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Abstract

We study the problem of reasoning from incoherent answer
set programs, i.e., from logic programs that do not have an
answer set due to cyclic dependencies of an atom from its
default negation. As a starting point we consider so-called
semi-stable models which have been developed for this pur-
pose building on a program transformation, called epistemic
transformation. We give a model-theoretic characterization
of this semantics, considering pairs of two-valued interpreta-
tions of the original program, rather than resorting to its epis-
temic transformation. Moreover, we show some anomalies of
semi-stable semantics with respect to basic epistemic prop-
erties and propose an alternative semantics satisfying these
properties. In addition to a model-theoretic and a transforma-
tional characterization of the alternative semantics, we prove
precise complexity results for main reasoning tasks under
both semantics.

Introduction
Answer Set Programming (ASP) is a prime formalism
for nonmonotonic reasoning and knowledge representation,
mainly because of the existence of efficient solvers and well-
established relationships to common nonmonotonic logics.
It is a declarative programming paradigm with a model-
theoretic semantics, where problems are encoded into a
logic program using rules, and its models, called answer sets
(or stable models) (Gelfond and Lifschitz 1991), encode so-
lutions. However, due to nonmonotonicity, programs may
be incoherent, i.e., lack an answer set due to cyclic depen-
dencies of an atom from its default negation. Nonetheless,
there are many cases when this is not intended and one might
want to draw conclusions also from an incoherent program,
e.g., for debugging purposes, or in order to keep a system
(partially) responsive in exceptional situations. This is akin
to the principle of paraconsistency, where non-trivial conse-
quences shall be derivable from an inconsistent theory. As
so-called extended logic programs also may be inconsistent
in the classical sense, i.e., they may have the inconsistent an-
swer set as their unique answer set, we use the term paraco-
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herent reasoning to distinguish between paraconsistent rea-
soning and reasoning from incoherent programs.

Both types of reasoning from answer set programs have
been studied in the course of the development of the an-
swer set semantics; for approaches on paraconsistent ASP
cf., e.g., Sakama and Inoue (1995), Alcântara, Damásio, and
Pereira (2004), Odintsov and Pearce (2005)). Numerous se-
mantics for logic programs with nonmonotonic negation can
be considered as a paracoherent semantics for ASP. Ideally,
such a semantics satisfies the following properties:

(1) Every (consistent) answer set of a program corresponds
to a model (answer set coverage).

(2) If a (consistent) answer set exists for a program, then all
models correspond to an answer set (congruence).

(3) If a program has a classical model, then it has a model
(classical coherence).

Widely-known semantics, such as 3-valued stable mod-
els (Przymusinski 1991), L-stable models (Eiter, Leone, and
Saccà 1997), revised stable models (Pereira and Pinto 2005),
regular models (You and Yuan 1994), and pstable mod-
els (Osorio, Ramı́rez, and Carballido 2008), satisfy only part
of these requirements (see the Discussion section for further
semantics and more details). Semi-stable models (Sakama
and Inoue 1995) however, satisfy all three properties and
thus are the prevailing paracoherent semantics.

Despite the model-theoretic nature of ASP, semi-stable
models have been defined by means of a program transfor-
mation, called epistemic transformation. A semantic char-
acterization in the style of equilibrium models for answer
sets (Pearce and Valverde 2008) is still missing. We address
this problem and make the following main contributions.

• We characterize semi-stable models by pairs of 2-valued
interpretations of the original program, similar to so-called
here-and-there (HT) models. In that, we point out some
anomalies of the semi-stable semantics with respect to ba-
sic rationality properties in modal logics (K and N), that es-
sentially prohibit a 1-to-1 characterization in terms of HT-
models.

• This leads us to propose an alternative paracoherent se-
mantics, called semi-equilibrium semantics, which satisfies
the aforementioned properties and is characterized using



HT-models. Moreover, semi-equilibrium models can be ob-
tained by selecting answer sets of an extension of the epis-
temic transformation (applying the same criteria as for semi-
stable models).

• We study major reasoning tasks under both semantics
and provide precise characterizations of their computational
complexity for normal programs as well as for disjunctive
programs. Besides brave and cautious reasoning, deciding
whether a program has a model, respectively recognizing
models, is considered under the given semantics.

Our results contribute to a more logical foundation of
paracoherent answer set programming, which gains increas-
ing importance in inconsistency management.

Preliminaries
We consider a propositional setting; extensions to non-
ground logic programs are straightforward (more details are
given in the Discussion section below, though).

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm,¬bm+1, . . . ,¬bn, (1)

where a1, . . . , al, b1, . . . , bn are atoms of a propositional
signature L, such that l ≥ 0, n ≥ m ≥ 0, and l + n > 0.
We refer to “¬” as default negation. The head of r is the
set H(r) = {a1, . . . , al}, and the body of r is denoted
by B(r) = {b1, . . . , bm, ¬bm+1, . . . , ¬bn}. Furthermore,
we define the sets B+(r) = {b1, . . . , bm}, and B−(r) =
{bm+1, . . . , bn}. A rule r of form (1) is called (i) a fact, if
m = 0 and l = 1 (here, ← is usually omitted), (ii) a con-
straint, if n = 0, (iii) normal, if l ≤ 1, and (iv) positive, if
m = n. A program P (over L) is a set of rules (over L).

An interpretation I , i.e., a set of atoms over L, satisfies a
rule r, denoted I |= r, iff I ∩H(r) 6= ∅ if B+(r) ⊆ I and
B−(r) ∩ I = ∅. The Gelfond-Lifschitz reduct (Gelfond and
Lifschitz 1991) of a program P with respect to an interpre-
tation I , denoted P I , is given by the set of rules

a1 ∨ · · · ∨ al ← b1, . . . , bm,

obtained from rules in P , such that B−(r) ∩ I = ∅.
An interpretation I is an answer set of P , iff I |= P I and

it is subset minimal among the interpretations of L with this
property; AS(P ) denotes the set of all answer sets of P .

The logic of here-and-there (HT) (Pearce and Valverde
2008) serves as a valuable basis for characterizing semantic
properties of ASP. It is an intermediate logic between intu-
itionistic and classical logic, considering formulas built over
a propositional signature L and the connectives ¬, ∧, ∨,→,
and ⊥. We restrict our attention to formulas of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn → a1 ∨ · · · ∨ al, (2)

corresponding to rules of the form (1). Like intuitionis-
tic logic HT can be semantically characterized by Kripke
models, in particular using just two worlds, namely “here”
and “there” (assuming that the here world is ordered be-
fore the there world). Accordingly, interpretations (HT-
interpretations) are pairs (X,Y ) of sets of atoms from L,
such that X ⊆ Y . An HT-interpretation is total if X = Y .

Intuitively, atoms in X (the here part) are considered to be
true, atoms not in Y (the there part) to be false, while the
remaining atoms (from Y \X) are undefined.

We denote classical satisfaction of a formula φ by an inter-
pretationX , i.e., a set of atoms, asX |= φ, whereas satisfac-
tion in the logic of here-and-there (an HT-model), denoted
(X,Y ) |= φ, is defined recursively:

1. (X,Y ) |= a if a ∈ X , for any atom a,

2. (X,Y ) 6|= ⊥,

3. (X,Y ) |= ¬φ if Y 6|= φ1,

4. (X,Y ) |= φ ∧ ψ if (X,Y ) |= φ and (X,Y ) |= ψ,

5. (X,Y ) |= φ ∨ ψ if (X,Y ) |= φ or (X,Y ) |= ψ,

6. (X,Y ) |= φ→ ψ if (i) (X,Y ) 6|= φ or (X,Y ) |= ψ, and
(ii) Y |= φ→ ψ.

An HT-interpretation (X,Y ) satisfies a theory Γ, iff it sat-
isfies all formulas φ ∈ Γ.

A total HT-interpretation (Y, Y ) is called an equilibrium
model of a theory Γ, iff (Y, Y ) |= Γ and for all HT-
interpretations (X,Y ), such that X ⊂ Y , it holds that
(X,Y ) 6|= Γ. An interpretation Y is an answer set of Γ
iff (Y, Y ) is an equilibrium model of Γ. For further details
see, e.g., (Pearce and Valverde 2008).

