
Relevance-driven Evaluation of Modular
Nonmonotonic Logic Programs?

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Modular nonmonotonic logic programs (MLPs) under the answer-set
semantics have been recently introduced as an ASP formalism in which modules
can receive context-dependent input from other modules, while allowing (mutually)
recursive module calls. This can be used for more succinct and natural problem
representation at the price of an exponential increase of evaluation time. In this
paper, we aim at an efficient top-down evaluation of MLPs, considering only calls
to relevant module instances. To this end, we generalize the well-known Splitting
Theorem to the MLP setting and present notions of call stratification, for which
we determine sufficient conditions. Call-stratified MLPs allow to split module
instantiations into two parts, one for computing input of module calls, and one
for evaluating the calls themselves with subsequent computations. Based on these
results, we develop a top-down evaluation procedure that expands only relevant
module instantiations. Finally, we discuss syntactic conditions for its exploitation.

1 Introduction

Modularity is an important element of high-level programming languages that has
beneficial effects on problem decomposition, which allows one to structure a program
into parts that solve subproblems appropriately. Its importance has also been recognized
in the area of logic programming (see [1] for a historic account), and in particular in
Answer Set Programming (ASP), as witnessed by the early conception of Splitting
Sets [2], a generalization of the notion of stratification for program decomposition.

Since then, modularity aspects have been considered in several works, cf. [1, 3–8],
that aim at practicable formalisms for modular logic programming. The approaches are
classified into Programming-in-the-small, building on abstraction and scoping mech-
anisms (e.g., generalized quantifiers [1], macros [5], and templates [6] have been de-
veloped in ASP), and Programming-in-the-large, where compositional operators serve
the combination of separate and independent modules based on standard semantics. A
prominent representative of the latter in ASP is DLP-functions [3, 4].

Recently, modular logic programs (MLPs) have been introduced in [9], which can
be viewed as a generalization of DLP-functions. They overcome a restriction of a

? This research has been supported by the Austrian Science Fund (FWF) project P20841, the
Vienna Science and Technology Fund (WWTF) project ICT08-020, and the EC ICT Integrated
Project Ontorule (FP7 231875).

preliminary approach in [1], in which module calls must be acyclic (which prohibits
the use of recursion through modules), as well as anomalies of the semantics due to
the Gelfond-Lifschitz reduct, which is replaced by the FLP reduct [10]. The latter was
also used for the semantics of HEX-programs [11], a generalization of [1] to the HiLog
setting. However, both [1] and [11] defined models of a single module resp. program,
and no global semantics for a collection of modules resp. programs is evident.

As the semantics of MLPs is based on module instantiations (which takes possible
input values into account), a naive evaluation following the definition is—similar as with
grounding of ordinary ASP programs—infeasible in practice; in general, a module may
have double exponentially many instances. Towards implementation, efficient evaluation
strategies are thus essential, which are sensitive to (sub-)program classes that do not
require a simple guess-and-check procedure on the instantiation, but allow for a guided
model building process. Starting from the main module, instances of modules may be
created on demand as needed by module calls, focusing on relevant module instances.

Restrictions on programs, like stratification of normal MLPs in [9], may be helpful
in this regard. However, the notion of stratification is very strict. It requires that all
module instances are stratified. Moreover, the fix-point semantics for stratified programs
given there is inherently bottom-up and only applies to normal programs, excluding a
large class of programs which exploit recursion in a common and natural way and are
evaluable top-down, even if they are not normal or unstratified in the sense of [9].

For illustration, consider the following example with an MLP consisting of three
modules, one is main and the other two are libraries. Each consists of a module name,
with (optional) formal input parameters, and a set of rules. One can inquiry a library
module for the extensions of its predicates, with input fed into the module via the
input parameters. This example exploits the mutual recursive calls between two library
modules to determine whether a set has even cardinality.

Example 1. Let P be an MLP consisting of three modules m1 = (P1, R1), m2 =
(P2[q2], R2), and m3 = (P3[q3], R3), where R1 = {q(a). q(b). ok ← P2[q].even.},

R2 =


q′
2(X)∨q′

2(Y)← q2(X), q2(Y),
X 6= Y.

skip2 ← q2(X), not q′
2(X).

even ← not skip2.

even ← skip2, P3[q
′
2].odd .

