
Finding Explanations of Inconsistency in Multi-Context Systems∗

Thomas Eiter and Michael Fink and Peter Schüller and Antonius Weinzierl
Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
{eiter,fink,schueller,weinzierl}@kr.tuwien.ac.at

Abstract

We provide two approaches for explaining inconsistency in
multi-context systems, where decentralized and heteroge-
neous system parts interact via nonmonotonic bridge rules.
Inconsistencies arise easily in such scenarios, and nonmono-
tonicity calls for specific methods of inconsistency analysis.
Both our approaches characterize inconsistency in terms of
involved bridge rules: either by pointing out rules which need
to be altered for restoring consistency, or by finding combi-
nations of rules which cause inconsistency. We show duality
and modularity properties, give precise complexity character-
izations, and provide algorithms for computation using HEX-
programs. Our results form a basis for inconsistency manage-
ment in heterogeneous knowledge integration systems.

Introduction
In recent years, there has been increasing interest in inter-
linking knowledge bases, possibly expressed in different for-
malisms, to obtain richer knowledge systems. Multi-context
systems (MCSs) as introduced by Brewka and Eiter (2007)
are an expressive framework for this purpose. MCSs consist
of knowledge bases (in possibly heterogeneous and/or non-
monotonic logics) at nodes (called contexts) that exchange
information via bridge rules such as

(c1 : h)← (c2 : a),not (c3 : d).

which informally says that h is believed at context c1, if a
is believed at context c2 and d is not believed at context c3.
MCSs are based on MultiLanguage systems by Giunchiglia
and Serafini (1994). They are a powerful knowledge repre-
sentation formalism for many scenarios where heterogeneity
and pointwise, inter-contextual information exchange are es-
sential properties. MCSs enable knowledge integration at a
general level, like, e.g., interlinking ontologies, databases,
and logic programs. However, due to their decentralized na-
ture, information exchange can have unforeseen effects, and
in particular cause an MCS to be inconsistent.

For example, consider a system for supporting health
care decisions in a hospital, which comprises several com-
ponents: a database of laboratory test results, a patient

∗This work was supported by the Vienna Science and Technol-
ogy Fund (WWTF) under grant ICT 08-020.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

record database, an ontology for disease classification, and
an expert system suggesting suitable treatments for patients.
Modeled as an MCS, each component is a context and in-
formation flow is specified by bridge rules (cf. Example 3
for details). Suppose the expert system concludes that a pa-
tient must be given a special drug, but the patient record
states that she is allergic to that drug, thus counter-indicating
its use. The whole system gets inconsistent if such special
cases were not anticipated when contexts and bridge rules
were modeled, rendering the system useless.

In real world applications, system complexity tends to in-
crease, both in terms of contexts and in terms of interconnec-
tivity. Anticipating all possible states of a system is unfeasi-
ble, therefore inconsistency handling methods are necessary.

In our approach, we aim to analyze inconsistencies in
MCSs, in order to understand where and why such incon-
sistencies occur, and how they can be removed. This will
allow to specify how to handle inconsistencies and to extend
systems with inconsistency management mechanisms.

While the task reminds of a traditional data integration
problem, an important point is that we focus on the exchange
of information, i.e., adjusting bridge rules instead of modi-
fying data in the contexts; in loose integrations (e.g., if com-
panies link their business logics), changing contexts or their
data to restore consistency may not be an option.

Therefore, we identify bridge rules as the source of in-
consistency, and their modification as a possibility of coun-
teracting. We assume every context to be consistent if no
bridge rules apply, therefore we can fully capture reasons of
inconsistency in terms of bridge rules.

Based on this, we make the following contributions.

• Inspired by debugging approaches used in the nonmono-
tonic reasoning community, especially in answer set pro-
gramming (Syrjänen 2006; Brain et al. 2007), we intro-
duce two notions of explaining inconsistency in MCSs:
a consistency-based notion, which characterizes inconsis-
tency in terms of altered sets of bridge rules that are con-
sistent, and an entailment-based notion which derives in-
consistency in a given system. Possible nonmonotonicity
makes intuitive and sound notions challenging; that our no-
tions have appealing properties may serve as some evidence
for their suitability.

• We establish useful properties of our notions. First, a du-

ality result between the consistency- and entailment-based
notion shows that they identify the same bridge rules as rel-
evant for inconsistency. This result in fact generalizes a sim-
ilar result by Reiter (1987). Second, modularity properties in
the spirit of of Splitting Sets (Lifschitz and Turner 1994) al-
low an incremental computation of explanations, taking the
MCS topology into account.

• We sharply characterize the computational complexity of
identifying explanations, under varying assumptions for the
complexity of contexts (note that explanations always do ex-
ist). It turns out that this problem has for a range of context
complexities no (or only mildly) higher complexity than the
contexts themselves. As a consequence, computing explana-
tions is in some cases not harder than consistency checking.

• Finally, we show how consistency-based explanations can
be computed by means of HEX-programs, which are a vari-
ant of answer set programs with access to external sources.

Our results provide a basis for building enhanced MCS
systems which are capable of analyzing and reasoning about
emerging inconsistencies. Rather than automatically resolv-
ing inconsistency, as e.g. in (Bikakis and Antoniou 2008),
we envisage a (semi-)automatic approach with user support
for locating and tracking parts that cause inconsistency. In-
deed, user invention may be indispensable as often no auto-
matic solution is suitable (like in our healthcare example).

For space reasons some proofs have been omitted, se-
lected proof sketches are provided in Appendix Proofs.

Preliminaries
A heterogeneous nonmonotonic MCS (Brewka and Eiter
2007). consists of contexts, each composed of a knowl-
edge base with an underlying logic, and a set of bridge rules
which control the information flow between contexts.

A logic L = (KBL,BSL,ACCL) consists, in an ab-
stract view, of the following components:

• KBL is the set of well-formed knowledge bases of L. We
assume each element of KBL is a set (of “formulas”).

• BSL is the set of possible belief sets, where the elements
of a belief set are “formulas”.

• ACCL : KBL → 2BSL is a function describing the
“semantics” of the logic by assigning to each knowledge
base a set of acceptable belief sets.

This concept of a logic captures many monotonic and non-
monotonic logics, e.g., classical logic, description logics,
modal, default, and autoepistemic logics, circumscription,
and logic programs under the answer set semantics.

For an intuition how this abstraction captures some well-
known KR formalisms, consider the following Examples.

Example 1. For propositional logic under the closed world
assumption over signature Σ, KB is the set of propositional
formulas over Σ; BS is the set of deductively closed sets of
propositional Σ-literals; and ACC(kb) returns for each kb
a singleton set, containing the set of literal consequences of
kb under the closed world assumption. ¤

Example 2. For normal disjunctive logic programs un-
der answer set semantics over a signature Σ (Przymusinski
1991), KB is the set of normal disjunctive logic programs
over Σ; BS is the set of sets of atoms over Σ; and ACC(kb)
returns the set of kb’s answer sets. ¤

A bridge rule can add information to a context, depending
on the belief sets which are accepted at other contexts. Let
L = (L1, . . . , Ln) be a sequence of logics. An Lk-bridge
rule r over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci ,
k refers to the context receiving information s. We denote
by hb (r) the belief formula s in the head of r.

Definition 1. A multi-context system M = (C1, . . . , Cn) is
a collection of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n,
where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi

a knowledge base, and bri is a set of Li-bridge rules over
(L1, . . . , Ln). For eachH ⊆ {hb (r) | r ∈ bri} it holds that
kbi∪H ∈ KBLi , i.e., bridge rule heads are compatible with
knowledge bases.

A belief state of an MCS M = (C1, . . . , Cn) is a se-
quence S = (S1, . . . , Sn) such that Si ∈ BSi. A bridge
rule (1) is applicable in a belief state S iff for 1 ≤ i ≤ j:
pi ∈ Sci and for j < l ≤ m: pl /∈ Scl

. By brM =
⋃n

i=1 br i

we denote the set of all bridge rules of M .

Example 3. Consider an MCSM which is a health care de-
cision support system and contains the following contexts: a
patient history database (C1), a blood and X-Ray analysis
database (C2), a disease ontology (C3), and an expert sys-
tem (C4) which suggests proper treatments.

