In: Proc. 8th International Conf. on Logic for Programming, Atrtificial Intelligence
and Reasoning (LPAR 2001), pp. 407-421. LNCS 225®001 Springer.

Reasoning about Evolving
Nonmonotonic Knowledge Bases

Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits

Institut fur Informationssysteme, Technische Univexsitvien
FavoritenstralRe 9-11, A-1040 Vienna, Austria
{eiter,michael,giuliana,tompits }@kr.tuwien.ac.at

Abstract. Recently, several approaches to updating knowledge bases modeled
as extended logic programs (ELPs) have been introduced, ranging from basic
methods to incorporate (sequences of) sets of rules into a logic program, to more
elaborate methods which use an update policy for specifying how updates must be
incorporated. In this paper, we introduce a framework for reasoning about evolv-
ing knowledge bases, which are represented as ELPs and maintained by an update
policy. We describe a formal model which captures various update approaches,
and define a logical language for expressing properties of evolving knowledge
bases. We further investigate the semantical properties of knowledge states with
respect to reasoning. In particular, we describe finitary characterizations of the
evolution, and derive complexity results for our framework.

1 Introduction

Updating knowledge bases is an important issue in the area of data and knowledge rep-
resentation. While this issue has been studied extensively in the context of classical
knowledge bases [18, 11], attention to it in the area of nonmonotonic knowledge bases,
in particular in logic programming, is more recent. Various approaches to evaluating
logic programs in the light of new information have been presented, cf. [1]. The pro-
posals range from basic methods to incorporate an ugdatgven by a set of rules,
or a sequencé, ..., U, of such updates into a (nonmonotonic) logic progrBri,
21,13, 6], to more general methods which usaupdate policyto specify, by means
of update actions, how the updafés, . . ., U,, should be incorporated into the current
state of knowledge [17, 2, 8]. Using these approaches, queries to the knowledge base,
like “is a fact f true in P after update$/, ..., U,?", can then be evaluated.

Notably, the formulation of such queries is treated oradrhoc basisand more
involved queries such as “is a fagttrue in P after updated/y,...,U, and possi-
bly further updates?” are not considered. More generally, reasoning about an evolving
knowledge base&({B, maintained using an update policy, is not formally addressed.
However, it is desirable to know about properties of the contents of the evolving knowl-
edge base, which also can be made part of a specification for an update policy. For
example, it may be important to know that a fads always true inK B, or that a fact
b is never true i B. Analogous issues, calladaintenancendavoidancehave been

* This work was supported by the Austrian Science Fund (FWF) under grants P13871-INF and
N Z29-INF.

recently studied in the agent community [20]. Other properties may involve temporal
relationships such as ifiessage_to(tom) is true in KB at some point, meaning that a
message should be sent to Tom, theni_message_to(tom) will become true in the
evolving KB at some point, representing that a message to Tom was sent.

In this paper, we aim at a framework for expressing reasoning problems over evolv-
ing knowledge bases, which are modeled as extended logic programs [12] and possibly
maintained by an update policy as described above. In particular, we are interested in
a logical language for expressing properties of the evolving knowledge base, whose
sentences can be evaluated using a clear-cut formal semantics. The framework should,
on the one hand, be general enough to capture different approaches to incorporating
updatesly, ..., U, into a logic programP and, on the other hand, pay attention to
the specific nature of the problem. Furthermore, it should be possible to evaluate a
formula, which specifies a desired evolution behavior, across different realizations of
update policies based on different grounds.

The main contributions of this paper are summarized as follows.

(1) We introduce a formal model in which various approaches for updating extended
logic programs can be expressed (Section 3). In particular, we introduce the concept of
anevolution framewhich is a structuré/F = (A, EC, AC, I1, p, Bel) whose compo-
nents serve to describe the evolution of knowledge states. Informaéihygwaledge state
s =(KB; F,..., E,) consists of an initial knowledge bas&3, given by an extended
logic program over an alphabet, and a sequencgy, ..., E, of eventswhich are
sets of rulest;, drawn from a class of possible evets, that are communicated to
an agent maintaining the knowledge base. The agent reacts on an event by adapting its
belief set through the update poli¢y, which singles out update actiodsC AC from
a set of possible update actiod® for application. These update actions are executed,
at a physical level, by compilation, using a functipmto a single logic progran®, or,
more generally, into a sequenggy, ..., P,) of logic programs, denotecbmp gy (s).

The semantics of the knowledge statéts belief set Bel(s), is given by the belief set
of the compiled knowledge state, and is obtained by applying a belief opd®ato)
for (sequences of) logic programsdomp ;(s). Suitable choices oE'F' allow one to
model different settings of logic program updates, such as [1,17,13, 6].

(2) We define the syntax and, based on evolution frames, the semantics of a logical
language for reasoning about evolving knowledge bases (Section 4), which employs lin-
ear and branching-time operators familiar from Computational Tree Logic (CTL) [9].
Using this language, properties of an evolving knowledge base can be formally stated
and evaluated in a systematic fashion, rather than ad hoc. For example, the above main-
tenance and avoidance problems can be expressed by forAtutaandAG—b, respec-
tively.

(3) We investigate semantical properties of knowledge states for reasoning (Sec-
tion 5). In particular, since in principle a knowledge base may evolve forever, we are
concerned with finitary characterizations of evolution. To this end, we introduce various
notions of equivalence between knowledge states, and show several filtration results.

