (Lifschitz, Pearce, JF The former holds iff either of” |= (7") =
& Valverde 2001; Turner 2001; 2003; Eiter & Fink 2003). 5 (7). orY N B~(r) £ 01 is satisfied. X = r” O'ds iff
As shown by Lifschitz, Pearce, & Valverde (2001), strong €ither ofX = H(r), X = B*(r),orYNB~(r) # ( holds.
equivalence is closely related to the non-classical logic of HENCE(X,Y) € M(r)iff Y'n B~ (r) # 0, or

here-and-there, which was adapted to logic-programming Y | H(r)orY j B¥(r), and 2
terms by Turner (2001; 2003): X = H(r)or X = B*(r) ()
Definition 2 A pair (X,Y) with XY C Aand X C Y jointly hold. Clearly,Y” = B*(r) impliesX [~ B*(r), and
is called anSE-interpretation (oved). By INT 4 we de- X = H(r) impliesY = H(r). From this, it is easily ver-
note the set of all SE-interpretations ovdr Furthermore, ified that(X,Y) satisfies (2) and (3) iff eithe¥” = B*(r)

(X,Y) € INT, is an SE-model ¢ver A) of a DLP P, if andX = H(r), or jointly X = BT (r) andY = H(r)
Y = Pand X = PY. The set of all SE-models & is holds. Hence, we have th&,Y) € M,(P) iff either
denoted by\/A(P) (or simply byM,(P) if A's fixed. YNB(r)#0,Y & BT(r), (i), or (iii) holds. Finally,

_ . (
Proposition 2 (Turner 2001; 2003) For every DLPP and YnB-(r) #0orY j B*(r) holds exactly ift’ = B(r)

Q, P =, Qiff My(P) = M,(Q). (i.e., (ii)) holds. O
SE-models can also be used to determine the stable mod- ]

els of a program (Pearce 1997; Lifschitz, Pearce, & Valverde Equivalence Results

2001). In what follows, we provide general characterizations for

Proposition 3 Let P be a DLP. ThenY € SM(P) iff eliminating disjunctions from programs. We first deal with

(Y,Y) € M,(P) and, foreachX C Y, (X,Y) ¢ M,(P). a criterion for eliminating disjunctions under strong equiv-

alence, and afterwards we show that such an elimination is

Recently, the following pendant to SE-models, character- always possible under uniform and ordinary equivalence.

izing uniform equivalence for (finite) logic programs, has

been defined (Eiter & Fink 2003). Strong Equivalence
Definition 3 LetP beaDLP and X, ¥') an SE-model aP. We start our analysis with some informal discussion. Con-
Then,(X,Y') is a UE-modelof P iff, for every(X".Y) € sider the following logic programs, each of them having
Mg(P), it holds thatX C X' impliesX’ =Y. By M, (P) r=a V b« asits only disjunctive rule:
we denote the set of all UE-models/of Pi={aVvbl;
Proposition 4 (Eiter & Fink 2003) For every DLPP and Py={aVb—;a—}
Q, P =, Qiff My(P) = Mu(Q). Ps={aVb«—;a«—b}
This test can be reformulated as follows. Py ={aVb—;a«—;— notb};
Proposition 5 For DLPs P and @, P =, Q iff M, (P) C Ps ={aVb+;a« b« notb};
M,(Q) and M, (Q) C M, (P). —{aVba—b—);

Proof.  From Proposition 4P =, Q iff both M, (P) C Pr={aVb—;a—bb—a};
M, (Q) and M,,(Q) € M,(P) hold. Clearly,M,(R) C Ps={aVbe—;—a,b};
M(R) holds for any DLPR, which immediately gives 8~ ’ o

the only-if direction. For the converse, suppdde#, Q. Py ={a Vb nota; — not b}.

Hence, there exists an SE-interpretatioXi, Y) such that Let us first compute the SE-models (ovér= {a, b}) of
either (i) (X,Y) € M,(P) and (X,Y) ¢ M,(Q), or these programs:

(i) (X,Y) € My(Q) and (X,Y) ¢ M,(P). We only M (P1)—{ (ab,ab), (a,ab), (b,ab), (a,a), (b;b) };
deal with Case (i); the second case proceeds analogously. M,(P,) = M,(P;) = { (ab,ab), (a,ab), (a,a) };
Assume therefore that (i) holds. Then, by the definition ° y T

of UE-models, there are two subcases to consider. First, Ms(Fa) =Ms(F5) = { (ab,ab), (a,ab) };

(X,Y) ¢ M,(Q). Butthen,M,(P) C M,(Q) cannot MS(PG)ZMS(H) = { (ab,ab) };

hold. Second, there exists a skt with X ¢ X’ C Y M(Ps) ={ (a,a), (b,b) };

and such thatX’,Y) € M,(Q). But(X'|Y) ¢ M,(P) M,(Py) = b.ab b). (b.ab
since (X,Y) € M, (P), henceM,(Q) C M,(P) cannot (Py) = { (b, ab) (a, ab), (b, ab) }.
hold. | "We write ab instead of{a, b}, anda instead of{a}, etc.



A good approximation for obtaining strongly equivalent
normal logic programs is to replacev b «— by the two
rulesa < not b andb «— nota, i.e., by applying the usual
shifting technique (Gelfonet al. 1991; Dix, Gottlob, &
Marek 1996). It is easy to see that this replacement works
for P,, P, Ps, and P, but not forP,, Ps, P5, P;, and P,.

As a matter of fact, for the latter programs, this replacement
yields an additional SE-mod€l), ab).

In general, we have the following relation between the
SE-models of a disjunctive rule and its corresponding shifted
rules.

Proposition 7 For a disjunctive ruley, define

{p < B(r),not (H(r) \ {p}) | p € H(r)}; and
{(X,Y)€INT, | X - H(r), X = BT (r),
YNB (r)=0,YNH(r)>1}.

