
In: Proc. 7th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), I. Niemelä and V. Lifschitz, (eds), LNCS,c© 2004 Springer.

Simplifying Logic Programs under
Uniform and Strong Equivalence?

Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,michael,tompits,stefan }@kr.tuwien.ac.at

Abstract. We consider the simplification of logic programs under the stable-
model semantics, with respect to the notions of strong and uniform equivalence
between logic programs, respectively. Both notions have recently been consid-
ered for nonmonotonic logic programs (the latter dates back to the 1980s, though)
and provide semantic foundations for optimizing programs with input. Extending
previous work, we investigate syntactic and semantic rules for program transfor-
mation, based on proper notions of consequence. We furthermore provide encod-
ings of these notions in answer-set programming, and give characterizations of
programs which are semantically equivalent to positive and Horn programs, re-
spectively. Finally, we investigate the complexity of program simplification and
determining semantical equivalence, showing that the problems range between
coNP andΠP

2 complexity, and we present some tractable cases.

1 Introduction

Implementations of answer-set solvers such as DLV [4], Smodels [21], or ASSAT [13]
led to the consideration of practical applications of nonmonotonic logic programs in the
last years, but also renewed interest in the study of foundational properties. In particular,
semantical notions of equivalence between logic programs such asstrong equivalence
have been studied (cf. [11, 22, 23, 17, 12, 3]): ProgramsP1 andP2 are strongly equiva-
lent, if, for any setR of rules, the programsP1∪R andP2∪R are equivalent under the
stable semantics, i.e., have the same set of stable models. This can be used to simplify a
logic programP [23, 16]: if a subprogramQ of P is strongly equivalent to a (simpler)
programQ′, then we can replaceQ by Q′.

Since strong equivalence is rather strict, the more liberal notion ofuniform equiv-
alence[20, 14] has been considered in [5, 18], whereR is restricted to sets offacts.
A hierarchical componentC within a programP may be replaced by a uniformly
equivalent set of rulesC ′, providing the global hierarchical component structure of
P is not affected (which is a simple syntactic check). As recently discussed by Pearce
and Valverde [18], uniform and strong equivalence are essentially the only concepts of
equivalence obtained by varying the logical form of the program extensions.

? This work was partially supported by the Austrian Science Fund (FWF) under project Z29-
N04, and the European Commission under projects FET-2001-37004 WASP and IST-2001-
33570 INFOMIX.

This paper continues and extends the work in [5], which focused on semantical
characterizations of uniform equivalence for disjunctive logic programs (DLPs). More
specifically, we consider here the issue of simplifying DLPs under uniform and strong
equivalence under different aspects. Our main contributions are briefly summarized as
follows:

(1) We consider a method usinglocal transformation rulesto simplify programs,
where we deal both with syntactic and semantic transformation rules. Syntactic trans-
formation rules for strong equivalence have previously been considered by Osorio et
al. [16]. Besides rules from there and from [2], we also examine the recent notion
of s-implication[24], as well as a new transformation rule for head-cycle free rules,
called local shifting. Both preserve uniform equivalence, and the former also strong
equivalence. The semantic transformation rules employ logical consequence and re-
move redundant rules and literals. The method interleaves syntactic and semantic trans-
formation rules, respecting that the former have much lower (polynomial) complexity
compared to the intractability of the semantic rules.

(2) We provide answer-set programming (ASP) solutions for checking whether
P |=s r resp.P |=u r, where|=s denotes the consequence operator under strong-
equivalence models (SE-models) [22, 23] and|=u refers to consequence under uniform-
equivalence models (UE-models) [5]. Note that decidingP |=u r is ΠP

2 -complete [5],
and hence the full power of DLPs is needed to decide this problem, whilst deciding
P |=s r is “only” coNP-complete. We remark that Pearce and Valverde [18] have
provided a tableau system for deciding uniform equivalence, and that Janhunen and
Oikarinen [9, 10] provided an alternative method in terms of ASP for testing strong and
ordinary equivalence between normal logic programs.

(3) Beyond local transformations, we present general conditions under which pro-
grams possess equivalent programs belonging to syntactic subclasses of DLPs (which
have special algorithms for ASP computation). In particular, we provide semantical
characterizations (in terms of conditions on models) of programs which are uniformly
resp. strongly equivalent to programs which are positive or Horn. Furthermore, we give
similar conditions in terms of classical consequence for strong equivalence.

(4) We analyze the computational complexity of the problems encountered. In par-
ticular, we consider the cost of the semantic simplification rules, and the cost of decid-
ing whether a given DLP is equivalent to a syntactically simpler program. While most
of these problems are unsurprisingly intractable (coNP-complete, and in few cases for
uniform equivalenceΠP

2 -complete), we obtain a polynomial-time result for deciding
whether a normal logic program without constraints of form← A1, . . . , An is strongly
equivalent to some positive DLP or to some Horn program, respectively.