(4) We derive complexity results for reasoning (Section 6). Namely, given an evolu-
tion frameEF, a knowledge state and a formulap, doesEF, s |= ¢ hold? While this
problem is undecidable in general, we single out meaningful conditions under which

408

the problem haQ-EXPSPACE, EXPSPACE, and PSPACE complexity, respectively,
and apply this to th&PI framework under the answer set semantics [8], showing that

its propositional fragment has PSPACE-complexity. We also consider the complex-
ity of sequences of extended logic programs (ELPs). We show that deciding whether
two sequence® = (Py,...,P,) andQ = (Qi,...,Q.,) of propositional ELPs

are strongly equivalent under update answer set semantics, i.e., for every sequence
R = (Ry,...,Rk), k > 0, the concatenated sequenées- R andQ + R have the

same belief sets, is coNP-complete. This is not immediate, since potentially infinitely
manyP + R andQ + R need to be checked.

By expressing various approaches in our framework, we obtain a formal seman-
tics for reasoning problems in them. Furthermore, results about properties of these
approaches (e.g., complexity results) may be concluded from the formalism by this
embedding, as we illustrate for ti®| framework.

2 Preliminaries

We consider knowledge bases representeéxésnded logic programéELPs) [12],
which are finite sets of rules built over a first-order alphalietsing default negation
not and strong negation. A rule has the form

r: Lo« Li,...,Ly,not Lyy1,...,n0t Ly, Q)

where eachl; is a literal of formA or —A, where A is an atom ovetd. The set of
all rules is denoted by 4. We call L, the headof r (denoted byH (r)), and the set
{L1,..., L, not Ly41,...,not L, } thebodyof r (denoted byB(r)). We allow the
case wherd,g is absent fromr; such a rule- is called aconstraint If B(r) =), thenr
is calledfact We often writeL, for a factr = Ly <. Further extensions, e.gupt in
the rule head [1], might be added to fit other frameworks.

An update programP, is a sequencéP;, ..., P,,) of ELPs . > 1), representing
the evolution of progranP; in the light of new rulesP,, ..., P,. The semantics of
update programs can abstractly be described as a mappiiig, which associates with
every sequenck a setBel(P) C L 4 of rules, intuitively viewed as the consequences
of P. Bel(-) may be instantiated in terms of various proposals for update semantics,
like, e.g., the approaches described in [1, 21,13, 6, 17].

For a concrete example, we consider the answer set semantics for propositional up-
date programs introduced in [6, 7], which defines answer se& ef (Py,...,P,)
in terms of answers sets of a single ElEPas follows. Aninterpretation S, is a
set of classical literals containing no opposite literdlsand —A. The rejection set
Rej (S, P), of P with respect to an interpretatio$i is Rej(S,P) = U, Rej;(S,P),
where Rej,,(S,P) = 0, and, forn > ¢ > 1, Rej,(S,P) contains every rule € P;
such that (r') = =H(r) andS = B(r) U B(r'), for somer’ € P; \ Rej;(S,P) with
j > i. Thatis,Rej (S, P) contains the rules iR which are rejected by unrejected rules
from later updates. Then, an interpretati®fs ananswer sebf P = (Py, ..., P,) iff
S is a consistent answer set [12] of the progrBre= | J, P; \ Rej(S,P). The set of all
answer sets dP is denoted byAS(P). This definition properly generalizes consistent
answer sets from single ELPs to sequences of ELPs. Update answer sets for arbitrary

409

(non-ground) update prograrRsare defined in terms of their ground instances similar
to the case of answer sets for ELPs [12].

Example 1.Let Py = {b < nota,a <}, P, = {—a <, c <}, and P, = {—c «}.

Then, Py has the single answer s&§ = {a} with Rej(So, Py) = 0; (Po, P1) has as
answer sefS; = {—a,c, b} with Rej(S1, (Po, P1)) = {a < }; and (P, P, P») has
the unique answer sét = {—a, —¢, b} with Rej(Sa, (Po, P1, P2)) = {c —,a «}.

The belief operatoBelg(-) in the framework of [6] is given byBelg(P) = {r €
La]SE=rforallS e AS(P)}, whereS = r means that for each ground instante
of r, eitherH (') e S, or L ¢ S for someL € B(r'), or L€ S for somenot L € B(r').

3 Knowledge-Base Evolution

We start with the basic formal notions of amentand of theknowledge statef an agent
maintaining a knowledge base.

Definition 1. Let.A be some alphabet. Aevent class over (or simplyevent class
if no ambiguity arisepis a collection£C C 2%4 of finite sets of rules. The members
E € &C are calledevents

Informally, £C describes the possible events (i.e., sets of communicated rules) an
agent may experience. In the most general case, an event is an arbitrary ELP; in a
simpler setting, an event may just be a set facts. In a deductive database setting, the latter
case corresponds to an extensional database undergoing change while the intensional
part of the database remains fixed.

Definition 2. Let£C be an event class over some alphaldetA knowledge state over
EC (simply, aknowledge stateis a tuples = (KB; Fy, ..., E,), whereKB C L 4 is
an ELP(calledinitial knowledge baseand eachE; (1 < ¢ < n) is an event fron€C.
Thelength ofs, denoteds|, is n.

Intuitively, s = (KB; En, ..., E,) captures the agent’s knowledge, starting from its
initial knowledge base. When a new evént,; occurs, the current knowledge state
changeste¢’ = (KB; Ey,...,E,, E,11), and the agent is required to adapt its belief
set in accordance with the new event by obeying its given update policy.

