
Distributed Nonmonotonic Multi-Context Systems∗

Minh Dao-Tran and Thomas Eiter and Michael Fink and Thomas Krennwallner
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9–11, A-1040 Vienna, Austria
{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract
We present a distributed algorithm for computing equilibria of
heterogeneous nonmonotonic multi-context systems (MCS).
The algorithm can be parametrized to compute only partial
equilibria, which can be used for reasoning tasks like query
answering or satisfiability checking that need only partial in-
formation and not whole belief states. Furthermore, caching
is employed to cut redundant solver calls. As a showcase,
we instantiate the MCS framework with answer set program
contexts. To characterize equilibria of such MCS, we develop
notions of loop formulas that enable reductions to the classi-
cal satisfiability problem (SAT). Notably, loop formulas for
bridge rules between contexts and for the local contexts can
be combined to a uniform encoding of an MCS into a (dis-
tributed) SAT instance. As a consequence, we can use SAT
solvers for belief set building. We demonstrate this approach
by an experimental prototype implementation, which uses an
off-the-shelf SAT solver.

Introduction
In the last years, there has been increasing interest in systems
comprising multiple knowledge bases. The rise of distributed
systems and the World Wide Web fostered this development,
and to date, several formalisms are available that accommo-
date multiple, possibly distributed knowledge bases. One
of them are Multi-Context Systems (MCS), which consist
of several theories (the contexts) that are interlinked with
bridge rules that allow to add knowledge into a context de-
pending on knowledge in other contexts. For instance, the
bridge rule a← (2 : b) of a context C1 means that C1 should
conclude a if context C2 believes b. MCS have applications
in various areas, such as argumentation, data integration, or
multi-agent systems. There, each context may model the
beliefs of an agent while the bridge rules model an agent’s
perception of the environment, i.e., other contexts. Data in-
tegration from different knowledge sources is in general a
driving force for MCS applications. One possibility is the
example given in (Eiter et al. 2010) for finding explana-
tions of inconsistencies in MCS. Another real life applica-
tion is project costs and time management, which typically

∗This research has been supported by the Austrian Science Fund
(FWF) project P20841 and by the Vienna Science and Technology
Fund (WWTF) project ICT 08-020.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

includes many constraints like working laws, holiday restric-
tions, working time per week, etc. Here, regulations are kept
in different knowledge bases like an ontology of personal
costs, some rules that can compute the work amount for work
packages, personal timekeeping, central administration data,
local preferences, and so on. Bridge rules may act to build
up a system whose models describe consistent states of such
a management system. Moreover, multi-context systems
allow to model bidirectional input and output for external
knowledge sources that goes beyond the import interface of
HEX-programs (Eiter et al. 2005).

Roughly, MCS can be divided into monotonic and non-
monotonic MCS. Examples of the former kind are (McCarthy
1993; Giunchiglia and Serafini 1994; Ghidini and Giunchiglia
2001) (see also (Serafini and Bouquet 2004) for a comparison
of these approaches), while (Brewka, Roelofsen, and Ser-
afini 2007; Brewka and Eiter 2007) are nonmonotonic MCS.
The general MCS framework of Brewka and Eiter (2007) is
of special interest, as it generalizes previous approaches in
contextual reasoning and allows for heterogeneous and non-
monotonic MCS, i.e., a system may have different, possibly
nonmonotonic logics in its contexts (thus furthering hetero-
geneity), and bridge rules may use default negation (to deal,
e.g., with incomplete information). Hence, nonmonotonic
MCS interlinking monotonic context logics are possible.

Although virtually all formalizations of MCS are inher-
ently targeted for distributed, autonomous systems, no dis-
tributed algorithms for MCS exist. Closest to one is an algo-
rithm for checking satisfiability of homogeneous, monotonic
MCS in (Roelofsen, Serafini, and Cimatti 2004), where a
centralized control accesses contexts in parallel. The lack
of distributed algorithms is due to several obstacles: (i) the
semantic abstraction of contexts to belief sets hinders in-
terference with the local evaluation processes in contexts;
(ii) information hiding and security aspects disable access
to the context theories themselves, merely interfaces to the
belief sets are provided; (iii) the complete system topology
might be unknown to a context, which hinders decomposed
evaluation; and (iv) the bridge rules of two contexts may
refer to each other, thus creating cyclic systems that must be
handled with care.

Motivated by these defiances, we contribute the following.

• As a stepping stone, we introduce partial equilibria
for Brewka and Eiter-style MCS, which enable us to build

equilibria incrementally in a distributed setting.

• We present a truly distributed and modular meta-algorithm,
DMCS, for partial equilibria building, which copes with
problems (i)–(iv) above. It is distributed as no shared
memory is needed across the contexts, and modular as it
computes the partial equilibria starting from a context.

• To incorporate bridge rules into the local evaluations, we
define loop formulas, inspired by similar compilations of
logic programs into SAT theories (Lin and Zhao 2004).
They may be added to belief sets abstractly represented
as SAT theories to obtain a uniform encoding. We pursue
this in particular for MCS whose contexts are answer set
programs; notably, cycles in the MCS can be disregarded
and equilibria are computable by a simplified algorithm.

• We report on a DMCS prototype implementation for the
setting above and show initial experimental results. To our
knowledge, this is the first implementation of such MCS.

Preliminaries
We recall some basic notions of heterogeneous nonmono-
tonic multi-context systems (Brewka and Eiter 2007) and
disjunctive logic programs under answer set semantics.

Multi-Context Systems
A logic is, viewed abstractly, a tuple L = (KBL, BSL,
ACCL), where

• KBL is a set of well-formed knowledge bases, each being
a set (of formulas),

• BSL is a set of possible belief sets, each being a set (of
formulas), and

• ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of
acceptable belief sets.

This covers many (non-)monotonic KR formalisms like
description logics, default logic, answer set programs, etc.

For example, a (propositional) ASP logic L may be such
that KBL is the set of answer set programs over a (proposi-
tional) alphabet A, the set of possible belief sets BSL = 2A
contains all subsets of atoms, and ACCL assigns each kb ∈
KBL the set of all its answer sets (more details about ASP
follow below).

Definition 1 A multi-context system (MCS) M = (C1, . . . ,
Cn) consists of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n,
where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is
a knowledge base, and bri is a set of Li-bridge rules of the
form

s← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . ,not (cm : pm) (1)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck
,

1 ≤ k ≤ m, and kb ∪ {s} ∈ KBi for each kb ∈ KBi.

Informally, bridge rules allow to modify the knowledge
base by adding s, depending on the beliefs in other contexts.

The semantics of an MCS M is defined in terms of partic-
ular belief states, which are sequences S = (S1, . . . , Sn) of
belief sets Si ∈ BSi. Intuitively, Si should be a belief set of

the knowledge base kbi; however, also the bridge rules bri

must be respected. To this end, kbi is augmented with the
conclusions of all r ∈ bri that are applicable.

Formally, r of form (1) is applicable in S, if pi ∈ Sci ,
for 1 ≤ i ≤ j, and pk 6∈ Sck

, for j + 1 ≤ k ≤ m.
Let app(R,S) denote the set of all bridge rules r ∈ R that are
applicable in S, and head(r) the part s of any r of form (1).

Definition 2 A belief state S = (S1, . . . , Sn) of a multi-
context system M is an equilibrium iff for all 1 ≤ i ≤ n,
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).
Example 1 Let M = (C1, C2, C3, C4) be an MCS such that
all Li are ASP logics, with alphabets A1 = {a}, A2 = {b},
A3 = {c, d, e}, A4 = {f, g}. Suppose

– kb1 = ∅, br1 = {a← (2 : b), (3 : c)};
– kb2 = ∅, br2 = {b← (4 : g)};
– kb3 = {c← d; d← c}, br3 = {c ∨ e← not (4 : f)};
– kb4 = {f ∨ g ←}, br4 = ∅.
One can check that S = ({a}, {b}, {c, d,¬e}, {¬f, g}) is an
equilibrium of M .