Given the availability of efficient answer-set solvers, such as the systems mentioned
previously, enabling automated simplifications of logic programs has become an impor-
tant issue. This is even more the case since with the development of applications using
ASP solvers, an ever growing number of programs are automatically generated, leaving
the burden of optimizations to the underlying ASP system. Our results might well be
used foroffline optimizationsof application programs in ASP solvers.

For space reasons, proofs are omitted; they are given in an extended version of this
paper.

2 Preliminaries

We deal with propositional disjunctive logic programs, containing rulesr of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an,

n ≥ m ≥ l ≥ 0, where allai are atoms from a finite set of propositional atoms,At ,
andnot denotes default negation. Theheadof r is the setH(r) = {a1, . . . , al}, and
thebodyof r is the setB(r) = {al+1, . . . , am,not am+1, . . . ,not an}. We also define
B+(r) = {al+1, . . . , am} andB−(r) = {am+1, . . . , an}. Moreover, for a set of atoms
A = {a1, . . . , an}, not A denotes the set{not a1, . . . ,not an}.

A rule r is normal, if l ≤ 1; definite, if l = 1; positive, if n = m; andHorn, if
it is normal and positive. IfH(r) = ∅ andB(r) 6= ∅, thenr is a constraint; and if
moreoverB−(r) = ∅, thenr is apositive constraint. If B(r) = ∅, r is afact, written as
a1 ∨ · · · ∨ al if l > 0, and as⊥ otherwise.

A disjunctive logic program(DLP), P , is a finite set of rules.P is called anormal
logic program(NLP) (resp., adefinite, positive, Horn program), if every rule inP is
normal (resp., definite, positive, Horn). We also defineP+ = {r ∈ P | B−(r) = ∅}.

In a DLPP , an atoma positively dependson an atomb if a ∈ H(r) for some rule
r ∈ P , and eitherb ∈ B+(r), or somec ∈ B+(r) positively depends onb; r ∈ P is
head-cycle free(HCF) in P if no distinct atomsa, b ∈ H(r) mutually positively depend
on each other. A DLPP is HCF [1] if eachr ∈ P is HCF inP .

We recall the stable-model semantics for DLPs [8, 19]. LetI be an interpretation,
i.e., a subset ofAt . Then, an atoma is true underI, symbolicallyI |= a, iff a ∈ I, and
false underI otherwise. For a ruler, I |= H(r) iff somea ∈ H(r) is true underI, and
I |= B(r) iff (i) eacha ∈ B+(r) is true underI, and (ii) eacha ∈ B−(p) is false under
I. I satisfiesr, denotedI |= r, iff I |= H(r) wheneverI |= B(r). Furthermore,I is a
modelof a programP , denotedI |= P , iff I |= r, for all r ∈ P . As usual,P |= r iff
I |= r, for each modelI of P .

The Gelfond-Lifschitz reductof a programP relative to a set of atomsI is the
positive programP I = {H(r) ← B+(r) | r ∈ P, B−(r) ∩ I = ∅}. An interpretation
I is astable modelof a programP iff I is a minimal model (under set inclusion) ofP I .
The set of all stable models ofP is denoted bySM(P).

Several notions of equivalence between logic programs have been considered in
the literature (cf., e.g., [11, 14, 20]). Under stable semantics, two DLPsP andQ are
regarded as equivalent, denotedP ≡ Q, iff SM(P) = SM(Q). The more restrictive
forms ofstrong equivalenceanduniform equivalenceare as follows:

Definition 1. LetP andQ be two DLPs. Then,

(i) P andQ are strongly equivalent, or s-equivalent, denotedP ≡s Q, iff, for any set
R of rules, the programsP ∪R andQ ∪R are equivalent, i.e.,P ∪R ≡ Q ∪R.

(ii) P andQ are uniformly equivalent, or u-equivalent, denotedP ≡u Q, iff, for any
setF of non-disjunctive facts,P ∪F andQ∪F are equivalent, i.e.,P ∪F ≡ Q∪F .

Obviously,P ≡s Q implies P ≡u Q but not vice versa (see Example 1 below).
Both notions of equivalence, however, enjoy interesting semantical characterizations.
As shown in [11], strong equivalence is closely related to the non-classical logic of
here-and-there, which was adapted to logic-programming terms by Turner [22, 23]:

Definition 2. Let P be a DLP, and letX, Y ⊆ At such thatX ⊆ Y . The pair(X, Y)
is anSE-modelof P (overAt), if Y |= P andX |= PY . ByMAt

s (P) we denote the set
of all SE-models overAt of P .

In what follows, we usually leave the setAt implicit and writeMs(P) simpliciter
instead ofMAt

s (P).

Proposition 1 ([22, 23]).For any DLPP andQ, P ≡s Q iff Ms(P) = Ms(Q).

Recently, the following pendant to SE-models, characterizing uniform equivalence
for (finite) logic programs, has been defined [5].