The knowledge bases for these contexts are as follows:

kb1 = {allergy strong ab},
kb2 = {¬blood marker , xray pneumonia},
kb3 = {Pneumonia uMarker v AtypPneumonia},
kb4 = {give strong ∨ give weak ← need ab.

give strong ← need strong .
⊥ ← give strong , not allow strong ab.
give nothing ← notneed ab, notneed strong .}.

Contexts C1 and C2 use propositional logic (see Example 1
for the corresponding definition of L1 and L2). They pro-
vide information that the patient is allergic to strong antibi-
otics, that a certain blood marker is not present, and that
pneumonia was detected in an X-ray examination.
C3 specifies that presence of a blood marker in combi-

nation with pneumonia indicates atypical pneumonia. This
context is based on a basic AL description logic (Baader
et al. 2003): KB3 is the set of all well-formed theories
within that description logic, BS3 is the powerset of the set
of all assertions C(o) where C is a concept name and o an
individual name, and ACC3 returns the set of all concept
assertions entailed by a given theory.
C4 suggests a treatment which is either a strong antibi-

otic, a weak antibiotic, or no medication at all. C4 is built

from a normal disjunctive logic program, see Example 2 for
a suitable definition of L4.

The bridge rules of M are given as follows:

r1 = (3 : Pneumonia(p)) ← (2 : xray pneumonia).
r2 = (3 : Marker(p)) ← (2 : blood marker).
r3 = (4 : need ab) ← (3 : Pneumonia(p)).
r4 = (4 : need strong) ← (3 : AtypPneumonia(p)).
r5 = (4 : allow strong ab)←not (1 : allergy strong ab).

Rules r1 and r2 provide input for disease classification to
the ontology, they assert facts about a new individual ‘p’
corresponding to the patient. Rules r3 and r4 link disease
information with medication requirements, and r5 relates
acceptance of strong antibiotics with an allergy check on
the patient database. ¤

Equilibrium semantics selects certain belief states of an
MCS M as acceptable. Intuitively, an equilibrium is a belief
state S, where each context Ci takes the heads of all bridge
rules that are applicable in S into account, and accepts Si.

We denote by app(R,S) the set of all bridge rules r ∈ R
that are applicable in belief state S.

Definition 2. A belief state S = (S1, . . . , Sn) of M is an
equilibrium iff the following holds: for all 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S)}).
Example 4. In our example, one equilibrium S exists:

S = ({allergy strong ab},
{¬blood marker , xray pneumonia},
{Pneumonia(p)}, {need ab, give weak}).

Rules r1 and r3 are applicable in S. A belief state S3 con-
sists of all ABox (Baader et al. 2003) concept assertions.

Note that if we replace S4 with {need ab, give strong ,
allow strong ab}, the resulting belief state is not an
equilibrium: C4 uses answer set semantics, therefore
allow strong ab cannot be part of S4 unless it is added by a
bridge rule. The only bridge rule with this head is r5, and its
applicability is blocked by the presence of allergy strong ab
in kb1 and in S1. ¤

Inconsistency in an MCS is the lack of an equilibrium.
As the combination and interaction of heterogeneous sys-
tems can easily have unforeseen and intricate effects, incon-
sistency is a major, to our knowledge unaddressed problem
in MCSs. To provide support for restoring consistency, we
seek to understand and give reasons for inconsistency.

Example 5. As a running example, we consider a slightly
modified version of Example 3, where the blood serum anal-
ysis shows presence of the blood marker:

kb2 = {blood marker , xray pneumonia}.
This MCS is inconsistent since r2 and r4 become applica-
ble, which in turn requires the strong antibiotic. This is in
conflict with the patient’s allergy.

Note that applicability of r5 would resolve this inconsis-
tency by activating allow strong ab. However, presence of
allergy strong ab in S1 together with body atom ‘not (1 :
allergy strong ab)’ in r5 prevents the applicability of r5
(due to negation as failure). ¤

We will use the following notation. Given an MCS M
and a set R of bridge rules (compatible with M), by M [R]
we denote the MCS obtained from M by replacing its set of
bridge rules brM with R (e.g., M [brM] = M and M [∅] is
M with no bridge rules). By M |= ⊥ we denote that M
has no equilibrium, i.e., is inconsistent, and by M 6|= ⊥ the
opposite. For any set of bridge rules A, heads(A) = {α ←
| α←β ∈ A} are the rules in A in unconditional form.

Diagnoses and Explanations
In the following, we consider two possibilities for explaining
inconsistency in MCSs: first, a consistency-based formula-
tion, which identifies a part of the bridge rules which need
to be changed to restore consistency. Second, an entailment-
based formulation, which identifies a part of the bridge rules
which is required to make the MCS inconsistent. Following
common terminology, we call the first formulation diagnosis
(cf. Reiter 1987) and the second inconsistency explanation.
Diagnoses. As well-known, in nonmonotonic reasoning,
adding knowledge can both cause and prevent inconsistency;
the same is true for removing knowledge.

For our consistency-based explanation of inconsistency,
we therefore consider pairs of sets of bridge rules, s.t. if we
deactivate the rules in the first set, and add the rules in the
second set in unconditional form, the MCS becomes consis-
tent (i.e., admits an equilibrium).
Definition 3. Given an MCS M , a diagnosis of M is a pair
(D1, D2),D1, D2 ⊆ brM , s.t.M [brM \D1∪heads(D2)] 6|=
⊥. D±(M) is the set of all such diagnoses.

To obtain a more relevant set of diagnoses, we pre-
fer pointwise subset-minimal diagnoses. For pairs A =
(A1, A2) and B = (B1, B2) of sets, the pointwise subset
relation A ⊆ B holds iff A1 ⊆ B1 and A2 ⊆ B2.
Definition 4. D±

m(M) is the set of all pointwise subset-
minimal diagnoses of an MCS M .
Example 6. In our running example,
D±

m(M) =
{
({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})

}
.

Accordingly, deactivating r1, or r2, or r4, or adding r5 un-
conditionally, will result in a consistent MCS. ¤
We note that one could generalize Definition 3 to more fine-
grained changes of rules, such that only some body atoms
are removed instead of all. However, while this significantly
increases the search space for diagnoses, there is little infor-
mation gain: every diagnosis (D1, D2) as above, together
with a witnessing equilibrium S, can be refined to a general-
ized diagnosis (D1, D

′
2), where D′

2 ⊆ {α←β | α←β, γ ∈
brM} contains for each α ← β, γ in D2 some α ← β that
is applicable in S. Conversely, every generalized diagno-
sis (D1, D

′
2), together with a witnessing equilibrium S, in-

duces a diagnosis (D1, D2) as above (D2 contains all heads
of rules in D′

2 that are applicable in S).
Explanations. In the spirit of abductive reasoning, we also
propose an entailment-based notion of explaining inconsis-
tency: an inconsistency explanation (in the following also
called explanation) is a pair of sets of bridge rules, s.t. their
presence or absence entails a relevant (cf. below) inconsis-
tency in the given MCS.

Definition 5. Given an MCS M , an inconsistency expla-
nation of M is a pair (E1, E2) of sets E1, E2 ⊆ brM of
bridge rules s.t. for all (R1, R2) whereE1 ⊆ R1 ⊆ brM and
R2 ⊆ brM \E2, it holds that M [R1 ∪ heads(R2)] |= ⊥. By
E±(M) we denote the set of all inconsistency explanations
ofM , and byE±m(M) the set of all pointwise subset-minimal
ones.

The intuition about E1 is as follows: bridge rules in E1

create an inconsistency in M (M [E1] |= ⊥), and this in-
consistency is relevant for M . By relevance we mean that
adding some bridge rules from brM (the set of original
bridge rules) to M [E1] never yields a consistent system.

This condition is necessary, for example the program
P = {a← not a.}, is inconsistent under the answer set
semantics, but its superset P ′ = {a← not a. a.} is con-
sistent. The inconsistency of P does not matter for P ′. In
terms of MCSs, a set of bridge rules may create an incon-
sistency in M , but this inconsistency is irrelevant, as it does
not occur if more or all bridge rules are present.

Intuition about E2 concerns inconsistency wrt. the addi-
tion of unconditional bridge rules: M [E1] cannot be made
consistent by adding bridge rules unconditionally, unless we
use at least one bridge rule from E2.

In summary, bridge rules E1 create a relevant inconsis-
tency, and at least one bridge rule in E2 must be added un-
conditionally to repair that inconsistency.