In the rest of this paper, we assume that contexts Ci have
finite belief sets Si that are represented by truth assign-
ments vSi

: Σi → {0, 1} to a finite set Σi of propositional
atoms such that p ∈ Si iff vSi(p) = 1 (as in Brewka and
Eiter, 2007, such Si may serve as kernels that correspond
one-to-one to infinite belief sets). To improve readability of
our examples, we will include ¬p in belief sets Si to high-
light false atoms p. Furthermore, we assume that the Σi are
pairwise disjoint and that Σ =

⋃
i Σi.

Answer Set Programs
Let A be a finite alphabet of atomic propositions. A disjunc-
tive rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . ,not bn , (2)

for k ≥ 0 and n ≥ m ≥ 0, where a1, . . . , ak, b1, . . . , bn

are atoms from alphabet A. We let H(r) = {a1, . . . , ak}
and B(r) = B+(r)∪B−(r), where B+(r) = {b1, . . . , bm}
and B−(r) = {bm+1, . . . , bn}. An answer set program P is
a finite set of rules r of form (2).

An interpretation for P is any subset I ⊆ A. It satisfies a
rule r, if H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩
I = ∅. I is a model of P , if it satisfies each r ∈ P .

The GL-reduct (Gelfond and Lifschitz 1991) P I of P rela-
tive to I is the program obtained from P by deleting (i) every
rule r ∈ P such that B−(r) ∩ I 6= ∅, and (ii) all not bj ,
for bj ∈ B−(r), from every remaining rule r.

An interpretation I of a program P is called an answer set
of P iff I is a ⊆-minimal model of P I .

For example, the program P = {a ∨ b ←; d ← a, not c;
e← b} has two answer sets, viz. {a, d} and {b, e}.

Generic Evaluation of Nonmonotonic MCS
The aim of this section is to provide a distributed algorithm
for computing equilibria of an MCS. Taking a local stance, we
consider a context Ck and compute those parts of (potential)

equilibria of the system which contain coherent information
from all contexts that are ‘reachable’ from Ck.

Let us start defining some concepts required. The notion
of import closure formally captures what is ‘reachable’.

Definition 3 (Import Closure) Let M = (C1, . . . , Cn) be
an MCS. The import neighborhood of a context Ck is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk} .

Moreover, the import closure IC (k) of Ck is the smallest
set S such that (i) k ∈ S and (ii) for all i ∈ S, In(i) ⊆ S.

Alternatively, we can constructively characterize

IC (k) = {k} ∪⋃
j≥0 IC j(k) ,

where IC 0(k) = In(k), and IC j+1(k) =
⋃

i∈IC j(k) In(i).
Note that the import closure of any context is finite, i.e., for
an MCS M = (C1, . . . , Cn) and Ck from M , |IC (k)| ≤ n.

Example 2 Consider M in Example 1. Then In(1) =
{2, 3}, In(2) = In(3) = {4}, and In(4) = ∅; the import
closure of C1 is IC (1) = {1, 2, 3, 4} (see Figure 1(a)).

Based on the import closure we define partial equilibria.

Definition 4 (Partial Belief States and Equilibria)
Let M = (C1, . . . , Cn) be an MCS, and let ε /∈ ⋃n

i=1 BSi.
A partial belief state of M is a sequence S = (S1, . . . , Sn),
such that Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n.

A partial belief state S = (S1, . . . , Sn) of M is a par-
tial equilibrium of M w.r.t. a context Ck iff i ∈ IC (k) im-
plies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and
if i 6∈ IC (k), then Si = ε, for all 1 ≤ i ≤ n.

As an aside, IC (k) essentially defines a subsystem M ′ of M
that is connected by bridge rules. We use partial equilib-
ria of M instead of equilibria of M ′ to keep the original
MCS M intact. Our view is similar to unnamed attributes
in a relational database; essentially, we reference contexts
in an MCS by position as in standard equilibria. Alternative
representations of equilibria for subsystems are possible but
would prohibit to easily talk about the initial M without addi-
tional mappings from M ′ to M . Thus, for the purpose of this
paper it is more convenient to use the reference-by-position
approach.

For combining partial belief states S = (S1, . . . , Sn)
and T = (T1, . . . , Tn), we define their join S ./ T as the
partial belief state (U1, . . . , Un) with

(i) Ui = Si, if Ti = ε or Si = Ti,

(ii) Ui = Ti, if Ti 6= ε and Si = ε,

for all 1 ≤ i ≤ n. Note that S ./ T is void, if some Si, Ti

are from BSi but different. The join of two sets S and T
of partial belief states is then naturally defined as S ./ T =
{S ./ T | S ∈ S, T ∈ T }.
Example 3 Consider two sets of partial belief states:

S = { (ε, {b}, ε, {¬f, g}) , (ε, {¬b}, ε, {f,¬g}) } and

T =

{ (ε, ε, {¬c,¬d, e}, {¬f, g}),
(ε, ε, {c, d,¬e}, {¬f, g}),
(ε, ε, {¬c,¬d,¬e}, {f,¬g})

}
.

Their join is given by

S ./ T =

{ (ε, {b}, {¬c,¬d, e}, {¬f, g}),
(ε, {b}, {c, d,¬e}, {¬f, g}),
(ε, {¬b}, {¬c,¬d,¬e}, {f,¬g})

}
.

Distributed Algorithm
Given an MCS M and a starting context Ck, we aim at
finding all partial equilibria of M w.r.t. Ck in a distributed
way. To this end, we design an algorithm DMCS, whose
instances run independently at each context node and com-
municate with other instances for exchanging sets of partial
belief states. This provides a method for distributed model
building, and the DMCS algorithm can be applied to any
MCS such that appropriate solvers for the respective context
logics are available. As a main feature of DMCS, it can also
compute projected partial equilibria, i.e., partial equilibria
projected to a relevant portion of the signature of the import
closure of the starting context. This can be exploited for
specific tasks like, e.g., local query answering or consistency
checking. When computing projected partial equilibria, the
information communicated between contexts is minimized,
keeping communication cost low.

In the sequel, we present a basic version of the algorithm,
abstracting from low-level implementation issues. Moreover,
it is assumed that the topology of the overall MCS is not
known at context nodes (at the end of this section, we discuss
potential enhancements given topology information). The
idea is as follows: starting from context Ck, we visit the
import closure of Ck by expanding the import neighborhood
at each context like in a depth-first search, maintaining the set
of visited contexts in a set hist , until a leaf context is reached,
or a cycle is detected (by noticing the presence of the current
context in hist). A leaf context simply computes its local
belief sets, transforms all belief sets into partial belief states,
and returns this result to its parent (invoking context). In case
of a cycle, the context detecting the cycle, say Ci, must also
break it, by (i) guessing belief sets for the “export” interface
of Ci, (ii) transforming the guesses into partial belief states,
and (iii) returning them to the invoking context.

The results of intermediate contexts are partial belief states,
which can be joined, i.e., consistently combined, with partial
belief states from their neighbors; a context Ck returns its
local belief sets, joined with the results from its neighbors,
as final result.

For computing projected partial equilibria, the algorithm
offers a parameter V , the relevant interface. Given a (par-
tial) belief state S and set V ⊆ Σ of variables, the restric-
tion of S to V , denoted S|V , is given by the (partial) belief
state S′ = (S1|V , . . . , Sn|V), where Si|V = Si∩V if Si 6= ε,
and ε|V = ε; the restriction of a set of (partial) belief states S
to V is S|V = {S|V | S ∈ S}.