Definition 3. LetP be a DLP and(X, Y) ∈Ms(P). Then,(X, Y) is anUE-modelof
P iff, for every(X ′, Y) ∈ Ms(P), it holds thatX ⊂ X ′ impliesX ′ = Y . ByMu(P)
we denote the set of all UE-models ofP .

Proposition 2 ([5]; cf. also [18]). For any DLP P and Q, P ≡u Q iff Mu(P) =
Mu(Q).

Example 1.ConsiderP = {a ←} andQ = {a ← not b; a ← b} overAt = {a, b}.
As easily checked, we haveMs(P) = {({a, b}, {a, b}), ({a}, {a, b}), ({a}, {a})} and
Ms(Q) = Ms(P) ∪ {(∅, {a, b})}. Thus,P 6≡s Q. However,(∅, {a, b}) /∈ Mu(Q). In
fact, it holds thatMu(P) = Ms(P) andMu(Q) = Mu(P). Therefore,P ≡u Q.

Finally, we define consequence relations associated to SE- and UE-models in the
usual manner.

Definition 4. Let P be a DLP,r a rule, ande ∈ {s, u}. Then,P |=e r iff, for each
(X, Y) ∈ Me(P), (X, Y) |=e r, i.e.,Y |= r andX |= {r}Y . Furthermore, we write
P |=e Q iff P |=e r, for everyr ∈ Q.

Proposition 3. For any DLPP andQ, P ≡e Q iff P |=e Q andQ |=e P , e ∈ {s, u}.

3 Local Program Transformations

Given a logic programP and a notion of equivalence≡e (e ∈ {s, u}), we aim at a
procedure to systematically simplifyP to a programP ′ which is e-equivalent toP .
As a starting point, we considerlocal modifications, i.e., iterative modifications ofP
on a rule-by-rule basis. Later on, in Section 5, we present results for replacing—under
certain conditions—theentire programby a simpler,e-equivalent program.

Figure 1 gives the general structure of such a simplification algorithm, using dif-
ferent kinds of simplifications: A first simplification can be obtained by analyzing the
syntax of the program and by applying appropriate syntactic transformation rules. After
this “static” analysis, the notion of consequence induced by the given type of equiva-
lence can be used for further semantic simplifications by means of consequence tests
(see also next section). Systematic consequence testing can be applied to simplify rules
by identifying redundant literals for removal, as well as for program simplification by
identifying redundant rules.

Algorithm Simplify(P,≡e)

Input: A DLP P and a notion of equivalence≡e.
Output: A simplified DLPP ′ such thatP ′ ≡e P .

var P ′ : DLP, I : changeInfo;
P ′ := P ; I := all ;
while I 6= ∅ do

P ′ := Simplify Syntactic(P ′,≡e , I);
P ′ := Remove Redundant Rule(P ′,≡e , I);
if (I = ∅) then P ′ := Remove Redundant Literal(P ′,≡e , I); fi

od
return P ′;

Fig. 1.Generic simplification algorithm.

The algorithm depicted in Figure 1 interleaves syntactic with semantic simplifica-
tions, giving preference to syntactic ones since they are easier to accomplish. Further-
more, it uses a data structure for recording latest changes (changeInfoI) in order to
restrict the set of applicable transformation rules as well as to restrict their range of
application: By means of this information, in each iteration, only a particular set of
syntactic transformation rules has to be tested for a specific rule. Of course, this ba-
sic algorithm can be further optimized to fit particular needs. Finally, we remark that
Simplify is sound and that it is an anytime algorithm, since we use rewriting rules for
a transformation-based calculus, whereP = P0 is transformed by applying rulesTi

iteratively:P = P0
Ti1−→P1

Ti2−→P2 · · · Pk−1
Tik−→Pk, such thatPj ≡e Pj+1, 0 ≤ j < k.

3.1 Syntactic transformation rules

Basic transformation rules.A set of basic syntactic transformation rules has been intro-
duced and initially studied by Brass and Dix [2]. Table 1 briefly summarizes these rules,
calledelimination of tautologies(TAUT), positive-andnegative reduction(RED+ and
RED−, respectively),partial evaluation(GPPE),weak partial evaluation(WGPPE),
elimination of non-minimal rules(NONMIN), andelimination of contradictions(CON-
TRA).

Osorio et al. [16] reported results for TAUT, RED+, RED−, GPPE, and NONMIN
under strong equivalence. The positive results for TAUT, RED−, and NONMIN directly
carry over to uniform equivalence. The programsP = {a← not b} andQ = {a← b;
b ← c} show that RED+ and GPPE also fail to preserve uniform equivalence. More-
over, it is easily verified that CONTRA preserves both notions of equivalence.

While GPPE does neither preserves-equivalence noru-equivalence, both are pre-
served, however, by the weak variant WGPPE.

Proposition 4. Let P be a DLP and considerr1, r2 ∈ P such thata ∈ B+(r1) and
a ∈ H(r2), for some atoma. Then,P ∪ {r′} ≡s P , wherer′ is given byH(r1) ∪
(H(r2) \ {a}) ← (B+(r1) \ {a}) ∪ not B−(r1) ∪B(r2).