Example 7. In our running example, we have one minimal
inconsistency explanation, namely ({r1, r2, r4} , {r5}). To
trigger the only possible inconsistency, which is in C4, we
need to import need strong (using r4) and we must not im-
port allow strong ab (using r5). Furthermore, r4 can only
fire if C3 accepts AtypPneumonia(p), which is only possi-
ble if r1 and r2 fire. Therefore, r1, r2, and r4 must be present
to get inconsistency, and the head of r5 must not be present.

Similar to diagnoses, it is possible to consider more fine-
grained modifications of rules (rather than heads(R2)) in
Definition 5. Note however, that this would not alter the
notion of inconsistency explanation. Thus, in contrast to di-
agnoses, we cannot infer from an explanation whether the
addition of a more fine-grained version of a rule inE2 would
yield consistency. However, this could be achieved consid-
ering a transformed MCS M ′: roughly, every bridge rule
in M is split into a core rule and a supplementary rule for
each body atom; e.g., (c1:h)← (c2:a),not (c3:b) is rewrit-
ten to (c1:h) ← (cα:a′), (cα:b′)., (cα:a′) ← (c2:a)., and
(cα:b′) ← not (c3:b). Rules in E2 are replaced by a sub-
set of their supplementary rules, thus E2 indicates which
body atoms to remove from the original rules to avoid the
explained inconsistency.

Duality. Adding explanation rules E1 to contexts causes
inconsistency, removing diagnosis rules D1 from an MCS
can cause consistency; hence they represent dual aspects.
Similarly, D2 and E2 have dual intuitions, as D2 requires to
add rules unconditionally, while E2 forbids to do so.
Notation: for any set X of tuples (A,B) of sets A and B
(e.g., for some set of diagnoses), we denote by

⋃
X the pair

(
⋃
{A | (A,B) ∈ X},

⋃
{B | (A,B) ∈ X}).

Theorem 1. Given an inconsistent MCS M ,
⋃
D±

m(M) =⋃
E±m(M), i.e., the unions of all minimal diagnoses and all

minimal inconsistency explanations coincide.
Hence, the duality between both components of minimal

diagnoses and explanations extends beyond our example,
and our definitions are closely related. This strengthens our
view that both notions capture exactly those parts of an MCS
that are relevant for inconsistency as duality shows that, in
total, two very different perspectives on inconsistency state
exactly the same parts of the MCS as erroneous.

In practice this allows one to compute the set of all bridge
rules which are relevant for making an MCS consistent (i.e.,
appear in at least one diagnosis) in two ways: either com-
pute all minimal explanations, or compute all minimal diag-
noses. Conversely stated, the duality result allows to exclude
all bridge rules that are not part of any diagnosis (or expla-
nation) from further investigation as those parts are known
to be irrelevant.
Special Diagnoses/Explanations. For domains where re-
moval of bridge rules is preferred to unconditional addition
of rules, we specialize D± to obtain diagnoses of the form
(D1, ∅) only. We again prefer subset-minimal diagnoses.
Definition 6. Given an MCSM , an s-diagnosis ofM is a set
D⊆ brM s.t. M [brM \D] 6|= ⊥. The set of all s-diagnoses
(resp., ⊆-minimal s-diagnoses) is D−(M) (resp., D−

m(M)).
Example 8. In our example, D−

m(M)={{r1}, {r2}, {r4}}.
We also specialize the inconsistency explanation to the

first component, i.e., we do not consider adding rules un-
conditionally, so all explanations are of the form (E1, brM).
Definition 7. Given an MCS M , an s-inconsistency expla-
nation of M is a set E ⊆ brM s.t. each R where E ⊆ R ⊆
brM , satisfies M [R] |= ⊥. The set of s-inconsistency ex-
planations is denoted by E+(M), and the set of ⊆-minimal
s-inconsistency explanations of M is denoted by E+

m(M).
Example 9. The only minimal s-inconsistency explanation
in our running example is {r1, r2, r4}. ¤

Our running example suggests, that duality also holds for
simplified diagnoses and explanations, which indeed is true:
Theorem 2. Given an inconsistent MCS M ,

⋃
D−

m(M) =⋃
E+

m(M), i.e., the unions of all minimal s-diagnoses and
all minimal s-inconsistency explanations coincide.

The proof of this theorem is similar to the proof of The-
orem 4.4 in Reiter’s seminal paper (1987), which states that
diagnoses are minimal hitting sets on the set of conflict sets,
where a conflict set is similar to what we call s-inconsistency
explanation. The main difference is that Reiter’s conflict sets
are defined on monotonic (first-order) logic, while our ex-
planations are defined on nonmonotonic logics. However,
the condition that an explanation must not be repairable by
adding bridge rules of the original system, effectively en-
sures that explanations become monotonic.

Properties
We first consider a simple property of minimal diagnoses.
According to Definition 3, given (D1, D2) with r ∈ D2, it
is irrelevant for being a diagnosis whether r ∈ D1 or not.

Proposition 1. In a minimal diagnosis (D1, D2) of an MCS
M , D1 ∩D2 = ∅, i.e., no rule occurs in both components.

This is not true for inconsistency explanations. For the
MCS M consisting of bridge rules r1 = (1 : a) ← (2 : b)
and r2 = (2 : b)← not (1 : a), and empty contexts under a
minimal model semantics, we get the following minimal ex-
planations: E±m(M) = {({r1, r2}, {r1}), ({r1, r2}, {r2})}.
Modularity of Explanations. We next give a syntactic cri-
terion which allows for breaking up the computation of ex-
planations for an MCS M into computing explanations for
parts of it. Minimal explanations of M are then just com-
binations of the minimal explanations of the smaller parts.
This can be exploited for computing minimal explanations
more efficiently for certain classes of MCSs.

A criterion for modularization is that some part is inde-
pendent of the rest of the system. For formalizing such a
criterion, we adapt the notion of splitting sets as introduced
by Lifschitz and Turner (1994) in the context of logic pro-
gramming. A splitting set characterizes a subset of a logic
program which is independent of other rules in the program
by a syntactic property.

Since an MCS may include contexts with arbitrary logics,
a purely syntactical criterion can only be obtained resorting
to beliefs occurring in bridge rules, implicitly assuming that
every output belief of a context depends on any input belief
of the context. Hence, we split at the level of contexts, i.e.,
a splitting set is a set of contexts rather than a set of literals.

Let c (M) denote the set of contexts of an MCS M =
M [brM], and for a bridge rule r, let hc (r) be the context in
its head and bc (r) the set of contexts referenced in its body.

Definition 8. A set of contexts U ⊆ c (M) is a splitting set
of an MCSM , if for every rule r ∈ brM the following holds:
if hc (r) ∈ U then bc (r) ⊆ U . The set bU ⊆ brM of rules
s.t. r ∈ bU iff hc (r) ∈ U , is called the bottom relative to U .

In our running example, we have c (M) = {C1, . . . , C4},
hc (r1) = C3, and bc (r1) = {C2}. The set U = {C2, C3}
is a splitting set of M , with bU = {r1, r2}.

Intuitively, if U is a splitting set of M , then the consis-
tency or inconsistency of contexts in U does not depend on
contexts in c (M) \ U . Thus if M [bU] is inconsistent, M
stays inconsistent.

Proposition 2. Let U be a splitting set of an MCS M . Then
each (minimal) explanation of M [bU] is a (minimal) expla-
nation of M , and each (minimal) diagnosis of M [bU] is a
pointwise subset of a (minimal) diagnosis of M .

Proposition 3. Suppose that both U and U ′ = c (M) \ U
are splitting sets of an MCS M . Then for every (E1, E2) ∈
E±m(M), either X = U or X = U ′ satisfies {hc (r)} ∪
bc (r) ⊆ X , for every r ∈ E1 ∪ E2.

Thus, a respectiveM can be partitioned into two parts where
minimal explanations can be computed independently.
Ceteris Paribus preferences. In the previous sections,
subset-minimality is used to select intuitively preferred di-
agnoses and explanations. We can generalize subset-based
preference orders to cover a certain class of Ceteris Paribus
(CP) preference orders. The latter encode CP statements like

“I prefer A over B, all else being equal”. We consider CP or-
ders¹ on the set of bridge rules brM of M which are global
orders naturally built from local orders on the elements of a
partitioning of brM , each given by some CP statement.