Let V (k) = {pi | (ci : pi) ∈ B(r), r ∈ brk} denote the
import interface of context Ck. By V ∗(k) =

⋃
i∈IC (k) V (i),

the recursive import interface of Ck, we refer to the interface
of the import closure of Ck.

Given a context Ck, we have two extremal cases: 1. V =
V ∗(k) and 2. V = Σ. In Case 1, DMCS basically checks for
consistency on the import closure of Ck by computing partial

Algorithm 1: DMCS(V, hist) at Ck = (Lk, kbk, brk)
Input: V : relevant interface, hist : visited contexts
Data: c(k): static cache
Output: set of accumulated partial belief states

(a) if c(k) is not empty then return c(k)
S := ∅

(b) if k ∈ hist then // cyclic: guess local beliefs w.r.t. V
(c) S := guess(V,Ck)

else // acyclic: collect neighbor beliefs and add local ones
T := {(ε, . . . , ε)} and hist := hist ∪ {k}

(d) foreach i ∈ In(k) do
if for some T ∈ T , Ti = ε then
T := T ./ Ci.DMCS(V, hist)

(e) foreach T ∈ T do S := S ∪ lsolve(T)
(f) c(k) := S|V

return S|V

Algorithm 2: lsolve(S) at Ck = (Lk, kbk, brk)
Input: S: partial belief state
Output: set of locally acceptable partial belief states
T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)})
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T}

equilibria projected to interface variables only. In Case 2,
the algorithm computes partial equilibria w.r.t. Ck. Between
these two, by providing a fixed interface V , problem-specific
knowledge (such as query variables) and/or infrastructure
information can be exploited to keep computations focused
on relevant projections of partial belief states.

The projections of partial belief states are cached in every
context such that re-computation and the recombination of
belief states with local belief sets are kept at a minimum.

We assume that each context Ck has a background pro-
cess (or daemon in Unix terminology) that waits for incom-
ing requests of the form (V, hist), upon which it starts the
computation outlined in Algorithm 1. This process also
serves the purpose of keeping the cache c(k) persistent. We
write Ci.DMCS(V, hist) to specify that we send (V, hist) to
the process at context Ci and wait for its return message.
Algorithm 1 uses the following primitives:

• function lsolve(S) (Algorithm 2): augments the knowl-
edge base kb of the current context with the heads of bridge
rules in br that are applicable w.r.t. partial belief state S,
computes local belief sets using function ACC, combines
each local belief set with S, and returns the resulting set
of partial belief states; and

• function guess(V,Ck): guesses all possible truth assign-
ments for the relevant interface w.r.t. Ck, i.e., for Σk ∩ V .1

DMCS proceeds in the following way:

1In order to relate variables to context signatures, V can either
be a vector of sets, or variables in V are prefixed with context ids;
for simplicity, we kept V as a set without further assumptions.

(a) check the cache for an appropriate partial belief state;

(b) check for a cycle;

(c) if a cycle is detected, then guess partial belief states of
the relevant interface of the context running DMCS;

(d) if no cycle is detected, but import from neighbor con-
texts is needed, then request partial belief states from all
neighbors and join them;

(e) compute local belief states given the imported partial
belief states collected from neighbors;

(f) cache the current (projected) partial belief state.

The next examples illustrate evaluation runs of DMCS for
finding all partial equilibria with different MCS. We start
with an acyclic run.

Example 4 Reconsider M from Example 1. Suppose the
user invokes C1.DMCS(V, ∅), where V = {a, b, c, f, g}, to
trigger the evaluation process. Next, C1 forwards in (d)
requests to C2 and C3, which both call C4. When called
for the first time, C4 calculates in (e) its own belief sets and
assembles the set of partial belief states

S4 = {(ε, ε, ε, {f,¬g}), (ε, ε, ε, {¬f, g})} .

After caching S4|V in (f), C4 returns S4|V to one of
the contexts C2, C3 whose request arrived first. On second
call, C4 simply returns to the other context S4|V from the
cache.

C2 and C3 next call lsolve (in (e)) two times each, which
results in S2 = S resp. S3 = T with S, T from Example 3.

C1, after computing in (d) S2|V ./ S3|V (= (S ./ T)|V
in Example 3), calls lsolve in (e) thrice to compute the final
result:

S1|V =

{ ({a}, {b}, {c}, {¬f, g}),
({¬a}, {b}, {¬c}, {¬f, g}),
({¬a}, {¬b}, {¬c}, {f,¬g})

}
.

The next example illustrates the run of DMCS on a cyclic
topology.

Example 5 Let M = (C1, C2, C3) be an MCS such that
each Li is an ASP logic, and

– kb1 = ∅, br1 = {a← not (2 : b)};
– kb2 = ∅, br2 = {b← (3 : c)}; and
– kb3 = ∅, br3 = {c ∨ d← not (1 : a)}.
Figure 1(b) shows the cyclic topology of M . Suppose that
the user sends a request to C1 by calling C1.DMCS(V, ∅)
with V = {a, b, c}.

In step (d) of Algorithm 1, C1 calls C2.DMCS(V, {1}),
then context C2 calls C3.DMCS(V, {1, 2}), thus C3 in-
vokes C1.DMCS(V, {1, 2, 3}). At this point, the instance
of DMCS at C1 detects a cycle in (b) and guesses the partial
belief states

S ′1 = {({a}, ε, ε), ({¬a}, ε, ε)}
for Σ1 ∩ V . Then, following the dotted lines in Figure 1(b),
the set S ′1|V = S ′1 is the return value for the request from C3,

C2

c(2) : S2

C1

V c(1) : S1

C4 c(4) : S4

C3

c(3) : S3

(a) Topology of Example 1 (diamond)

C1

V c(1) : S1

C2

c(2) : S2

C3

c(3) : S3

S′
1|V

S3|V

S2|V

(b) Cyclic daisy chain topology of Example 5 (ring)

Figure 1: Acyclic and cyclic topologies

who joins it with T and then calls lsolve(T) for each T ∈ T
in (e), resulting in

S3 =

{ ({¬a}, ε, {c,¬d}),
({¬a}, ε, {¬c, d}),
({a}, ε, {¬c,¬d})

}
.

The next step of C3 is to return S3|V back to C2,
which will proceed as C3 before, joins S3|V with T , and
calls lsolve(T) for each T ∈ T in (e). The result is the set
of belief states

S2 =

{ ({¬a}, {b}, {c}),
({¬a}, {¬b}, {c}),
({a}, {¬b}, {¬c})

}
,

which will be sent back to C1 as S2|V . Notice that belief
state ({¬a}, {¬b}, {c}) is inconsistent with C1, but will be
eventually eliminated once C1 evaluates S2|V with lsolve.

Next, C1 will join S2|V with T . In (e), C1 uses the results
from C2 to call lsolve, and the union gives us

S1 = {({¬a}, {b}, {c}), ({a}, {¬b}, {¬c})} ,

which is also sent back to the user as final result.
Given an MCS M = (C1, . . . , Cn) and a context Ck,

using the recursive import interface of Ck, i.e., V ∗(k), as the
relevant interface is a safe (lower) bound for the correctness
of Algorithm 1. In what follows, let M , Ck, and V ∗(k) as
above.
Theorem 1 For all V ⊇ V ∗(k), S′ ∈ Ck.DMCS(V, ∅) iff
there exists a partial equilibrium S of M w.r.t. Ck such
that S′ = S|V .

We can compute partial equilibria at Ck if we use VΣ.
Corollary 2 S is a partial equilibrium of M w.r.t. Ck iff S ∈
Ck.DMCS(VΣ, ∅).