 , R3 =


q′
3(X)∨q′

3(Y)← q3(X), q3(Y),
X 6= Y.

skip3 ← q3(X),not q′
3(X).

odd ← skip3, P2[q
′
3].even.


Intuitively, m1 calls m2 to check if the number of facts for predicate q is even. The
call to m2 ‘returns’ even , if either the input q2 to m2 is empty (as then skip2 is false),
or the call of m3 with q′2 resulting from q2 by randomly removing one element (then
skip2 is true) returns odd . Module m3 returns odd for input q3, if a call to R2 with q′3
analogously constructed from q3 returns even . In any answer set of P, ok is true.

This program is not normal, and shifting head disjunctions yields a program which is
not stratified as per [9]. However, along the mutual recursive chain of calls P3[q′2].odd ,
P2[q′3].even the inputs q′2 and q′3 gradually decrease until the base, i.e., the empty input,
is reached. Taking such decreasing inputs of the relevant module calls into account, we
can evaluate MLPs efficiently along the relevant call graph using a finer grained notion
of stratification, tolerating also disjunctive or unstratified rules in modules.

Capturing this intuition formally and developing a suitable evaluation algorithm for
respective MLPs are the main contributions of this work, which are as follows:
• We develop appropriate notions of call stratification and input stratification for MLPs,
and generalize the well-known Splitting Theorem [2] to this setting. Moreover, we
establish a sufficient condition to determine call (and input) stratification at the schematic
level, i.e., without the requirement to consider all module instantiations (Section 3).
• By the previous results, module instances calling other modules can be locally split
into an input preparation part and a calling part. Based on this, a top-down evaluation
procedure is developed, expanding only relevant module instances (Section 4).
• Finally, we discuss syntactic conditions for its exploitation, outline a module rewriting
technique for self-recursive modules, and consider related work (Section 5).

The envisaged programming style of call-stratified MLPs is to exploit the natural
way of specifying recursive problems with decreasing input. Applications emerge, e.g.,
in temporal reasoning with an ontology of (partially ordered) time points, reasoning
about recurrent properties of sets, or games with ‘decreasing input’.

Modular ASP in which modules can be used in an unrestricted and natural way
for problem solving, including recursion, is an important requirement for the further
development of the ASP paradigm. In this paper, we contribute to this goal, providing
efficient evaluation techniques, which are essential for its realization.

2 Preliminaries

Modular logic programs (MLPs) [9] consist of modules as a way to structure nonmono-
tonic logic programs under answer set semantics [12]. Moreover, such modules allow for
input provided by other modules, and may call each other in a (mutually) recursive way.
Syntax. We consider programs in a function-free first-order (Datalog) setting. Let V be
a vocabulary C, P , X , andM of mutually disjoint sets of constants, predicate, variable,
and module names, respectively, where each p ∈ P has a fixed arity n ≥ 0, and each
module name inM has a fixed associated list q = q1, . . . , qk (k ≥ 0) of predicate names
qi ∈ P (the formal input parameters). Unless stated otherwise, elements from X (resp.,
C ∪ P) are denoted with first letter in upper case (resp., lower case).

Each t∈C∪X is a term. An ordinary atom (simply atom) has the form p(t1, . . . , tn),
where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is its arity. A module atom has the
form P [p1, . . . , pk].o(t1, . . . , tl), where P ∈ M is a module name with associated q,
p1, . . . , pk is a list of predicate names pi ∈ P , called module input list, such that pi has
the arity of qi in q, and o ∈ P is a predicate name such that o(t1, . . . , tl) is an ordinary
atom. Intuitively, a module atom provides a way for deciding the truth value of a ground
atom o(c) in a program P depending on the extension of a set of input predicates.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm,notβm+1, . . . ,notβn (k ≥ 1,m, n ≥ 0), (1)

where all αi are atoms and each βj is an ordinary or a module atom. We define
H(r) = {α1, . . . , αk} andB(r) = B+(r)∪B−(r), whereB+(r) = {β1, . . . , βm} and
B−(r) = {βm+1, . . . , βn}. If B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if
it contains only ordinary atoms. We denote by at(r) the set H(r) ∪B(r).

We now formally define the syntax of modules and MLPs. A module is a pair
m = (P,R), where P ∈M with associated input q, and R is a finite set of rules. It is
either a main module (then |q| = 0) or a library module, and is ordinary (resp., ground),
iff all rules in R are ordinary (ground). We refer with R(m) to the rule set of m, and
omit empty [] and () from (main) modules and module atoms if unambiguous.