Semi-Stable Models
Sakama and Inoue (1995) introduced semi-stable models as
an extension of paraconsistent answer set semantics (called
PAS semantics, respectively p-stable models by them) for
extended disjunctive logic programs. Their aim was to pro-
vide a framework which is paraconsistent for incoherence,
i.e., in situations where stability fails due to cyclic depen-
dencies of a literal from its default negation.

Since we are primarily interested in paracoherence, in the
following summary and study of semi-stable semantics, we
disregard aspects devoted to paraconsistency, more specifi-
cally, we exclude strong negation. Note also that (Sakama
and Inoue 1995) allowed for programs with variables, while
we focus on the propositional case. These restrictions help
to put their technique to handle incoherence in perspec-
tive. Moreover, our results easily carry over to the origi-
nal setting considering PAS semantics and allowing for non-
ground programs. This will be considered in more detail in
the Discussion section below.

We consider an extended propositional language Lκ =
L ∪ {Ka | a ∈ L}. Intuitively, Ka can be read as a is
believed to hold. Semantically, we resort to subsets of Lκ

as interpretations Iκ and the truth values false ⊥2, believed
true bt, and true t, where ⊥ ¹ bt ¹ t. The truth value
assigned by Iκ to a propositional variable a is defined by

Iκ(a) = t if a ∈ Iκ,

bt if Ka ∈ Iκ and a 6∈ Iκ,

⊥ otherwise.

1That is, Y satisfies ¬φ classically.
2In (Sakama and Inoue 1995) ⊥ is called ‘undefined’, as it

should be if strong negation is considered as well.



The semi-stable models of a program P are defined via its
epistemic transformation Pκ.

Definition 1 (Pκ (Sakama and Inoue 1995)) Let P be a
disjunctive program. Then its epistemic transformation is
defined as the positive disjunctive program Pκ obtained
from P by replacing each rule r of the form (1) in P , such
that B−(r) 6= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨Kbm+1 ∨ . . . ∨Kbn ← b1, . . . , bm,(3)
ai ← λr,i, (4)
← λr,i, bj , (5)

λr,i ← ai, λr,k, (6)

for 1 ≤ i ≤ l, m+ 1 ≤ j ≤ n, and 1 ≤ k ≤ l.
Note that for any program P , its epistemic transformation

Pκ is positive. Models of Pκ are defined in terms of a fix-
point operator in (Sakama and Inoue 1995), with the prop-
erty that for positive programs, according to Theorem 2.9,
minimal fixpoints coincide with minimal models of the pro-
gram. Therefore, for any program P , minimal fixpoints of
Pκ coincide with answer sets of Pκ.

Semi-stable models are then defined as maximal canon-
ical interpretations among the minimal fixpoints (answer
sets) of Pκ: Given an interpretation Iκ over L′ ⊇ Lκ, let
gap(Iκ) = {Ka | Ka ∈ Iκ and a 6∈ Iκ}. Given a set S of
interpretations over L′, an interpretation Iκ ∈ S is maximal
canonical in S iff there is no interpretation Jκ ∈ S such that
gap(Iκ) ⊂ gap(Jκ). Let mc(S) denote maximal canoni-
cal interpretations in S and let SST (P ) be the semi-stable
models of a program P , then we can equivalently paraphrase
the definition of semi-stable models in (Sakama and Inoue
1995) as follows.

Definition 2 Let P be a program over L. Then, SST (P ) =
{Iκ ∩ Lκ | Iκ ∈ mc(AS(Pκ))}.

Semantic Characterization
As opposed to its transformational definition, in this work
we aim at a model-theoretic characterization of semi-stable
models in the line of model-theoretic characterizations of the
answer set semantics by means of HT.

Example 1 Let P = {a ← ¬a}. The program is incoher-
ent, with {Ka} as its unique semi-stable model. Its HT-
models are (∅, {a}) and ({a}, {a}). One might aim charac-
terizing the semi-stable model by (∅, {a}).
However, resorting to HT-interpretations will not uniquely
characterize semi-stable models as illustrated next.

Example 2 Consider the program
P = {a; b; c; d← ¬a,¬b; d← ¬b,¬c}.

It is coherent, with a single answer set {a, b, c}, while
SST (P ) = {{a, b, c,Kb},{a, b, c,Ka,Kc}}. Note that
neither ({a, b, c}, {b}) nor ({a, b, c}, {a, c}) is a HT-
interpretation.

Hence, for a 1-to-1 characterization we have to resort to
different structures. Sticking to the requirement that, given a
program P over L, pairs of two-valued interpretations over

L should serve as the underlying semantic structures, we say
that a bi-interpetation of a program P over L is any pair
(I, J) of interpretations over L, and define:

Definition 3 Let φ be a formula over L, and let (I, J) be
a bi-interpretation over L. Then, (I, J) is a bi-model of φ,
denoted (I, J) |=β φ iff

1. (I, J) |=β a if a ∈ I , for any atom a,
2. (I, J) 6|=β ⊥,
3. (I, J) |=β ¬φ if J 6|= φ,
4. (I, J) |=β φ ∧ ψ if (I, J) |=β φ and (I, J) |=β ψ,
5. (I, J) |=β φ ∨ ψ if (I, J) |=β φ or (I, J) |=β ψ,
6. (I, J) |=β φ→ ψ if (i) (I, J) 6|=β φ, or

(ii) (I, J) |=β ψ and I |= φ.

Moreover, (I, J) is a bi-model of a program P , iff (I, J) |=β

φ, for all φ of the form (2) corresponding to a rule r ∈ P .

In case of programs, its bi-models can alternatively be
characterized by the following condition on its rules.

Proposition 1 Let r be a rule over L, and let (I, J) be a
bi-interpretation over L. Then, (I, J) |=β r if and only if

(a) B+(r) ⊆ I and J ∩ B−(r) = ∅ implies I ∩H(r) 6= ∅
and I ∩B−(r) = ∅.

To every bi-model of a program P , we associate a cor-
responding interpretation (I, J)κ over Lκ by (I, J)κ =
I ∪ {Ka | a ∈ J}. Conversely, given an interpretation
Iκ over Lκ its associated bi-interpretation β(Iκ) is given by
(Iκ ∩ L, {a | Ka ∈ Iκ}).

In order to relate these constructions to models of the epis-
temic transformation, which builds on additional atoms of
the form λr,i, we construct an interpretation (I, J)κ,P of Pκ

from a given bi-interpretation (I, J) of P as:

(I, J)κ,P = (I, J)κ ∪ {λr,i | r ∈ P,B−(r) 6= ∅, ai ∈ I,
I |= B(r), J |= B−(r) },

where r is of the form (1).

Proposition 2 Let P be a program over L. Then,

(1) if (I, J) is a bi-model of P , then (I, J)κ,P |= Pκ;
(2) if M |= Pκ then β(M ∩ Lκ) is a bi-model of P .

Based on bi-models, a 1-1 characterization of semi-stable
models succeeds imposing suitable minimality criteria.

Theorem 1 Let P be a program over L. Then,

(1) if (I, J) is a bi-model of P such that
(i) (I ′, J) 6|=β P , for all I ′ ⊂ I ,
(ii) (I, J ′) 6|=β P , for all J ′ ⊂ J , and
(iii) there is no bi-model (I ′, J ′) of P that satisfies (i)

and J ′ \ I ′ ⊂ J \ I ,
then (I, J)κ ∈ SST (P );

(2) if Iκ ∈ SST (P ), then β(Iκ) is a bi-model of P that
satisfies (i)-(iii).



Intuitively, Conditions (i) and (ii) filter bi-models that
uniquely correspond to (some but not all) answer sets of Pκ:
due to minimality every answer set satisfies (i); there may be
answer sets of Pκ that do not satisfy (ii), but they are cer-
tainly not maximal canonical. Eventually, Condition (iii) en-
sures that maximal cononical answer sets are selected. More
formally, the proof of this theorem builds on the following
relationship between bi-models of P and answer sets of Pκ.

Corollary 1 Let P be a program over L. If M ∈ AS(Pκ),
then β(M ∩ Lκ) satisfies (i). If (I, J) is a bi-model of P
that satisfies (i) and (ii), then there exists M ∈ AS(Pκ),
such that β(M ∩ Lκ) = (I, J).