Under the assumption that M has a single root context C1,
i.e., such that i ∈ IC (1) for all 2 ≤ i ≤ n, DMCS com-
putes equilibria. (Disconnected contexts in M can be always
connected to a new root context using simple bridge rules.)
Corollary 3 S is an equilibrium of the MCS M iff S ∈
C1.DMCS(VΣ, ∅) for a single root context C1.

An analysis of the algorithm yields the following upper
bound on the communication activity.

Proposition 4 In a run of DMCS, the number of mes-
sages exchanged between contexts Ci, where i ∈ IC (k),
is bounded by 2 · |E(k)|, where E(k) = {(i, cj) | i ∈
IC (k), r ∈ bri, (cj : pj) ∈ B(r)}.
Discussion
Algorithm DMCS naturally proceeds “forward” in the im-
port direction of context Ck. Thus, starting from there, it
computes partial equilibria which cover Ck and contexts in
its import closure. All other contexts will be ignored; in fact,
they are unknown to all contexts in the closure. While partial
equilibria may exist for Ck and its import closure, the whole
MCS could have no equilibrium, because, e.g., (P1) contexts
that access beliefs from Ck or its closure get inconsistent, or
(P2) an isolated context or subsystem is inconsistent.

Enhancements of DMCS may deal with such situations:
As for (P1), the context neighborhood may include both
importing and supporting contexts. Intuitively, if Ci imports
from Cj , then Ci must register to Cj . By carefully adapting
DMCS, we can then solve (P1). However, (P2) remains; this
needs knowledge about the global system topology.

A suitable assumption is the existence of a managerM
that is reachable from every context Ci in the system, which
can ask M whether some isolated inconsistent context or
subsystem exists. IfM affirms, Ci’s DMCS simply returns ∅,
eliminating all partial equilibria.

We can weaken the manager assumption by introducing
routers (improving decentralization and information encapsu-
lation). Instead of asking the manager, a context Ci queries
an assigned routerR, which collects the necessary topology
information for Ci or makes a cache look-up. The informa-
tion exchange between Ci and R is flexible, depending on
the system setting, and could contain contexts that import
information from Ci, or isolated and inconsistent contexts.

A further advantage of topological information is that Ci

can recognize cyclic and acyclic branches upfront, and the
invocation order of the neighborhood can then be optimized,
by starting with all acyclic branches before entering cyclic
subsystems. The caching mechanism can be adapted for
acyclic branches, as intermediate results are complete and the
cache is meaningful even across different evaluation sessions.

In our setting, we are safe assuming that V ∗(k) ⊆ V . But
this is not needed if M resp. the import closure of Ck has no
join-contexts, i.e., contexts which have at least two parents. If

we have access to path information in M at each context, we
could calculate V on the fly and change it accordingly during
MCS traversal. In particular, for tree-shaped or ring topology,
we can restrict V to the local shared interface between Ck

and its import neighbors. In presence of join-contexts, V
must be made “big enough,” e.g., using path information
(see Bairakdar et al., 2010). Furthermore, join-contexts may
be eliminated by virtually splitting them, if orthogonal parts
of the contexts are accessed. This way, scalability to many
contexts can be achieved.

Loop Formulas for Multi-Context Systems
Algorithm DMCS incorporates in step (e) via lsolve the
bridge rules brk into the local knowledge base kbk, given
belief input from a belief state T , and then computes the
belief sets; this is done for all T ∈ T .

In certain settings, it is possible to compile brk into kbk,
yielding some kb′k, such that the belief sets of kb′k are pre-
cisely the possible belief sets Tk in the return value of any
lsolve(S); hence, the for-loop in step (e) can be replaced by
a single join S := T ./ Bk|V , where Bk are the acceptable
belief sets of kb′k, properly converted to partial belief states.

For example, this is possible for classical logics Lk (as-
suming that contexts are not self-referential), or ASP logics.
This is because there are well-known transformations of ASP
programs P into equivalent classical theories φ(P), such
that the answer sets of P are given by the classical models
of φ(P), which hinge on loop formulas (Lin and Zhao 2004;
Lee and Lifschitz 2003). Informally, such formulas ensure
that cyclic rules like a ← b, b ← a are satisfied, viewed as
classical implications, by assigning a and b true only if there
is support for the truth of a or b by some other rule.

In this section, we develop loop formulas for MCS’s, by
which bridge rules can be compiled into a local classical
theory. In fact, we combine this with a loop formula transfor-
mation of ASP programs into classical theories; this enables
us to obtain particular equilibria satisfying groundedness.
Roughly, we adapt support such that also bridge rules have
an effect on loops (e.g., a← (1 : c) on the loop above), but
we distinguish local support and bridge support.

We assume that in M = (C1, . . . , Cn), all logics Li are
ASP logics with Σi = Ai and Σ = A. Furthermore, we as-
sume that all heads of bridge rules are (disjunctive) facts (this
is no loss of generality). This allows us to adapt disjunctive
loop formulas to encode bridge rules as classical theories.

Let ¬.A = {¬a | a ∈ A} and, as usual,
∨

F =
∨

f∈F f

and
∧

F =
∧

f∈F f (note that
∨ ∅ = ⊥ and

∧ ∅ = >).
For any ASP rule r, we then define

κ(r) =
∧

B+(r) ∧
∧
¬.B−(r) ⊃

∨
H(r) ,

and for any set R of ASP rules, κ(R) =
∧

r∈R κ(r).
The support formula of a set A ⊆ A w.r.t. an ASP rule r is

ε(A, r) =
∧

B+(r) ∧
∧
¬.B−(r) ∧

∧
¬.(H(r) \A) ,

and w.r.t. any set R of ASP rules, ε(A, R) =
∨

r∈R ε(A, r).2

2Ferraris, Lee, and Lifschitz (2006) call ε(A, r) the external
support formula, which is not entirely true in our setting.

To build support formulas w.r.t. a bridge rule r of form (1),
we convert it to an ASP rule `(r) by replacing (ck : pk)
with pk, 1 ≤ k ≤ m; for any bridge rule set R, we let `(R) =
{`(r) | r ∈ R}.

We identify the support rules and the external support
rules of a set of ASP rules R w.r.t. a set A ⊆ A as

SR(A, R) = {r ∈ R | H(r) ∩A 6= ∅} and

ER(A, R) = {r ∈ R | H(r) ∩A 6= ∅, B+(r) ∩A = ∅} ,

respectively (note the SR(A, R) are not minimizing).
We next define necessary dependency relations. In a set

of ASP rules R, we say that a depends on b, denoted a→ b,
if a ∈ H(r) and b ∈ B+(r) for some rule r ∈ R. The set of
dependencies in context Ci is then the set of all pairs a→i b
such that a→ b in kbi ∪ `(bri).

Based on this, we define the dependency graph of an MCS
and loops for contexts and MCS’s.

Definition 5 (Dependency Graph and Loops) The depen-
dency graph of an MCS M = (C1, . . . , Cn) is the di-
graph G = (A,

⋃
1≤i≤n →i).

A loop of Ci (resp., M) is any set L ⊆ Ai (resp., L ⊆ A)
of atoms iff the subgraph of G induced by L is strongly
connected.

Note that each singleton {a} is a loop.

Example 6 Consider M = (C1) and M ′ = (C ′
1), where

kb1 =
{

a← b
b← a

}
, br1 =

{
a← (1 : b)
b← (1 : a)

}
,

kb′1 =
{

c← d
d← c

}
, br ′1 =

{
c← not (1 : d)
d← not (1 : c)

}
.

The loops of C1 are {a}, {b}, and {a, b}, and those of C ′
1

are {c}, {d}, and {c, d}.
Next we define the local loop formula of a context.

Definition 6 (Local Loop Formulas) Let L be a loop of
context Ci. Then the loop formula for L w.r.t. Ci is

λ(L, Ci) =
(∨
L

)
⊃ ε(L,ER(L, kbi) ∪ SR(L, `(bri))) .