To combine a global order on brM from local orders, we
need to define the product of orders.

Definition 9. The order product ≺ of n orders ≺1, . . . ,≺n

over disjoint sets P1, . . . , Pn is a subset of (P1 × . . .× Pn)2

with 〈p1, . . . , pn〉 ≺ 〈p′1, . . . , p′n〉 iff pi ≺i p
′
i for some 1 ≤

i ≤ n.

As the Pi are disjoint we identify each tuple of the product
with the union of its elements, i.e., 〈p1, . . . , pn〉 =

⋃n
i {pi}

to express an order ≺ defined on
⋃n

i Pi.
It is easy to show that the order product is a Boolean

lattice if all orders it is composed of are Boolean lattices.
Furthermore, if the lattice-complement coincides with set-
complement on orders ≺1, . . . ,≺n, then the complements
also coincide on the order product of ≺1, . . . ,≺n.

Example 10. Let brM = {a, b} and the local order be ex-
pressed by P1 :=“I prefer a over ∅” and P2 :=“I prefer ∅
over b, i.e., I prefer b to be absent”. The respective local or-
ders are ∅ ≺P1 a and b ≺P2 ∅. The global order≺ resulting
from the lattice product of both local orders is induced by
{b}≺{a, b}, {b}≺{∅}, {a, b}≺{a}, and {∅}≺{a}.

For the following theorem, observe that diagnoses and ex-
planations can be described purely by structural conditions
over Boolean lattices where elements of the lattice carry a
flag for inconsistency. For example, an s-diagnosis is an el-
ement whose lattice-complement is not flagged inconsistent
and a minimal s-diagnosis is an s-diagnosis that is minimal
wrt. the order relation of the lattice. As such a diagnosis
intuitively is a set of bridge rules that must be removed to
gain consistency and this intuition is expressed by using the
complement, it is necessary that the lattice-complement and
the set-complement are the same.

Proposition 4. Suppose each local order of a CP-order ¹
of an MCS M [brM] is a Boolean lattice such that its lattice-
complement coincides with set-complement. Then, Theorem
1 holds for respective notions of explanations and diagnoses.

Given the same conditions, then diagnoses induce repairs
which change least preferred sets of rules only, and we get
similar complexity results. Moreover, an algorithm for com-
puting subset-minimal explanations resp. diagnoses can be
adapted to compute CP-preferred ones.

The technique of order embedding can be employed to
cover also CP-orderings which are not composed of Boolean
lattices. We briefly illustrate this in the following example.

Example 11. Let ≺e be an ordering induced by ∅ ≺e

{a} ≺e {b} ≺e {a, b}. We can embed ≺e into a Boolean
lattice over {a, b, c} by adding an additional bridge rule c
to the system. The resulting Boolean lattice is given by:

{b}≺{a, b} {a, b, c}≺{a, b} {b, c}≺{a, b}
{a}≺{b} {a}≺{a, b, c} {c}≺{b} {c}≺{b, c}

{a, c}≺{a, b, c} {a, c}≺{b, c}
∅≺{a} ∅≺{c} ∅≺{a, c}

If the newly introduced bridge rule is such that it causes in-
consistency by its own, then all elements of the lattice ex-
cept those from prece are guaranteed to be inconsistent.
By that, only the elements from prece may lead to a (mini-
mal) s-diagnosis. Also note that set-complement and lattice-
complement coincide modulo c in the above lattice, i.e.,
whenever D is a minimal s-diagnosis on ≺ then D ∩ {c}
is a ≺e- minimal s-diagnosis.

Computational Complexity
Calculating equilibria by guessing so-called “kernels of con-
text belief sets” has been outlined in (Eiter et al. 2009).
Note that, by our basic assumption that M is inconsistent
but M [∅] is consistent, the existence of a diagnosis resp. ex-
planation is trivial. For the purpose of recognizing diagnoses
and explanations, it suffices to check for consistency, i.e., for
existence of some equilibrium in a (modified) MCS.

Consistency checking can be done by limiting the equilib-
rium calculation to output beliefs, which are the beliefs used
in the bodies of bridge rules.
Definition 10. Given an MCS M and one of its contexts Ci,
we denote by OUT i the set of output beliefs of Ci; those
are beliefs p of context Ci which are contained in the body
of some bridge rule r ∈ brM in the form of a literal ‘(i : p)’
or ‘not (i : p)’.

Using the notion of output beliefs, we project each be-
lief set Si of a belief state S to that context’s output beliefs
OUT i. Given belief state S = (S1, . . . , Sn) in MCS M ,
the output-projected belief state S′ = (S′1, . . . , S

′
n) is the

projection of S to output beliefs of M : S′i = Si ∩OUT i.
An output-projected belief state provides sufficient infor-

mation to evaluate bridge rule applicability, furthermore we
can define witnesses for equilibria using this projection.
Definition 11. A output-projected belief state S′ = (S′1,
. . . , S′n) of an MCSM is an output-projected equilibrium iff
the following holds: for all 1 ≤ i ≤ n,
S′i ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S

′)})|OUT i
.

S′ contains information about all output beliefs, which are
the beliefs that determine bridge rule applicability, therefore
app(R,S) = app(R,S′) and we obtain the following.
Lemma 1. For each equilibrium S of an MCS M , S′ is an
output-projected equilibrium. Conversely, for each output-
projected equilibrium S′ of M there exists at least one equi-
librium T of M such that T ′ = S′.

For consistency checking (equilibrium existence), it is
therefore sufficient to consider output-projected equilibria.

Consistency of M can be decided by a Turing machine
with input M which (a) guesses an output-projected be-
lief state S′ ∈ OUT 1 × · · · × OUTn, (b) evaluates the
bridge rules on S′, yielding for each context Ci a set of ac-
tive bridge rule heads Hi wrt. S′, and (c) checks whether
each context accepts the guessed S′i wrt. Hi. Formally, (c)
decides whether there exists an Si ∈ ACCi(kbi ∪ Hi)
s.t. S′i = Si ∩ OUT i. We call the complexity of this
check context complexity; the system’s context complexity
CC(M) is a (smallest) upper bound for the context complex-
ity classes of all Ci.

Context (A, B)
?
∈

complexity D±(M) D±
m(M) E±(M) E±

m(M)

P NP DP
1 coNP DP

1

NP NP DP
1 coNP DP

1

ΣP
2 ΣP

2 DP
2 ΠP

2 DP
2

Table 1: Complexity of recognizing (minimal) diagnoses /
explanations, given (A,B) and an MCS M (completeness
results; hardness holds for major ASP context classes).

Note, that for complexity considerations each context Ci

is explicitly represented by kbi and br i, and the logic is im-
plicitly given, which is taken care of by an oracle that de-
cides (c) in CC(M).

Given CC(M) is in P, consistency checking is in NP.
The same is true if CC(M) is in NP, as output belief and
context guesses can be combined into one guess. Similarly,
we can obtain that for CC(M) in ΣP

i , consistency checking
of M is in ΣP

i , i ≥ 2; for CC(M) in PSPACE (resp.,
EXPTIME), it is in PSPACE (resp., EXPTIME).
Inconsistency Analysis. Using these results, we obtain
complexity results for deciding, given an MCS M of certain
context complexity and a pair (A,B) of sets of bridge rules
in M , whether (A,B) is a diagnosis resp. a ⊆-minimal di-
agnosis, an explanation, or a ⊆-minimal explanation for M .

Table 1 shows the results for CC(M) in P, NP, and
ΣP

2 , which are typical complexities for Answer Set Pro-
grams (ASPs)—a premier KR formalism for modeling non-
monotonic behavior, cf. (Dantsin et al. 2001). Here, the
class DP

i contains decision problems which are the “con-
junction” of a ΣP

i and an independent ΠP
i decision problem

(for i = 1, e.g. a SAT and an independent UNSAT instance).
The results for ΣP

2 easily generalize to ΣP
i for i ≥ 2.

In the following, we give a brief intuition of the proofs.
Diagnosis recognition can be done by calculating M [brM \
A ∪ heads(B)] and checking this system for consistency
as outlined above. Therefore, diagnosis recognition has the
same complexity as consistency checking.