Then,Ms(r—) = Ms(r) U S,.

Proof. Letr, denote that rule im~ with H(r,) = p.

We first show thass,, C M (r—) andMs(r) C M (r—).
The former relation is easily seen, for eagh e »—: If
(X,Y) € S,, then)lY N H(r)] > 1. Thus,Y N B~ (r,) #

(), yielding (X,Y) € M,(r—). For the latter relation, let
(X,Y) € My(r). fY & B(r) thenY ¥ B(r,), for
eachr, € r—. Hence,(X,Y) € M,(r—). So assume
Y E B(r), and thusY’ = H(r). Then, there exists some
p € Y such thatp € H(r). Hence)Y = r,. (X,Y) €
M,(r,) is easily seen by similar arguments. Moreover, both
X E (r7)Y andY E r~ hold, since for each, € 7~
with p # ¢, Y N B~ (r,) # 0 by definition.

It remains to show that/;(r—) C M,(r) U S,. There-
fore, consider soméX,Y) € M,(r~), and suppose that
(X,Y) ¢ Ms(r). We show that(X,Y) € S,. To-
wards a contradiction, suppose thi&,Y) ¢ S,. Since
(X,Y) ¢ M(r), we get by Proposition 6 that %= H(r),

Y & B(r), and eithetX = BT (r) orY (£ H(r).

We consider two cases. First, ¥ [~ H(r), i.e.,
Y N H(r)] = 0, then we have a contradiction to the as-
sumption thatX,Y") € M,(r—). Otherwise, iftY” = H(r),
we haveX | BT(r), and we gelY N H(r)| = 1, oth-
erwise(X,Y) € S,. LetY n H(r) = {p}, and consider
the ruler,. Obviously,Y N B~ (r,) = (. Moreover, we
haveX = B*(r,) = BT (r). Butthen, X [~ H(r) yields
p ¢ X, which in turn contradict$X,Y) € M,(r™). O

—

T =

S,

Observe thal/, (r) and.S,. are disjoint, in view of Propo-
sition 6. Therefore,S, N M(P \ {r}) is the (possibly
empty) set of additional SE-models generated by the shift-
ing process. In the above examples, we havea V b «,
r—~ ={a < notb; b — nota}, andS, = {(0, ab)}.

The question is how to eliminate these additional SE-
models. A possible method is to add suitable rules to the pro-
grams resulting from replacing disjunctive rules by shifted

ones. For the above examples, it can be shown that adding

a < to P3, P5, and P; does the job, sincé), ab) is not an
SE-model of the rule <, and, for eac{X,Y) € M (F;),
(X,Y) € Ms(a <), fori € {3,5,7}. However, forP; and
Py, this does not work. The problem here is that b@thub)

and (b, ab) are contained inV{;(P;) and M, (Py), and it is
not possible to “delete” the undesired interpretatinab)
without “deleting” one of the necessary modéls ab) or
(b,ab) as well. Indeed, there is no normal logic program
which is strongly equivalent t&, or to Py.

Now, what is the distinguishing feature in these exam-
ples? In all of the above programs, except fror Py, we
have the property that withX,Y") and (X’,Y") being SE-
models,(X NX’,Y) is an SE-model too. To wit, in the case
of programsP; and Py, the pair of SE-modeléa, ab) and
(b, ab) violates this property, sincé, ab) is not contained
in M (Py), resp.M,(Py). This basic observation motivates
the following definition:

Definition 4 Let P be a DLP overA. We say thatP is
closed under here-intersectfoiff, for any pair (X,Y’) and
(X',Y) of SE-models aP, (XNX',Y) is also an SE-model
of P. We call(X N X’,Y) the here-intersection ofX,Y")
and(X',Y), for any pair(X,Y), (X', Y) € INT4.

Hence,P,—Ps are closed under here-intersection, whilst
P, and P, are not.

Lemma 1 Each normallogic program is closed under here-
intersection.

Proof.  SinceP is normal,PY is Horn. Then X | PY
and X’ = PY immediately impliesX N X’ |= PY, since
each Horn progranP’ satisfies the following intersection
property: if X = P’ andX’ = P/, thenX N X' = P'. O

Hence, we can state the following result:

Theorem 1 Let P be a DLP. If there exists a normal logic
program( such thatP and @ are strongly equivalent, then
P is closed under here-intersection.

As discussed next, it turns out that closure under here-
intersection is also aufficientcondition for the existence
of a strongly equivalent normal program, given an arbitrary
DLP. To this end, we introduce the following objects:

Definition 5 Let P be a DLP overA, letr € P be a dis-
junctive rule, and le~ = P\ {r}. Then,

P.s=P Ur Urfrp,

where

(X,Y,Z)eS](P)

{p—X,not(A\ Z)|peY}; and
{(X,Y,2) | (X,Z) € S, N M(Py),
XCY, (Y,Z) € My(P),

VWi XCY CY = (Y, Z) ¢ My(P)}.

TX\Y,Z;

TX\Y,Z
S}(P)

2The term “here-intersection” derives from the logical un-
derpinning of strong equivalence (Lifschitz, Pearce, & Valverde
2001), given by the logic of here-and-there (Pearce 1997), in which
the first component of an SE-interpretation refers to the world
“here”.



Intuitively, S| (P) collects, for eacl{X, Z) € S, which
is also an SE-model aP,~, the minimal SE-model§Y, Z)
of P “above” X (with fixed Z). Note that, by definition
of S,, forany (X, Z) € INTy, (X,X,Z) ¢ S/ (P), but
(X,Z) € S, implies the existence of an interpretatidh
with X C Y C Z such that X,Y, Z) € S| (P), since, at
leastforY = Z, (Y, Z) € M(P) holds (again by definition
of S).