Furthermore, the loop formula of context Ci is the conjunc-
tion λ(Ci) =

∧
L λ(L, Ci) of all loops L of Ci.

Example 7 Continuing Example 6,L1 = {a, b} has the loop
formula (i) λ(L1, C1) = a ∨ b ⊃ b ∨ a. Indeed, both rules
of br1 are support rules of C1 w.r.t. L1, which has no external
support rules in kb1; thus λ(L1, C1) = a∨b ⊃ ε(L1, `(br1)),
and ε(L1, `(br1)) = b ∨ a. Similarly, L′1 = {c, d} has the
loop formula (ii) λ(L′1, C ′

1) = c ∨ d ⊃ ¬d ∨ ¬c.
Experts on loop formulas will notice that (i) is weaker than

the loop formula a∨ b ⊃ ⊥ of the program {a← b; b← a},
and admits {a, b} as a model of the translation; this com-
plies with the MCS semantics. Similarly, (ii) is weaker
than c ∨ d ⊃ ⊥ but can eliminate the model {c, d}. Fi-
nally, we have λ({a}, C1) = a ⊃ b, λ({b}, C1) = b ⊃ a,
λ({c}, C ′

1) = c ⊃ d ∨ ¬d, and λ({d}, C ′
1) = d ⊃ c ∨ ¬c.

We now can transform the whole MCS into a formula.

Definition 7 (MCS loop transformation) Given the multi-
context system M = (C1, . . . , Cn) with ASP logics, let

π(Ci) = λ(Ci) ∧ κ(kbi) ∧ κ(`(bri)) , 1 ≤ i ≤ n, and

π(M) =
n∧

i=1

π(Ci) .

Here, π(Ci) describes the belief sets of Ci, depending on
valuations of the atoms in bridge rule bodies; π(M) just
aligns descriptions. The next result shows that this correctly
characterize the equilibria of M .

Theorem 5 The equilibria of any M with ASP logics corre-
spond one-to-one to the models of the formula π(M).

Note that by this theorem, consistency of M (i.e., existence
of some equilibrium) maps to a distributed SAT problem.

Example 8 For M and M ′ from Example 6, we have
π(M) = (b ⊃ a) ∧ (a ⊃ b) ∧ (a ∨ b ⊃ a ∨ b), and

π(M ′) = (c ⊃ d) ∧ (d ⊃ c) ∧ (¬c ⊃ d) ∧ (¬d ⊃ c) ∧
(c ⊃ d∨¬d) ∧ (d ⊃ c∨¬c) ∧
(c∨ d ⊃ ¬c∨¬d) .

Clearly, π(M) has the models ∅ and {a, b}, while it can be
checked that π(M ′) has no model.

Example 9 Let us reconsider M from Example 1. We have

π(C1): κ(C1) = b ∧ c ⊃ a and λ(C1) = a ⊃ b ∧ c

π(C2): κ(C2) = g ⊃ b and λ(C2) = b ⊃ g

π(C3): κ(C3) = (d⊃ c) ∧ (c⊃ d) ∧ (¬f ⊃ c∨ e) and
λ(C3) = (c ⊃ d ∨ (¬e ∧ ¬f)) ∧ (d ⊃ c) ∧

(c ∨ d ⊃ (¬e ∧ ¬f)) ∧ (e ⊃ (¬f ∧ ¬c))
π(C4): κ(C4) = f ∨ g and λ(C4) = (f ⊃¬g) ∧ (g⊃¬f).
The formula π(M) = π(C1)∧ · · ·∧π(C4) has three models,
namely {a, b, c, d, g}, {b, e, g}, and {f}. They correspond to
the three projected equilibria of M shown in Example 4.

We can adapt the algorithm DMCS for π easily: after
step (a), we insert S := lsolve((ε, . . . , ε)); moreover, we
delete in step (c) the for-loop, and replace in step (e) the
for-loop with S := S|V ./ T . Furthermore, we replace
in M each context Ci with C ′

i = (L′i, π(Ci)′, br′), where L′i
is propositional logic, π(Ci)′ is a renaming of π(Ci) such
that variables in different contexts are disjoint, and br′ con-
tains {ai ← (j : aj);¬ai ← (j : ¬aj)} for every renamed
original atom a occurring in both π(Ci) and π(Cj), i 6= j.
Applying then DMCS to the MCS M ′, we obtain the equi-
libria of M .

Theorem 5 may be generalized to contexts with exten-
sions of ASP logics that have loop formula characteri-
zations, like those in (Ferraris, Lee, and Lifschitz 2006;
Janhunen et al. 2009). Furthermore, we have developed
such a characterization for modular logic programs (Dao-
Tran et al. 2009), which feature modules akin to imperative
programs and have increased expressiveness.

Note that this loop formula characterization of equilibria
may lead in the worst case to an exponential blow-up in the
size of the MCS. This is not surprising, as standard loop for-
mulas (Ferraris, Lee, and Lifschitz 2006; Lin and Zhao 2004;

Lee and Lifschitz 2003) also face this situation, and Lifschitz
and Razborov (2006) show that this unavoidable, under the
widely believed assumption from computational complexity
theory that polynomial time computations cannot be simu-
lated with small propositional formulas. A remedy would be
to encode bridge rules in answer set programs. Note however,
that some ASP solvers like ASSAT rely internally on loop
formulas and SAT solving techniques for model search; thus
the expected performance gain from a short ASP encoding
might not always surface in practice.

Loop Formulas for Grounded Equilibria
Equilibria lack groundedness in general, as cyclic bridge
rules might be applied unfoundedly (e.g., a ← (1 : b) and
b ← (1 : a) in Example 6). To overcome this, grounded
equilibria were proposed in (Brewka and Eiter 2007) for
certain MCS’s, in which bridge rules intuitively act under
ASP semantics.

Our transformation π can be adapted to capture grounded
equilibria. We restrict here to normal ASP logics Li,
i.e., KBi is the set of all normal (disjunction-free) ASP pro-
grams (this ensures a technical reducibility condition for Li).
Adapting Definitions 6 and 7, we define global loop formulas.
Definition 8 (Global Loop Formulas) Let L be a loop of
MCS M = (C1, . . . , Cn). The loop formula for L w.r.t. M is

λ(L, M) =
(∨
L

)
⊃ ε(L,

n⋃
i=1

ER(L, kbi ∪ `(bri))) ,

and the loop formula of M is the conjunction λ(M) =∧
L λ(L, M) for all loops L of M . Furthermore, we let

πGE(M) = λ(M) ∧
n∧

i=1

(κ(kbi) ∧ κ(`(bri))) .

We then can show that πGE captures grounded equilibria.
Theorem 6 The grounded equilibria of any M with normal
ASP logics correspond one-to-one to the models of πGE(M).
Example 10 The MCS M in Example 6 has

πGE(M) = (a ⊃ b) ∧ (b ⊃ a) ∧ (a ∨ b ⊃ ⊥) ,

as the external support rules ER({a, b}, kb1 ∪ `(br1)) = ∅.
The only model of πGE(M) is ∅, which corresponds to the
grounded equilibrium of M .

Note that DMCS cannot be run straight on πGE(M), as
the formulas in πGE(M) are intermingled and prohibit a
clear context separation. Intuitively, this is due to the en-
coded groundedness check. We can overcome this simply by
extending M ′ for π(M) above to M ′′ = (C0, C

′
1, . . . , C

′
n),

where C0 = (L0, πGE(M), br0) has propositional logic L0

and br0=
⋃n

i=1{a← (i : a) | a ∈ Ai}; intuitively, C0 filters
out grounded equilibria. We then run DMCS on M ′′ at C0.