Checking for minimality, one additionally guesses all
pairs (A′, B′) ⊂ (A,B) and checks for consistency of
M [brM \ A′ ∪ heads(B′)]. The candidate is a minimal di-
agnosis iff the diagnosis check is successful, and all subset-
diagnosis checks are not, leading to a complexity of DP

1 for
P and NP contexts (DP

i for ΣP
i contexts, i ≥ 2).

Explanation recognition can be done by guessing all sets
(R1, R2) of Definition 5 and checking whether M [R1 ∪
heads(R2)] is consistent. The instance is a yes instance iff
all such checks fail, leading to coNP (ΠP

i) complexity.
For checking explanation minimality, we use a Lemma.

Lemma 2. An explanation Q = (Q1, Q2) is ⊆-minimal iff
no pair (Q1, Q2 \ {r}) with r ∈ Q2 or (Q1 \ {r}, Q2) with
r ∈ Q1 is an explanation.
Hence, we can check subset-minimality of explanations by
deciding, whether for linearly many subsets of the candidate
(A,B), none is an explanation, i.e., whether for each subset,

some (R1, R2) exists s.t. M [R1 ∪ heads(R2)] is consistent.
As NP (resp., ΣP

i) is closed under conjunction, this check
is in NP (ΣP

i). Additionally checking whether the candi-
date is an explanation leads to a complexity of DP

1 (DP
i).

For CC(M) in PSPACE (EXPTIME), all tests can
be done within PSPACE (EXPTIME). The matching
hardness results are established via the context complexity.

For the other cases, matching hardness is shown by re-
ductions from 3-SAT, 3-QSATi, i ≥ 2, and suitable Boolean
combinations thereof. Specifically for the practically rele-
vant setting of ASP contexts, we sketch a reduction from
3-SAT to D± recognition.1

A 3-SAT instance F = c1 ∧ . . . ∧ cn on variables x1, . . . ,
xk with ci = ci,1∨ci,2∨ci,3 is reduced to an MCS consisting
of one contextC1. This context is an acyclic ASP and can be
evaluated in P, it contains bridge rules (2) to (5) and context-
internal rules (6) to (9):

(1 : xi)←not (1 : x̄i). ∀1 ≤ i ≤ k (2)
(1 : x̄i)←not (1 : xi). ∀1 ≤ i ≤ k (3)
(1 : en)←>. (4)
(1 : inc)←>. (br inc) (5)
sat i ← li,1. sat i ← li,2. sat i ← li,3. ∀1 ≤ i ≤ n (6)

where li,j =
{
xv if ci,j = xv

x̄v if ci,j = ¬xv

sat ← sat1, . . . , satn. (7)
⊥ ← en, not sat . (8)
⊥ ← en, inc. (9)

Intuitively, (4) enables constraints within C1, (5) in combi-
nation with (9) makes the MCS inconsistent. (2) and (3)
guess a satisfying assignment for F , which is evaluated
by (6) and (7). Satisfaction is required by (8). The diag-
nosis candidate is ({br inc}, ∅}), i.e., removing br inc allows
an equilibrium iff there exists a satisfying assignment for F .
Therefore the candidate is a diagnosis iff F is satisfiable.

The reduction for ΣP
2 ASP contexts encodes QSAT2 in

a similar context. For minimal diagnoses (DP
1), we reduce

SAT-UNSAT to an MCS (C1, C2) containing C1 above and
another context C2 which is inconsistent iff a further 3-SAT
instance is unsatisfiable. The reduction for ΣP

2 contexts is
similar, using QSAT2-QUNSAT2 and disjunctive ASP con-
texts. For explanation and minimal explanation recognition,
reductions reuse contexts from the previous reductions.

In summary, diagnosis recognition has the same compu-
tational complexity as equilibrium existence. This is used
in the following section to compute diagnoses using a logic
programming formalism with external oracle calls which is
capable of handling NP problems.

In general the results indicate that, if it is possible to cal-
culate MCS equilibria with a particular solver, it is like-
wise possible to calculate diagnoses using this solver using
a polynomial transformation.

1Note that ASP is NP-complete, therefore, although this re-
duction is specifically shown for ASP contexts, it can be easily
adapted to other NP-complete KR formalisms.

Minimal diagnosis and minimal explanation recognition
are harder than checking consistency (under usual complex-
ity assumptions), while they are polynomially reducible to
each other.

Computation
In the following, we show how to calculate MCS diagnoses
using HEX-programs (Eiter et al. 2005) which can be evalu-
ated using the dlvhex system.2 HEX-programs extend dis-
junctive logic programs by allowing for access to exter-
nal information with external atoms, and by predicate vari-
ables (which we disregard here). We consider only ground
(variable-free) HEX-programs and simplify definitions.
Syntax of HEX-Programs. Let C and G be mutually dis-
joint sets of constant names and external predicate names,
respectively. We note that constant names serve both as in-
dividual and predicate names.

An ordinary atom is a predicate p(c1, . . . , cn) where p,
and c1, . . . , cn are constants. An external atom is of the form

&g [~v](~w),
where ~v, and ~w are fixed length lists of constants, and &g ∈
G is an external predicate name. Intuitively, an external atom
provides a way for deciding the truth value of the output
tuple ~w depending on the extension of input predicates ~v.

A HEX rule r is of the form

α1 ∨ . . . ∨ αk ← β1, . . . , βm, not βm+1, . . . , not βn (10)

m, k ≥ 0, where all αi are ordinary atoms and all βj are
ordinary or external atoms. Rule r is a constraint, if k= 0.

A HEX-program (or program) is a finite set of HEX rules.
Semantics of HEX-Programs. The ordinary Herbrand base
HBo

P of a HEX-program P contains all atoms p(c1, . . . , cn)
with a predicate p occurring in P and constants ci from C.

An interpretation of P is any subset I ⊆ HBo
P ; it is a

model of

– an ordinary atom α, denoted I |=α, if α ∈ I .
– an external atom α= &g [~v](~w) (denoted I |=α), if
f&g(I,~v, ~w) = 1, where ~v ∈Cn, ~w∈Cm, and f&g is a (fixed)
function f&g : 2HBo

P × Cn+m → {0, 1}.
– a rule r of form (10) (I |= r), if either I |= αi for some
αi, or I |= βj for some j ∈ {m + 1, . . . , n}, or I 6|= βi for
some i ∈ {1, . . . ,m}.
– a program P (I |= P), iff I |= r for all r ∈ P .

The FLP-reduct (Faber et al. 2004) of P wrt. I is the set
fPI ⊆ P of all rules r of form (10) in P such that I |=
βi, for all i ∈ {1, . . . ,m} and I 6|= βj for all j ∈ {m +
1, . . . , n}. Then, I is an answer set of P , if I is a⊆-minimal
model of fPI . For P without external atoms, this amounts
to answer sets as in (Gelfond and Lifschitz 1991).

More background information about HEX and how it re-
lates to MCS is given in (Eiter et al. 2009).
Calculating Diagnoses. We use HEX-programs to describe
a generic approach for calculating diagnoses, and a way for

2
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

checking consistency of MCS. Then, we combine both ap-
proaches in order to calculate diagnoses more efficiently.
Generic Approach. We can calculate diagnoses for some
MCS M by guessing a candidate diagnosis and checking
whether it yields a consistent system. Due to Proposition 1,
we only consider diagnoses (D1, D2) where D1 ∩D2 = ∅.

Program PD(M) for calculating diagnoses is as follows:
for each bridge rule r ∈ brM , we add a guess:

norm(r) ∨ d1 (r) ∨ d2 (r). (11)

We “outsource” the diagnosis check into an external atom
&eqM [d1 , d2](): the function f&eqM

(I, d1 , d2) returns 1 iff
M [brM \ {r | d1 (r) ∈ I} ∪ heads({r | d2 (r) ∈ I})] has
an equilibrium. The following constraint enforces that an
answer set induces a diagnosis.

← not&eqM [d1 , d2](). (12)

The resulting program properly captures MCS diagnoses.

Theorem 3. The answer sets I of PD(M) correspond 1-1 to
the diagnoses (DI,1, DI,2) of an MCS M s.t. DI,1∩DI,2 =
∅, where I ® DI = ({r | d1 (r) ∈ I}, {r | d2 (r) ∈ I}).

Checking Consistency. Consistency of an MCS can be
checked by calculating output-projected equilibria.