Table 1.Syntactic transformation rules.

Name Condition Transformation

TAUT H(r) ∩B+(r) 6= ∅ P ′ = P \ {r}
RED+ a ∈ B−(r1), 6 ∃r2 ∈ P : a ∈ H(r2) P ′ = P \ {r1} ∪ {r′}†
RED− H(r2) ⊆ B−(r1), B(r2) = ∅ P ′ = P \ {r1}
NONMIN H(r2) ⊆ H(r1), B(r2) ⊆ B(r1) P ′ = P \ {r1}
GPPE a ∈ B+(r1), Ga 6= ∅, for Ga = {r2 ∈ P | a ∈ H(r2)} P ′ = P \ {r1} ∪G′

a
‡

WGPPE same condition as for GPPE P ′ = P ∪G′
a
‡

CONTRA B+(r) ∩B−(r) 6= ∅ P ′ = P \ {r}
S-IMP r, r′ ∈ P , r � r′ P ′ = P \ {r′}
LSH r ∈ P , |H(r)| > 1, r head-cycle free inP P ′ = P \ {r} ∪ r→

† r′ : H(r1) ← B+(r1) ∪ not (B−(r1) \ {a}).
‡ G′

a = {H(r1) ∪ (H(r2) \ {a}) ← (B+(r1) \ {a}) ∪ not B−(r1) ∪B(r2) | r2 ∈ Ga}.

Note that WGPPE creates new rules and may make other transformations applica-
ble. Furthermore, it may be applied exponentially often during iteration steps, creating
further (even minimal) rules. Hence, to avoid an exponential explosion in the simplifi-
cation algorithm, the number of applications of WGPPE may be polynomially bounded.

S-implication(S-IMP). Recently, Wang and Zhou [24] introduced the notion of s-
implication:

Definition 5. A ruler′ is ans-implicationof a ruler 6= r′, symbolicallyr�r′, iff there
exists a setA ⊆ B−(r′) such that(i) H(r) ⊆ H(r′) ∪ A, (ii) B−(r) ⊆ B−(r′) \ A,
and(iii) B+(r) ⊆ B+(r′).

For example, ifr = a ∨ b andr′ = a← not b, thenr � r′ (chooseA = {b}).
Proposition 5. LetP be a DLP, andr, r′ ∈ P such thatr � r′. Then,P \ {r′} ≡s P .

Example 2.Consider the programP = {r1 : a← not b; r2 : a∨ b←}. Sincer2 � r1,
P can be simplified to the strongly equivalent programP ′ = {a ∨ b←}.

Local shifting(LSH). Finally, we present a new transformation rule, calledlocal shift-
ing. It relies on the concept of head-cycle freeness and turns out to preserve uniform
equivalence, but not strong equivalence.

For any ruler, definer→ = {a← B(r),not (H(r) \ {a}) | a ∈ H(r)} if H(r) 6=
∅, andr→ = {r} otherwise. Furthermore, for any DLPP , let P→ =

⋃
r∈P r→.

Definition 6. The rulelocal shifting (LSH) allows replacing a ruler in a DLP P by
r→, providingr is head-cycle free inP .

Theorem 1. LetP be a DLP andr ∈ P HCF in P . Then,P ≡u (P \ {r}) ∪ r→.

Example 3.ConsiderP = {a ∨ b←; c ∨ d← b; c← a, d; d← b, c}. Here,a ∨ b←
is HCF inP , whilst c∨ d← b is not. Hence, under≡u, programP can be simplified to
P ′ = (P \ {a ∨ b←}) ∪ {a← not b; b← not a}.
Table 2 summarizes the results for syntactic transformation rules under both uniform
and strong equivalence.

Table 2.Syntactic transformations preservinge-equivalence (e ∈ {s, u}).

Eq. TAUT RED+ RED− NONMIN GPPE WGPPE CONTRA S-IMP LSH

≡s yes∗ no∗ yes∗ yes∗ no∗ yes yes yes no

≡u yes no yes yes no yes yes yes yes
∗Results due to Osorio et al. [16].

3.2 Semantic transformation rules

More powerful than the above syntactic transformation rules for program simplification
are semantic ones based on|=e, in the light of Propositions 1–3. However, checking the
applicability of these rules is intractable in general, while checking the applicability of
the above syntactic rules is tractable.

Brass and Dix [2] consideredsupraclassicality(SUPRA): If P |= a, thenP ≡
P ∪{a←}. However, SUPRA fails under≡u (and thus also under under≡s). A simple
counterexample isP = {a ← not b; a ← b; a ← b, c; b ← a, c}. Clearly,P |= a, but
P has a UE-model({c}, {a, b, c}) which is not a UE-model ofP ∪ {a←}.