Implementation and Experimental Results
We present initial results for a SAT-solver based prototype
implementation of DMCS under Linux, written in C++.3

3Implementation, experiments, and documentation is available
at www.kr.tuwien.ac.at/research/systems/dmcs.

 0.01

 0.1

 1

 10

 100

D1 D2 D3 D4 D5

e
v
a
lu

a
ti
o
n
 t
im

e
 /
 s

e
c
s
 (

lo
g
s
c
a
le

)

Diamond

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

#1014

#56
#32

#348
#12

#1944

#5240

#15088

#14596

#5220

(a) Runtime for instances with diamond topology

 0.1

 1

 10

 100

R1 R2 R3 R4 R5

e
v
a
lu

a
ti
o
n
 t
im

e
 /
 s

e
c
s
 (

lo
g
s
c
a
le

)

Ring

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

#176 #208

#80
#111

#2119

#120736

#10548

#2200

#98656

#19388

(b) Runtime for instances with ring topology

Figure 2: Evaluation times for diamond and ring topologies

We used the development version of clasp (2010-01-31) as
a SAT solver, which accepts DIMACS CNF input (Gebser et
al. 2007). Specifically, all π(Ck) are encoded as CNF clauses
and clasp builds all models at a context Ck. Conceptually,
any SAT solver that enumerates all models would serve the
same purpose. Every context has its own server process
running on the machine.

Distributed model computation for nonmonotonic systems
is new, and there are no implementations that would serve
as a basis for comparison with our approach. We do not
plan to use large systems with thousands of contexts, and
pay attention to systems that do not have too many contexts
(up to several dozens). For this, we randomly created small
MCS’s and report initial findings on scalability issues.

For initial experimentation, we created random MCS in-
stances of fixed topologies generalizing the diamond and ring
in Figure 1(a) and 1(b) (stacking m diamonds in a tower
of 3m + 1 nodes). A parameter setting P = (n, s, b, r)
specifies (i) the number n of contexts, (ii) the local alphabet
size |Σi| = s (each Ci has a random ASP program on s
atoms with 2k answer sets, 0 ≤ k ≤ s/2), (iii) the maximum
interface size b (number of atoms exported), (iv) and the max-
imum number r of bridge rules per context, each having at
most 2 body literals.

Table 1 shows some experimental results for P1 =
(7, 8, 4, 4) and P2 = (10, 12, 6, 6). Each row Dj (resp., Rj)
displays pure computation time (no output) for sequential
diamonds (resp., a ring), where the # columns show the
numbers of projected partial equilibria computed at C1 (ini-
tiated by sending the request V ∗(1) to C1). The response
time varies a lot, especially for P2, as well as the result size,
due to the particular instances. All works quite fast for small
interfaces; increasing s should, modulo local solving and
projection time, not lead to an overall increase. Stacking
multiple diamonds in a tower (m = 3 for P2) models hard
instances with many joins. This is reflected in the ratio of
running time to result size, compared to the ring. There is
a lot of room for improvement; e.g. with the local shared
interface optimization for ring, thus fewer results, we gain

topology P1 =(7, 8, 4, 4) # P2 =(10, 12, 6, 6) #

D1 0.248 1014 19.520 1944
D2 0.129 56 3.361 5240
D3 0.159 32 18.948 15088
D4 0.121 348 46.249 14596
D5 0.085 12 11.289 5220

R1 0.109 176 33.020 120736
R2 0.106 208 2.285 10548
R3 0.185 80 0.637 2200
R4 0.135 111 12.176 98656
R5 0.320 2119 6.870 19388

Table 1: Runtime (secs) on Pentium M 1.73GHz, 1GB RAM

a significant speedup for P2 (<1.4 secs in R1, <0.8 secs
in all other cases). Figure 2(a) and 2(b) show a graphical
representation of the runtime behavior for the tests above.

Related Work
Roelofsen, Serafini, and Cimatti (2004) described evaluation
of monotone MCS with classical theories using SAT solvers
for the contexts in parallel. They used a (co-inductive) fix-
point strategy to check MCS satisfiability, where a centralized
process iteratively combines results of the SAT solvers. Apart
from being not truly distributed, an extension to nonmono-
tonic MCS is non-obvious; also, no caching was used.

Serafini and Tamilin (2005) and Serafini, Borgida, and
Tamilin (2005) defined distributed tableaux algorithms for
reasoning in distributed ontologies, which are akin to MCS.
Distributed ontologies enforce a stronger coupling of the con-
texts as they provide an alignment of the vocabulary. Thus,
the abstract view of MCS is not possible. The algorithms
can be used to decide consistency of distributed description
logic knowledge bases, provided that the distributed TBox is
acyclic. The DRAGO system implements this approach.

Hirayama and Yokoo (2005) dealt with distributed SAT
(DisSAT), where the local theories (agents) are propositional

clause sets, and communication is based on shared variables
between theories. They gave an algorithm for finding a single
satisfying assignment as follows. Starting with a random vari-
able assignment, each agent repeatedly finds possible variable
flips to reduce conflicts, and sends them to the neighbors;
based on their proposals, the agent changes her assignment.
This continues until a solution is found or the number of com-
munication rounds reaches a limit. DisSAT can be readily
used to find some equilibrium of MCS M that are mappable
into distributed SAT (e.g., via our loop transformation π(M)),
while computing multiple (or all) equilibria is not supported.

Adjiman et al. (2006) presented a framework of peer-to-
peer inference systems. Local theories of propositional clause
sets share atoms, and a special algorithm can be used for con-
sequence finding. As we pursue the dual problem of model
building, application for our needs is not straightforward.

Conclusion
We have presented a basic distributed algorithm, DMCS, for
computing all (partial) equilibria of an MCS, and reported
initial experiments. Future work includes the realization of
algorithmic optimizations as discussed, as well as improve-
ments and extensions of the implementation. Also, we plan
to build an alternative implementation for ASP logics that
uses native ASP solvers, and compare both implementations.
In follow-up work, preliminary results on improving scal-
ability by decomposing multi-context systems turn out to
be quite effective and lead to significant improvements in
several cases (Bairakdar et al. 2010).

Our aim is to compute all models of a nonmonotonic multi-
context system. A simplification that should improve scala-
bility is to compute one (block) of model(s) at-a-time.

Regarding possible applications in the Web field, dis-
tributed MCS could serve as a host language for distributed
SPARQL reasoning (Schenk and Staab 2008). For that, a non-
ground semantics must be developed that relies on grounding
as customary in logic programming.

Appendix
Proof Sketch for Theorem 1
Lemma 7 For any context Ck and partial belief state S of
an MCS M = (C1, . . . , Cn), app(brk, S) = app(brk, S|V)
for all V ⊇ V ∗(k).

Proof Follows from
r ∈ app(brk, S) ⇔ ∀(ri : pi) ∈ B+(r) : pi ∈ Sri ∧

∀(rk : pk) ∈ B−(r) : pk /∈ Srk

⇔ ∀(ri : pi) ∈ B+(r) : Sri = Sri |Vri
∧

∀(rk : pk) ∈ B−(r) : Srk
= Srk

|Vrk

as V ⊇ V ∗(k) ∧ S|V ∗(k) ⊆ S|V
⇔ ∀(ri : pi) ∈ B+(r) : pi ∈ Sri |V ∧
∀(rk : pk) ∈ B−(r) : pk ∈ Srk

|V
⇔ r ∈ app(brk, S|V).

We can now prove Theorem 1.
(⇒) We start by showing soundness of DMCS. Let S′ ∈
Ck.DMCS(V, ∅) such that V ⊇ V ∗(k). We show now that

there is a partial equilibrium S of M w.r.t. Ck such that S′ =
S|V . We proceed by structural induction on the topology of
an MCS, and start with acyclic MCS M .