The “universe” in which the evolution of an agent’s knowledge base takes place is
given by the following concept:

Definition 3. Anevolution frames a tupleEF = (A, £C, AC, I1, p, Bel), where

— Ais afinite (first-order) alphabet;

— ECis an event class oved,;

— AC is a set ofupdate command®r actiong;

— II is anupdate policy which is a function mapping every knowledge stateer
£C and an evenE € £C into a setll(s, E) C AC of update commands;

410

— p is a mapping, calledealization assignmentvhich assigns to each knowledge
states over£C and each setl C AC of update commands a sequenge, A) =
(Po,...,P,)of ELPsP; C L4 (1 <i<n);and

— Bel is a belief operator for sequences of ELPs.

The set of all knowledge states determinedyis denoted bysp .

The components of an evolution frame allow us to model various update approaches,
as we discuss later on.

We already mentioned above that different event claggemight be conceived.
Simple, elementary update commands @arert(r) and delete(r), which add and re-
move arule to a logic program, respectively, without a sophisticated semantics handling
potential inconsistencies (which may be delegated to the underlying update semantics).
More involved update commands have been proposed in the literature (cf., e.g., [2, 8]).
However, several update frameworks can be modeled using these simple commands.

Update policiedT allow for specifying sensible and flexible ways to react upon in-
coming events. A very simple policy B, (s, E) = {insert(r) | r € E}; it models
an agent which incorporates the new information unconditionally. More sophisticated
policies may define exceptions for the incorporation of rules from events, or the inser-
tion of rules may be conditioned on the belief in other rules.

While IT determinesvhatto do, the realization assignmenstateshowthis should
be done. Informallyp(s, A) “executes” actions! on the knowledge stateby produc-
ing a logic progranmP or, more generally, a sequeneef logic programs. We can use
p to “compile” a knowledge stateinto a (sequence of) logic programs, by determining
the set of actiongl from the last event is. We introduce the following notation.

For any knowledge state = (KB;FEi,...,E,) over £C, denote byr;(s) =
(KB; En, ..., E;) its projection to the first events, for0 < i < n. We callm;(s) a
previous knowledge stafer simply anancestoj of s if ¢ < n. Dually, each knowledge
states’ over&C is a future knowledge stater simply adescendantof s if s is previous
to s’. Furthermoreq,,_1(s) is thepredecessobf s, ands’ is asuccessonf s if s is
predecessor of . Finally, for eventsEy, ..., E! , we writes + E1,..., E! to denote
the concatenated knowledge stéféB; F1,..., E,, E1,..., E!) (a similar notation
applies to the concatenation of sequences of logic programs).

Definition 4. Let EF = (A, EC, AC, I1, p, Bel) be an evolution frame. For any knowl-
edge state = (KB; E, ..., E,) over&C, thecompilation associated withis

(s,0) if |s| = 0,i.e.,s = (KB);
comp g (s) = {g(ﬁn_l(s), (70 _1(s), En)) otherwise

This definition of compilation is fairly general. It first computes the actions for
the latest evenk,,, and then requires that these actions are executed on the predecessor
state. Observe that, in view eémp ; (s), we could equally well model update policies
as unary functions/ (-) such thati (s) = II(m,_1(s), E,). However, we chose binary
update policies to stress the importance of the last event in

An important class of compilations are those in whielmp(s’) for a future knowl-
edge state’ results by appending some further elements to the sequenege(s) of
logic programs for the current knowledge stat& his motivates the following notion:

411

Definition 5. Given an evolution fram&F = (A, EC, AC, I, p, Bel), comp gr(-) is
incrementalff, for eachs = (KB; E1, ..., E,), compgr(s) = (P, ..., P,) such that
p(<KB>, @) =F andp(m_l(s),ﬂ(m_l(s),Ei)) = (P(), - ,Pl) forl <i<n.

This amounts to the expected meaning:

Proposition 1. The mappingomp 5 (-) is incremental iff, for each knowledge state
comppp(s) = Qif |s| = 0, and compgp(s) = compgr(m)5—1(s)) + Q otherwise,
whereQ is a logic program and “+” is the concatenation of sequences.

A simple, incremental compilation results tdC;,,, = {insert(r) | r € La}, I =
I1,,s as defined above, and,,; such thatcomp - ((KB)) = KB andcomp gp(s) =
comp gp(msj—1(s)) + ({r | insert(r) € A}). Note thatcomp g ((KB; E1, ..., Ey))
is in this setting just the sequen¢&B, E1, ..., E,).

While incremental compilations are natural, we stress that others are of course also
relevant. In particular, the compilation might perform optimizations (cf. Section 5.2),
or output only an ordinary logic program.

Finally, the belief set emerging from a knowledge state is as follows:

Definition 6. Let EF = (A, EC, AC, I1, p, Bel) be an evolution frame anga knowl-
edge state. The belief setgfdenotedBel(s), is given byBel(comp g (s)).

Remarks. Our definition of an update policy and of a realization assignment, which
effectively lead to the notion of a compilation, is quite general. We may stipulate addi-
tional postulates upon them, like the incrementability property or an iterativity property
(which me omit here), and similar dBel(-).

Our definition does not capture nondeterministic update policies, wh¢seE)
may return one out of several possible sets of update actions. Accordingly, the notion
of a knowledge state can be extended by taking previous actions into account, i.e., a
knowledge state is then of the form KB, (E1, A1), ..., (En, Ay)), where eaclE; is
an event, andl; is the set of update commands executed at sthppractice, we may
assume a suitabkelection functiorr, which chooses one of the possible outcomes of
II(s, E), and we are back to a deterministic update poliy. If the selection function
o is unknown, we may consider all evolution fram@&g, arising for eachr.