A modular logic program (MLP) is a tuple P = (m1, . . . ,mn), n ≥ 1, where all mi

are modules and at least one is a main module, whereM = {P1, . . . , Pn}. P is ground,
iff each module is ground.

Example 2. For instance, the MLP in Example 1 consists of three modules P =
(m1,m2,m3) wherem2 andm3 are library modules, andm1 is a (ground) main module.

Semantics. The semantics of MLPs is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP.

The Herbrand base w.r.t. vocabulary V , HBV , is the set of all ground ordinary and
module atoms that can be built using C, P andM; if V is implicit from an MLP P, it is
the Herbrand base of P and denoted by HBP. The grounding of a rule r is the set gr(r)
of all ground instances of r w.r.t. C; the grounding of rule set R is gr(R) =

⋃
r∈R gr(r),

and the one of a module m, gr(m), is defined by replacing the rules in R(m) by
gr(R(m)); the grounding of an MLP P is gr(P), which is formed by grounding each
module mi of P. The semantics of an arbitrary MLP P is given in terms of gr(P).

Let S ⊆ HBP be any set of atoms. For any list of predicate names p = p1, . . . , pk

and q = q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | i ∈ {1, . . . , k} } and
S|qp = {qi(c) | pi(c) ∈ S, i ∈ {1, . . . , k} }.

For a P ∈ M with associated formal input q we say that P [S] is a value call with
input S, where S ⊆ HBP|q. Let VC (P) denote the set of all value calls P [S] with
some S (note that VC (P) is also used as index set). A rule base is an (indexed) tuple
R = (RP [S] | P [S] ∈ VC (P)) of sets of rules RP [S]. For a module mi = (Pi[qi], Ri)
from P, its instantiation with S ⊆ HBP|qi , is IP(Pi[S]) = Ri ∪ S. For an MLP P, its
instantiation is the rule base I(P) = (IP(Pi[S]) | Pi[S] ∈ VC (P)).

We next define (Herbrand) interpretations and models of MLPs.

Definition 1 (model). An interpretation M of an MLP P is an (indexed) tuple (Mi/S |
Pi[S] ∈ VC (P)), where all Mi/S ⊆ HBP contain only ordinary atoms. An interpreta-
tion M of an MLP P is a model of

– a ground atom α ∈ HBP at Pi[S], denoted M, Pi[S] |= α, iff (i) α ∈Mi/S when α
is ordinary, and (ii) o(c) ∈Mk/((Mi/S)|qk

p), when α=Pk[p].o(c) is a module atom;

– a ground rule r at Pi[S] (M, Pi[S] |= r), iff M, Pi[S] |= H(r) or M, Pi[S] 6|= B(r),
where (i) M, Pi[S] |= H(r), iff M, Pi[S] |= α for some α ∈ H(r), and (ii) M, Pi[S] |=
B(r), iff M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] 6|= α for all α ∈ B−(r);

– a set of ground rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;

– a ground rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).

Finally, M is a model of an MLP P, denoted M |= P, iff M |= I(P) in case P is
ground resp. M |= gr(P), if P is nonground. An MLP P is satisfiable, iff it has a model.

For any interpretations M and M′ of P, we define M ≤M′, iff Mi/S ⊆M ′i/S for
every Pi[S] ∈ VC (P), and M < M′, iff M 6= M′ and M ≤ M′. A model M of P
(resp., a rule base R) is minimal, if P (resp., R) has no model M′ such that M′ < M.

We next proceed to define answer sets for MLPs. In order to focus on relevant mod-
ules, we introduce the formal notion of a call graph. Intuitively, a call graph represents the
relationship between module instantiations and potential module calls: nodes correspond
to instantiations and an edge indicates that there is a presumptive call from one module
instantiation to another. Labels on the edges distinguish different syntactical calls. Given
an interpretation, one can determine the actual calls as edges with labels such that the
respective predicates match in the interpretation of the corresponding module instantia-
tions. Edges satisfying this condition, their incident nodes, and the nodes representing
main modules constitute the relevant call graph.