We assemble a program Pp(M) as follows: we guess
presence or absence of each output belief:

ai(p) ∨ āi(p). ∀p ∈ OUT i (13)

We then evaluate each bridge rule (1) by two corresponding
HEX rules, depending on previously guessed output beliefs:

bi(s)← not d1 (r), ac1(p1), . . . , acj
(pj),

not acj+1(pj+1), . . . , not acm(pm). (14)

bi(s)← d2 (r). (15)

Atoms d2 (r) and d1 (r) will become useful when integrating
Pp(M) with PD(M). For now, they do not occur in any rule
head in the program, so (14) will not be deactivated by d1 (r)
and (15) will not become applicable.

Given an interpretation I , we use AI
i = {p | ai(p) ∈ I},

1 ≤ i ≤ n, to denote the set of output beliefs at context
Ci (corresponding to the guess in (13)), and BI

i = {s |
bi(s) ∈ I} to denote the set of bridge rule heads at context
Ci, activated by these output beliefs.

Finally, we ensure that answer sets of the program corre-
spond to output-projected equilibria, by adding constraints

← not&con outi [ai, bi](). (16)

for all i = 1, . . . , n. Each external atom in (16) represents
ACCi; it returns true iff contextCi accepts a belief set upon
input of BI

i , which corresponds to the guessed AI
i after pro-

jection to OUT i. Formally, f&con outi
(I, ai, bi) = 1 iff

there exists an S ∈ ACCi(kbi ∪BI
i) s.t. S ∩OUT i = AI

i .

Proposition 5. The answer sets I of Pp(M) correspond 1-1
to the output-projected equilibria S′ ofM , where I ® S′I =
(S′1I , . . . , S

′
nI) and S′iI = {p | ai(p) ∈ I}, i = 1, . . . , n.

Combining both approaches. In order to calculate diag-
noses using PD, we need an algorithm for f&eqM

. Note that
Pp can be used for this purpose. However, it is more efficient
to directly integrate Pp(M) and PD(M).

Let PD
p (M) be the program obtained by adding (11) to

Pp(M). We can show the following result.
Theorem 4. For each diagnosis (D1, D2) ∈ D±(M) where
D1 ∩ D2 = ∅, at least one corresponding answer set of
PD

p (M) exists. Each answer set I of PD
p (M) corresponds

to a unique diagnosis DI , as given in Theorem 3.
This optimization removes one level of HEX indirection

(compared to using PD and within its function f&eqM
using

Pp), and allows for optimization of the guess by the solver.
Computing entailment-based explanations is a subject of

future work; checking all pairs (R1, R2) is more involved
and suggests to use saturation techniques.

Discussion and Conclusion
Related Work. Nonmonotonicity in MCSs was introduced
by Roelofsen and Serafini (2005) and then further devel-
oped (Brewka, Roelofsen, and Serafini 2007, Brewka and
Eiter 2007) to eventually allow heterogeneous as well as
nonmonotonic systems.

Bikakis and Antoniou (2008) address inconsistency in
MCSs by making bridge rules defeasible for inconsistency
removal, i.e., a rule is applicable only if its conclusion does
not cause inconsistency. The decision which bridge rules to
ignore is based, for every context, on a strict total order of
all contexts. This yields a unique diagnosis, whose declara-
tive description is more involved than our notion, but which
is polynomially computable. However, the strict total order
forces the user to make (perhaps unwanted) decisions at de-
sign time; alternative orders require redesigns and separate
runs. Our approach avoids this, but can be refined to respect
also orders.

Debugging answer set programs, i.e., finding out why
some program has no answer set, has been studied by
Syrjänen (2006) and Brain et al. (2007), who developed no-
tions of removal-based diagnoses. Their results can be used
to compute (possibly constrained) diagnoses of an MCS,
given that it has ASP contexts and uses the more restrictive
grounded equilibria semantics (cf. Brewka and Eiter 2007).

Inoue and Sakama (1995) used abduction to repair theo-
ries in (nonmonotonic) logic using their notions of ‘expla-
nation’ and ‘anti-explanation’. Given a theory K and ab-
ducibles Γ, they removeO⊆Γ and add I ⊆Γ to entail (resp.
not entail) an observation F ; i.e., (K∪I)\O |= F (explana-
tion), resp. (K ∪ I) \O 6|= F (anti-explanation). A repair of
an inconsistent K is given by an anti-explanation of F = ⊥.
Our notion of diagnosis amounts to a 2-sorted variant of such
anti-explanations, where O ⊆ ΓO and I ⊆ ΓI ; under suit-
able conditions, it is reducible to ordinary anti-explanations.
However, our notion of explanation has no counterpart.

Different from peer-to-peer data integration (Calvanese et
al. 2008), besides disregarding that contexts may enter or
leave the system, we do not repair inconsistency by ignoring
inconsistent components or minorities in the system.

Conclusion. We presented two notions for explaining in-
consistencies in multi-context systems, and showed a duality
aspect of these notions. Moreover, we derived useful modu-
larity and complexity results, and described the computation
of one of the notions using HEX-programs.

Future work aims at scenarios with information hiding,
the exploitation of modularity of explanations to reach more
efficient means of calculation, and implementation.

Appendix: Proofs
Proof of Theorem 1. Let M be an MCS with bridge rules
brM . The complement w.r.t. brM is denoted as {R := brM \
R, (X,Y) |= ⊥ is shorthand for M [X ∪ heads(Y)] |= ⊥.
For a pair X of sets of bridge rules, X1 is the first compo-
nent and X2 the second. Let D ∈ D±

m and E ∈ E±m. By
definition, (17) and (18) hold for D, and (19) holds for E:

(
{D1, D2

)
6|= ⊥ (17)(

{D′
1, D

′
2

)
|= ⊥ ∀ (D′

1, D
′
2) ⊂ D (18)

(E′1, E
′
2) |= ⊥ ∀

(
{E′1, E

′
2

)
⊆

(
{E1, {E2

)
(19)

(⇒) We show that there exists E? ∈E±m with x∈E?
i , for

x∈Di and i∈{1, 2}.
Case x∈D1: consider E =

(
{ (D1\ {x}), {D2

)
. We

observe
(
{ (D1\ {x}), D2

)
|= ⊥ from D1 \ {x} ⊂ D1

and (18). Similarly, for all (E′1, E
′
2) with { (D1 \ {x}) ⊆

E′1 ⊆ brM and E′2 ⊆ E2, it follows that (E′1, E
′
2) |= ⊥, and

therefore E ∈ E± with x ∈ E1 is a candidate for E?.
It remains to show that there exists E? ⊆ E with x ∈ E?

1
and E? ∈ E±m. Assume there exists E′ ⊆ E with x 6∈ E′1
and E′ ∈E±m. From E′1⊂ { (D1\ {x}) and x 6∈E′1 conclude
E′1⊆ {D1, thus E′⊆D, so E′ 6∈ E±m by (17).

Case x∈D2: consider P =
(
{D1, D2

)
. By (18) every

(E′1, E
′
2) with P1⊆E′1⊆ brM , E′2⊆P2, and E′ 6=P is an

explanation. It remains to show that there exists E?⊂E′
with x ∈ E?

2 and E? ∈ E±m.
Assume for contradiction, that all E′′⊆E′ with

E′′ ∈E±m are such that x 6∈E′′2 . From (18) follows for
P ′=

(
{D1, D2\ {x}

)
that P |= ⊥ as P ′⊂D, but from

(19) and x 6∈E′′2 follows: if (P ′′1 , P
′′
2 ∩ {x}) |= ⊥ then

(P ′′1 , P
′′
2 ∪ {x}) |= ⊥ given P ′′1 ⊆ P ′1 and P ′2 ⊆ P ′′2 ⊆ brM .

Specifically, P ′|= ⊥ implies D|= ⊥, hence D|= ⊥. This
contradicts with D ∈ D±

m.
(⇐) We show that there exists D? ∈D±

m with x∈D?
i , for

x∈Ei and i∈{1, 2}.
Case x ∈ E1: consider S = {A\ {x} | E1 ⊆ A ⊆ brM}.