Example 2.Consider a rather simple mailing agent, which has the following initial
knowledge bas& B, whose rules are instantiated over suitable variable domains:

ri: type(M, private) «— from(M,tom);
ro! type(M, business) <« subject(M, project);
r3: type(M, other) <« not type(M, private), not type(M, business), msg(M);

T4 trash(M) «— remove(M), not save(M);

T5! remove(M) <« date(M, T),today(T"), not save(M), T > (T + 30);
e found(M) « search(T), type(M, T), not trash(M);

T success <« found(M);

Ts! failure «— search(T), not success.

The knowledge base contains rules about classifying message types)(trash
and removal of mailsr{;, r5), and further rulesi—rg) to determine success or failure
of a search for messages of a particular type. An e¥entight consist in this setting
of one or more of the following items:

412

at most one factoday(d), for some daté;

a factempty_trash, which causes messages in the trash to be eliminated;
factssave(m) or remove(m), for mail identifiersm;

at most one factearch(t), for some mail type € {other, business, private};

— zero or more sets of facfsom(m, n), subject(m, s), or date(m, d) for mail iden-
tifier m, namen, subjects, and date.

The update policyI may be as follows:

II(s, E) = {insert(R) | R € E} U {insert(msg(M)) | from(M,N) € E}
U {delete(today(D)) | today(D") € E, today(D) € Bel(s)}
U {delete(a) | o € {trash(M), msg(M), type(M, T)},
empty_trash € E, trash(M) € Bel(s)}
U {delete(c) | @ € {from(M, N), subject(M, S), date(M, D)},
save(M) ¢ Bel(s), msg(M) € Bel(s), remove(M) € E}
U {delete(c) | « € Bel(s) N {search(T), found(T), success,
failure, empty _trash} }

This update policy (which does not respect possible conflictszoé and remowve),
intuitively adds all incoming information, plus a faetsg(M) for each incoming mail

to the knowledge base. The current date is maintained by deleting the old date. As well,
all old information from a previous event, relative to a search or to the trash, is removed.
If an event containsmpty _trash, then all messages in the trash are eliminated.

Capturing frameworks for knowledge evolution. Finally, we briefly discuss how
existing frameworks for updating nonmonotonic knowledge bases can be captured in
terms of evolution frames. This is possible at two different levels:

(1) At an “immediate update” level, frameworks for updating logic programs can
be considered, where each event isupdate programand the update policy is the
(implicit) way in which update programs and the current knowledge are combined, de-
pending on the semantics of updates of each approach. For example, the formalisms of
update programs [6, 7], dynamic logic programming [1], revision programming [16,
17], abductive theory updates [13], and updates through prioritized logic programs
(PLPs) [21] fall into this category.

(2) At a higher level, frameworks can be considered which allow for specifying an
explicit update policyin some specification language, and which offer a greater flexi-
bility in the handling of updates. Examples of such framework€E®id8], LUPS [2],
and, while not directly given in these terni8DL [14].

For illustration, we consider update programs [6] andER&framework for update
policies. Update programs are captured by the following evolution frame:

EFQ = <A7 EC.Av Acins; Hin57 pins, -BelE'>7

where£C 4 is the collection of all ELPs oved, andBelg is the belief operator defined
in Section 2. Th&P| framework corresponds to the evolution frame

EFep = (A, EC, ACkpi, IIgp1, pep1, Belg),

where

413

— ACgp| = {assert(r), retract(r), always(r), cancel(r),
assert_event(r), retract_event(r), always_event(r) | r € L4}
and the commands have the meaning as in [8];

— Ilgp is defined by any set of update statements in the lang&&fewhich are
evaluated through a logic program as defined in [8];

— pepi realizes the translatiotr(KB; Uy, . .., U,) from [8], which compiles the ini-
tial knowledge bas& B and the sets of update commanids. . ., U, in response
to the events;, ..., E, ins = (KB, Ey,..., E,), into a sequencél, ..., P,)
of ELPs. The resulting compilatiotompgp, is incremental.

Furthermore, the following formalisms can be expressed in a similar fashion: dy-
namic logic programming [1] (by allowingot in rule heads), LUPS [2], abductive
theory updates [13], and program updates by means of PLPs [21]. Thus, several well-
known approaches to updating logic programs can be modeled by evolution frames.

4 Reasoning About Knowledge-Base Evolution

We now introduce our logical language for expressing properties of evolving knowledge
bases. The primitive logical operators of the language are: (i) the Boolean connectives
A (*and”) and— (“not”); (ii) the evolution quantifierdA (“for all futures”) andE (“for
some future”); and (iii) the linear temporal operatér§‘next time”) andU (“until”).

Atomic formulas are identified with rules ifi 4 ; composite formulas are eithstate
formulasor evolution formulasdefined as follows:

1. Each atomic formula is a state formula.

2. If p, 9 are state formulas, them A ¢» and—y are state formulas.

3. If pis an evolution formula, theBy andAy are state formulas.

4. If v, are state formulas, thefy andpU+ are evolution formulas.

Further Boolean connectives (“or”), O (“‘implies”), and = (“equivalence”) are
defined in the usual manner. As well, we kse= T Uy (“finally ¢"), whereT stands
for any tautologyAGy = —=EF—¢, andEG¢ = —AF¢ (“globally ¢").