Rule simplification.One way is minimizing individual rulesr, based on property NON-
MIN: replacer by a subsumerr′ (with H(r′) ⊆ H(r) andB(r′) ⊆ B(r)) such that
(P \ {r}) ∪ {r′} ≡e P . Rule simplification (orcondensation) thus amounts to the sys-
tematic search for suchr′, which must satisfyP |=e r′. The easiest way is literalwise
removal, i.e., wherer′ is r with some literal inr removed.

Rule redundancy.In addition, we can simplifyP by removing redundant rules. Propo-
sition 3 implies thatr ∈ P is redundant inP iff P \ {r} |=e r.

Notice that rule simplification might create redundant rules, as shown by the fol-
lowing example, which is well-known in the context of computing a minimal cover of
a set of functional dependencies in databases.

Example 4.Consider the programP = {c ← a, b; a ← b, c; b ← a; b ← c}. None
of the rules inP is redundant, neither under strong nor under uniform consequence.
However,b can be removed in bothc← a, b anda← b, c, yieldingP ′ = {c← a; a←
c; b← a; b← c}. Here,b← c or b← a can be eliminated.

We remark that some of the syntactic transformation rules, such as TAUT, RED−,
NONMIN, and CONTRA, can be regarded as special cases of semantic transformation
rules. However, others such as LSH, cannot be viewed this way.

We may bypasse-consequence and stay with relation|= in some cases. This is
true, e.g., for positive programs, which is an easy corollary of the next result, which
generalizes an analogous result of [5] for uniform equivalence toe-equivalence.

Theorem 2. LetP be a DLP ande ∈ {s, u}. Then, the following conditions are equiv-
alent:

(i) P |=e r iff P |= r, for every ruler.

(ii) For every(X, Y) ∈Me(P), it holds thatX |= P .

Corollary 1. For any positive DLPP and any ruler, P |=e r iff P |= r, e ∈ {s, u}.

Thus, for every positive program, a UE- and SE-canonical form is given by any irre-
dundant prime CNF, written in positive rule form. Hence, minimization of any program
which is semantically equivalent to a positive one is possible in polynomial time with
an NP-oracle; detecting this property is considered in Section 5.

3.3 Computational cost ofSimplify and incomplete simplification

As pointed out above, testing the applicability and execution of each syntactic rule
in Section 3.1 valid for≡e is clearly polynomial. Since all transformation rules except
WGPPE shrink or remove program rules,Simplify(P,≡e) is polynomial with an oracle
for ≡e if WGPPE is applied at most polynomially often.

As discussed in Section 6, following from Corollary 1, deciding rule and literal re-
dundancy is intractable in general. Interestingly, the following extension of Corollary 1
yields sound inference in terms of|= for arbitrary DLPs.

Proposition 6. For any DLPP and ruler, P+ |= r impliesP |=e r, for e ∈ {s, u}.

However, the condition is not necessary; e.g., forP = {a ← b; a ← not b} and
r = a← not b, we haveP |=s r butP+ 6|= r. Note thatP |= r for positiver does not
imply P |=e r, as shown byP = {a← not a} andr = a←.

By exploiting Proposition 6, we can simplify any DLPP using its positive partP+,
without guaranteeing completeness. Notice that ifP+ is Horn (e.g., ifP is a NLP),
this sound redundancy test is polynomial, and is in coNP for generalP+. Thus, forP+

being Horn it is cheaper than the sound and complete test for NLPs (which is coNP-
complete for both|=s and|=u), and for arbitraryP+ for |=u (which isΠP

2 -complete;
cf. Section 6).

4 Consequence Testing

In order to enable the systematic tests from the previous section by means of answer-
set solvers, we provide here efficient translations of checking SE- and UE-consequence
into (disjunctive) logic programs under the stable-model semantics.

We employ the following notation. For any setI of atoms, we defineI ′ = {v′ |
v ∈ I} and Ī = {v̄ | v ∈ I}, wherev′ and v̄ are globally new atoms, for each atom
v. Furthermore,r′ (resp.,r̄) denotes the result of replacing inr each occurrence of an
atomv by v′ (resp.,v̄). Informally, primed atoms will be used to characterizeX in a
UE- or SE-model(X, Y); whilst atoms of formv̄ will be used to encode the negation
of v.

4.1 Encoding SE-consequence

Based on results in [12, 17, 23], a SAT encoding of|=s is easily obtained. In what fol-
lows, we describe an analogous encoding in terms of normal logic programs.

Definition 7. For any DLPP and atom setV = {v1, . . . , vn}, defineSP,V as:

(1) vi ← not v̄i; v̄i ← not vi, 1 ≤ i ≤ n,
(2) v′i ← vi,not v̄′i; v̄′i ← not v′i, 1 ≤ i ≤ n,
(3) ← B+(r),not B−(r),not H(r), r ∈ P,
(4) ← B+(r′),not B−(r),not H(r′), r ∈ P.

Intuitively, (1) and (2) guess setsX, Y ⊆ V such thatX ⊆ Y , where atoms inX
are represented by primed variables; (3) checksY |= P ; and (4)X |= PY .