For illustration consider the following example.

Example 3 Let P = {a ← b; b ← ¬b}. Its bi-models
are all pairs (I, J), where I ∈ {∅, {a}, {a, b}} and J ∈
{{b}, {a, b}}. Condition (i) of Theorem 1 holds for bi-
models such that I = ∅, and Condition (ii) holds only-if
J = {b}. Thus, {Kb} is the unique semi-stable model of P .

The examples given so far also exhibit some anomalies
of the semi-stable semantics with respect to basic rational-
ity properties considered in epistemic logics. In particular,
knowledge generalization (or necessitation, resp. modal ax-
iom N) is a basic principle in respective modal logics. For a
semi-stable model Iκ, it would require that
Property N: a ∈ Iκ implies Ka ∈ Iκ, for all a ∈ L.
This property does not hold as witnessed by Example 2.

Another basic requirement is the distribution axiom
(modal axiom K). Assuming that we belief the rules of a
given program (which might also be seen as the consequence
of adopting knowledge generalization) the distribution prop-
erty can be paraphrased for a rule of the form (1) as follows:
Property K: If Iκ |= Kb1 ∧ . . . ∧Kbm and
Iκ 6|= Kbm+1 ∨ . . .∨Kbn, then Iκ |= Ka1 ∨ . . .∨Kal.

Note that this does not hold for rule a← b in Example 3.

An Alternative Paracoherent Semantics
In this section we define and characterize an alternative para-
coherent semantics which we call semi-equilibrium seman-
tics (for reasons which will become clear immediately). The
aim for semi-equilibrium models is to enforce Properties N
and K on them. Let us start considering bi-models of a pro-
gram P , that satisfy these properties. It turns out that such
structures are exactly given by HT-models.

Proposition 3 Let P be a program over L. Then,
(1) if (I, J) is a bi-model of P , such that (I, J)κ satisfies

Property N and Property K, for all r ∈ P , then (I, J)
is an HT-model of P ;

(2) if (H,T ) is an HT-model of P , then (H,T )κ satisfies
Property N and Property K, for all r ∈ P .

In order to define semi-equilibrium models, we follow
the basic idea of the semi-stable semantics and select sub-
set minimal models that are maximal canonical. Let us de-
fine HTκ(P ) = {(H,T )κ | (H,T ) |= P} and denote by
MM(HTκ(P )) its minimal elements with respect to sub-
set inclusion.

Definition 4 Let P be a program over L. An interpre-
tation Iκ over Lκ is a semi-equilibrium model of P iff
Iκ ∈ mc(MM(HTκ(P ))). The set of semi-equilibrium
models of P is denoted by SEQ(P ).

A model-theoretic characterization for this semantics is
obtained as before, replacing bi-models by HT-models and
dropping Condition (ii). Intuitively, Condition (ii) is not
needed as it is subsumed by Condition (iii) (i.e., Condi-
tion (ii′) below) if Property N and Condition (i) hold.

Theorem 2 Let P be a program over L. Then,

(1) If (H,T ) is an HT-model of P such that
(i′) (H ′, T ) 6|= P , for all H ′ ⊂ H , and
(ii′) there is no HT-model (H ′, T ′) of P that satis-

fies (i′) and T ′ \H ′ ⊂ T \H ,
then (H,T )κ ∈ SEQ(P );

(2) if Iκ ∈ SEQ(P ), then β(Iκ) is an HT-model of P that
satisfies (i′) and (ii′).

Alternatively, semi-equilibrium models may be computed
as maximal canonical answer sets, i.e., equilibrium models,
of an extension of the epistemic program transformation.

Definition 5 (PHT ) Let P be a program over L. Then its
epistemic HT-transformation PHT is defined as the union
of Pκ with the set of rules:

Ka← a,
Ka1 ∨ . . . ∨Kal ∨Kbm+1 ∨ . . . ∨Kbn ←Kb1, . . . ,Kbm,

for a ∈ L, respectively for every rule r ∈ P of the form (1).

The extensions of the transformation naturally ensure
Properties N and K on its models and its maximal canon-
ical answer sets coincide with semi-equilibrium models.

Theorem 3 Let P be a program over L, and let Iκ be an
interpretation over Lκ. Then, Iκ ∈ SEQ(P ) if and only-if
Iκ ∈ {M ∩ Lκ |M ∈ mc(AS(PHT ))}.

The resulting semantics is classically coherent.

Proposition 4 Let P be a program over L. If P has a
model, then it has a semi-equilibrium model.

Another simple property is a 1-to-1 correspondence be-
tween answer sets and semi-equilibrium models.

Proposition 5 Let P be a coherent program over L. Then,

(1) if Y ∈ AS(P ), then (Y, Y )κ is a semi-equilibrium
model of P ;

(2) if Iκ is a semi-equilibrium model of P then β(Iκ) is an
equilibrium model of P , i.e., β(Iκ) is of the form (Y, Y )
and Y ∈ AS(P ).

For an illustration of the 1-to-1 relationship between an-
swer sets and semi-equilibrium models, let us reconsider
Example 2. Note that this example also gave evidence that
semi-stable models do not satisfy Property N, which is the
case for semi-equilibrium models, however.

Example 4 Consider the coherent program of Example 2.
Its unique semi-equilibrium model is {a, b, c,Ka,Kb,Kc},
corresponding to the single answer set {a, b, c}.



Problem normal P disjunctive P

SST (P ) 6= ∅ ? NP NP
Iκ ∈ SST (P ) ? coNP ΠP

2

P |=v
b a ΣP

2 ΣP
3

P |=v
c a ΠP

2 ΠP
3

Table 1: Complexity of semi-stable models (completeness
results). The same results hold for semi-equilibrium models.

As a consequence of Property K, semi-equilibrium se-
mantics differs from semi-stable semantics not only with re-
spect to believed consequences.

Example 5 Consider the following extension of the pro-
gram in Example 3: P = {a ← b; b ← ¬b; c ← ¬a},
and compare SST (P ) = {{c,Kb}} with SEQ(P ) =
{{Ka,Kb}} concerning the knowledge with respect to c.

Computational Complexity
We now consider the computational complexity of major
reasoning tasks for programs under semi-stable semantics:
a) deciding whether a program P has a semi-stable model,
b) recognizing semi-stable models (given M and P ), and
c) brave and cautious reasoning from the semi-stable mod-

els of a program P , where an atom a is a brave (resp.,
cautious) consequence of P with value v ∈ {⊥,bt, t},
denoted P |=v

b a (resp., P |=v
c a) if Iκ(a) = v for some

(resp., every) semi-stable model of P .
We also consider these problems for semi-equilibrium

models. For brevity, we compactly summarize the results
in Table 1. In the following, we explain how the results are
derived. The following is easy to see.

Lemma 1 Given a bi-interpretation (I, J) of a program P ,
deciding (I, J) |=β P is polynomial.

Problem a)
SinceP has some semi-stable model iffP has some classical
model, the complexity of Problem a) is immediate.

Theorem 4 Given a disjunctive program P , deciding
whether SST (P ) 6= ∅ is NP-complete. The NP-hardness
holds already for normal programs P .

However, the problem is trivial, if the program P has no
constraints, and is polynomial e.g. if P consists of Horn
clauses.

Problem b)
Recognizing semi-stable models, howwever, is more com-
plext than recognizing classical models.

Theorem 5 Given an interpretation Iκ over Lκ and a pro-
gram P , deciding if Iκ ∈SST (P ) is

(i) coNP-complete for normal P , and
(ii) ΠP

2 -complete for disjunctive P .

This result can be derived as follows. Given an interpre-
tation Iκ over Lκ, we can verify whether it is a semi-stable
model of P by checking the conditions (i)–(iii) in Theorem 1
for β(Iκ) = (I, J). By the Lemma 1, both (i) and (ii) are
feasible in coNP, and testing (iii) is then in ΠP

2 ; as ΠP
2 is

closed under conjunction, this shows that Problem b) is in
ΠP

2 for general programs.
In case of normal programs, both (i) and (ii) are checkable

in polynomial time. Indeed, condition (a) in Def. 3 equals

(a′) B+(r) ⊆ I and J ∩B−(r) = ∅ implies I ∩H(r) 6= ∅,
(b) B+(r) ⊆ I and J∩B−(r) = ∅ implies I∩B−(r) = ∅.