Definition 2 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V,E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T] in E iff
Pk[p].o(t) occurs in R(mi); furthermore, e is labeled with an input list p, denoted l(e).
Given an interpretation M, the relevant call graph CGP(M) = (V ′, E′) of P w.r.t. M
is the subgraph of CGP where E′ contains all edges from Pi[S] to Pk[T] of CGP such
that (Mi/S)|qk

l(e) = T , and V ′ contains all Pi[S] that are main module instantiations or
induced by E′; any such Pi[S] is called relevant w.r.t. M.

Example 3. Let in Example 1 Si
∅ = ∅, Si

a = {qi(a)}, Si
b = {qi(b)}, and Si

ab =
{qi(a), qi(b)}. Then VC (P) = {P1[∅], P2[S2

v], P3[S3
w]}, where v, w ∈ {∅, a, b, ab},

and CGP has edges P1[∅]
q→ P2[S2

v], P2[S2
v]

q′
2→ P3[S3

w], and P3[S3
w]

q′
3→ P2[S2

v].
For the interpretation M such that M1/∅ = {q(a), q(b), ok}, M2/S

2
ab = {q2(a),

q2(b), q′2(a), skip2, even}, M2/∅ = {even}, and M3/S
3
a = {q3(a), skip3, odd}, the

nodes of CGP(M) are P1[∅], P2[S2
ab], P2[∅], and P3[S3

a].

For answer sets of an MLP P, we use a reduct of the instantiated program as
customary in ASP. As P might have inconsistent module instantiations, compromising
the existence of an answer set of P, we contextualize reducts and answer sets. We denote
the vertex and edge set of a graph G by V (G) and E(G), respectively.

Definition 3 (context-based reduct). A context for an interpretation M of an MLP P
is any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C. The reduct of P at P [S] w.r.t. M
and C, denoted fP(P [S])M,C , is the rule set Igr(P)(P [S]) from which, if P [S] ∈ C,
all rules r such that M, P [S] 6|= B(r) are removed. The reduct of P w.r.t. M and C is
fPM,C = (fP(P [S])M,C | P [S] ∈ VC (P)).

That is, outside C the module instantiations of P resp. gr(P) remain untouched,
while inside C the FLP-reduct [10] is applied.

Definition 4 (answer set). Let M be an interpretation of a ground MLP P. Then M is
an answer set of P w.r.t. a context C for M, iff M is a minimal model of fPM,C .

Note that C is a parameter that allows to select a degree of overall-stability for
answer sets of P. The minimal context C = V (CGP(M)) is the relevant call graph
of P. From now on we consider this as the default context and omit C from notation.

Example 4. Recall M from Example 3. For every Pi[S] ∈ V (CGP(M)), Mi/S is a
⊆-minimal set that satisfies fP(Pi[S])M. Thus, any such M is an answer set of P iff for
every Pk[T] ∈ VC (P) \V (CGP(M)), Mk/T is a⊆-minimal set satisfying IP(Pi[S]).

3 Splitting for Modular Nonmonotonic Logic Programs

We investigate splitting for MLPs at two different levels: the global (module instantiation)
level along the relevant call graph, and the local level (‘inside’ module instantiations)
w.r.t. the (instance) dependency graph. These two notions reveal a class of MLPs, for
which an efficient top-down algorithm can be developed for answer set computation.

3.1 Global splitting for call-stratified MLPs

We start by introducing call stratified MLPs, whose module instantiations can be split
into different layers and evaluated in a stratified way.

Definition 5. Let M be an interpretation of an MLP P. We say that P is c-stratified
(call stratified) w.r.t. M iff cycles in CGP(M) contain only nodes of the form Pi[∅].

The intuition is to evaluate module instantiations of c-stratified MLPs in a particular
order along the call chain, such that potential ‘self-stabilizing’ effects of cycles have to
be taken into account only at the base, i.e., for module instantiations with empty input.

Example 5. Consider the MLP P and the interpretation M from Example 3. It is easily
verified that P is c-stratified w.r.t. M. One possible call chain for evaluation is

P1[∅]
q→ P2[{q(a), q(b)}]

q′
2→ P3[{q′2(a)}]

q′
3→ P2[∅] .

Definition 6. Let M be an interpretation of an MLP P and R be a rule set. We say
that Mi/S is an answer set of R relative to M, iff M is an answer set of the rule base
(RP [S] | P [S] ∈ VC (P)), where RPi[S] = R and RPj [T] = Mj/T for i 6= j or S 6= T .