The rulesry y,z, added in accord to the elements of
S!(P), behave as follows:

Proposition 8 For any setsX,Y,Z C A, we have that
(X',Y') € INT, is an SE-model of x vy ~ iff one of the
following conditions holds:(i) Y C X’; (i) X € Y’;
(i)Y' & Z;or (iv) X € X’ andY C Y.

Proof. Forp €Y, letr, denote the corresponding rule in
rx,v,z With H(r,) = p. Note that all rules in"x y, z have
the same bodyB = (X, not (A \ Z)). Clearly,(X',Y’) €
M,(rx,y,z)Iff (X',Y') € My(rp), foreachp € Y. Apply-
ing Proposition 6 to each, yields (X', Y") € M(rx,y,z)

iff (1) Y' ¥~ B, or (2) for eachp € Y, X' = H(rp)
or jointly X’ (& B*(r,) andY’ = H(r,) holds. Ob-
serve that (1) holds exactly X ¢ Y’ (i.e., Condition (ii)),
orY' n(A\ Z) # 0 (i.e., Condition (iii)) holds. It suf-
fices to show that (2) is satisfied iff (i) or (iv) holds. Since
B*(r,) = X, for eachp € Y, we proceed as follows. As-
sumeX’ b~ X, i.e, X € X'. Then, eithetX’ = H(r,) or
Y' = H(rp), for eachp € Y. HoweverY’ = H(r,) holds
wheneverX’ = H(r,). Hence, in this cas&’ = H(r,)
holds for allp € Y. We thus arrive atX ¢ X’ and
Y C Y’ i.e., the properties of (iv). Otherwise, ¥ C X',
X' = H(rp) must hold, for alp € Y. Thus,Y C X', i.e.,
Condition (i) holds. ]

Note thatrx y,z may contain redundant rules, e.g., if
we haveX C Y. It can be shown that thenyy 7z =;
rx v\ x,z, Which reduces the number of rules. However, for

technical reasons we subsequently do not pay attention to y ~ (YNnZ')cY,andby (a)andY N2, Z) € M,(P)

this potential optimization.
Lemma2 If P is a DLP closed under here-intersection,
thenM,(P) = M, (P, s), for any disjunctive rule: € P.
Proof. First observe that, by Proposition 7, we have
My(P,s)=M,(P-Ur~Ufp,) =
=M (P7)NMs(r—)N M (rp,)
= M,(P7)N(Ms(r)US,) N Ms(7p,)
= (My(P7) N My(r) N Ms(7p,)) U
(My(P7) NS, N M,(7p,))
= (M, (P) N M,(7p,)) U
(My(P7) NS, N M(7p,)).
The strategy for the remainder of the proof is as follows.
We first show thatl’ = M(P7) N S, N My(7p,) = 0.
This leads us td/,(P, ;) = M,(P) N M,(#p,), and thus it
remains to show that/;(P) = M,(P) N M;(7p,), i.e., that
My(P) C M,(7p,) holds.
We showT = (). Let(X, Z) € S,. If (X, Z) ¢ M(P]),
we have X, Z) ¢ T. So supposéX, Z) € My (P,"). Then,

there exists a tripléX,Y, Z) € S](P). Hence, we can
assumex y z C 7p,. Moreover, we have&X C Y C Z. We
now show that X, Z) ¢ M,(rx,y,z). Assume(X,Z) €
M,(rx,v,z). Then, by Proposition 8, one of the following
conditions has to hold: (Y C X, (ii)) X € Z, (iii)) Z € Z,
or (iv) X € X andY C Z. Condition (i) does not hold since
we haveX C Y (ii) does not hold since we ge¥ C Z
from X C Y C Z; and (iii) and (iv) do not hold trivially.
We arrive at a contradiction, and we gét= (.

We now show thal\/,(P) C M,(#p,) holds. Clearly, if
7p, IS empty, we are done, since then each SE-interpretation
is also an SE-model ofp,. So, supposép, #* (. We
show(X’, Z") € M(rx,vy,z), for each(X’, Z") € M,(P)
and eachrxyz C 7p,. Towards a contradiction, con-
sider someryy z C #p, and some(X’,Z’) € M,(P)
such that( X', Z") ¢ M,(rx,y,z). On the one hand, from
rxy.z C tp,, we have(X,Y, Z) € S](P), which implies
that (a)(X, Z) € S, N My(P,); (b) (Y, Z) € M(P); and
(c) X Cc Y C Z. On the other hand, by Proposition 8,
we know from(X',Z’) ¢ My(rxy,z) that (1)Y € X',
@xXczZ, 3z CZ,and(@)X C X' orY ¢ 7.

By assumption(X’, Z') € M,(P). Hence X' = P7
andZ' = PZ'. Moreover, by (3)Z' C Z holds. By Propo-
sition 1, we getX’ = PZ andZ’ = P#, and from (b) we
getZ = P. Therefore (X', Z) € M (P)and(Z',Z) €
M;(P). Now, P is closed under here-intersection, yielding
YNX,Z) e My(P)and(Y NZ',Z) € My(P). We
use (4) to distinguish between the following two cases:

First, assumeX C X'. By (c), X C Y, and thusX C
(Y N X’). From (1), we have that” ¢ X'. This implies
(YNX') CY. Hence, X C (Y N X’') C Y follows.
Together with (a) andY N X', Z) € M,(P), we obtain
(X, YNX', Z) € SI(P), contradicting X, Y, Z) € S| (P).

Now assumeX ¢ X'’. Similarly, from (4), we gett” ¢
Z', yielding (Y N Z') C Y. Moreover, by (2),X C 7/,
and by (c),X C Y. Thus,X C (Y n Z’). Again, we have

we arrive at a contradiction toX, Y, Z) € S| (P). O

Hence, by applying the above transformation successively
for all disjunctive rules in a given DLHE°, we eventually
obtain a normal logic program strongly equivalenfto

Theorem 2 Let P be a DLP overA. If P is closed under
here-intersection, then there exists a normal logic program
@ over A such thatP and @ are strongly equivalent.

