
KMONITOR – A Tool for Monitoring Plan Execution in
Action Theories ?

Thomas Eiter, Michael Fink, and Ján Senko

Vienna University of Technology, Institute of Information Systems, Vienna, Austria
e-mail: {eiter, michael, jan}@kr.tuwien.ac.at

Abstract. We present a monitoring tool for plan execution in non-deterministic
environments, which are described in an action language, based on non-monotonic
logic programming. Thanks to it, deviations of concrete executions from expected
ones can be detected, and diagnostic explanations in terms of unsuccessful action
executions can be obtained. The latter may be exploited for execution recovery,
and may help in rectifying an incoherent view of the planning domain.

1 Introduction
In a non-deterministic environment, an agent’s plan for achieving a goal by taking a
sequence of actions might fail, if some of the actions do not materialize as expected.
For this reason, the plan execution might be monitored in order to detect an execution
failure or potential problems at an early stage, from which the agent may then recover.
Execution monitoring was considered for logical domain descriptions in Golog [7, 8]
and Flux [6], and for the action language AL in the APLAgent Manager [1, 2]. To our
knowledge it has not been considered for other KR action languages such as C, or K, and
in particular for non-deterministic domains. In [4, 3], a general monitoring approach for
logic-based action languages with transition-based semantics is presented, in which it is
checked from time to time whether the current state complies with a set T of trajectories
which describe the expected executions of the plan. If a discrepancy is detected, then the
execution is not on track and the agent might suitably reconsider it; in order to diagnose
discrepancies, points of failure in the execution are computed, which informally explain
discrepancies applying Occam’s Razor by the latest action execution which might have
resulted in a “bad” outcome. Such information is useful for execution recovery, e.g., if
actions are undone [3], but also for checking whether the user’s understanding of the
domain is coherent with the formalization.
Example 1. As a running example, we consider here a variant of the well-known Blocks
World domain, in which a block being moved may end up at a location different from
the intended one, because the agent might not grip it properly. Suppose we have the
blocks a, i, p, r, s, x, and the plan

P = 〈move(r, x), move(i, s), move(r, i), move(p, x), move(a, r), move(p, a)〉

for reaching the goal state S6 from the initial state S0 in 6 steps as in Figure 1, which
shows all trajectories for P that establish the goal. If now at stage 4 the discrepancy is
detected that p is on r, then the execution will fail, since the next action move(a, r) can
not be taken. If all other blocks are situated as in S3, an explanation is that the preceding
action move(p, x) has failed (see [4, Ex. 3] for a formal description).
? Work supported by grants of FWF (P16536-N04) and the EC (FET-2001-37004 WASP).

Fig. 1. Goal-establishing trajectories for the example plan.

p r
x a si

p
r

x a i s

p
x a i sr

p
x ar

i
s

p
r

x a
i
s

pr
x a i s

pr
x a

i
s

p
r

x a
i
s

p
r

x a
i
s

r

x a
i
sp

r
a

i
sxp

p
r

x

a

i
s

p

r

x

a

i
s

initial state goal state

S0 S3 S6

In general, not all goal-establishing trajectories might be equally desired, and some
preferred over others. To model this, T contains all preferred trajectories.
Example 2. In our example, let the preferred trajectories T be those in which no block
unintentionally falls on the table during execution. Hence, from the goal-establishing
trajectories in Figure 1, those which pass through the dotted area are not preferred.

KMONITOR (http://www.kr.tuwien.ac.at/research/monitoring) implements the exe-
cution monitoring approach of [4, 3] for the action language K on top of the DLVK

planning system [5]. Fig. 2 shows the main loop, which is entered when monitoring is
issued. To keep the monitoring overhead low, the current state is analyzed only at certain
checkpoints, which are determined by a respective component from a checkpoint policy
specified by a non-monotonic logic program (see Section 2). State analysis is done by
the tool KDIAGNOSE implementing the diagnosis method from [4]. If a discrepancy is
detected, control is returned with this information and any diagnoses found.
Example 3. Suppose that blocks x, p, r and s are known to be heavy, and that the pol-
icy is to check each time when a heavy block was moved (as such moves bear high
likelihood of failure). Then, the checkpoints would be the stages 1, 3, 4, and 6.

2 Checkpointing
Rather than checking for a discrepancy after each step, we may check only at certain
stages, e.g., if a stage has higher likelihood of failure, or do a periodic check. Then
monitoring can be less intrusive and the execution of the whole plan will be faster.