Base case: Ck is a leaf with In(k) = ∅ and brk = ∅
and k /∈ hist . This means that (d) is not executed, hence,
in (e), lsolve runs exactly once on (ε, . . . , ε), and we get as
result the set of all belief states S = lsolve((ε, . . . , ε)) =
{(ε, . . . , ε, Tk, ε, . . . , ε) | Tk ∈ ACCk(kbk)}. We further
get that S′ ∈ S|V . Towards a contradiction, assume that there
is no partial equilibrium S = (S1, . . . , Sn) of M w.r.t. Ck

such that S′ = S|V . From In(k) = ∅, we get that IC (k) =
{k}, thus the partial belief state (ε, . . . , ε, Tk, ε, . . . , ε) ∈ S
is a partial equilibrium of M w.r.t. Ck. Contradiction.

Induction step: assume that the import neighborhood of
context Ck is In(k) = {i1, . . . , im} and

Si1 = Ci1 .DMCS(V, hist ∪ {k}),
...

Sim = Cim .DMCS(V, hist ∪ {k}),
such that for every S′ij ∈ Sij , there exists a partial
equilibrium Sij of M w.r.t. Cij

such that Sij |V = S′ij .
Since In(k) 6= ∅, step (d) is executed; let

T = Si1 ./ · · · ./ Sim

be the result of calling all DMCS at Ci1 , . . . , Cim . Fur-
thermore, let S =

⋃{lsolve(S) | S ∈ T } be the result
of executing step (e). Eventually, S′ ∈ S|V . Since every
DMCS at Ci1 , . . . , Cim

returns its partial equilibria w.r.t. Cij

projected to V , we have that every T ∈ T is a partial equi-
librium w.r.t. Cij

projected to V . M is acyclic and we have
visited all contexts from In(k), thus by Lemma 7 we get
that for T ∈ T , app(brk, T) gives us all applicable bridge
rules r regardless of Tj = ε in T , as j /∈ In(k). Hence,
for all T ∈ T , lsolve(T) returns only partial belief states,
where each component is projected to V except the kth com-
ponent. As every T ∈ T preserves applicability of the rules
by Lemma 7, we get that for every S′ ∈ S|V , there exists a
partial equilibrium S of M w.r.t. Ck such that S′ = S|V .

The proof for cyclic M works similarly. In a run we
eventually end up in a context Ci such that i ∈ hist again
and guess in step (c). Thus, all possible projected partial
belief states (ε, . . . , ε, Si, ε, . . . , ε) on V will be returned and
the calling context can proceed with the result. The result is
then propagated throughout the system and will be returned
to the first invoked instance of DMCS at Ci, which is the first
context of the cycle. Here, another call to lsolve then assures
that only partial equilibria survive and will be returned to the
calling context, or if Ci = Ck, to the user.

(⇐) We give now a proof sketch for completeness of DMCS.
Let S be a partial equilibrium of M w.r.t. Ck such that S′ =
S|V . We show now that S′ ∈ Ck.DMCS(V, ∅).

Proof idea is as follows: we proceed as in the soundness
part by structural induction on the topology of M , and in the
base case for a leaf context Ck, we get that lsolve((ε, . . . , ε))
give us all belief sets at Ck. Since Si ∈ ACCi(kbi ∪
{head(r) | r ∈ app(bri, S)}) for all i ∈ IC (k), we just

have to show that S′i = Si|V . Since V ⊇ V ∗(k), we get
by Lemma 7 that the applicability of bridge rules in bri is
preserved. Thus, at each Ci, the return value S|V contains S′
and so S′i.

Proof Sketch for Proposition 4
The proof sketch is as follows: for a context Ck of an
MCS M = (C1, . . . , Cn), the set E(k) contains all depen-
dencies from contexts Ci for i ∈ IC (k). Since we visit
all (i, j) ∈ E(k) exactly twice during DFS-traversal of M
(once when calling Cj .DMCS(V, hist) at Ci, and once when
retrieving S|V from Cj in Ci), the claim follows.

Proof Sketch of Theorem 5
(⇒) Let S = (S1, . . . , Sn) be an equilibrium of the MCS
M . We have that Si is an answer set of

Ri = kbi ∪ {head(r) | r ∈ app(br i, S)}.
We show now that S =

⋃
1≤i≤n Si is a model of π(M) by

showing that, for all 1 ≤ i ≤ n,

(i) S |= κ(kbi),

(ii) S |= κ(`(br i)), and

(iii) S |= λ(Ci)

Part (i): From Si being an answer set of Ri, we get Si |= r for
all r ∈ kbi. It follows that Si |= κ(r), hence Si |= κ(kbi),
and finally, we get that S |= κ(kbi).
Part (ii): Take an arbitrary bridge rule r ∈ br i of form (1):

• If r /∈ app(bri, S), then either there exists (ci : pi) in r
such that pi /∈ Sci

for 1 ≤ i ≤ j, or there exists (ck : pk)
in r such that pk ∈ Sck

for j + 1 ≤ k ≤ m. Since the sets
Σi are pairwise disjoint, we get that S does not satisfy the
antecedent of κ(`(r)).

• If r ∈ app(bri, S), then for all (ci : pi) for 1 ≤ i ≤ j,
pi ∈ Sci , and for all (ck : pk) for j + 1 ≤ k ≤ m,
pk /∈ Sck

. As the sets Σi are pairwise disjoint, we have
that S satisfies the antecedent of κ(`(r)). Furthermore,
since r is applicable in S, head(r) was added to Ri to
determine Si, thus S |= head(r) and so we have that S
satisfies the consequent of κ(`(r)).

In both cases we can derive that S |= κ(`(r)) for all r ∈ br i,
and eventually S |= κ(`(br i)).
Part (iii): Now take an arbitrary loop L ⊆ Ai of Ci. We have
to show that

S |=
(∨
L

)
⊃ ε(L,ER(L, kbi) ∪ SR(L, `(bri))) (3)

holds. If L ∩ Si = ∅, then (3) holds vacuously. Other-
wise, S |= ∨L, so we have to show that S satisfies the conse-
quent of (3), i.e., for some r ∈ ER(L, kbi) ∪ SR(L, `(bri)),
we get

S |=
∧

B+(r) ∧
∧
¬.B−(r) ∧

∧
¬.(H(r) \ L) . (4)

Recall that Si is an answer set of Ri. We obtain that T =
Si \ L is not a model of RSi

i . There exists an r̄ ∈ RSi
i

such that T |= B(r̄) and T 6|= H(r̄), thus B+(r̄) ⊆ T
and B−(r̄) ∩ T = ∅.

We have that there is a rule r ∈ Ri such that r̄ is the
reduced rule r. Since T ⊆ Si, we get Si |= B(r), as Si 6|=
B−(r) follows from r̄ ∈ RSi

i . This means that Si |= H(r),
hence Si∩H(r) 6= ∅. Since T 6|= H(r̄), we also get that T ∩
H(r) = ∅. Thus, L ∩H(r) 6= ∅.

We obtain two cases for r ∈ Ri:

• r ∈ kbi: from B+(r̄) ⊆ T we get B+(r) ∩ L = ∅, and
from L∩H(r) 6= ∅ we can then conclude r ∈ ER(L, kbi).
We have to show that Si |= ε(L, r), thus

– Si |=
∧

B+(r),
– Si |=

∧¬.B−(r), and
– Si |= ¬.(H(r) \ L).

The first two items hold by Si |= B(r). The last item holds
since T ∩ H(r) = ∅, hence (Si ∩ (Ai \ L)) ∩ H(r) =
Si∩ (H(r)\L) = ∅. Since r ∈ ER(L, kbi), we set r = r
and obtain that (4) is true, hence also (3) holds.