Therefore, in view of Theorem 1, a DLP possesses a
strongly equivalent NLBPrecisely if P is closed under here-
intersection.

For illustration, let us apply the construction®f ; to the
examplesP, and P; from the above, with = a VvV b .
ConsiderS] (P,). Clearly, S, N M((P:);") = 0, andr is
just replaced by-—. But S, N Ms(ng);) = {(0,ab)},
and by the SE-models a®%, we getS, (P3) = {(0,a,ab)}.
Hence, we exchangen Ps by r—Ury , 45, Wherery , .» =
{a <} (under the assumption that = {a,b}). For the
other programs, the construction is similar.



Uniform Equivalence

If we change from strong to uniform equivalence, and re-
taining our overall strategy, the intuitive problems are very

similar to those observed in the case of strong equivalence.

But now an SE-mod€lX, Y') from S, comes into play only

if it is also a UE-model of the remaining program. Thus,
if we want to eliminate such an SE-model, the problem of
eliminating further SE-models, which should be retained,
is less complicated compared to the case of strong equiv-
alence. Roughly speaking, because of this difference, we
arealwaysable to construct a uniformly equivalent normal
program. For instance, all our example prografsPy
exceptP; are uniformly equivalent to the program result-
ing from P; by replacingr a V b « by its shifting

r—. For the programP; = {r;a < b;b «— a}, how-
ever, we obtairn(#, ab) as additional SEand UE-model of
(Pr\{aVvb—})U{a — notb;b — nota}. Adding rules

a < or b « (or both of them) circumvents this problem.
Hence, in some cases, but in fewer than for strong equiva-
lence, we again have to add further rules to achieve our goal.
To wit, only rulesrx y.z, for (X,Y, Z) € S!(P), are used
whereY = Z.

Definition 6 LetP,r, P, S| (P), andrx y. » be asin Def-
inition 5, and define

(X,Z,Z)es] (P)

P»,"u:PT_UT_)UfPu, for f‘pu: X, 7,7-

In contrast to the case of strong equivalence, this transfor-
mation is always applicable in order to retain uniform equiv-
alence.

Lemma 3 Given a DLPP with » € P disjunctive, it holds
that M, (P) = M, (P, ).

Proof.  First of all, observe that, analogously to the proof
of Lemma 2, we get that/; (P, ,,) is given by
(Ms(P) N My(7p,)) U (Ms(

P7)N S, N M(7p,)). (4)

We show),,(P) = M,(P,,.). By Proposition 5, this
holds iff both AL, (P) € Ms(Py.,) andM, (P, ,,) € M(P)
hold.

We first showMS(P) M(P, ), Which clearly implies
M, (P) C My(P,,). Note that |frp is empty, we are done,
since thenl/, (P ) C My(P)n ( ) holds trivially. So
considerip, # (. We show(X’, Y’) € M, (TX;Y’Y> for

each(X’,Y’) € M,(P) and eachrx yy C #p,. Towards
a contradiction, considerx yy C 7p, and (X',Y") €
M,(P)suchthatl X", Y") ¢ M,(rx,y,y). Onthe one hand,
sincerx y,y C 7p,, we have (aX,Y) € S, N M, (P, ),
(b) X C Y, and (c) for each SE-interpretatid#, Y) with
X C Z,(Z)Y) € My(P) impliesZ =Y. By Proposi-
tion 8, on the other hand,X’,Y") ¢ M(rxy,y) yields
()Y € X/, (i) X C Y/, (iii) Y CY,and (iv)X C X' or
Y Z Y'. We use (iv) for distinguishing between the follow-
ing two cases:

First, assumeX C X'. Clearly, X’ C Y’. By (i), X’ #
Y, and by (iii), Y’ C Y. WethusgetX C X’ C Y.
Moreover, X’ = PY' holds, sincg X', Y’) € M,(P). By

Proposition 1, we geX’ = PY. FurthermoreY |= P
holds by (a). HencéX',Y") € M,(P), which clearly is in
contradiction to (c).

Second, assum& ¢ X'. By (iv), Y € Y’. Together
with (iii), we thus haveY” C Y. Moreover,X C Y holds
by (ii). Since(X’,Y’) € M,(P),Y" = P¥" holds. Propo-
sition 1 yieldsY’ = PY, and sinceY = P, we have
(YY) € My(P)with X C Y’ C Y. Again, thisis in
violation to (c).

It remains to show that/, (P,,) C M,(P). In particu-
lar, we show that\/,,(P, ) NT = 0 holds, where

T = My(P7) NS, N M(7p,).

By inspecting (4), it can be seen th&f, (P.,) NT = (
implies M, (P,..,) € Ms(P)N M, ( ) wh|ch proves the
claim sinceM, (P) N M,(7p, ) ( ) holds trivially.

To derive M, (P.,) N T = {), we show that for any
(X,Y) € S, ﬂM(P*), either (X,Y) ¢ M,(P,,) or
(X,Y) ¢ My(7p,) holds. Fixa(X,Y) € S, N M (P-).
We consider two cases.

Assume (X,Y,Y) ¢ SI(P). Hence, there exists a
setX C X' C Y such that(X',Y) € M, (P). We
know that (X, X,Y) ¢ SI(P). Thus,X c X'. We
already have shown that/,(P) C M,(F,.), yielding
(X')Y) € My(P,,). Butthen,(X,Y) géM( u)s Since
XcX cy.

So assuméX,Y,Y) € SI(P), and thus'x yy C 7p,.
However, we have X,Y) ¢ M;(rxy,y), since none of
the following conditions, which hold by Proposition 8, is
satisfied: ()Y C X, (i) X €Y, (i) Y £ Y, or (iv) X £
X andY C Y. For (i) and (ii), this is seen by the fact
that(X,Y) € S,, and thusX C Y; and (iii) and (iv) falil
trivially. Hence,(X,Y") ¢ M, (7p,). O

Theorem 3 For each DLPP, there exists a normal program
Q@ such thatP =, Q.