The next result describes the desired encoding of|=s.

Theorem 3. LetP , Q be DLPs,V the set of atoms occurring inP ∪Q, andw a fresh
atom. Then,P |=s Q iff the following NLP has no stable model:

SP,V ∪ {← not w} ∪ {w ← B+(r),not B−(r),not H(r);
w ← B+(r′),not B−(r),not H(r′) | r ∈ Q}.

4.2 Encoding UE-consequence

Definition 8. Given a DLPP , a set of atomsV = {v1, . . . , vn}, and sets of new atoms
Vi = {vi,1, . . . , vi,n}, for i ∈ {1, . . . , n}, UP,V is defined as follows:

(1) SP,V ,
(2) vi,j ← vi, v̄

′
i, v

′
j ; vi,i ← vi, v̄

′
i, 1 ≤ i, j ≤ n,

(3) ← vi, v̄
′
i, vj , v̄

′
j ,not vi,j ; ← vi, v̄

′
i, v̄j , vi,j , 1 ≤ i, j ≤ n,

(4) H(ri)← vi, v̄
′
i, B

+(ri),not B−(r), r ∈ P, 1 ≤ i ≤ n,

where ruleri is the result of replacing inr each atomvj byvi,j .

Intuitively, UP,V works as follows. First,SP,V yields all SE-models(X, Y) of P .
Then, (2)–(4) check if noZ with X ⊂ Z ⊂ Y satisfiesZ |= PY . This is done as
follows: For eachvi ∈ Y \X, (2) initializes setsXi = X ∪ {vi} via atomsVi. Then,
(4) yields, for eachvi ∈ Y \ X, minimal setsZi ⊇ Xi satisfyingZi |= PY . Finally,
constraints (3) apply for each suchZi 6= Y . Hence, we get a stable model iff, for each
i such thatvi ∈ Y \ X, the minimal setZi matchesY . But then,(X, Y) ∈ Mu(P).
Formally, we have the following result:

Lemma 1. LetP be a DLP over atomsV = {v1, . . . , vn}. Then,SM(UP,V) is given
by {X ′ ∪ (V̄ ′ \ X̄ ′) ∪ Y ∪ (V̄ \ Ȳ) ∪ JX,Y | X, Y ⊆ V, (X, Y) ∈ Mu(P)}, where
JX,Y = {vi,j | vi ∈ Y \X, vj ∈ Y }.

Theorem 4. Let P ,Q be DLPs,V the set of atoms inP ∪ Q, andu, w, s new atoms.
Then,P |=u Q iff the programCU

P,Q, given as follows, has no stable model:

(1) UP,V ,
(2) u← B+(r),not B−(r),not H(r), r ∈ Q,
(3) u← B+(r′),not B−(r),not H(r′), r ∈ Q,
(4) v′′i ← v′i; v′′i ← vi,not v̄′′i ; v̄′′i ← not v′′i , 1 ≤ i ≤ n,
(5) w ← not v′′i , vi; s← v′′i ,not v′i, 1 ≤ i ≤ n,
(6) ← not w,not u; ← not s,not u,
(7) ← B+(r′′),not B−(r),not H(r′′),not u, r ∈ Q.

The intuition behindCU
P,Q is as follows. (1) computes all UE-models(X, Y) of

P via atomsV ′ andV (characterizingX ′ resp.Y). We must check that each of them
is also a UE-model ofQ, and if so, the program should have no stable model. There-
fore, (2) checksY |= Q and (3)X |= QY . If this fails, (X, Y) /∈ Ms(Q), and thus
(X, Y) /∈Mu(Q). Whenever this is detected, we deriveu, which is used to disable the
constraints (6)–(7). Finally, we must check whether noZ exists such thatX ⊂ Z ⊂ Y
and(Z, Y) ∈ Ms(Q). To this end, (4) guesses a setZ such thatX ⊆ Z ⊆ Y , and
(5) derivesw if somep ∈ Y \Z exists, ands if someq ∈ Z \X exists. Using (6), we re-
main with thoseZ which are in betweenX andY . Finally, (7) checks(Z, Y) /∈Ms(Q).

Now let I be any stable model ofCU
P,Q. If u ∈ I, then the members ofV ,V ′ in I

give an UE-model ofP which is not an SE-model ofQ; and ifu /∈ I, thenV , V ′′ give
an SE-model(Z, Y) of Q where(X, Y) ∈Mu(P) with X ⊂ Z.

Notice that bothUP,V and CU
P,Q are normal (resp., HCF) ifP is normal (resp.,

HCF). Hence, the test forP |=u Q yields a normal (resp., HCF) program ifP is normal
(resp., HCF), which is in coNP compared toΠP

2 -completeness in general [5].UP,V is
thus appealing from this point of view. However, the size ofUP,V is quadratic in the
size ofP . In the extended paper, we give a linear-size program replacingUP,V , but it is
neither normal nor HCF regardless ofP .