• r ∈ {head(r′) | r′ ∈ app(bri, S)}: there exists a rule
r′ ∈ app(bri, S) of form (1) such that r = head(r′) and
for all (ci : pi) in r′, 1 ≤ i ≤ j, we have pi ∈ Sci

, and
for all (ck : pk) in r′, j + 1 ≤ k ≤ m, we have pk /∈ Sck

.
From L ∩H(r) 6= ∅ we have that L ∩H(head(r′)) 6= ∅
and thus `(r′) ∈ SR(L, `(bri)). We have to show for
each Si that Si |= ε(L, `(r′)), thus

– Si |=
∧

B+(`(r′)),
– Si |=

∧¬.B−(`(r′)), and
– Si |= ¬.(H(`(r′)) \ L).

Since the sets Σi are pairwise disjoint, the first two hold
as Si |= B(r) and S is then a model for the body of `(r′).
The last one holds since T ∩ H(head(r′)) = ∅, hence
(Si∩(Ai\L))∩H(head(r′)) = Si∩(H(head(r′))\L) =
∅. Since `(r′) ∈ SR(L, `(bri)), we set `(r′) = r and
obtain that (4) is true, hence also (3) holds.

We have shown that (i)–(iii) holds, and as a result, we get
that S is a model of π(M).

(⇐) Let S be a model of π(M). We can create a be-
lief state S = (S1, . . . , Sn), where each Si = S|Li , and
show that S is an equilibrium of M (note that the sets Si

are pairwise disjoint as the sets Σi are pairwise disjoint).
We have to show that each Si ∈ ACCi(kbi ∪ Hi), where
Hi = {head(r) | r ∈ app(bri, S)}, i.e., each Si is an an-
swer set of kbi ∪Hi.

We show the following:

(i) Si is a model of (kbi ∪Hi)Si = kbSi
i ∪Hi and

(ii) Si is minimal.

Part (i): By S |= κ(kbi) we immediately get that Si |=
κ(kbi) (since the sets Σi are pairwise disjoint), hence Si |=
kbi and also Si |= kbSi

i .
Moreover, we have that S |= κ(`(br i)), that is, for all

r` ∈ `(bri) we have S |= κ(r`). Let r ∈ bri of form (1) such
that r` = `(r). We have two cases:

• S 6|= ∧
B+(r`) or S 6|= ∧¬.B−(r`): there exists a pi ∈

B+(r`) such that pi /∈ S or a pk ∈ B−(r`) such that
pk ∈ S. Since pi, pk are uniquely determined (follows
from our disjoint language assumption), we have that there
exists (ci : pi) in r, 1 ≤ i ≤ j, or (ck : pk) in r, j + 1 ≤
k ≤ m. Thus, from our construction of S, we obtain pi /∈
Sci

or pk ∈ Sck
, and so we have that r /∈ app(bri, S). We

conclude that head(r) /∈ Hi.

• S |= ∧
B+(r`) and S |= ∧¬.B−(r`) and S |= ∨

H(r`):
for all pi ∈ B+(r`), pk ∈ B−(r`), we have pi ∈ S
and pk /∈ S. Moreover, there exists a ph ∈ H(r`)
such that ph ∈ S. As the sets Σi are pairwise dis-
joint, all pi, pk, ph are uniquely determined, i.e., for all
of pi, pk, ph we have (ci : pi) from r (1 ≤ i ≤ j),
(ck : pk) in r (j + 1 ≤ k ≤ m), and a ph ∈ H(s),
where s = head(r). By our construction of S, we obtain
that all pi ∈ Sci , and all pk /∈ Sck

, thus r ∈ app(bri, S),
and so is head(r) ∈ Hi. Since there exists a ph ∈ S, we
obtain that ph ∈ Si, and so Si |= head(r).

To sum up, Si |= Hi and Si |= kbSi
i , therefore (i) holds.

Part (ii): Assume that there is a model Ti ⊂ Si of kbSi
i ∪Hi.

One can show that this leads to a contradiction and the claim
follows.

Proof Sketch of Theorem 6
The proof is similar to the one for Theorem 5. The essential
difference is that loops are defined over the whole MCS.

References
Adjiman, P.; Chatalic, P.; Goasdoué, F.; Rousset, M.-C.; and
Simon, L. 2006. Distributed Reasoning in a Peer-to-Peer
Setting: Application to the Semantic Web. J. Artif. In-
tell. Res. 25:269–314.
Bairakdar, S. E.; Dao-Tran, M.; Eiter, T.; Fink, M.; and
Krennwallner, T. 2010. Decomposition of distributed non-
monotonic multi-context systems. Manuscript.
Brewka, G., and Eiter, T. 2007. Equilibria in heterogeneous
nonmonotonic multi-context systems. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence,
385–390. AAAI Press.
Brewka, G.; Roelofsen, F.; and Serafini, L. 2007. Contextual
default reasoning. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 268–273.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Proceedings of the 25th International Conference on
Logic Programming, 145–159. Springer.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, T. 2005.
A uniform integration of higher-order reasoning and exter-
nal evaluations in answer set programming. In Proceedings
of the 19th International Joint Conference on Artificial In-
telligence. Professional Book Center.
Eiter, T.; Fink, M.; Schüller, P.; and Weinzierl, A. 2010.
Finding explanations of inconsistency in multi-context sys-
tems. In Proceedings of the 12th International Conference

on Principles of Knowledge Representation and Reasoning.
AAAI Press.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generalization
of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47(1-
2):79–101.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings
of the 20th International Joint Conference on Artificial In-
telligence, 386–392.
Gelfond, M., and Lifschitz, V. 1991. Classical negation
in logic programs and disjunctive databases. New Gener.
Comput. 9:365–385.
Ghidini, C., and Giunchiglia, F. 2001. Local models se-
mantics, or contextual reasoning = locality + compatibility.
Artif. Intell. 127(2):221–259.
Giunchiglia, F., and Serafini, L. 1994. Multilanguage
hierarchical logics or: how we can do without modal logics.
Artif. Intell. 65(1):29–70.
Hirayama, K., and Yokoo, M. 2005. The distributed break-
out algorithms. Artif. Intell. 161(1–2):89–115.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran,
S. 2009. Modularity aspects of disjunctive stable models.
J. Artif. Intell. Res. 35:813–857.
Lee, J., and Lifschitz, V. 2003. Loop formulas for dis-
junctive logic programs. In Proceedings of the 19th In-
ternational Conference on Logic Programming, 451–465.
Springer.
Lifschitz, V., and Razborov, A. 2003. Why are there so
many loop formulas? ACM Trans. Comput. Log. 7(2):261–
268.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer
sets of a logic program by SAT solvers. Artif. Intell. 157(1-
2):115–137.
McCarthy, J. 1993. Notes on formalizing context. In
Proceedings of the 13th International Joint Conference on
Artificial Intelligence, 555–562.
Roelofsen, F.; Serafini, L.; and Cimatti, A. 2004. Many
hands make light work: localized satisfiability for multi-
context systems. In Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, 58–62. IOS Press.
Schenk, S., and Staab, S. 2008. Networked graphs: a
declarative mechanism for SPARQL rules, SPARQL views
and RDF data integration on the Web. In Proceedings of the
17th International World Wide Web Conference, 585–594.
ACM.
Serafini, L., and Bouquet, P. 2004. Comparing formal
theories of context in AI. Artif. Intell. 155(1-2):41–67.
Serafini, L., and Tamilin, A. 2005. Drago: Distributed
reasoning architecture for the semantic web. In Proceedings
of the 2nd European Semantic Web Conference, 361–376.
Springer.
Serafini, L.; Borgida, A.; and Tamilin, A. 2005. Aspects
of distributed and modular ontology reasoning. In Proceed-
ings of the 19th International Joint Conference on Artificial
Intelligence, 570–575. Professional Book Center.