In order to select stages for a discrepancy check, a “checkpointing policy” is spec-
ified in terms of a logic program, which has facts and rules over the sets of fluents and
actions from the domain. The policy is evaluated for all stages in the plan, and if a fact
checkpoint(t) is true for the current stage, then a check for discrepancy is issued.

We distinguish two types of checkpointing policies – static and dynamic ones. In
the static case, checkpoints are calculated one and for all from the policy logic program
and the plan. In the dynamic case, a part of the current state is taken into considera-
tion, yielding more expressive power, but also the need for re-evaluating checkpoints.
Figure 3 gives an overview of the checkpoint generation utility.

Static checkpoints. When using a static checkpointing policy, we compute the model
of a logic program, comprised of the checkpoint definition file and the modified plan.
Actions of the plan are rewritten into facts with timestamps. (E.g., an action move(a, r)
occurring at stage 2 is rewritten into move(a, r, 2).) The checkpoint definition file con-
tains rules over the modified action predicates and the special predicate checkpoint(t),
whose truth value defines whether we have to do a check at stage t or not.

Fig. 2. Monitoring Loop in KMONITOR.

Is this stage
a checkpoint?

Wait for the
next stage

Analyze
the state

last stage ? found ?
Discrepancy

component
generation
Checkpoint

tool
Diagnosis

F

FF

TT

T

DLV
KDIAGNOSE

DLVKDLVK

Fig. 3. Checkpoint generation component.

evaluated?
Policy alreadycheckpoint policy?

Static

Compute model
of policy Check whether model contains

Preprocess
input files

T TF

F

DLV checkpoint(t)

Example 4. To force a check after each move involving a heavy block, we can define
the following static checkpointing policy:

heavy(X). for X∈{x, p, r, s}, and
checkpoint(Tj) : − move(X, Y, Ti), heavy(X), Tj = Ti + 1.

Dynamic checkpoints. A dynamic checkpointing policy also involves information
about some fluents of the current state; intuitively, they are sensed to steer the check-
pointing. Therefore, we need to find models of the logic program – made up from the
checkpoint declaration file, the plan, and partial state information – at each stage. At
stage t we compute a model of this program, and if checkpoint(t) is true, a check for
discrepancy is executed. The current stage t may be accessed via now(t).
Example 5. For issuing a check after each step in which a block ends on a different
location than intended, we can use the following dynamic checkpointing policy:

checkpoint(Tj) : −move(X, Y, Ti), not on(X, Y), Tj = Ti + 1.

This policy will be evaluated at each stage and its result depends on the current state.

In a “sleep” mode, policy re-evaluation can be suppressed until the next provisional
checkpoint according to the last evaluation.

3 Diagnosis of Discrepancies
Before we detail KDIAGNOSE, we informally introduce some terminology (cf. [4]).

There is a discrepancy between a state Si and a set of preferred trajectories T rel-
ative to a plan P , if there is no trajectory S ′

0
, A0, S

′
1
, . . . , S′

n−1
, An−1, S

′
ni.e., an al-

ternating sequence of states and action occurrences in T , such that S ′
i = Si and S′

n is
a goal state. Furthermore, we identify the point of failure for an observed discrepancy
by finding the latest time stamp after which every evolution of Si deviates from every
trajectory in T . Thus, a pair (Sk, k) is a point of failure, or a diagnosis, if:

Fig. 4. KDIAGNOSE components and control flow.

No discrepancy found Report the diagnoses
(if found)

Current

T Find the latest state
which matches both

Preprocess input files

F
state is in

?

Compute match P lan

DLVK

Compute match T

DLVK

match T & match P lan

& match P lan
match T

(S1) Some evolution of Si matches a goal-establishing trajectory in T at stage k

(0 ≤ k < i ≤ n) in state Sk and deviates at stage k + 1.
(S2) No evolution of Si matches a goal-establishing trajectory in T at stage k′ >k.

Example 6. If, in our running example, (i) at stage 1 block r is on the table, or (ii)
on(p, r) holds at stage 4 while the remaining blocks are as depicted in S3, then in both
cases we cannot find a preferred trajectory with a corresponding state, i.e., we detect a
discrepancy. For (i) still a feasible trajectory to the goal exists (stages 1 and 2 along the
dotted area), not so for (ii). Thus, discrepancy (i) cannot be detected in, or after, stage
3. Observe also that (S3, 3) is the only diagnosis for (ii) and no diagnosis exists for (i).