As for (i), some I ′ ⊂ I such that (I ′, J) |=β P (if one
exists) can be found as the least model of a rephrasing of
(a’) and (b) into Horn clauses for all rules r, omitting those r
where J 6|= B−(r). Similarly, in (ii) some J ′ ⊂ J such that
(I, J ′) |=β P (if one exists) can be found as any minimal
model of the positive clauses

∨
B−(r) for all r such that

I |= B+(r) and either I 6|= H(r) or I 6|= B−(r). In both
cases, computing I ′ resp. J ′ is polynomial.

The ΠP
2 -hardness is shown via a reduction from deciding,

given a disjunctive program P and an atom p, whether p
occurs in no answer set of P ; wlog, P is a positive program
P0 that has a minimal model {q}. We then let P1 = P0∪{←
¬p}. It is easily seen that {q,Kp} is a semi-stable model of
P1 iff P0 has no stable model in which p occurs.

The coNP-hardness for normal programs is shown by a
reduction from UNSAT. Let E = C1 ∧ · · · ∧ Cm be a CNF
over atoms x1, . . . , xn. Define a program P2 with the rules

1. full← ¬sat
2. ← full,¬ai,
← full,¬āi;

3. xi ← ¬ai,
x̄i ← ¬āi;

4. full← xi, x̄i;

5. cj ← l∗jk
;

6. sat← c1, . . . , cm;

where i = 1, . . . , n, j = 1, . . .m, and k = 1, . . . , sj given
that Cj = lj1 ∨ . . .∨ ljsj

, and l∗jk
= ljk

, if ljk
is positive and

l∗jk
= l̄jk

otherwise.
Then,

I0 = {full,Ka1,Kā1, . . . ,Kan,Kān}

is such that

β(Io) = ({full}, {a1, ā1, . . . , an, ān})

is a bi-model of P that satisfies conditions (i) and (ii) of
Theorem 1. Morever, β(Io) satisfies condition (iii) (and thus
I0 is semi-stable) iff E is unsatisfiable. Briefly, any (I ′, J ′)
as in (iii) must be such that full /∈ I ′, which means sat ∈ J ′
by the first rule; as J ′ \ I ′ ⊆ J \ I , this means that also
sat ∈ I ′. By condition (i) for (I ′, J ′), this means that I ′
encodes a set of literals (chosen by the rules 3.) that satisfies
each clause in E; the rule 4. ensures consistency.



We note that in this construction, the number of atoms
under negation is, different from the case of disjunctive pro-
grams, not bounded by a constant. In the latter case, for
normal programs Problem b) is polynomial. This is because
only constantly many J matter, and for each J the unique
minimal I ′ such that (I ′, J) |= P (if (I, J) |= P for some
I) is computable in polynomial time.

Problem c)
Brave resp. cautious reasoning from the semi-stable models
of programs is one level higher up in the Polynomial Hierar-
chy than respective reasoning from the stable models. Intu-
itively, this is because maximal canonicality is an orthogonal
selection on top of the stable models.

Theorem 6 Given a program P , an atom a, and a value
v ∈ {⊥,bt, t}, deciding whether

(i) P |=v
b a is ΣP

2 -complete for normal P and ΣP
3 -

complete for disjunctive P ;
(ii) P |=v

c a is ΠP
2 -complete for normal P and ΠP

3 -
complete for disjunctive P .

The membership of brave reasoning in ΣP
3 for disjunc-

tive programs (resp. in ΣP
2 for normal programs) is a simple

consequence of the result for Problem b), and similarly the
membership of cautious reasoning in ΠP

3 (resp. ΠP
2 ).

The ΣP
3 /Π

P
3 -hardness for disjunctive programs can be

shown by lifting the reduction for model recognition. The
program P0 used for P1 evaluates wlog a ∀∃-QBF Φ, cf.
(Eiter and Gottlob 1995) such that p is in no minimal model
of P iff Φ is true. The construction of P1 from P0 works if
Φ = Φ(Z) contains free variables Z = z1, . . . , zl that are
set by facts zi (make zi true) and z̄i (make zi false). A choice
from zi, z̄i (emulating such facts) can be encoded with rules

zi ∨ z̄i ←, ← zi,¬bi, ← z̄i,¬b̄i.

which ensure that every bi-model (I, J) of P that satis-
fies conditions (i) and (ii) of Theorem 1 is such that either
zi ∈ I, bi ∈ J or z̄i ∈ I, b̄i ∈ J . The resulting program
P3 has some semi-stable model containing q (recall that P0

used for P1 has a minimal model {q}) iff ∃ZΦ(Z) is true.
Furthermore, p belongs to all semi-stable models of P3 iff
∃ZΦ(Z) is false.

The ΣP
2 /Π

P
2 -hardness for normal programs is similarly

shown by lifting the reduction from UNSAT (i.e., a ∀-QBF
Φ = ∀XE) in Problem b). However, we can’t simply add
disjunctive clauses zi ∨ z̄i to set additional free variables
Z = z1, . . . , zl in Φ =Φ(Z). To this end, we use rules

1. zi ← ¬bi,
z̄i ← ¬b̄i;

2. ← zi, z̄i,
3. oki ← zi,

oki ← z̄i;
4. ok ← ok1, . . . , okl;

those in 1. and 2. effect that every bi-model (I, J) of P
that satisfies conditions (i) and (ii) of Theorem 1 is such
that either (a) zi ∈ I, b̄i ∈ J , (b) z̄i ∈ I, bi ∈ J , or

(c) bi ∈ I, b̄i ∈ J ; (a) and (b) correspond to a proper
choice, which is noticed with oki; if all choices are proper,
then ok is true. In the program for model recognition P2,
we add ok in each rule body; then only complete choices
trigger the respective rules. The resulting program P4 has
then some semi-stable model containing full iff the for-
mula ∃Z∀XE(X,Z) is true. Furthermore, if we add a rule
p ← ¬full, then p belongs to all semi-stable models of the
resulting program P5 iff ∃Z∀XE(X,Z) is false.

Semi-Equilibrium Models
For disjunctive programs, Problems a)-c) have for semi-
equilibrium models the same complexity as for semi-stable
models; we omit stating here the formal results.

The memberships proofs are similar but use Theorem 2
instead of Theorem 1; note that deciding (H,T ) |= P is
polynomial, and thus checking condition (i′) in Theorem 2
is in coNP. Furthermore, similar hardness proofs work (with
slight adaptions).

Also for normal programs P , we get analog complexity
results, since testing condition (i′) for such P is polynomial:
similarly as for condition (i) in Theorem 1, we can compute
some H ′ ⊂ H such that (H ′, T ) |= P (if one exists) as the
least model of a set of Horn clauses (more precisely of PT ).

In all cases, we also have matching hardness results. This
follows easily from well-known results for answer sets se-
mantics of positive disjunctive programs, cf. (Eiter and Got-
tlob 1995), which contain wolog no facts; we can easily
emulate such programs under semi-equilibrium semantics,
by just shifting disjunctions to the rule bodies, and creating
constraints in this way.

Discussion
In this section, we first review some general principles for
logic programs with negation, and we then consider the re-
lationship of semi-stable and semi-equilibrium semantics to
other semantics of logic programs with negation. Finally,
we address some possible extensions of our work.

General Principles
In the context of logic programs with negation, several
principles have been identified which a semantics desirably
should satisfy. Among them are:

• the principle of minimal undefinedness (You and Yuan
1994), which says that a smallest set of atoms should be
undefined (i.e., neither true nor false);

• the principle of justifiability (or foundedness) (You and
Yuan 1994): every atom which is true must be derived
from the rules of the program, possibly using negative lit-
erals as additional axioms.

• the principle of the closed world assumption (CWA), for
models of disjunctive logic programs (Eiter et al. 1997):
“If every rule with an atom a in the head has a false body,
or its head contains a true atom distinct from A w.r.t. an
acceptable model, then a must be false in that model.”