5 Global Simplifications

In this section, we consider the following issue: Given a DLPP from some classC,
under what conditions is there a programQ from a classC′ such thatP ≡e Q? This
question is crucial for program transformation and simplification from a more general
perspective than local transformations. We succeed here providing characterizations
whereC′ is the class of positive or Horn programs.

Theorem 5. LetP be a DLP. Then, there exists a positive programQ such thatP ≡e Q
iff, for all (X, Y) ∈Me(P), it holds thatX |= P , wheree ∈ {s, u}.

Theorem 6. For any DLPP , let M1
e (P) = {X | (X, Y) ∈ Me(P)}, for e ∈ {s, u}.

Then, there exists some Horn programQ such thatP ≡e Q iff (i) M1
e (P) |= P , and

(ii) M1
e (P) is closed under intersection.

Note that Theorem 5 implies that ifP is e-equivalent to some positive programQ,
then we can obtainQ by shifting not -literals to the head. We can exploit this ob-
servation for a simple test. Let, for any ruler, rls be the rule such thatH(rls) =
H(r) ∪B−(r), andB(rls) = B+(r) (i.e., the “left shift” ofr).

Theorem 7. Let P be any DLP ande ∈ {s, u}. Then, there exists a positive program
Q such thatP ≡e Q iff P |=e rls , for everyr ∈ P such thatB−(r) 6= ∅.

To test for the existence of ane-equivalent Horn programQ, we just need to add a
check whether the models ofP are intersection closed (which is in coNP).

In the case of|=s, we can even get rid of SE-consequence and come up with a test
using|= only. In the following, we characterize strong equivalence of any programP ,

Table 3.Complexity of deciding rule and literal redundancy.

≡s / ≡u Horn LP Normal LP Positive LP HCF LP DLP
r ∈ P redundant? P coNP coNP coNP coNP/ΠP

2

` in r ∈ P redundant? P coNP coNP coNP coNP/ΠP
2

possessing a classical model, to some positive programQ in terms of|=; if P has no
classical model, thenP ≡s {⊥}. Note that{⊥} is positive.

Recall that(X, Y) ∈ Me requiresX ⊆ Y , but the reductPY of programP may
have modelsX ′ such thatX ′ 6⊆ Y . To select exactly thoseX ′ such thatX ′ ⊆ Y , let, for
any DLPP and interpretationI, P I

≤ be the positive logic programP I∪{← a | I 6|= a}.

Proposition 7. Let P be a DLP having a classical model, and letr be a positive rule.
Then,P |=s r iff PM

≤ |= r, for every maximal modelM of P .

Note that the proposition fails for non-positiver. Indeed, consider the programP =
{a ← b; a ← not b} andr = a ← not b. The unique maximal model ofP is At =
{a, b}, andPAt

≤ = {a← b}, butPAt
≤ 6|= a← not b.

Theorem 8. Let P,Q be DLPs, whereP is positive having a classical model. Then,
P ≡s Q iff (i) P |= Q, and(ii) QM

≤ |= P , for every maximal modelM of P .

We finally arrive at the desired characterization of semantic equivalence to some
positive program, by exploiting thatP+ is a singular candidate forQ.

Theorem 9. Let P be any DLP without positive constraints. Then, there exists some
positive programQ such thatP ≡s Q iff P+ |= P \ P+.

For strong equivalence ofP to some Horn theoryQ, we have in the right-hand side
the additional condition that the models ofP+ are closed under intersection.

6 Complexity

In this section, we address complexity issues related to the problems above. Recall that
we deal with propositional programs only.

The complexity of deciding redundant literals and rules is given in Table 3, for var-
ious classes of programs, where entries represent completeness for the respective com-
plexity classes. The upper complexity bounds are easily obtained from the complexity
of decidingP |=s r resp.P |=u r for the respective program classC in Table 3 (cf. [5]),
sinceP ∈ C impliesP \{r} ∈ C in each case. The hardness parts for positive programs,
HCF programs, and DLPs under≡s are easily obtained from the coNP-completeness of
decidingP |= v for an atomv and a positive HCFP . For Horn programs, the problem
is polynomial sinceP |=s r andP |=u r coincide withP |= r, which is polynomial
for Horn P . TheΠP

2 -hardness of DLPs under≡u can be shown by suitable adaptions
of proofs in [5]. However, redundancy checking is tractable in certain cases:

Table 4.Complexity of deciding if forP ∈ C (row) someQ ∈ C′ (column) exists withP ≡e Q.

≡s / ≡u Positive LP Horn LP constraint-free positive LP Definite Horn
Normal LP coNP coNP P/coNP P/coNP

HCF LP coNP coNP coNP coNP
Disjunctive LP coNP/ΠP

2 coNP/inΠP
2 coNP/ΠP

2 coNP/inΠP
2

Theorem 10. Let P be a DLP without positive constraints such thatP+ is normal.
Then, checking redundancy of a positive ruler ∈ P under≡s is decidable in polyno-
mial time, and likewise checking redundancy of a literal` in a positive ruler ∈ P .