Let S′ =
{
A ∈ S | ∃A2 ⊆ {E2 : (A,A2) 6|= ⊥

}
, which

completes (wrt. inconsistency) the lattice beginning at(
E1\ {x} , {E2

)
upwards in the first component and down-

wards in the second component. Assume S′ = ∅. Then
for all A ∈ S,E′2 ⊆ {E2, it holds that (A,E′2) |= ⊥ and
E′ = (E1\ {x} , E2) ∈ E±, which contradicts E ∈ E±m as
E′ ⊂ E. So S′ 6= ∅. Select from S′ a ⊆-maximal set A1

together with a ⊆-minimal A2 ⊆ brM s.t. (A1, A2) 6|= ⊥.
Then

(
{A1, A2

)
∈ D±

m as {A1 and A2 are minimal, i.e., for
all R′, R′′ with A1 ⊂ R′ ⊆ brM and R′′ ⊆ A2, it holds that

(R′, R′′) |= ⊥. Furthermore, from x 6∈ A1 it follows that
x ∈ {A1.

Case x ∈ E2: consider D=
(
{E1, P

)
with P ⊆ brM ,

x ∈ P , and D 6|= ⊥. From E ∈ E±m follows the existence of
such D as otherwise E would not be minimal.

It remains to show that there exists D?⊆D with x∈D?
2

and D? ∈D±
m. Assume no such D? exists, then making

x unconditional does not remove any inconsistency. For
E′ = (E1, E2\ {x}) and any R with R ⊆ {E′2 then fol-
lows (E1, R) |= ⊥. Hence E′ ∈ E±, which is contradicting
E ∈ E±m as E′ ⊂ E.

¤

Proof of Theorem 2 (sketch). This is a direct consequence
of Theorem 1. Fix in its proof the second components of
diagnoses and explanations to be ∅. ¤

Proof of Proposition 1 (sketch). If the unconditional variant
r′ of a bridge rule r is present in M , it does not matter
whether r is still contained inM , or not. Using Definition 3,
we can therefore infer that, given (D1, D2) ∈ D±(M) and
∅ 6= X = D1 ∩D2, it is true that (D1 \X,D2) ∈ D±(M).
Therefore every (D1, D2) with D1 ∩ D2 6= ∅ is not point-
wise subset-minimal, and thus no minimal diagnosis. ¤

Proof of Proposition 2 (sketch). Let U be a splitting set of
M [brM], and letE = (E1, E2) ∈ E±m(M [bU]) be a minimal
explanation of an inconsistency in U . As U is a splitting
set, no bridge rule of brM \ bU can influence contexts in U .
Therefore, M [bU] |= ⊥ implies M [br] |= ⊥ for bU ⊆ br ⊆
brM . So E ∈ E±m(M [brM]).

The proof is analogous for non-minimal explanations.
For (minimal) diagnoses we have to show that every (min-

imal) diagnosis D ∈ D±
(m)(M [bU]) can be extended to a

(minimal) diagnosis D′ ∈ D±
(m)(M [brM]). This is obvi-

ous for inconsistencies which only depend on rules of bU ,
or on br ′ = brM \ bu. For those depending on both, only
rules in br ′ can depend on rules in bU as U is a splitting set.
This dependency then is established via rules brd ⊆ br ′, and
therefore can be removed by modifying rules of brd. Hence
an extension D′ of D exists. ¤

Proof of Proposition 3 (sketch). As U and U ′ are a parti-
tioning of brM such that bU and bU ′ do not influence each
other, it follows that every E ∈ E±m(M [brM]) completely
resides in either U or U ′. ¤

Proof of Proposition 4 (sketch). For a Boolean lattice ≺
over X , we denote complement by ¬, and the pointwise ex-
tension of ≺ to (X ×X), in slight abuse of notation, is also
denoted by ≺.

Definition 12. Given an MCS M and a lattice ≺ over
P = 2brM , a Lattice Diagnosis of M is a pair (D1, D2),
D1, D2 ∈ P , s.t.M [¬D1∪heads(D2)] 6|= ⊥. A lattice diag-
nosis (D1, D2) is minimal iff it is minimal wrt.≺, i.e., for all
(D′

1, D
′
2) ≺ (D1, D2), holds M [¬D′

1 ∪ heads(D′
2)] |= ⊥.

The proposition then follows from Theorem 1, Stone’s
Representation Theorem (by which all finite Boolean lat-
tices are structurally the same), and the fact that the proof

of Theorem 1 relies on set-theoretic properties only, i.e., this
proof can be rewritten to rely on ≺ instead of ⊂. ¤

Proof of Lemma 1 (sketch). (⇒) Given an equilibrium S=
(S1, . . . , Sn), the set H of active bridge rule heads at each
context is determined by app(br i, S): Si ∈ ACC(kbi∪H).

As bridge rule applicability only depends on output be-
liefs, we have that app(br i, (S1|OUT1 , . . . , Sn|OUTn

)) =
app(br i, (S1, . . . , Sn)). Therefore the projection S′ of equi-
librium S to output beliefs yields the same bridge rule heads
as inputs for each context, so the same belief sets are ac-
cepted, and S′ is an output-projected equilibrium.

(⇐) Given an output-projected equilibrium S′ we have
S′i ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S

′)})|OUT i
,

so there exist at least one S = (S1, . . . , Sn) with Si ∈
ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S

′)}. From the above
insights about bridge rule applicability, we get that there ex-
ists a belief state S, s.t. Si ∈ ACCi(kbi ∪ {hb (r) | r ∈
app(br i, S)}). ¤

Proof of Lemma 2 (sketch). We write (A1, A2) ⊂ (B1, B2)
iff ⊆ and 6= holds between the tuples.

We obtain the following Corollary from Definition 5.

Corollary 1. Given an explanation E = (E1, E2), all E′
s.t. E ⊆ E′ ⊆ brM × brM are explanations as well.

(⇒) Assume Q = (Q1, Q2) is a minimal explanation.
Contrary to the Lemma, assume there exists another expla-
nation Q′, which is either (Q1, Q2 \ {r}) with r ∈ Q2 or
(Q1 \ {r}, Q2) with r ∈ Q1. Then Q′ ⊂ Q, therefore Q is
not minimal, contradicting the assumption.

(⇐) Assume an explanation Q = (Q1, Q2), and no pair
(Q1, Q2 \ {r}) with r ∈ Q2 or (Q1 \ {r}, Q2) with r ∈ Q1

is an explanation. Contrary to the Lemma, assume another
explanation P = (P1, P2) with P ⊂ Q.

By P ⊂ Q, either a) P1 ⊂ Q1 and P2 ⊆ Q2 or b) P1 ⊆
Q1 and P2 ⊂ Q2. For a) we create T ′ = (Q1 \ {r}, Q2) for
some r ∈ Q1 \ P1. Then P ⊆ T ′ ⊂ Q. Due to Corollary 1,
T ′ is an explanation, contradicting the initial assumption.
Similarly for b). ¤

Proof of E±m recognition complexity result from Table 1.
Given (E1, E2,M) with CC(M) = P, we show, that
deciding (E1, E2) ∈ E±m(M) is DP

1 -complete.
Membership is shown by a Turing machine argument,

where one machine decides whether a given input (E1, E2)
is an explanation, while another one decides minimality.

(E1, E2)∈E±(M) can be decided in coNP by a non-
deterministic Turing machine: it guesses R1, R2⊆ brM and
checks if E1⊆R2 and R2⊆ brM \E2. If not, it immedi-
ately rejects, otherwise it decides consistency of M [R1 ∪
heads(R2)]. All execution paths reject iff (E1, E2) is an
explanation. Therefore explanation recognition is in coNP.

Minimality of a given pair (E1, E2) ∈ E±(M) can
be decided in coNP using Lemma 2: a Turing machine
checks whether all of (E1, E2 \ {r | r∈E2}) /∈ E±(M) and
(E1 \ {r | r∈E1}, E2) /∈ E±(M) are true. Each check is in
NP, and NP is closed under conjunction. The number of
these E±-checks is linear in the size of the instance. There-
fore checking explanation minimality is in NP.