In particular, Mi/S is an answer set of R = IP(Pi[S]) relative to M, if it is an
answer set of R while other instances are fixed by corresponding elements in M, i.e., all
module calls in R are fixed.

Example 6. Consider P from Example 1 and M from Example 3, then M2/S
2
ab is an

answer set of IP(P2[S2
ab]) relative to M.

Proposition 1. Let M be an interpretation of a c-stratified MLP P. Suppose that
along CGP(M), Mi/S is an answer set of IP(Pi[S]) relative to M for each Pi[S] ∈
V (CGP(M)). If there is an answer set of P that coincides with M for every Pi[∅] on a
cycle in CGP(M), then P has an answer set that coincides with M on CGP(M).

Proposition 1 already indicates a top-down way to evaluate c-stratified MLPs. For
a concrete procedure, we need a notion of “local” splitting inside module instances,
introduced in the next section.

3.2 Local splitting for input and call stratified MLPs

Towards local splitting, we will first extend the notion of Splitting Sets [2] to MLPs.
Then, for pratical purposes, we are interested in splitting a module instance w.r.t. module
calls. To this end, we introduce a general and another specific notion of input splitting
sets in Definition 7. Given a set R of ground rules and a list of predicate names p =
{p1, . . . , pk}, let def (p, R) = {p`(d) | ∃r ∈ R, p`(d) ∈ H(r), p` ∈ p}.

Definition 7 (splitting set). Let P be an MLP, R be a set of ground rules and α be a
ground module atom of form Pk[p].o(c).

(a) A splitting set of R is a set U ⊆ HBP s.t. (i) for any rule r ∈ R, if H(r) ∩ U 6= ∅
then at(r) ⊂ U ; and (ii) if α ∈ U then def (p, R) ⊆ U .

(b) Let U be a splitting set of R. We say that U is an input splitting set of R for α, iff
α /∈ U and def (p, R) ⊆ U .

As usual, the bottom of a set of ground rules R w.r.t. a set of atoms A ⊆ HBP is
bA(R) = {r ∈ R | H(r) ∩A 6= ∅}.

Example 7. Consider P from Example 1 and P2[S2
ab] from Example 3. Let R be the

instantiation gr(IP(P2[S2
ab])). A possible splitting set forR isU = {q2(a), q2(b), q′2(a),

q′2(b), skip2}. Then the bottom bU (R) is
{q2(α). skip2← q2(α),not q′2(α). q′2(α)∨ q′2(β)← q2(α), q2(β) | α 6= β ∈ {a, b}}.

Based on the extended notion of a Splitting Set, the Splitting Theorem [2] straight-
forwardly applies to c-stratified MLPs.

Theorem 1. Let M be an interpretation of a c-stratified MLP P, R be the instantiation
gr(IP(Pi[S])) for Pi[S] ∈ VC (P), and let U be a splitting set for R. Then Mi/S is an
answer set of R relative to M iff it is an answer set of {R \ bU (R)} ∪N , where N is an
answer set of bU (R) relative to M.

Example 8. Consider P from Example 1, M from Example 3, and R from Example 7.
An answer set ofR isN = {q2(a), q2(b), q′2(a), skip2}. By updatingR to {R\bU (R)}∪
N , we obtainR′ = {q′2(a). q2(a). q2(b). skip2. even ← skip2, P3[q′2].odd. even ←
not skip2.}. Then M2/S

2
ab is an answer set of R′ relative to M.

In the sequel, we single out a subclass of c-stratified MLPs, namely input and call
stratified (ic-stratified) MLPs, which guarantee that input splitting sets exist for their
local splitting. We define the property of input stratification at two different levels of
the dependency graph: the schematic level and the instance level. Comparing these two
options, checking the property at the schematic level is easier, but is often too strong and
misses input stratification at the instance level.

In the remainder of the paper, we assume without loss of generality that each predicate
occurs in ordinary atoms of at most one module.

Let P be an MLP. The dependency graph of P is the digraph GP = (V,E). The
vertex set V contains all p ∈ P ∪ E , with p appearing somewhere in P, and E is the set
of module atoms in P. The edge set E is as follows:

Let r ∈ R(mi). There is a ?-edge p→? q in GP, ? ∈ {+,−,∨}, if either

(i) p(t1) ∈ H(r) and q(t2) ∈ B?(r),
(ii) p(t1), q(t2) ∈ H(r) and ? = ∨, or

(iii) p(t1) ∈ H(r) and q is a module atom in B?(r).