As already discussed above, the only program from our
examplesP,—Py which is not uniformly equivalent after re-
placingr = a vV b < by r— is P;. However, since; is
closed under here-intersection, we already know how to de-
rive a strongly (and thus uniformly) equivalent normal logic
program. In fact, one can verify théaP;), s = (Pr),u.

For an example prograr®® which is not closed under here-
intersection and such thap, # (), with r € P disjunc-
tive, considerP = {a Vb «—; a «— ¢,b;b «— c,a} over
A = {a,b,c}. The SE-models oP are given as follows:

M (P) = {(abc, abe), (ab, abc), (ab, ab), (a, abe),
(a’ ab)7 (a" a)7 (b’ abc)’ (b7 ab)’ (b7 b)}'

Indeed,P is not closed under here-intersectid#). is given
by {(@,ab), (0, abc), (¢,abe)}, and S, N M (P~) = S,
holds. Observe that in contrast (o, abc), the remaining
elements inS,., i.e., (, ab) and (0, abc), are not problem-
atic, since adding them t/, (P) does not change the set of
UE-models.S] (P) is given by the set

{(05 a, ab)’ (@, b7 ab)7 (03 a, abc), (@, b7 abc), (67 abc, abc)},



but only the last triple{c, abe, abe), is applied in the con-
struction ofp, . In fact, we have to add

Tc,abc,abc = {a — G b — C; C < C}

to P~ U r—. For the resulting normal progra#i. ,, we
then havel/, (P,.,) = M(P) U {(0,ab), (0,abc)}, but the
“critical” SE-interpretation(c, abc), has been eliminated. In
fact, M, (P) = M,(P, ) holds, since neitheff), ab) nor
(0, abe) is a UE-model ofP, .

Ordinary Equivalence

Finally, we discuss the case of ordinary equivalence. Since
uniform equivalence implies ordinary equivalence, in view
of Theorem 3, for any DLFP, there always exists an NLP

Q@ such thatP and@ are equivalent. Moreover, the normal
program obtained by successive applications of transforma-
tion P, , clearly does the job. Hence:

Theorem 4 For each DLPP, there exists a normal program
Q such thatP = Q.

In fact, this result is also obtained by an enumeration of
stable models.

Theorem 5 Let P be a DLP andrx y, 7 as in Definition 5.
ThenSM(P) = SM(P), withP = Uy csai(p) T0,v,v-

Proof.  To begin with, we note the following property,
which is a simple consequence of Proposition 8:
(x) ForanyY C A, M(rgy,y) is given by {(X",Y") €
INT, | Y C X' orY' €Y}
ConsiderY € SM(P). Then, for eaclt” € SM(P),

eitherY Z Y orY =Y'. By (), (Y,Y) € My (P). To-
wards a contradiction, suppo¥e ¢ SM(15). By Proposi-
tion 3, there exists & C Y such that(X,Y) € M,(P).
In particular, we must havéX,Y) € M(ryy,y). But
by (x), this is impossible in view ofX C Y. Therefore,
Y € SM(P). This provesSM(P) C SM(P).

Suppose there is somé € SM(P) such thaty ¢
SM(P). Thatis,(X,Y) € M,(P) for someX C Y. By
Proposition 1, we getX, Z) € M,(P) for eachY C Z.
Thus, for eacht’ € SM(P), Y ¢ Y’ holds. Hence,
we have(X,Y) € M(ryy y), for eachY’ € SM(P),
by (+). Thus,(X,Y) € M,(P) with X C Y But this con-
tradictsY € SM(P), and thusSM(P) = SM(P) must
hold. O

Finally, we also note the following transformation for or-
dinary equivalence, following the line @, ; and P, ,,, but
being more compact with respect to ordinary equivalence.

Lemma4 Let P, r, P, S/(P), andrx y z be as in Defi-
nition 5, and define

Poe=P  Ur~ Ufp,

'rAPe = U
(X.2,2) € 5](P),
Z € SM(P)

ThenSM(P) = SM(P,.).

where
X 7 7Z-

Proof. We first show that,
(«)foreachY C A Y =Piff Y E P, ..

Indeed, from Lemma 3, we havd,,(P) = M, (P,,), and
thusY = P iff Y = P, ,. By definition,P, . C P, ,, from
which the only-if direction is an immediate consequence.
For the proof of the if-direction, assun¥é |= P... Then,
Y & P~ Ur—. By classical logic, this clearly implies
Y = P.

We proceed with the proof of the lemma. First, fix some
Y € SM(P). Then,Y = P,and by §),Y = P.. It
remains to show that n& C Y yields an SE-mod€lX,Y)
of P... Towards a contradiction, suppose soieC Y
exists such thatX,Y) € M,(P..). Clearly, (X,Y) €
M,(P), hence, sinc& € SM(P), (X,Y) ¢ M,(r) must
hold. Then, by Proposition 4,X,Y) € S,. Therefore,
(X,Y) e S,NM,(P-)andY € SM(P), and we thus get
rx,yy € Pr. by construction. By Proposition 8X,Y)
Ms(rxyy)onlyif X =Y. Thus(X,Y) ¢ Ms(P,.),
which is a contradiction. Hencé&] € SM(P,.), which
provesSM(P) C SM(P,.).