Next, we define the semantics of such formulas with respect to a given evolution
frameEF = (A, EC, AC, II, p, Bel). To this end, we introduce the following notation:

A sequence = (s;);>0 of knowledge states oveiC is called apathiff eachs;
(i > 0) is a successor of,_;. We denote by, the state at positionin p, i.e.,p; = s;.

Definition 7. Let EF = (A, EC, AC, I1, p, Bel) be an evolution frame; a knowledge
state ove€(C, andp a path. The relation= is recursively defined as follows:

EF,s = riff r € Bel(s), for any atomic formula;

EF,s =1 Ao iff EF, s |= ¢y andEF, s = ¢o;

EF. s = —piff EF, s [~ ¢,

EF,s E Epiff EF,p' = ¢, for some pathy’ starting ats;

EF,s = Apiff EF p' = ¢, for each pathy’ starting ats;

EF,p E Xpiff EF,p1 E ¢;

EF,p = p1Up, iff EF,p; = o for somei > 0 and EF, p; = @1 forall j < i.

Nookrwhr

414

If EF,s = ¢ holds, then knowledge stateis said tosatisfyformula ¢ in the
evolution frameEF (or ¢ is aconsequence afin the evolution frame’F).

Notice that any evolution framé&F induces an infinite transition graph which
amounts to a standard Kripke structukg;r = (S, R, L), whereS = Sgp is the
set of knowledge states is the successor relation between knowledge stateslLand
labels each statewith Bel(S), such thats satisfiesp in EF iff Kgr,s | ¢ (Where
k= is defined in the usual way).

Example 3.In order to see whether the mailing agent in Example 2 works properly,
we may consider the following properties. For convenience, we allow in formulas non-
ground rules as atoms, which stand for the conjunction of all ground instances which is
assumed to be finite. Recall that we identify facts with literals.

1. There can never be two current dates:
AG((today(D) A today(D')) > D = D).)
2. The type of a message cannot change:
AG(type(M,T) D> —EF(type(M,T') A T #T)). (3)
3. A message is not trashed until it is either deleted or saved:
AG(msg(m) D AG(—trash(m)U(delete(m) V save(m))). 4)

While the initial KB satisfies formulas (2) and (4) in the respect evolution frame
EFgp, itis easily seen that it does not satisfy formula (3).

5 Knowledge-State Equivalence

While syntactically different, it may happen that knowledge statasds’ are seman-
tically equivalent in an evolution frame, i.e.ands’ may have the same set of conse-
quences for the current and all future events. We now consider how such equivalences
can be exploited to filtrate a given evolution frari@' such that, under suitable con-
ditions, we can decid&F, s = ¢ in a finite structure extracted from the associated
Kripke structureK zr. We start with the following notions of equivalence.

Definition 8. LetEF = (A, EC, AC, 11, p, Bel) be an evolution frame arid > 0 some
integer. Furthermore, let, s’ be knowledge states ov&€€. Then,

1. s and s’ are k-equivalent inEF, denoteds =%, s/, if Bel(s + Ey,...,Ep) =
Bel(s' + Eu, ..., Ey), foralleventsEy, ..., By from&EC and all k' < k;

2. s ands’ are strongly equivalent inEF, denoteds =gr ¢/, iff s =X, s for every
k > 0.

We call 0-equivalent states alseakly equivalentThe following result is obvious.
Theorem 1. Let EF = (A, EC, AC, I1, p, Bel) be an evolution frame and s’ knowl-
edge states ovefiC. Then,

415

1. s =gr s’ implies thatEF, s |= ¢ is equivalent tabF, s' |= ¢, for any formulayp;
2. s =k, s implies thatEF, s |= ¢ is equivalent toEF, s’ |= ¢, for any formulay
in whichU does not occur and the nesting depth wi.and A is at mostk.

Due to Part 1 of Theorem 1, strong equivalence can be used to filtrate an evolu-
tion frame EF in the following way. For an equivalence relati@ghover some sek,
and anyz € X, let[z]g = {y | (z,y) € E} be the equivalence class ofand let
X/E = {[z]g | = € X} be the set of all equivalence classes. Furthermbris, said
to have dfinite index(with respect toX) iff X/F is finite. Then, any equivalence re-
lation E over some seb C Sgr of knowledge states ofF' compatible with=gr
(i.e., such that E s’ impliess =gp &, for all s,s’ € S) induces a Kripke structure
KEFS <S/E'7 RE, LE>, Where[s]E Rg [Sl]E iff sRs’ andLE([s]E) = L(S), which
is bisimilar to the Kripke structur& z restricted to the knowledge statesSnThus,
for every knowledge stateand formulayp, it holds thatEF, s = ¢ iff Kgﬁ [s]E E &,
forany S C Sgr such thatS contains all descendants af

In the following, we consider two cases in whiSHE has finite index.

5.1 Local belief operators

In the first case, we considergr itself as a relation compatible with strong equiva-
lence. We obtain a finite index if, intuitively, the belief sBti(s) associated with
evolves differently only in a bounded context. We have the following result.

Theorem 2. Let EF = (A, EC, AC, II, p, Bel) be an evolution frame such th&t is
finite, and letS C Sgr be some set of knowledge states av@r Then, the following
two conditions are equivalent:

(a) =gr has afinite index with respect
(b) =% has afinite index with respect fhand there is some > 0 such thats =%, s’
impliess =gr s/, forall s,s’ € S.