Moreover, for α = Pj [p].o(t) ∈ B(r), the set E contains all edges

(iv) α→in q`, for every q` ∈ qj of Pj [qj],
(v) α→m o, and

(vi) q` →b p`, where q` ∈ qj of Pj [qj] and p` ∈ p of α.

This notion of dependency graph refines the one in [9] concerning the labels of arcs
(types of dependencies) and allows us to capture input stratification as follows:

Definition 8. An MLP P is si-stratified (input stratified at the schematic level), iff no
cycle in GP has in-edges.

For example, one can easily verify that the MLP in Example 1 is si-stratified.
For any module atoms α1, α2 ∈ E , we say that α1 locally depends on α2, if α1 α2,

where =→+ ∪ →− ∪ →∨ ∪ →in . For each module mi of a si-stratified MLP P,
we define a local labeling function ll i : V → N s.t. ll i(α1) > ll i(α2) if α1 α2.

Instance stratification. Proceeding to finer grained level of instances, we define the
instance dependency graph GM

P = (IV , IE) of P w.r.t. an interpretation M. The idea is
to distinguish different predicate names and module atoms in different module instances
by associating them with the corresponding value call. Hence, a node in IV is a pair
(p, Pi[S]) or (α, Pi[S]), where p (resp., α) is a predicate name (resp., module atom)
appearing in module mi, and S is the input for a value call Pi[S] ∈ VC (P).

GM
P has edges (i′)–(iv′) similar to (i)–(iv) in GP, except that appropriate value calls

are added to predicate names/module atoms; the real difference is made by edges (v′)
and (vi′); for a module atom of the form α = Pj [p].o(t) in R(mi), GM

P has edges

(v′) (α, Pi[S])→m (o, Pi[(Mi/S)|qj
p]); and

(vi′) (q`, Pj [(Mi/S)|qj
p])→b (p`, Pi[S]), where q` ∈ qj of Pj [qj] and p` ∈ p of α.

Intuitively, these edges capture the relationship between a module atom and the
corresponding (ordinary) output atom, respectively between formal input parameters
and actual input provided. Restricting to concrete applicable instances (Pj [(Mi/S)|qj

p]),
they do not just schematically extend (v) and (vi).

Definition 9. Let M be an interpretation of an MLP P. We say that P is i-stratified w.r.t.
M, iff cycles with in-edges in GM

P contain only nodes of the form (X,Pi[∅]). Moreover,
P is ic-stratified w.r.t. M iff it is both i-stratified and c-stratified w.r.t. M.

The following theorem shows that ic-stratification is sufficient for the existence of
input splitting sets for module atoms in relevant instances.

Theorem 2. Let M be an interpretation of an ic-stratified MLP P, Pi[S] be a value call
in V (CGP(M)), and let R = gr(IP(Pi[S])). Then, for every ground module atom α
occurring in R, there exists an input splitting set U of R for α.

Example 9. In Example 7, U is an input splitting set for P3[S3
a].odd. As P is c-stratified

w.r.t. M (cf. Example 5) and si-stratified, P is ic-stratified w.r.t. M. Thus, by Theorem 2,
all module atoms in grounded instances from V (CGP(M)) have input splitting sets.

Naturally, si-stratification implies i-stratification, but not vice versa. However, the
following condition identifies a case in which i-stratification holds at the instance level
while si-unstratification holds at the schematic level.

Definition 10. Consider a si-unstratified MLP P. If all cycles in GP which include an
in-edge also contain an m-edge, then we say that P is psi-unstratified.

Proposition 2. If an MLP P is c-stratified and psi-unstratified, then P is i-stratified
w.r.t. all interpretations M, hence ic-stratified.

Since ic-stratification (of an MLP P w.r.t. M) ensures that no cycle in GM
P has in-

edges, it yields intended local splits, where the input for any module atom is fully
prepared before this module atom is called. Extending the notion of local labeling to
an instance local labeling function ill i : IV → N s.t. ill i(α1, Pi[S]) > ill i(α2, Pi[S]) if
(α1, Pi[S]) (α2, Pi[S]), one can exploit input splitting sets, starting with a module
atom α where ill i(α, Pi[S]) is smallest. For ic-stratified MLPs, such input splitting sets
consist of ordinary atoms only, hence respective answer sets can be computed in the
usual way. By iteration, this inspires an evaluation algorithm presented next.