It can be shown that both the semi-stable and the semi-
equilibrium semantics satisfy the first two principles (prop-
erly rephrased and viewing bt as undefined), but not the
CWA principle; this is shown by the simple program P =
{a ← ¬a} and the acceptable model {Ka}. However, this
is due to the particular feature of making, as in this example,
assumptions about the truth of atoms; if the CWA condition
is restricted to atoms a that are not believed by assumption,
i.e., Iκ(a) 6= bt in a semi-stable resp. semi-equilibrium
model Iκ, then the CWA property holds.

We eventually remark that Property N can be enforced
on semi-stable models by adding constraints← a,¬a for all
atoms a to the (original) program. However, enforcing Prop-
erty K on semi-stable models is more involved and efficient
encodings seem to require an extended signature.

Related Semantics
P-stable (partial stable) models, which coincide with the 3-
valued stable models of (Przymusinski 1991), are one of the
best known approximation of answer sets. Recently, the P-
stable models have been semantically characterized by Ca-
balar et al. (2007) in the logic HT2 in terms of partial equi-
librium models.

The L-stable models semantics by Eiter, Leone, and
Saccà (1997), which selects those P-stable models where
a smallest set of atoms is undefined, is closest in spirit to
semi-stable and semi-equilibrium semantics; furthermore, it
satisfies the three principles from above, as well as answer
set coverage and congruence (cf. Introduction). The main
difference is that L-stable—like P-stable—semantics takes
a neutral position on undefinedness, which in combination
with negation may lead to weaker conclusions.

For example, the program in Example 5 has a single P-
stable (and L-stable) model in which all atoms are unde-
fined, while c is true under semi-equlibrium semantics. Sim-
ilarly, the program

P = {a← ¬b; b← ¬c; c← ¬a}
has a single P-stable (and thus L-stable) model in which
all atoms are undefined, while it has multiple semi-stable
models, viz. {a,Ka,Kc}, {b,Kb,Ka}, and {c,Kc,Kb},
which coincide with the semi-equilibrium models. If we
add the rules d ← a, d ← b, and d ← c to P , the new
program cautiously entails under both semi-stable and semi-
equilibrium model semantics that d is true, but not under
L-stable semantics.

Furthermore, disjunctive programs may lack L-stable
models, e.g.

P ′ = P ∪ { a ∨ b ∨ c←};
the semi-stable resp. semi-equilibrium models of P ′ are
those of P .

Opposite to the L-stable semantics is the least P-stable
model semantics, which selects the P-stable model in which
a largest set of atoms is undefined; for normal logic pro-
grams, a unique such model always exists, and this model
coincides with the well-founded model of van Gelder, Ross,
and Schlipf (1991); furthermore, it is characterized in the
logic HT2 in terms of the minimal partial equilibrium model

(under a suitable ordering) (Cabalar et al. 2007). As in the
examples for L-stable semantics above, the normal programs
have a single P-stable model, the least P-stable and the L-
stable semantics for these programs coincide, showing thus
similar differences to the semi-stable and semi-equilibrium
semantics.

Regular semantics (You and Yuan 1994) is another 3-
valued approximation of answer set semantics that satisfies
least undefinedness and foundedness, but not the CWA prin-
ciple. However, it is classically coherent. For the program P
above, the regular models coincide with the L-stable mod-
els; the program P ′ has the regular models {a}, {b}, and
{c}. While regular models fulfill answer set coverage, they
do not fulfill congruence. For more discussion of 3-valued
stable and regular models as well as many other semantics
coinciding with them, see (Eiter, Leone, and Saccà 1997).

Revised stable models (Pereira and Pinto 2005) are a 2-
valued approximation of answer sets; negated literals are as-
sumed to be maximally true, where assumptions are revised
if they would lead to self-incoherence through odd loops or
infinite proof chains. For example, the odd-loop program
P above has three revised stable models, viz. {a, b}, {a, c},
and {b, c}. The semantics is only defined for normal logic
programs, and fullfills answer set coverage but not congru-
ence, cf. (Pereira and Pinto 2005). Similarly, pstable mod-
els (Osorio, Ramı́rez, and Carballido 2008), which have a
definition for disjunctive programs however, satisfy answer
set coverage (but just for normal programs) and congruence
fails. Moreover, every pstable model of a program is a min-
imal model of the program, but there are programs, e.g. P
above, that have models but no pstable model, thus classical
coherence does not hold.

Extensions
As already mentioned, semi-stable semantics has originally
been developed as an extension to p-minimal model se-
mantics (Sakama and Inoue 1995), a paraconsistent se-
mantics for extended disjunctive logic programs, i.e., pro-
grams which besides default negation also allow for strong
(classical) negation. A declarative characterization of p-
minimal models by means of frames was given by Alcântara,
Damásio, and Pereira (2004), who coined the term Paracon-
sistent Answer-set Semantics (PAS) for it. This character-
ization has been further simplified and underpinned with a
logical axiomatization in (Odintsov and Pearce 2005) by us-
ing Routley models, i.e., a simpler possible worlds model.

Our characterizations for both, semi-stable models and
semi-equilibrium models, can be easily extended to this
setting if they are applied to semantic structures which
are given by 4-tuples of interpretations rather than bi-
interpretations, respectively to Routley here-and-there mod-
els rather than HT-models. Intuitively, this again amounts to
considering two ‘worlds’, each of which consists of a pair
of interpretations: one for positive literals (atoms), and one
for negative literals (strongly negated atoms). The respec-
tive epistemic transformations are unaffected except for the
fact that literals are considered rather than atoms. One can
also show for both semantics that there is a simple 1-to-1
correspondence to the semi-stable (semi-equilibrium) mod-



els of a transformed logic program without strong negation:
A given extended program P is translated into a program P ′

over L ∪ {a′ | a ∈ L} without strong negation by replac-
ing each negative literal of the form −a by a′. If (I, J) is a
semi-stable (semi-equilibrium) model of P ′, then

(I ∩ L, {−a | a′ ∈ I}, J ∩ L, {−a | a′ ∈ J})
is a semi-stable (semi-equilibrium) model of P . Note that
semi-stable (semi-equilibrium) models of extended logic
programs obtained in this way generalize the PAS seman-
tics, which means that they are paraconsistent as well as
paracoherent. Logically this amounts to distinguishing nine
truth values rather than three, with the additional truth values
undefined, believed false, believed inconsistent, true with
contradictory belief, false with contradictory belief, and in-
consistent. The computational complexity for extended pro-
grams is the same.

Compared to (Sakama and Inoue 1995), we further re-
strict here to propositional programs, as opposed to pro-
grams with variables (non-ground programs). However,
respective semantics for non-ground programs via their
grounding are straightforward. Alternatively, in case of
semi-equilibrium models one can simply replace HT-models
by Herbrand models of quantified equilibrium logic (Pearce
and Valverde 2008). Similarly for the other semantics, re-
placing interpretations in the semantic structures by Her-
brand interpretations over a given function-free first-order
signature, yields a characterization of the respective models.

Conclusion
We have given a semantic characterization of semi-stable
models in terms of bi-models, and of semi-equilibrium mod-
els, which eliminate some anomalies of semi-stable models,
in terms of HT-models. Furthermore, we characterized the
complexity of major reasoning tasks of these semantics.

Regarding implementation, we developed experimental
prototypes for computing SST (P ) and SEQ(P ) based on
these characterizations. They construct the bi-models (resp.,
HT-models) of P and filter them according to the conditions
in Theorem 1 (resp., Theorem 2). Alternatively, SST (P )
and SEQ(P ) are obtainable by postprocessing the answer
sets of the epistemic transformation Pκ resp. its extension
PHT , which are computed with any ASP solver.

Concerning future work, there are several issues. In
this paper, we have considered paracoherence based on
program transformation, as introduced by Sakama and In-
oue (1995). Other notions, like forward chaining construc-
tion and strong compatibility (Wang, Zhang, and You 2009;
Marek, Nerode, and Remmel 1999) might be other candi-
dates to deal with paracoherent reasoning in logic programs;
it remains to explore this.

Another subject is to extend paracoherence to language
extensions, including aggregates, nested logic programs etc.
Of particular interest are here modular logic programs (Jan-
hunen et al. 2009; Dao-Tran et al. 2009), where module
interaction may lead to incoherence. Related to the latter are
the more general multi-context systems (Brewka and Eiter
2007), in which knowledge bases exchange beliefs via non-
monotonic bridge rules; based on ideas and results of this

paper, paracoherent semantics for certain classes of such
multi-context systems may be devised.