Now consider som& € SM(P,.). By (x), we getY” =
P. AssumeY ¢ SM(P), i.e., there exists asef C YV
such that(X,Y) € M,(P). By Proposition 7,(X,Y) €
My(P- Ur™). SinceY [ P, and thusy” = PY, we get
by Proposition 1 that” = PY’, for eachY”’ with Y C Y”.
Hence)Y ¢ Y’, for eachY’ € SM(P). By Proposition 8,
(X,Y) € Ms(rx,y y), foreachY”’ withY € Y'. Hence,
(X,Y) € M(P,.). By Proposition 3, this contradicl$
SM(P, ). ThusY € SM(P) must hold, which proves
SM(P..) € SM(P). O

To summarize, given a DLP with » € P disjunctive,
we are able to construct (via a replacement &y normal
rules)

e alogic programP, . which is ordinary equivalent t&’;
e a programp, ,, which is uniformly equivalent ta’; and

e a programP, ; which is strongly equivalent t&’, when-
everP is closed under here-intersection.

All these programs are of the form
P.o =P Ur~ Ufp,, fora e {e,u,s},

and satisfy
Pr,e g P’r,u g P’r,s'

Recall that successive applications of these rulewise trans-
formations, for all disjunctive rules in a given program, leads
to a normal logic program. Hence, our method can be seen
as a uniform framework for obtaining normal logic programs
from disjunctive logic programs with respect to all important
notions of equivalence. Moreover, our results extend and
generalize methods based on shifting techniques, since the
outcome of these methods coincides with the present rewrit-
ing P, , wheneverp_ is empty. In particular, concerning
equivalence in terms of stable models, we present a semantic
criterion (in contrast to the syntactic criterion of head-cycle
freeness as discussed by Ben-Eliyahu & Dechter (1994))
which allows for shifting. Moreover, in terms of uniform



equivalence, we generalized also an observation made by Now, the rules of form (9) compute the intersecti&in N

Eiter & Fink (2003) (cf. Theorem 4.3 of their paper).

We note that the size of the outcoming programs in our
method is in general exponential in the size of the input pro-
gram. However, as we discuss in the next section, this ex-

X5, and via the rules of form (10) the new atancan be

derived iff the intersection does not satigh , i.e., iff (XN
Xo,Y) is no SE-model of?. The constraint (11) eliminates
all models ofP, for which this is not the case, i.e., for which

ponential increase is, in a certain sense, unavoidable from a (X; N X,,Y") is an SE-model of°. Thus, items (9)—(11)

complexity-theoretic point of view.

Complexity Issues

This section deals with complexity issues related to the re-
sults discussed above. We first analyse the complexity of
checking closure of a DLP under here-intersection. Af-

ensure thatP; has no stable model iff’ is closed under
here-intersection. Formally, we have:

Lemma5 A DLP P is closed under here-intersection iff
SM(Pg) = 0.

Based on this, we derive the following complexity result.

terwards, we investigate the expressiveness of the class ofThegrem 6 Checking closure under here-intersection, for a
DLPs closed under here-intersection. As we show, this class gjyven DLP, iscoNRcomplete.

resides at the same level of the polynomial hierarchy (PH)
as the class of arbitrary DLPs. Finally, we show that the ex-
ponential increase of program size in the worst case of our
general rewriting method is unavoidable, providing the PH
does not collapse.

Checking Closure under Here-Intersection

We can express testing a DLUFPfor being closed under here-
intersection via the following normal logic program, which
is linear in the size of. To this end, for any rule, letr; de-
note the rule obtained from by replacing each occurrence
of an atomp; in r by p..

Definition 7 Let P be a DLP over atom¥ . For each atom

v eV, letw, v, vf, vy, U5, vy be pairwise distinct new
atoms, and let, be a new atom. Defing; as the program
containing the following items:

1. for eachw € V and each € {1,2},

v «— not v; U <« notv; (5)
Vi — v, notvi; v« notvi; (6)
2. foreachr € P and each € {1, 2},
— B(r),not H(r); @)
— BT (r}), not B~ (r), not H(r}); (8)
3. foreachw e V,
Vg U, v; ©)
4. for eachr € P,
u « B1(r}), not B~ (r), not H(r}); (10)
and
5. the constraint
— not u. (12)
Intuitively, the programP; works as follows. Rules

of form (5) guess an interpretatiori of P, and rules of
form (7) check thaty” is a model of P. Similarly, rules

of form (6) guess subset¥; and X5 of Y such that both
are models ofP"’, which is enforced by the constraints of
form (8). Hence, the program consisting of all rules of
form (5)—(8) “computes” all pairs of SE-modé€lX;,Y") and
(X5,Y) of P.

Proof. By Lemma 5 and the linear encoding from Def-
inition 7, we get that closure under here-intersection is in
CoNP.

We show coNP-hardness by a reduction to the coNP-
complete problem of deciding whether a given interpretation
is the unigue model of a positive DLP as follows:

Let P be a positive DLP over atoni8 = {vy,...,v,},
let ¢, ¢’ be new atoms, and consider the program
Q=PU{qVq —q—uv1,....,00 ¢ —v1,...,0.}.

We show that) is closed under here-intersection¥ffis the
unique model ofP.

First, if V' is the unique model of’ then, by construc-
tion, V U {¢,q'} is the unique model of), and sinceQ
is positive—and hence constant under reductigps-triv-
ially closed under here-intersection.

Second, for the only-if direction, assume tldats closed
under here-intersection. Towards a contradiction, assume
that there is amodel/ c V of P. Then, both\/ U {¢} and
MuU{q'} are models of), and thus also bottW U{q}, VU
{¢,¢'}) and(M U {¢'},V U {q,¢'}) are SE-models of).
However,(M,V U {q,q'}) is not an SE-model of), since
M [~ qV ¢ «. This contradicts our assumption th@t
is closed under here-intersection. Henbejs the unique
model of P. O

In view of Theorem 2, the above result immediately im-
plies the following property:

Corollary 1 Checking whether, for a given DLP, there
exists a normal program such thatP and @ are strongly
equivalent, icoNP-complete.