4 Top-Down Evaluation Algorithm

A top-down evaluation procedure comp for building the answer sets of ic-stratified MLPs
along the call graph is shown in Algorithm 1. Intuitively, comp traverses the relevant
call graph from top to the base and back. In forward direction, it gradually prepares input
to each module call in a set R of rules, in the order given by the instance local labeling
function for R. When all calls are solved, R is rewritable to a set of ordinary rules, and
standard methods can be used to find the answer sets, which are fed back to a calling
instance, or returned as the result if we are at the top level.

The algorithm has several parameters: a current set of value calls C, a list of sets of
value calls path storing the recursion chain of value calls up to C, a partial interpretation
M for assembling a (partial stored) answer set, an indexed set A of split module atoms
(initially, all Mi/S and Ai/S are nil), and a set AS for collecting answer sets. It uses
the following subroutines:

mlpize(N,C) : Convert a set of ordinary atoms N to a partial interpretation N (having
undefined components nil), by projecting atoms in N to module instances Pi[S] ∈
C, removing module prefixes, and putting the result at position Ni/S in N.

ans(R) : Find the answer sets of a set of ordinary rules R.
rewrite(C,M,A) : For all Pi[S] ∈ C, put into a set R all rules in IP(Pi[S]), and

Mi/S as facts if not nil , prefixing every ordinary atom (appearing in a rule or fact)
with Pi[S]. Futhermore, replace each module atom α = Pj [p].o(t) in R, such that
α ∈ Ai/S, by o prefixed with Pj [T], where T = (Mi/S)|qj

pi , and pi is p without
prefixes; moreover add any atoms from (Mj/T)|o prefixed by Pj [T] to R.

Algorithm 1: comp(in: P, C, path,M,A, in/out: AS)
Input: MLP P, set of value calls C, list of sets of value calls path , partial model M,

indexed set of sets of module atoms A, set of answer sets AS
(a) if ∃Pi[S] ∈ C s.t. Pi[S] ∈ Cprev for some Cprev ∈ path then

if S 6= ∅ for some Pi[S] ∈ C then return
repeat

C′ := tail(path) and remove the last element of path
if ∃Pj [T] ∈ C′ s.t. T 6= ∅ then return else C :=C ∪ C′

until C′ = Cprev

R := rewrite(C,M,A)
if R is ordinary then

if path is empty then
(b) forall N ∈ ans(R) do AS :=AS ∪ {M]mlpize(N,C)}

else
C′ := tail(path) and remove the last element of path
forall Pi[S] ∈ C do Ai/S := fin
forall N ∈ ans(R) do comp(P, C′, path,M]mlpize(N,C),A,AS)

else
(c) pick an α :=Pj [p].o(c) in R with smallest illR(α) and find splitting set U of R for α

forall Pi[S] ∈ C do if Ai/S = nil then Ai/S :={α} else Ai/S :=Ai/S ∪ {α}
forall N ∈ ans(bU (R)) do

T :=N |qj
p

if (Mj/T 6= nil) ∧ (Aj/T = fin) then C′ :=C and path ′ := path
else C′ :={Pj [T]} and path ′ := append(path, C)

(d) comp(P, C′, path ′,M]mlpize(N,C),A,AS)

The algorithm first checks if a value call Pi[S] ∈ C appears somewhere in path
(Step (a)). If yes, a cycle is present and all value calls along path until the first appearance
of Pi[S] are joined into C. If a value call in this cycle has non-empty input, then P is
not ic-stratified for any completion of M, and comp simply returns. After checking for
(and processing) cycles, all instances in C are merged into R by the function rewrite.

If R is ordinary, meaning that all module atoms (if any) are solved, ans can be
applied to find answer sets of R. Now, if path is empty, then a main module is reached
and M can be completed by the answer sets of R and put into AS (Step (b)). Otherwise,
i.e., path is nonempty, comp marks all instances in C as finished, and goes back to the
tail of path where a call to C was issued. In both cases, the algorithm uses an operator
] for combining two partial interpretations as follows: M]N = {Mi/S] Ni/S |
Pi[S] ∈ VC (P)}, where x] y = x ∪ y if x, y 6= nil and x] nil = x, nil] x = x.