Finally, another issue is to investigate the use of paraco-
herent semantics in AI applications such as diagnosis, where
assumptions may be exploited to generate candidate diag-
noses, in the vein of the generalised stable model semantics
(Kakas and Mancarella 1990).

Appendix: Proofs
We provide selected proofs of the results, omitting some de-
tails.

Proof of Proposition 1. Let r be a rule over L, and let
(I, J) be a bi-interpretation over L.

(⇐) Suppose that (I, J) satisfies (a), i.e., B+(r) ⊆ I and
J ∩B−(r) = ∅ implies I ∩H(r) 6= ∅ and I ∩B−(r) = ∅.
We prove that (I, J) |=β r, considering three cases:
Case 1: Assume that B+(r) 6⊆ I . Then (I, J) 6|=β a, for

some atom a ∈ B+(r), and thus (I, J) 6|=β B(r) which
implies (I, J) |=β r.

Case 2: Assume that J ∩ B−(r) 6= ∅, Then (I, J) 6|=β ¬a,
for some atom a ∈ B−(r), and thus (I, J) 6|=β B(r)
which implies (I, J) |=β r.

Case 3: Assume thatB+(r) ⊆ I and J∩B−(r) = ∅. Then,
since (I, J) satisfies (a), it also holds that I ∩H(r) 6= ∅
and I∩B−(r) = ∅. FromB+(r) ⊆ I and I∩B−(r) = ∅,
we conclude that I |= B(r). Moreover, I ∩ H(r) 6= ∅
implies (I, J) |=β H(r). Thus, (I, J) |=β r.

By our assumption, one of these three cases applies for
(I, J), proving the claim.

(⇒) Suppose that (I, J) |=β r. We prove that (I, J) sat-
isfies (a), distinguishing two cases:
Case 1: Assume that (I, J) 6|=β B(r). Then either

(I, J) 6|=β a, for some atom a ∈ B+(r), or (I, J) 6|=β

¬a, for some atom a ∈ B−(r). Hence, B+(r) 6⊆ I or
J ∩B−(r) 6= ∅, which implies that (I, J) satisfies (a).

Case 2: Assume that (I, J) |=β H(r) and I |= B(r). Then
I∩H(r) 6= ∅ and I∩B−(r) = ∅, and thus (I, J) satisfies
(a).

By our assumption, one of the two cases applies for (I, J),
which proves the claim. 2

Proof of Proposition 2. Let P be a program over L.
Part (1). First, let (I, J) be a bi-model of P . We prove

that (I, J)κ,P |= Pκ.
Towards a contradiction assume the contrary. Then there

exists a rule r′ in Pκ, such that (I, J)κ,P 6|= r′. Suppose that
r′ is not transformed, i.e., r′ ∈ P and B−(r′) = ∅. Since
(I, J) |=β r

′, by Proposition 1 we conclude that B+(r′) ⊆
I implies I ∩H(r′) 6= ∅ (recall that B−(r′) = ∅). By con-
struction (I, J)κ,P restricted to L coincides with I . There-
fore, B+(r′) ⊆ (I, J)κ,P implies (I, J)κ,P ∩ H(r′) 6= ∅,
i.e., (I, J)κ,P |= r′, a contradiction.

Next, suppose that r′ is obtained by the epistemic trans-
formation of a corresponding rule r ∈ P of the form (1), and
consider the following cases:



– r′ is of the form (3): then {b1, . . . , bm} ⊆ (I, J)κ,P ,
which impliesB+(r) ⊆ I . Moreover,H(r′)∩(I, J)κ,P = ∅
by the assumption that (I, J)κ,P 6|= r′. By construction of
(I, J)κ,P , this implies J ∩ B−(r) = ∅. Since (I, J) |=β r,
we also conclude that I∩H(r) 6= ∅ and that I∩B−(r) = ∅.
Consequently, J |= B−(r), ai ∈ I for some ai ∈ H(r), and
I |= B(r). Note also, that B−(r) 6= ∅ by definition of the
epistemic transformation. According to the construction of
(I, J)κ,P , it follows that λr,i ∈ (I, J)κ,P , a contradiction to
H(r′) ∩ (I, J)κ,P = ∅.
– r′ is of the form (4): in this case, (I, J)κ,P 6|= r′ implies
λr,i ∈ (I, J)κ,P and ai 6∈ (I, J)κ,P . However, by construc-
tion λr,i ∈ (I, J)κ,P implies ai ∈ I; from the latter, again by
construction, we conclude ai ∈ (I, J)κ,P , a contradiction.

– r′ is of the form (5): in this case, (I, J)κ,P 6|= r′ implies
λr,i ∈ (I, J)κ,P and bj ∈ (I, J)κ,P . Note that bj ∈ (I, J)κ,P

iff bj ∈ I . A consequence of the latter is that I 6|= B(r),
contradicting a requirement for λr,i ∈ (I, J)κ,P (cf. the con-
struction of (I, J)κ,P ).

– r′ is of the form (6): by the assumption that (I, J)κ,P 6|=
r′, it holds that λr,k ∈ (I, J)κ,P and ai ∈ (I, J)κ,P , but
λr,i 6∈ (I, J)κ,P . From the latter we conclude, by the con-
struction of (I, J)κ,P , that ai 6∈ I , since all other require-
ments for the inclusion of λr,i (i.e., r ∈ P , B−(r) 6= ∅,
I |= B(r), and J |= B−(r)) must be satisfied as wit-
nessed by λr,k ∈ (I, J)κ,P . However, if ai 6∈ I , then
ai 6∈ (I, J)κ,P (again by construction), contradiction.

This concludes the proof of the fact that if (I, J) is a bi-
model of P , then (I, J)κ,P |= Pκ.

Part (2). Let M be a model of Pκ. We prove that
β(M ∩ Lκ) = (I, J) is a bi-model of P . Note that by con-
struction I = M ∩ L and J = {a | Ka ∈ M}. First,
we consider any rule r in P such that B−(r) = ∅. Then
r ∈ Pκ, J ∩ B−(r) = ∅ and I ∩ B−(r) = ∅. Hence, by
Proposition 1, we need to show that B+(r) ⊆ (M ∩ L) im-
plies (M ∩L)∩H(r) 6= ∅. Since r ∈ Pκ, this follows from
the assumption, i.e., M |= Pκ implies M |= r, and there-
fore if B+(r) ⊆M , then M ∩H(r) 6= ∅. Since r is over L,
this proves the claim for all r ∈ P such that B−(r) = ∅.

It remains to show that (I, J) |=β r for all r ∈ P such that
B−(r) 6= ∅. Towards a contradiction assume that this is not
the case, i.e., (i)B+(r) ⊆ (M ∩L), (ii) J ∩B−(r) = ∅, and
either (iii) (M∩L)∩H(r) = ∅ or (iv) (M∩L)∩B−(r) 6= ∅
hold for some r ∈ P of the form (1), such that B−(r) 6= ∅.
Conditions (i) and (ii), together with M |= Pκ, imply that
λr,i is in M , for some 1 ≤ i ≤ l (cf. the rule of the form
(3) in the epistemic transformation of r). Consequently, ai

is in M (cf. the corresponding rule of the form (4) in the
epistemic transformation of r), and hence ai ∈ (M ∩ L).
This rules out (iii), so (iv) must hold, i.e., bj ∈ (M ∩L), for
some m + 1 ≤ j ≤ n. But then, M satisfies the body of a
constraint in Pκ (cf. the corresponding rule of the form (5) in
the epistemic transformation of r), contradicting M |= Pκ.
This proves that there exists no r ∈ P such that B−(r) 6= ∅

and (I, J) 6|=β r, and thus concludes our proof of (I, J) |=β

r. Since r ∈ P was arbitrary, it follows that β(M ∩ Lκ) is
a bi-model of P . 2

Proof of Theorem 1. Let P be a program over L. The
proof uses the following lemmas.

Lemma 2 If M ∈ AS(Pκ), then β(M ∩ Lκ) satisfies (i).