We next consider the complexity of deciding whether a given program is equiva-
lent to some program belonging to a specific syntactic subclass of DLPs. The generic
problem is as follows:

Instance: A programP (possibly from a restricted class of programs,C).
Question: Does there exist some programQ from a fixed class of programs,C′,

such thatP ≡e Q, wheree ∈ {s, u} is fixed?

Our results concerning this task are summarized in Table 4, where entries stand for
completeness for the respective complexity classes unless stated otherwise. Notice that
definite Horn programs are constraint-free Horn programs.

Unsurprisingly, the problem is intractable in general. The upper bounds for the non-
polynomial cases can be easily derived from the results in the previous sections and
the complexity of|=s, which is coNP-complete for general DLPs (as follows from [22,
23]), and of|=u, which isΠP

2 -complete in general but coNP-complete for HCF (and,
in particular, normal) logic programs.

Note that the rows for NLPs and HCF programs coincide under≡u, sinceP ≡u P→

holds for each HCF programP , and the shifting programP→ is constraint-free iffP is
constraint-free. However, under≡s, we have a different picture, and we can find some
interesting tractable cases from Theorem 9:

Theorem 11. Let P be a positive-constraint free DLP such thatP+ is normal. Then,
deciding if there is some positive programQ such thatP ≡s Q is feasible in polynomial
time, and likewise deciding whether there is some Horn programQ with P ≡s Q.

7 Conclusion

We have pushed further the work on nonmonotonic logic-program simplification under
the notions of strong and uniform equivalence (cf. [11, 22, 23, 20, 5, 16]) by providing
syntactic and semantic rules for program transformation and giving characterizations
of programs which are semantically equivalent to positive and Horn programs. Similar
characterizations for equivalence tonormal programs are considered in a companion
paper [6]. Future work concerns implementing the methods presented, as well as ex-
tending the results to programs with two kinds of negation and to the case of programs
with variables. The current results provide a solid basis, though, for lifting them using
common techniques.

References

1. R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic Programs.
Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

2. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 40(1):1–46, 1999.

3. D. J. de Jongh and L. Hendriks. Characterizations of Strongly Equivalent Logic Programs in
Intermediate Logics.Theory and Practice of Logic Programming, 3(3):259–270, 2003.

4. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV
System. InLogic-Based Artificial Intelligence, pp. 79–103. Kluwer, 2000.

5. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. InProc. ICLP-03. To appear.

6. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Eliminating Disjunction from Proposi-
tional Logic Programs under Stable Model Preservation. InProc. ASP-03. Available at:
http://CEUR-WS.org/Vol-78/, 2003.

7. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog.ACM Transactions on Database
Systems, 22:364–418, 1997.

8. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

9. T. Janhunen and E. Oikarinen. Testing the Equivalence of Logic Programs under Stable
Model Semantics. InProc. JELIA-02, LNCS 2424, pp. 493–504. Springer, 2002.

10. T. Janhunen and E. Oikarinen. LPEQ and DLPEQ – Translators for Automated Equivalence
Testing of Logic Programs. InProc. LPNMR-03. To appear.

11. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

12. F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. InProc. KR-02, pp. 170–176. Morgan Kaufmann, 2002.

13. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. AAAI-2002, pp. 112–117. AAAI Press / MIT Press, 2002.

14. M. J. Maher. Equivalences of Logic Programs. In Minker [15], pp. 627–658.
15. J. Minker, editor.Foundations of Deductive Databases and Logic Programming. Morgan

Kaufman, Washington DC, 1988.
16. M. Osorio, J. Navarro, and J. Arrazola. Equivalence in Answer Set Programming. InProc.

LOPSTR 2001, LNCS 2372, pp. 57–75. Springer, 2001.
17. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs

with Nested Expressions. InProc. EPIA 2001, LNCS 2258, pp. 306–320. Springer, 2001.
18. D. Pearce and A. Valverde. Some Types of Equivalence for Logic Programs and Equilibrium

Logic. In Proc. APPIA-GULP-PRODE 2003, 2003.
19. T. Przymusinski. Stable Semantics for Disjunctive Programs.New Generation Computing,

9:401–424, 1991.
20. Y. Sagiv. Optimizing Datalog Programs. In Minker [15], pp. 659–698.
21. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model

Semantics.Artificial Intelligence, 138:181–234, 2002.
22. H. Turner. Strong Equivalence for Logic Programs and Default Theories (Made Easy). In

Proc. LPNMR-01, LNCS 2173, pp. 81–92. Springer, 2001.
23. H. Turner. Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.

Theory and Practice of Logic Programming, 3(4–5):609–622, 2003.
24. K. Wang and L. Zhou. Comparisons and Computation of Well-founded Semantics for Dis-

junctive Logic Programs.ACM Transactions on Computational Logic. To appear. Available
at: http://arxiv.org/abs/cs.AI/0301010, 2003.