Expressiveness of Here-Intersection closed DLPs

We now consider the expressiveness of the class of DLPs
closed under here-intersection. We show that this class of
programs possesses the same worst-case complexity as arbi-
trary DLPs. More specifically, the relevant reasoning tasks
in the context of DLPs are

e checking the existence of a stable model of a given DLP
(“consistency problem”);

e checking whether a given atom belongs to at least one
stable model of a given DLP (“brave reasoning”); and



e checking whether a given atom belongs to all stable mod- In the construction of°™, it remains to consider the rules

els of a given DLP (“cautious reasoning”).
As shown by Eiter & Gottlob (1995), for arbitrary dis-

junctive programs, the consistency problem and brave rea-

soning arex¥’-complete, whilst cautious reasoninglig -
complete.

R={<D,q|p,q€ H(r),p# q} having as its SE-models
(over.A*)

{(X,Y) € INTy-

Y NH()| <1}

Moreover, the respective hardness results for Putting things together, for each disjunctive fact P, we

these problems hold even for a quite restricted class of DLPs. get as SE-models (ovet*) of rules7 U R exactly those
This class comprises DLPs where each disjunctive rule is a (X,Y) € INT4- which satisfy Condition 3. O
fact and where each stable model containgsact hitting
set for the collection of disjunctive facts iR.

We define the following kinds of programs:

Definition 8 A DLP P is called

1. adisjunctive-fact program¥FP) iff each disjunctive rule
in P has an empty body, i.e., for eaghke P, |[H(r)| > 1
impliesB(r) = 0; and

2. a hitting-set programiff, for each stable model €
SM(P),|H(r)NI| = 1, for each disjunctive rule € P.

DLPs satisfying both conditions are callduitting-set
DFPs HDFPs).

Observe that HDFPs are in generait closed under here-
intersection, as seen by the progréamvb < }. However, we
construct a polynomial-time translation mapping each DFP
Pinto a DLPQ (over an extended alphabet) such that{i)

is closed under here-intersection and (ii) there is a one-to-
one correspondence (over the original alphabet) between the
stable models of and the stable models &f, wheneverP

is also a HDFP. From this, we derive the same lower com-
plexity bounds for DLPs closed under here-intersection as

For illustration, reconsideP; = {a Vb <} overA =
{a,b}. We getP;" given by

{aVbe;a—a;b« b;a« notb; b+ nota; « a,b}.

The set of SE-models (ovén, b, @, b}) of Pt is then given
by
{(ag, aa), (b, bb), (aa,aba),
(bb, abd), (aba,aba), (abb,abd)}.

Observe thanr is closed under here-intersection, whifst
is not. This example mirrors the following general property:

Lemma 7 For any DFP P, Pt is closed under here-inter-
section.

Proof. If P is an NLP, thenP™ is clearly closed under
here-intersection. So suppose tifate DLP \ NLP, and
assume thaP™ is not closed under here-intersection. Then,
there exist SE-model6X,Y) and(Z,Y) of P* such that
(XNZ,Y) ¢ Ms(PT). Let P, consist of all normal rules in
P andP; of all disjunctive rules inP+. We know thatP; is

for arbitrary DLPs.

We employ the following notation: For a given alphabet
A, A= {p|p e A} is aset of globally new disjoint atoms.
Accordingly, for a ruler, 7 is the rule resulting from by
replacing each atomin r by p. Finally, letA* = AU A.
Definition 9 For a DLP P over A, let P™ be the program
resulting fromP by adding{p < p | p € A} and, for each
with [H (r)| > 1, adding(7) ~U{—p,q | p,q€H (r), p#q}.
Lemma 6 For a DFP P, we have thatl/A" (P1) is given
by those(X,Y) € INT 4~ which satisfy the following con-
ditions:

1. (X,Y) e MM (P);
2. XNAC(XNA,YNAC (Y NA),;and
3. for eachr € P with |H(r)| > 1,

XNHT) =YNH(T) ={p}.

Proof.  First, MA (PU{p — 7 | p € A})is clearly given
by those(X,Y) € INT 4~ which satisfy Conditions 1 and 2.
Furthermore, consider a disjunctive face P. Applying
Proposition 7, we geM A (7)) = M () U Sy, which
in turn is given by

{(X,Y) € INT4-

-
>

HFNX#Dor
HF)NX =0;|Y NH(F)| > 1}.

3Theexact hitting seproblem is as follows. Given a collection
C of subsets of a se4, decide whether there exists a subSet S
such tha{S’ N C’| = 1, for eachC’ € C. This problem is known
to be NP-complete (Karp 1972).

closed under here-intersection, i.€X N Z,Y) € M,(P).
Moreover, by Proposition 6, for al € P,, we have that
X E H(r)andZ = H(r), since each bod(r) is empty.
Fix such an- (observe thaP, =+ () by hypothesis and more-
over P, C P by definition). By Lemma 6, we get

XNHF) =ZnNnHF) =Y nNH®F) ={p},
XNAC (XnA),andZNAC (ZNA). Byp € H(r),we
obtainp € X N Z, and thusX N Z = H(r). Consequently,
(XN ZY) e Ms(r). Since this holds for alt € P, we
end up with(X N Z,Y) € M,(P2). We already know that
(XNZY) e My(Py), and so(X N Z,Y) € My(P™").
This, however, is a contradiction (& N Z,Y) ¢ My (P™).
Hence,P™ must be closed under here-intersection. O

Lemma 8 Let P be a HDFP overA. Then,

1. if I € SM(P), thenthere exists & C A such thal UK
is a stable model oP™; and

2. if I € SM(PT), thenI N Ais a stable model oP.

Proof.  To show Part 1, lef € SM(P) and letK be
constructed by any C [ satisfying|K N H(r)| = 1, for
each disjunctive fact € P. SuchK exists sinceP is an
HDFP. Clearly,/ U K = P since no atoms fromt occur in
P andl = P. Moreover,

IUKE{p—Dp|pe A}

since K C I by definition. LetR be the collection of the
rules(7)” and{< p,q | p,q € H(r),p # q}, for each



disjunctive fact- € P. Then,I U K | R, by the assump-
tion that K satisfies K N H(r)| = 1, for eachr € P with
|H(r)| > 1. Hencel UK = PT.