Moreover, in cas€a), there is some: > 0 such that|S/ =gr | < dI€¢I", where
d =5/ =gpl-

The condition that=Y,. has a finite index, i.e., such that only finitely many knowl-
edge states have different belief sets, is, e.g., satisfied by common belief operators if
everys is compiled to a sequeneemp ;- (s) of ELPs over a finite set of function-free
atoms (in particular, if4 is a finite propositional alphabet).

By taking natural properties dBel(-) and comp z(+) into account, we can derive
an alternative version of Theorem 2. To this end, we introduce the following notation.
Given a belief operatoBel(-), we call update programB and P’ k-equivalent
if Bel(P+ (Q1,...,Qk)) = Bel(P" + (Q1,...,Qx)), for every ELPSQ;,...,Q;
(0 < i < k). Likewise,P andP’ arestrongly equivalentif they arek-equivalent for
all k > 0. We say thatBel(-) is k-local, if k-equivalence o andP’ implies strong
equivalence of and P, for any update programB and P’. Furthermore Bel(-) is

local, if Bel(-) is k-local for somek > 0. We obtain the following result:

416

Theorem 3. Let EF = (A,EC, AC, I, p, Bel) be an evolution frame such th&C
is finite and=Y%. has a finite index with respect t§ C Sgr. If Bel(-) is local and
comp pr(+) is incremental, there g has a finite index with respect

As an application of this result, we show that certBfi evolution frames have a
finite index. Recall thaBelg(-) is the belief operator of the answer set semantics of
update programs [7], as described in Section 2. We can show the following result:

Theorem 4. Bely is local. In particular, 1-equivalence of update prograrf®sand P’
impliesk-equivalence oP andP’, for all k > 1.

The proof is by induction and appeals to the rejection mechanism of the semantics.
Furthermore, in an§PI evolution frameEF = (A, £C, ACgpy, ITepi, pepi, Belg), the
update policylTgp, is, informally, given by a logic program such thidtp, returns a set
of update actions from a finite seffy of update actions, which are compiled to rules
from a finite setR, of rules, providedC is finite. Consequently=%, .. has finite index
with respect to any sef of knowledge states which coincide onr(s), i.e. the initial
knowledge bas& B. Furthermorecompgp,(-) is incremental. Thus, we obtain:

Corollary 1. Let EF = (A, EC, ACgp, IIepi, pepi, Belg) be anEPI evolution frame
such thateC is finite, and letS C Sgr be a set of knowledge states such thaj(s) |
s € S}isfinite. Then=gr has a finite index with respect £ Moreover,|S/ =gr| <
dI€¢l, whered = |S/ =%,..|.

5.2 Contracting belief operators

Next, we discuss a refinement of strong equivalence, caiégwnical equivalenge
which also yields a finite index, providing the evolution frame possesses, in some sense,
only a “bounded history”. In contradistinction to the previous case, canonical equiva-
lence uses semantical properties which allow for a syntactic simplification of update
programs. We need the following notions.

Definition 9. Let Bel(-) be a belief operator. TherBel(-) is calledcontractingiff the
following conditions hold(i) Bel(P+0+P’) = Bel(P+P'), for all update program®
andP’; and(ii) Bel(P) = Bel(P,,...,P;_1, P\{r}, Piy1,..., P,), forany sequence
P = (Fo,...,P,) and any ruler € P; N P; such thati < j. An evolution frame
EF = (A,EC, AC, I, p, Bel) is contracting iffBel(-) is contracting.

Examples of contracting belief operators delg(-) and the analogous operator
from [1]. By repeatedly removing duplicate rulesand empty program#; from any
sequencd® = (P,..., P,) of ELPs, we eventually obtain a non-reducible sequence
P* = (Py,..., P*), which is called thecanonical formof P. Observe thain < n
always holds, and th&" is uniquely determined, i.e., the reduction process is Church-
Rosser. We get the following property:

Theorem 5. For any contracting belief operatoBel(-) and any update sequenée
we have thaP andP* are strongly equivalent.

417

Let us call knowledge statesands’ in an evolution frameZF canonically equiv-
alent denoteds =% ¢, iff they are strongly equivalent in the canonized evolution
frame EF*, which results fromEF by replacingcomp 5 (s) with its canonical form
comp gr(s)* (i.e., comp gp-(s) = comp g (s)*). We note the following property.

Theorem 6. Let EF be a contracting evolution frame. TheliF', s | ¢ iff EF* s E
v, for any knowledge stateand any formulap. Furthermore =% is compatible with
=gr foranyS C Sgp,i.e.,s =7 s impliess =gp s/, for everys, s’ € S.

As a result, we may use4y for filtration of EF', based on the following concept.

Definition 10. Let EF = (A, £C, AC, II, p, Bel) be an evolution frame and> 0 an
integer. We say thak'F' is c-boundedff there are functionsy, f, andg such that

1. a is a function mapping knowledge states into sets of events such that, for each
s=(KB;Ey,....,E,),a(s) ={(En_¢y1,. .., E,), wherec = min(n, ¢); and

2. II(s, E) = f(Bel(s),a(s), E) andp(s, A) = g(Bel(s), a(s), A), for each knowl-
edge state € Sgr, each evenk € £C, and eachA C AC.

This means that, in abounded evolution frame, the compilatioomp ;5 (s) de-
pends only on the belief set of the predecessaof s and the latest events ins.