Combining the above results, we get that minimal expla-
nation recognition is in DP

1 for P contexts.
Hardness is shown by reducing the joint decision of a

SAT instance φ(~x), and an independent UNSAT instance
ψ(~y), to minimal explanation existence as follows. Let M
be an MCS with bridge rules

(1 : xi)←>. 1 ≤ i ≤ n (20)
(1 : yj)←>. 1 ≤ j ≤ m (21)
(1 : en)←>. (22)

(1 : inc φ)←>. (23)
(1 : inc ψ)←>. (24)

and let C1 be a propositional logic context which is consis-
tent iff κ = ¬en ∨ (¬inc φ ∧ φ) ∨ (¬inc ψ ∧ ψ) evaluates
to true.
M is inconsistent because (22), (23), and (24) together

ensure that κ evaluates to false, M [∅] is consistent because
¬en is true. For the same reason, M [{(23)} ∪ R] is consis-
tent forR = ∅. Therefore ω = ({(23)}, ∅) is no explanation.
M [{(22)} ∪ R] is inconsistent for all R ⊆ brM iff both

φ and ψ are unsatisfiable, because (a) if φ is satisfiable, we
can set R exactly to those rules in (20) which correspond to
the set of xi which makes φ evaluate to true, thus making κ
true, and (b) if φ is satisfiable, we can do the same wrt. yi, ψ
and (21). Therefore τ = ({(22)}, ∅) is an explanation of M
iff φ and ψ are unsatisfiable. M [{(22), (23)} ∪ R] is incon-
sistent for all R ⊆ brM iff ψ is unsatisfiable, because (a) the
presence of en and inc φ ensure, that the first and second
disjuncts in κ evaluate to false, respectively, and (b) the ab-
sence of inc ψ requires, that no set of bridge rules from (21)
makes the third disjunct true, meaning thatψ is unsatisfiable.
Therefore µ = ({(22), (23)}, ∅) is an explanation of M iff
ψ is unsatisfiable. Furthermore, µ is a minimal explanation,
if neither τ nor ω are explanations. If µ is an explanation
and therefore ψ is unsatisfiable, τ is no explanation iff φ is
satisfiable, therefore µ is a minimal explanation of M iff φ
is satisfiable and ψ is unsatisfiable. Therefore minimal ex-
planation recognition for CC(M) = P is DP

1 complete. ¤

For proofs regarding HEX-programs, we rely on the Global
Splitting Theorem for HEX (Eiter et al. 2006). In short,
this theorem allows to decompose a HEX-program into an
ordered set of program components which can be evaluated
using the following principles: answer sets of ‘lower’ com-
ponents do not depend on ‘higher’ components; answer sets
of ‘lower’ components can be extended by ‘higher’ compo-
nents to form answer sets of the whole program; answer sets
of ‘lower’ components can be invalidated (by constraints or
inconsistencies) in ‘higher’ components.

Proof of Theorem 3 (sketch). (⇒) The set of atoms in (11)
is a Global Splitting Set of PD(M). Therefore the answer
sets of (11) do not depend on (12), DI,1 ∩DI,2 = ∅ is true
for all answer sets I ∈ AS(PD(M)), and for each r ∈ brM ,
I contains exactly one of d2 (r), d1 (r), or norm(r).

The program part (12) consists of constraints, so it can
only eliminate certain answer sets created by (11). The def-
inition of f&eqM

essentially states, that all answer sets I

where DI is not a diagnosis of M are eliminated. There-
fore each answer set of PD(M) corresponds to a diagnosis.

(⇐) Given (D1, D2) ∈ D±(M) with D1 ∩D2 = ∅, the
corresponding I = {norm(r) | r ∈ brM , r /∈ (D1∪D2)}∪
{d1 (r) | r ∈ D1} ∪ {d2 (r) | r ∈ D2} is an answer set of
rules (11), and f&eqM

(I, d1 , d2) returns 1, as (D1, D2) ∈
D±(M). Therefore I is an answer set of PD(M). ¤

Proof of Proposition 5 (sketch). (⇒) We show that each an-
swer set I ∈ AS(Pp(M)) uniquely corresponds to an
output-projected equilibrium S′ of M . The Global Split-
ting Theorem splits Pp(M) into P1 consisting of (13), P2

consisting of (14) and (15), and P3 consisting of con-
straints (16). P1 has as answer sets I1 all output-projected
belief states S′I = (S′1I , . . . , S

′
nI) of M . P2 extends each

answer set I1 by the set of bridge rule heads BI
i that are ac-

tive at context Ci given S′. P3 eliminates all answer sets
generated by P1 and P2, where for a certain i, 1 ≤ i ≤ n,
there exists no Si ∈ ACCi(kbi ∪ BI

i) s.t. Si ∩ OUT i =
S′iI . Therefore each S′I corresponding to an answer set
I ∈ Pp(M) is an output-projected equilibrium of M .

(⇐) We construct a unique answer set I ∈ AS(Pp(M))
from an output-projected equilibrium S′: given an output-
projected equilibrium S′ = (S′1, . . . , S

′
n), we calculate

bridge rule applicability, yielding the set of active bridge rule
headsHi at each contextCi. We then assemble I as follows:
I={ai(p)|p∈S′i}∪{āi(p)|p∈OUT i\S′i}∪{bi(s)|s∈Hi}.
By construction and by the fact that S′ is an output-projected
equilibrium, I satisfies all rules in Pp(M), in particular
the constraints (16). Therefore I also satisfies the reduct
fPp(M)I . As Pp(M) contains no positive cycles, I is a
minimal model of the reduct and thus an answer set. ¤

Proof of Theorem 4 (sketch). This proof is very similar to
the previous proof: PD

p (M) can be split into parts P1, P2,
P3, and a new part P ′1 consisting of rules (11). P1 and P ′1 are
independent from each another and from the other parts. An
answer set I ′ of (11) influences (14) and (15), correspond-
ing to deactivated (d1 (r) ∈ I ′) or unconditionally added
(d2 (r) ∈ I ′) bridge rules. The rest of PD

p (M) eliminates
all answer sets I ′ which do not yield at least one equilibrium
in the modified M . Therefore an answer set I of PD

p (M)
corresponds to an output-projected equilibrium of M after
application of a diagnosis, and this diagnosis is indicated in
I by d1 (r) and d2 (r) atoms. ¤

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P., eds. 2003. The Description
Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge, UK: Cambridge University Press.
Bikakis, A., and Antoniou, G. 2008. Distributed defeasible
contextual reasoning in ambient computing. In Ambient
Intelligence, 308–325.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits,
H.; and Woltran, S. 2007. Debugging ASP programs by
means of ASP. In Logic Programming and Nonmonotonic
Reasoning (LPNMR), 31–43.

Brewka, G., and Eiter, T. 2007. Equilibria in heterogeneous
nonmonotonic multi-context systems. In AAAI Conference
on Artificial Intelligence (AAAI), 385–390.
Brewka, G.; Roelofsen, F.; and Serafini, L. 2007. Contex-
tual default reasoning. In International Joint Conference
on Artificial Intelligence (IJCAI), 268–273.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008. Inconsistency tolerance in P2P data
integration: An epistemic logic approach. Information Sys-
tems 33(4-5):360–384.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A uniform integration of higher-order reasoning and ex-
ternal evaluations in answer-set programming. In Interna-
tional Joint Conference on Artificial Intelligence, 90–96.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
Effective integration of declarative rules with external eval-
uations for semantic-web reasoning. In European Semantic
Web Conference (ESWC), 273–287.
Eiter, T.; Brewka, G.; Dao-Tran, M.; Fink, M.; Ianni, G.;
and Krennwallner, T. 2009. Combining nonmonotonic
knowledge bases with external sources. In Frontiers of
Combining Systems (FroCoS), 18–42.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive
aggregates in disjunctive logic programs: Semantics and
complexity. In European Conference on Logics in Artificial
Intelligence (JELIA), 200–212.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365–386.
Giunchiglia, F., and Serafini, L. 1994. Multilanguage hier-
archical logics, or: How we can do without modal logics.
Artificial Intelligence 65(1):29–70.
Inoue, K., and Sakama, C. 1995. Abductive framework
for nonmonotonic theory change. In International Joint
Conference on Artificial Intelligence (IJCAI), 204–210.
Lifschitz, V., and Turner, H. 1994. Splitting a logic pro-
gram. In International Conference on Logic Programming
(ICLP), 23–37.
Przymusinski, T. 1991. Stable semantics for disjunctive
programs. New generation computing 9(3):401–424.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Roelofsen, F., and Serafini, L. 2005. Minimal and absent
information in contexts. In International Joint Conference
on Artificial Intelligence (IJCAI), 558–563.
Syrjänen, T. 2006. Debugging inconsistent answer set pro-
grams. In International Workshop on Nonmonotonic Rea-
soning (NMR), 77–83.