It remains to show that no proper subsedf I U K is
a model of(P*)!. SupposgJ N.A) C (I n.A). Then
J E (P™)! would imply thatJ = PZ, contradictingl €
SM(P). Now supposéJN.A) C (INA). Then,J £ R,
since we would have at least one rule frgm— which is
not satisfied by/.

Concerning Part 2, assuniec SM(P*). SinceP C
P* and no atoms frord occur in P, we havel N A |= P.
Again, it remains to show that né C (I N A) exists, such
that.J = P! holds. Towards a contradiction, l&tC (1N.A)
be a model of”!. We show that then there existd@aC A
such thatbotliJUK) C T andJUK = (PT)! holds, thus
contradicting € SM(P™). First, sincel € SM(P),
we have(I,I) € M2 (Pt), and from Lemma 6 we get
INAC (INA).NowletK = Jn(IN.A). Consequently,
(JUK)cI,andJUK = {p < p| p € A}.. Moreover,
for each disjunctive fact € P, we have|J N H(r)| > 1
(otherwiseJ (= PT) as well asI N H(7)| = 1 (otherwise
I £ P*). SinceJ c ITandI N A C (InN.A) holds by
I € SM(P"), we finally getJ U K = R!. Hence, we
deriveJ UK |= (P*)L. ]

The relations from Lemmas 7 and 8 guarantee a faithful
reduction (from arbitrary HDFPs to DLPs closed under here-

Fink 2003), and checking whethept a is a cautious con-

sequence of”’ is in coNP (sinceP’ is normal). Thus, the

17 -hard problem of deciding whetherot a is a cautious

consequence aP is in ¢, which is a contradiction unless
the PH collapses. O

Also for rewritings under ordinary equivalence we can-
not avoid an exponential blowup unless the PH collapses, as
shown from results by Caddadit al. (2000a; 2000b).

Proposition 9 There exists no polynomial-size rewritirig
DLP — NLP such thatP = f(P), for everyP € DLP,
unless the PH collapses.

Clearly Theorem 8 is implied by Proposition 9, but the proof
of the latter refers to non-uniform complexity classes, while
ours is from first principles. In particular, a direct proof
of Proposition 9 would show that a polynomial-size rewrit-
ing f : DLP — NLP such thatP = f(P) implies
coNP C P/poly (P/poly is the class of problems decidable
in polynomial time with polynomial advice), which in turn
implies a collapse of the PH. Furthermore, Proposition 9 re-
mains true for generalized rewritingfswhich admit projec-
tive extra variables, i.eP = f(P)|a, wheref(P) is de-
fined over atomst’ O A andf(P)|4 denotes the restriction
of the stable models gf(P) to the original atomsA. This is

a consequence of combining results by Cadbél. (2000a)
and the facts that (i) model checking for NLPs is polynomial
and (ii) model checking for circumscription (which is hard

intersection) of the relevant reasoning tasks in the context of for the non-uniform compilability variant of coNP) is a spe-

logic programming. As already mentioned, the hardness re-

sults by Eiter & Gottlob (1995) carry over for HDFPs. We
thus obtain our next result which shows that DLPs closed

cial case of model checking for DLPs (both rely on minimal
model checking).
We remark that, in terms of (Gogiet al. 1995), DLPs

under here-intersection possess the same worst-case comare, because of the exponential blow up, a stronger KR for-

plexity as general DLPs.

Theorem 7 Both the consistency problem and brave rea-
soning for DLPs closed under here-intersection i -
complete, and cautious reasoning for DLPs closed under
here-intersection i$I£ -complete.

Succinctness of DLPs

Finally, we discuss the size of the rewriting of a given DLP
P into an equivalent NLF) (if it exists).

Theorem 8 There is no rewritingf : DLP — NLP such
that (i) P =, f(P), and(ii) f(P) is polynomial in the size
of P, for everyP € DLP, witha € {u, s}, unless the PH
collapses.

Proof. Assume that a polynomial-size rewritingof the
described kind exists. Consider thE, -hard problem of
checking whether, for a given positive DLIP and a given
atoma, not a is a cautious consequence Bf i.e., whether
a is not contained in any stable model Bf(Eiter & Gottlob
1995).

DefineP, = Pt if a = s, andP, = P if a = u. Then,
not A is a cautious consequencefiff it is a cautious con-
sequence of;. By the existence of, we can guess an NLP
P’ in nondeterministic polynomial time such that =, P,
(o € {u,s}). CheckingP’ Py is in coNP (Eiter &

—«

malism than NLPs, unless the PH collapses, regardless of
the notion of equivalence considered.

Conclusion

In this paper, we derived new results concerning the elim-
ination of disjunctions in logic programs under the stable
model semantics with respect to strong, uniform, and ordi-
nary equivalence. We showed that under uniform and or-
dinary equivalence, disjunctions can always be eliminated,
whereas for strong equivalence, this is precisely possible in
case a certain semantic criterion is satisfied, viz. that the
given program is closed under here-intersection. We also
provide an explicit, uniform method to rewrite a given DLP
into an equivalent NLP (if such an NLP exists, in case of
strong equivalence). Although the resultant NLPs are in gen-
eral exponentially larger than the input DLPs, we showed
that this increase is in some sense unavoidable, thus provid-
ing further insight on theuccinctnessf DLPs.

Our ongoing and future work concerns a closer investiga-
tion of the newly derived class of DLPs closed under here-
intersection, as well as extending our results to the function-
free first-order (datalog) case. Furthermore, it remains to
explore how our results can be applied for optimizations of
algorithms used in disjunctive logic programming engines
such as DLV and GnT.
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