KDIAGNOSE detects discrepancies and, if found, computes all diagnoses as follows
(cf. Figure 3). Besides P , T , and Si it takes a domain description and the planning
problem as inputs. In a preprocessing step, the current state and the planning problem
are transformed into slightly modified planning problems for calculating

– the set match T of all goal-establishing preferred trajectories, and
– the set match Plan of all evolutions leading to Si according to P .

Clearly, if Si is on a goal-establishing preferred trajectory of match T (and thus
also in match Plan), then there is no discrepancy. Otherwise, KDIAGNOSE computes
all diagnoses by comparing the above sets and searching maximal states Sj at which
possible evolutions and goal-establishing preferred trajectories coincide.

4 Implementation
Our implementation of KMONITOR builds on KDIAGNOSE, which uses the DLVK sys-
tem to compute diagnoses for a given state. It invokes the diagnosis tool sequentially at
all stages singled out by the checkpoint policy. The inputs to KMONITOR are:

– plan - a plan (in DLVKsyntax) to monitor for discrepancies;
– checkpoints.dl - the checkpoint definition file;
– background.dl and K.plan - the domain description and planning problem;
– T.plan - a list of preferred trajectories, or alternatively a (modified) planning prob-

lem defining preferred trajectories (by its solutions);
– state.*, cstate.* - state & checkpointing information about the plan execution.

The checkpoint generation component is invoked as described in Section 2. Check-
point computation is accomplished by computing models using the DLV system. For

static policies, facts checkpoint(t) are extracted into a temporary file, and at the re-
spective stages KDIAGNOSE is invoked for state analysis. A state t of a concrete partial
execution (run) of the plan is fetched from file state.t. For simulation, a run may
be automatically generated using DLVK(e.g., by randomly generating a trajectory for
a modified planning problem). In the dynamic case, checkpointing state information is
fetched from file cstate.t. If state information is missing, checkpointing is skipped.
Example 7. The static checkpoint policy of Ex. 4 yields checkpoint(t) , t ∈ {1, 3, 4,
6}. For a plan execution as in Ex. 6 (ii), KMONITOR reports a discrepancy for state S4:

> No error at stage 1.
> No error at stage 3.
> Error at stage 4 - Point of failure at stage 3.
> State info: {on(x,table), on(a, table), on (p,a), ...

The dynamic policy of Ex. 5 would yield a run with the same result, but the check point
policy would be evaluated at each step, and a check would occur only at stage 4. Note
that if at stage 1 block r would unintentionally end on block p, then we would have
another check but would not detect any discrepancy. We also remark that by simple
refinements of our dynamic policy we could avoid evaluation at each step.

5 Conclusion and Future Work
KMONITOR is an execution monitoring tool for non-deterministic domains utilizing ac-
tion language K. It detects deviations from intended execution paths and computes ex-
planations for discrepancies. By means of a checkpointing policy, discrepancy checking
and diagnosis can be restricted to certain stages of the execution. A detailed comparison
with [1] is left for a longer version of the paper. For a comparison and further references
to related work on diagnosis in answer-set programming, the reader is referred to [4].

Currently KDIAGNOSE handles no concurrent actions, which however is easy to
overcome. Generalizing [4], it shall also support diagnosis w.r.t. partial state informa-
tion restricted to a focus of interest. Finally, we plan to extend KMONITOR towards
a system capable of giving recovery support as well. To this end, implementing and
integrating techniques for recovery as described e.g. in [3] is envisioned.

References
1. Balduccini, M.: APLAgent Manager. krlab.cs.ttu.edu/˜marcy/APLAgentMgr/index.html.
2. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Theory and Practice of

Logic Programming, 3(4–5), 425–461. 2003.
3. Eiter, T., Erdem, E., Faber, W.: Plan Reversals for Recovery in Execution Monitoring. In Proc.

NMR, 147–154. 2004.
4. Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding explanations for

plan execution discrepancies. TR INFSYS RR-1843-04-03. 2004.
5. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning, II: The DLVK system. AI, 144(1–2), 157–211. 2002.
6. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic en-

vironments. Fundamenta Informaticae, 57(2–4), 371–392. 2003.
7. Giacomo, G. D., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot pro-

grams. Proc. of KR’1998, 453–465. 1998.
8. Soutchanski, M.: High-level robot programming and program execution. Proc. of ICAPS

Workshop on Plan Execution. 2003.