Theorem 7. Let EF = (A,£C, AC, II, p, Bel) be an evolution frame wher&C is
finite, and letS C Sgp. If (i) EF is contracting,(ii) there is some finite séty C L4
such thatcomp pr(s) C Ry, foranys € S, and(iii) EF is c-bounded, for some > 0,
then=¢/ has a finite index with respect &

6 Complexity

In this section, we study the computational complexity of the following reasoning task:

TEMPEVO: Given an evolution framé&lF = (A,EC, AC, I1, p, Bel), a knowledge
states over£C, and some formula, doesEF, s = ¢ hold?

In order to obtain decidability results, we assume that the constituents of the evo-
lution frame EF' in TEMPEVO are all computable. More specifically, we assume that
(i) £C, AC, andBel are given as computable functions decidiige £C, a € AC, and
r € Bel(P), and (ii) IT andp are given as computable functions. Nonetheless, even
under these stipulations, it is easy to see treFEVO is undecidable.

The results of Section 5 provide a basis for characterizing some decidable cases. We
consider here the following class of propositional evolution frafgs= (A, £C, AC,
II, p, Bel) (i.e., A is propositional). CalEF regular, if the following applies:

1. the membership tests € £C andr € Bel(P), as well ad] andp are computable
in polynomial space (the latter with polynomial size output); e.g., the functions may
be computable in the polynomial hierarchy;

2. rules in compilationsomp 5 (s) and eventdy have size polynomial in the repre-
sentation size of/F', denoted by| EF || (i.e., repetition of the same literal in a rule
is bounded), and events have size at most polynomiaEifi||;

418

3. Bel() is model based, i.eBel(P) is determined by a set df-valued models,
wherek is small (typically,k < 3 as forBelg(-)).

The conditions 1 and 3 apply to the approachesin|[1,6, 8,16, 17,13, 21], and condi-
tion 2 is reasonable to impose; note that none of these semantics is sensible to repetitions
of literals in rule bodies.

Theorem 8. DecidingEF, s |= ¢, given a regular propositional evolution franteF’ =
(A, EC, AC, II, p, Bel), a knowledge state, and a formulap is

1. 2-EXPSPACEcomplete, ifBel(-) is k-local for somek which is polynomial in
|EF||, and comp gr(+) is incremental;

2. EXPSPACEcomplete, ifE'F is contracting and:-bounded, where is polynomial
in ||EF||; and

3. PSPACEcomplete, ifEF is as in 2 and, moreover, all rules in the compilations
comp g (s') of successors’ of s are from a sefR, of size polynomial i EF ||.

For the upper bounds of these results, we note that in the case whassformE,
only finite paths of length at mok$/ = | must be considered for satisfying where
S is the set of all future knowledge statessoPart 1 of the theorem can then be shown
by Theorem 3 using the estimation given in Theorem 2. Concerning Part 2, there are

O HIBFI™) = O(QQWHEF”) many knowledge statesthat are not strongly equiv-
alent, for some constantsm andm’; eachBel(s) can be represented, using canonical
update programs, together with the lagtvents, in single exponential space. Further-
more, the representation of every successor state is computable in polynomial space in
the input size. Hence, overall exponential space is sufficient. Finally, the additional con-
dition in Part 3 of the theorem guarantees PSPACE complexity. The lower bounds can
be shown by encoding Turing machine computations into particular evolution frames.
Part 3 of Theorem 8 implies that the propositioB&I framework has also PSPACE
complexity. While here, in generaBel(s) depends on all events if it is possible
to restrict ACgp; to the commandassert and retract, by efficient coding tech-
niques which store relevant history informationfitel(s), such that the compilation
in compgp,(s) depends only oBel(r,,—1(s)) and the last evenft,, in s. Furthermore,
the policy I1gp, is sensible only to polynomially many rules in events, anthpgp, (s)
contains only rules from a fixed s&% of rules, whose size is polynomial in the repre-
sentation size of’F'. Thus, we get the following corollary.

Corollary 2. LetEF = (A, EC, ACgpy, Igpy, pepi, Belg) be a propositionaEPI evo-
lution frame, lets be a knowledge state, and lebe a formula. Then, decidinBF, s |=
@ is in PSPACE

On the other hand, computations of a PSPACE Turing machine can be easily en-
coded in a propositiondtPI evolution frame using a single event which models the
clock. Thus, Corollary 2 has a matching lower bound.

We conclude our complexity analysis with results concerning weak, strong, and
k-equivalence of two propositional update programs, respectively.

Theorem 9. Deciding whether two given propositional update prograPrend Q are
weakly equivalent, i.e., satisfyifel z (P) = Belg(Q), is coNRcomplete.

419

Intuitively, the upper bound follows from the property that, for any propositional
update programP andQ, Bel(P) = Bel(Q) is equivalent ta4S(P) = AS(Q). The
matching lower bound follows easily from the coNP-completeness of deciding whether
an ELP has no answer set (cf. [5]).

For decidingl -equivalence, the following lemma is useful:

Lemma 1. Let P and Q be propositional update programs. Théhand Q are not 1-
equivalent undeBel iff there is an ELPP and a setS such that(i) S € AS(P + P)
butS ¢ AS(Q+ P), or vice versa(ii) |S| is at most the number of atomskna+ Q plus
1, and(iii) | P] < |S| + 1. Furthermore,P has polynomial size in the size®fnd Q.

Intuitively, this holds since any answer sebf P + P can be generated by at most
|S| many rules. Furthermore, § is not an answer set @ + P, by unfolding rules in
P we may disregard for af all but at most one atom which does not occuPior Q.
To generate a violation & in Q + P, an extra rule might be needed; this means that a
P with | P| < |S| + 1 is sufficient.