Lemma 3 If (I, J) is a bi-model of P that satisfies (i)
and (ii), then there exists some M ∈ AS(Pκ), such that
β(M ∩ Lκ) = (I, J).

Part (1). Let (I, J) be a bi-model of P that satisfies (i)-
(iii). We prove that (I, J)κ ∈ SST (P ). By Lemma 3, we
conclude that there exists some M ∈ AS(Pκ) such that
β(M ∩ Lκ) = (I, J). It remains to show that M is maxi-
mal canonical. Towards a contradiction assume the contrary.
Then, there exists M ′ ∈ AS(Pκ) such that gap(M ′) ⊂
gap(M). Let (I ′, J ′) = β(M ′ ∩ Lκ). By Lemma 2, (I ′, J ′)
satisfies (i), and by construction since gap(M ′) ⊂ gap(M),
it holds that J ′\I ′ ⊂ J \I . However, this contradicts the as-
sumption that (I, J) satisfies (iii). Therefore, M is maximal
canonical, and hence (I, J)κ ∈ SST (P ).

Part (2). Let Iκ ∈ SST (P ). We show that β(Iκ) is a
bi-model of P that satisfies (i)-(iii). Let (I, J) = β(Iκ) and
let M be a maximal canonical answer set of Pκ correspond-
ing to Iκ. Then, β(M ∩ Lκ) = (I, J) by construction, and
(I, J) satisfies (i) by Lemma 2.

Towards a contradiction first assume that (I, J) does not
satisfy (iii). Then there exists a bi-model (I ′, J ′) of P
such that (I ′, J ′) satisfies (i) and J ′ \ I ′ ⊂ J \ I . Let
M ′ = (I ′, J ′)κ,P and note that if M ′ ∈ AS(Pκ), we arrive
at a contradiction to M ∈ mc(AS(Pκ)), since gap(M ′) ⊂
gap(M). Thus, there exists M ′′ ∈ AS(Pκ), such that
M ′′ ⊂ M ′. Let (I ′′, J ′′) = β(M ′′ ∩ Lκ). We show that
(I ′′, J ′) is a bi-model of P , and thus by (i) it follows that
I ′′ = I ′. Towards a contradiction, suppose that (I ′′, J ′) is
not a bi-model of P . Then, by Proposition 1, there exists
r ∈ P , such that B+(r) ⊆ I ′′, J ′ ∩ B−(r) = ∅, and either
I ′′ ∩H(r) = ∅ or I ′′ ∩B−(r) 6= ∅. Note that B+(r) ⊆ I ′′

implies B+(r) ⊆ I ′, and since (I ′, J ′) is a bi-model of P ,
we conclude I ′ ∩H(r) 6= ∅ and I ′ ∩ B−(r) = ∅. The lat-
ter implies I ′′ ∩ B−(r) = ∅, hence I ′′ ∩ H(r) = ∅ holds.
If B−(r) = ∅, then r is in Pκ and M ′′ 6|= r, contradic-
tion. Thus, B−(r) 6= ∅. However, in this case the epis-
temic transformation of r is in Pκ. Since J ′ ∩ B−(r) = ∅
and J ′′ ⊆ J ′ together imply J ′′ ∩ B−(r) = ∅, we con-
clude that for the rule of the form (3) of the epistemic trans-
formation of r, it holds that {b1, . . . , bm} ⊆ M ′′ (due to
B+(r) ⊆ I ′′), and that M ′′ 6|= Kbm+1 ∨ . . . ∨ Kbn (due
to J ′′ ∩ B−(r) = ∅). Moreover M ′′ |= Pκ, hence λr,i

is in M ′′, for some 1 ≤ i ≤ l. Considering the corre-
sponding rule of the form (4) of the epistemic transforma-
tion of r, we also conclude that ai ∈ M ′′, a contradic-
tion to I ′′ ∩ H(r) = ∅. This proves that (I ′′, J ′) is a bi-
model of P . From the assumption that (I ′, J ′) satisfies (i),
it follows that I ′′ = I ′. Therefore gap(M ′′) ⊆ gap(M ′)
holds, which implies gap(M ′′) ⊂ gap(M), a contradiction
to M ∈ mc(AS(Pκ)). This proves (I, J) satisfies (iii).



Next assume that (I, J) does not satisfy (ii). Then, there
exists a bi-model (I, J ′) of P , such that J ′ ⊂ J . We show
that (I, J ′) satisfies (i). Otherwise, there exists a bi-model
(I ′, J ′) of P , such that I ′ ⊂ I; but then also (I ′, J) is a
bi-model of P . To see the latter, assume that there exists a
rule r ∈ P , such that B(r) ⊆ I ′, J ∩B−(r) = ∅ and either
I ′∩H(r) = ∅ or I ′∩B−(r) 6= ∅. Since J ′ ⊂ J , it then also
holds that J ′ ∩ B−(r) = ∅. This contradicts the assump-
tion that (I ′, J ′) is a bi-model of P , hence (I ′, J) |=β P .
The latter is a contradiction to the assumption that (I, J)
satisfies (i), proving that (I, J ′) satisfies (i). Since (I, J)
satisfies (iii), we conclude that J ′ \ I = J \ I . Now let S′ =
{λr,i | λr,i ∈ (I, J ′)κ,P } and let S = {λr,i | λr,i ∈ M}. It
holds that S′ 6⊆ S (otherwise (I, J ′)κ,P ⊂ M , a contradic-
tion to M ∈ AS(Pκ)), i.e., there exists r ∈ P of the form
(1) and 1 ≤ i ≤ l, such that λr,i ∈ S and λr,i 6∈ S′. From
the former, since M is a minimal model of Pκ, we con-
clude that I |= B+(r), ai ∈ I , and J ∩ B−(r) = ∅. Since
J ′ ⊂ J , also J ′ ∩ B−(r) = ∅. This implies that λr,k ∈ S′,
for some 1 ≤ k 6= i ≤ l (otherwise (I, J ′)κ,P does not
satisfy the rule of form (3) corresponding to r in Pκ, a con-
tradiction to (I, J ′)κ,P |= Pκ). However, since ai ∈ I , and
thus ai ∈ (I, J ′)κ,P , and since λr,k ∈ (I, J ′)κ,P , we con-
clude that λr,i ∈ (I, J ′)κ,P (cf. the respective rule of form
(6) of the epistemic transformation of r). This contradicts
λr,i 6∈ S′, and thus proves that (I, J) satisfies (ii). 2

Proof of Proposition 3. Let P be a program over L.
Part (1). Let (I, J) be a bi-model of P , such that (I, J)κ

satisfies Property N and Property K, for all r ∈ P . We
show that (I, J) is an HT-model ofP . Since (I, J)κ satisfies
Property N, it holds that a ∈ I implies a ∈ J , therefore I ⊆
J , i.e., (I, J) is an HT-interpretation. For every rule r ∈ P ,
(I, J) |=β r implies (I, J) 6|=β B(r), or (I, J) |=β H(r)
and I |= B(r). First suppose that (I, J) 6|=β B(r). Then
(I, J) 6|= B(r) (note that for a conjunction of literals, such
as B(r), the satisfaction relations do not differ). Moreover,
since (I, J)κ satisfies Property K for r, it holds that J |= r.
To see the latter, let Kr denote the rule obtained from r by
replacing every a ∈ L occurring in r by Ka, and let KJ
denote the set {Ka ∈ (I, J)κ | a ∈ L}. Then, (I, J)κ

satisfies Property K for r iff KJ |= Kr. Observing that
KJ = {Ka | a ∈ J}, we conclude that J |= r. This proves
(I, J) |= r, if (I, J) 6|=β B(r). Next assume that (I, J) |=β

H(r) and I |= B(r). We conclude that (I, J) |= H(r)
(the satisfaction relations also coincide for disjunctions of
atoms). As (I, J)κ satisfies Property K for r, it follows J |=
r. This proves (I, J) |= r , for every r ∈ P ; in other words,
(I, J) is an HT-model of P .