Theorem 10. Deciding strong equivalend@r k-equivalence, for any fixekd > 0) of
two given propositional update prograrfsand Q is coNRcomplete.

Proof. (Sketch) Fork = 0, the result is given by Theorem 9. For> 1, the member-
ship part follows from Lemma 1, in virtue of Theorem 4. Hardness can be shown by
constructing, given a propositional DNF; suitable program# and@ in polynomial

time such thap is valid in classical logic ifP = (P) andQ = (Q) arel-equivalentD

Note that Theorems 9, 10 and Lemma 1 make no finiteness assumption on the al-
phabetA. They also hold for ground update prograbhandQ in a first-order alphabet,
whereP in Lemma 1 is ground.

7 Discussion and Conclusion

We presented a general framework for reasoning about evolving logic programs, which
can be applied to several approaches for updating logic programs in the literature. Since
the semantics of evolution frames can be captured by Kripke structures, it is suggestive
to transform reasoning problems on them into model checking problems [4]. However,
in current model checking systems, state transitions must be stated in a polynomial-time
language, and descriptions of these Kripke structures would require exponential space
also for evolution frames with PSPACE complexity (eERJ evolution frames). Thus,
extensions of model checking systems would be needed for fruitful usability.

Lobo et al. introduced th@ DL [14] language for policies, which contain event-
condition-action rules and serve for modeling reactive behavior on observations from
an environment. While similar in spirit, their model is different, and [14] focuses on
detecting action conflicts (which, in our framework, is not an issue). In [15], reason-
ing tasks are considered which center around actions. Further related research is on
planning, where certain reachability problems are PSPACE-complete (cf. [3]). Similar
results were obtained in [20] for related agent design problems. However, in all these
works, the problems considered are ad hoc, and no reasoning language is considered.

420

Fagin et al.'s [10] important work on knowledge in multi-agent systems addresses
evolving knowledge, but mainly at an axiomatic level. Wooldridge’s [19] logic for rea-
soning about multi-agent systems embeds C&ahd has belief, desire and intention
modalities. The underlying model is very broad, and aims at agent communication and
cooperation. It remains to see how our particular framework fits into these approaches.

Our ongoing work addresses these and further issues. Further meaningful properties
of evolution frames would be interesting; e.g., iterativity of the compilatienyp .,

i.e., the events are incorporated one at a time, or properties of the belief op@eator

Otherissues are algorithms and fragments of lower (especially, polynomial) complexity.

References

1

2.

[0

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

. J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic Updates of

Non-Monotonic Knowledge Bases. Logic Programming45(1-3):43—-70, 2000.

J. Alferes, L. Pereira, H. Przymusinska, and T. Przymusinski. LUPS - A Language for

Updating Logic Programs. IRroc. LPNMR’99 LNAI 1730, pp. 162—-176. Springer, 1999.

. C. Baral, V. Kreinovich, and R. Trejo. Computational Complexity of Planning and Approx-
imate Planning in the Presence of Incompletenés3. 122(1-2):241-267, 2000.

. E. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, 1999.

. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of
Logic Programming. IProc. 12th IEEE International Conference on Computational Com-
plexity (CCC '97), pp. 82—-101, 1997. Full pap&CM Computing Surveyto appear.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on Updates of Logic Pro-
grams. InProc. JELIA 2000LNAI 1919, pp. 2—20. Springer, 2000.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On Properties of Update Sequences Based
on Causal RejectioriTheory and Practice of Logic Programminty appear.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A Framework for Declarative Update Spec-

ifications in Logic Programs. IRroc. IJCAI'01, pp. 649-654.

. E. Emerson. Temporal and Modal Logics, Vol. B. In J. van Leeuwen, eéitorgdbook of

Theoretical Computer Sciendglsevier, 1990.

R. Fagin, J. Halpern, Y. Moses, and M. Varfl@easoning about Knowledg®IT, 1995.

D. Gabbay and P. Smets, editddandbook on Defeasible Reasoning and Uncertainty Man-
agement Systems, Vol..IKluwer Academic, 1998.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
DatabasesNew Generation Computing:365-385, 1991.

K. Inoue and C. Sakama. Updating Extended Logic Programs through AbductiBrocin
LPNMR’99 LNAI 1730, pp. 147-161. Springer, 1999.

J. Lobo, R. Bhatia, and S. Naqvi. A Policy Description Languagé>rdc. AAAI/IAAI'99

pp. 291-298. AAAI Press / MIT Press, 1999.

J. Lobo and T. Son. Reasoning about Policies Using Logic PrograrRsotn AAAI 2001
Spring Symposium on Answer Set Programmpg 210-216, 2001.

V. Marek and M. Truszchski. Revision Specifications by Means of Programs Piac.
JELIA'94, LNAI 838, pp. 122—-136. Springer, 1994.

V. Marek and M. Truszchski. Revision ProgramminglCS 190(2):241-277, 1998.

M. Winslett.Updating Logical DatabaseCambridge University Press, 1990.

M. Wooldridge.Reasoning about Rational AgentdIT Press, 2000.

M. Wooldridge. The Computational Complexity of Agent Design ProblenPrae. Inter-
national Conference on Multi-Agent Systef@&MAS 200Q IEEE Press, 2000.

Y. Zhang and N. Foo. Updating Logic ProgramsPhoc. ECAI'98 pp. 403—407. 1998.

421