Part (2). Let (H,T ) be an HT-model of P . We show that
(H,T )κ satisfies Property N and Property K, for all r ∈ P .
As a consequence of H ⊆ T , for every a ∈ (H,T )κ such
that a ∈ L, it also holds that Ka ∈ (H,T )κ, i.e., (H,T )κ

satisfies Property N. Moreover, (H,T ) |= P implies T |= r,
for all r ∈ P . LetKT = {Ka | a∈T} and letKr as above;
T |= r implies KT |= Kr, for all r ∈ P . By construction
of (H,T )κ and definition of Property K for r, we conclude
that (H,T )κ satisfies Property K for all r ∈ P . 2

Proof of Theorem 2. Let P be a program over L.
Part (1). Let (H,T ) be an HT-model of P that sat-

isfies (i′) and (ii′). We show that (H,T )κ ∈ SEQ(P ).
Towards a contradiction, first assume that (H,T )κ 6∈
MM(HTκ(P )). Then, there exists an HT-model (H ′, T ′)
of P , such that H ′ ⊆ H , T ′ ⊆ T , and at least one of the
inclusions is strict. Suppose that H ′ ⊂ H . Then (H ′, T )
is an HT-model of P (by a well-known property of HT),
a contradiction to the assumption that (H,T ) satisfies (i′).
Hence, H ′ = H and T ′ ⊂ T must hold. Moreover, by
the same argument (H ′, T ′) also satisfies (i′). But, since
T ′ \ H ′ ⊂ T \ H , this is in contradiction to the assump-
tion that (H,T ) satisfies (ii′). Consequently, (H,T )κ ∈
MM(HTκ(P )). We continue the indirect proof assum-
ing that (H,T )κ 6∈ mc(MM(HTκ(P ))), i.e., there exists
an HT-model (H ′, T ′) of P , such that T ′ \ H ′ ⊂ T \ H
and (H ′, T ′)κ ∈MM(HTκ(P )). The latter obviously im-
plies that (H ′, T ′) satisfies (i′). Again, this contradicts that
(H,T ) satisfies (ii′), which proves that (H,T )κ ∈ SEQ(P ).

Part (2). Let Iκ ∈ SEQ(P ). We show that β(Iκ)
is an HT-model of P that satisfies (i′) and (ii′). Let
β(Iκ) = (H,T ). Towards a contradiction first assume that
(H,T ) is not an HT-model of P . Then by the definition of
SEQ(P ), and the fact that Iκ uniquely corresponds to sets
H and T , we conclude that Iκ 6∈ mc(MM(HTκ(P ))),
i.e., Iκ 6∈ SEQ(P ); contradiction. Next, suppose that
(H,T ) does not satisfy (i′). Then, Iκ 6∈ MM(HTκ(P )),
as witnessed by (H ′, T )κ for an HT-model (H ′, T ) such
that H ′ ⊂ H , which exists if (H,T ) does not satisfy (i′).
Therefore, Iκ 6∈ mc(MM(HTκ(P ))), i.e., Iκ 6∈ SEQ(P );
contradiction. Eventually assume that (H,T ) does not sat-
isfy (ii′). Then, Iκ 6∈ mc(MM(HTκ(P ))), as witnessed
by (H ′, T ′)κ for an HT-model (H ′, T ′), such that T ′ \H ′ ⊂
T \ H and (H ′, T ′) satisfies (i′)—note that (H ′, T ′) exists
if (H,T ) does not satisfy (ii′). To see that (H ′, T ′)κ is a
witness for Iκ 6∈ mc(MM(HTκ(P ))), observe that ei-
ther (H ′, T ′)κ ∈ MM(HTκ(P )) or there exists an HT-
model (H ′, T ′′), such that (H ′, T ′′)κ ∈ MM(HTκ(P ))
and T ′′ ⊂ T ′ (which implies T ′′ \H ′ ⊂ T ′ \H ′ ⊂ T \H).
This proves that Iκ 6∈ SEQ(P ), again a contradiction. This
concludes the proof that β(Iκ) is an HT-model of P that
satisfies (i′) and (ii′). 2

Proof of Theorem 3. Let P be a program over L, and let
Iκ be an interpretation over Lκ. The proof uses the follow-
ing lemmas.

Lemma 4 If M |= PHT , then β(M ∩ Lκ) is an HT-model
of P .

Lemma 5 For every M ∈ AS(PHT ), β(M ∩ Lκ) satis-
fies (i′) in Theorem 2.

Lemma 6 For every HT-model (H,T ) of P that satis-
fies (i′) of Theorem 2, there exists some M ∈ AS(PHT )
such that gap(M) ⊆ gap((H,T )κ).

The proof of the theorem is then as follows.
(⇐) Suppose that Iκ ∈{M∩Lκ |M ∈mc(AS(PHT ))}.

We prove Iκ ∈ SEQ(P ) via Theorem 2. Let M ∈
mc(AS(PHT )), such that Iκ = M ∩ Lκ, and let (I, J) =



β(M ∩ Lκ). Then, (I, J) is an HT-model of P by Lemma 4
and (I, J) satisfies (i′) in Theorem 2 by Lemma 5. We prove
that (I, J) satisfies (ii′) in Theorem 2. Towards a contra-
diction, assume that this is not the case, then there exists
an HT-model (H,T ) of P , such that T \ H ⊂ J \ I and
(H,T ) satisfies (i′). According to Lemma 6, there exists
M ′ ∈ AS(PHT ), such that gap(M ′) ⊆ gap((H,T )κ),
which implies gap(M ′) ⊂ gap(M) due to T \H ⊂ J \ I .
This contradicts the assumption that M ∈ mc(AS(PHT )),
and thus proves that (I, J) satisfies (ii′) in Theorem 2. We
conclude that Iκ ∈ SEQ(P ).

(⇒) Suppose that Iκ ∈ SEQ(P ). We prove Iκ ∈{M ∩
Lκ | M ∈ mc(AS(PHT ))}. Let (H,T ) = β(Iκ). By
Theorem 2, (H,T ) is an HT-model of P that satisfies (i′)
and (ii′). We show that there exists M ∈ mc(AS(PHT ))
such that β(M ∩ Lκ) = (H,T ). Since (H,T )κ,P |= PHT ,
there exists M ∈ AS(PHT ) such that M ⊆ (H,T )κ,P .
Since (H,T ) satisfies (i′), it holds that M ∩ L = H . More-
over, M ∩ Lκ ⊂ (H,T )κ contradicts the fact that (H,T )
satisfies (ii′), because then β(M ∩ Lκ) = (H,T ′) is an HT-
model of P , such that T ′ \ H ⊂ T \ H and (H,T ′) satis-
fies (i′) due to Lemma 5. Hence, β(M ∩ Lκ) = (H,T ).
It remains to show that M ∈ mc(AS(PHT )). If this is
not the case, then some HT-model (H ′, T ′) of P exists such
that T ′ \ H ′ ⊂ T \ H . Since (H ′, T ′) = β(M ′ ∩ Lκ)
for some M ′ ∈ AS(PHT ), we conclude by Lemma 5
that (H ′, T ′) satisfies (i′), which again leads to a contra-
diction of the fact that (H,T ) satisfies (ii′). This proves that
M ∈ mc(AS(PHT )). As M ∩ Lκ = Iκ, we conclude that
Iκ ∈ {M ∩ Lκ |M ∈ mc(AS(PHT ))}. 2

Proof of Proposition 4. Let P be a program over L. If P
has a model M , then (M,M) is an HT-model of P . There-
fore HTκ(P ) 6= ∅, which implies MM(HTκ(P )) 6= ∅,
and thus mc(MM(HTκ(P ))) 6= ∅. We conclude that
SEQ(P ) 6= ∅, i.e., P has a semi-equilibrium model. 2

Proof of Proposition 5. Let P be a coherent program over
L, and let Y ∈ AS(P ). Then (Y, Y ) is an HT-model of
P that satisfies (i′) in Theorem 2, since it is in equilibrium.
Moreover, it trivially satisfies also (ii′) because Y \ Y = ∅.
Hence, (Y, Y )κ ∈ SEQ(P ).

As P is coherent, there exists (T, T ) ∈ HT (P ) that satis-
fies (i′) in Theorem 2 and (trivially) (ii′). Hence, gap(Iκ) =
∅ for all Iκ ∈ SEQ(P ). Moreover, β(Iκ) is of the form
(Y, Y ), and Y ∈ AS(P ). 2
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