When R is not ordinary, comp splits R according to a module atom α with smallest
illR(α) in Step (c). IfC = {Pi[S]}, then illR = ill i, otherwise it is a function compliant
with every ill i s.t. Pi[S] ∈ C. Then, comp adds α to A for all value calls in C, and
computes all answer sets of the bottom of R, which fully determine the input for α. If
the called instance Pj [T] has already been fully evaluated, then a recursive call with the
current C and path yields a proper rewriting of α. Otherwise, the next, deeper level of
recursion is entered, keeping the chain of calls in path for coming back (Step (d)).

Example 10. Consider Algorithm 1 on P from Example 1 and 3. The call chain
P1[∅]

q→ P2[{q(a), q(b)}]
q′
2→ P3[{q′

2(a)}]
q′
3→ P2[∅]

q′
2→ P3[∅]

q′
3→ P2[∅] will be reflected by

the list {P1[S1
∅]}, {P2[S2

a,b}, {P3[S3
a]}, {P2[S2

∅]}, {P3[S3
∅]} in path , and a current set

of value calls C = {P2[S2
∅]}. At this point, the last two elements of the path will be

removed and joined with C yielding C = {P2[S2
∅], P3[S3

∅]}. The rewriting R w.r.t. C is1{
qi′

∅ (X) ∨ qi′

∅ (Y)← qi
∅(X), qi

∅(Y), X 6= Y. skipi
∅ ← qi

∅(X),not qi′

∅ (X). | i = 1, 2
even2

∅ ← skip2
∅, odd

3
∅. odd3

∅ ← skip3
∅, even

2
∅. even2

∅ ← not skip2
∅.

}
The only answer set of R is {even2

∅}. On the way back, even2
v is toggled with odd3

w,
and at P1 the answer set {q1∅(a), q

1
∅(b), ok

1
∅} is built; comp adds a respective (partial)

interpretation M to AS, i.e., where M2/∅ = {even}, M3/∅ = ∅, etc., and M1/∅ =

{q(a), q(b), ok}. Following the chain P1[∅]
q→ P2[{q(a), q(b)}]

q′
2→ P3[{q′2(b)}]

q′
3→

P2[∅]→ · · · , comp finds another answer set of P.

The following proposition shows that comp works for ic-stratified answer sets.

Proposition 3. Suppose P is an MLP with single main module m1 = (P1[], R1). Set
AS = ∅, path = ε, M and A to have nil at all components. Then, comp(P, {P1[]},
path,M,A,AS) computes in AS all answer sets N of P s.t. P is ic-stratified w.r.t. N
(disregarding irrelevant module instances, i.e., Ni/S = nil iff Pi[S] /∈ V (CGP(N))).

This can be extended to P with multiple main modules. Compared to a simple guess-
and-check approach, comp can save a lot of effort as it just looks into the relevant part
of the call graph. Allowing non-ic-stratified answer sets, e.g., loops with non-empty S,
is a subject for further work.

5 Discussion

Determining c-stratification of an MLP P requires checking for cycles in the call graph,
which is rather expensive. In practice, it seems useful to perform a syntactic analysis
of the rules as a sound yet incomplete test that ic-stratification is given, and to exploit
information provided by the programmer.

In a simple form, the programmer makes an assertion for specific module calls that
when processing these calls recursively, inputs to module calls will always be fully
prepared and no call with the same input (except at the base level) is issued. Ideally, the
assertion is made for all calls, as possible e.g. in the odd/even example or the Cyclic
Hanoi Tower example. While this may sound to put a burden on programmer, in fact
one tends quite often, especially for recursive applications, to drive the chain of calls
to a base case (e.g., instances with empty input). In such cases, the programmer can
confidently provide this information, which can tremendously improve performance.

If no assertions are provided by the programmer, a syntactic analysis might be helpful
to compare the inputs of a module call and the module specification. We discuss one such
case here. Consider a module atom Pj [p].o(t) in module mi = (Pi[qi], Ri). Let q` and
p` be corresponding predicate names in qi and p, respectively. Assume p` is concluded

1 Rather than prefixes, we use superscripts and subscripts like for instances (cf. Example 3).

from q` in one step, i.e., by a rule r where p`(X) ∈ H(r) and q`(X) ∈ B(r). Suppose
that for all such rules, (i) q`(X) ∈ B+(r), (ii) @q`(Y) ∈ B(r) | Y 6= X , and (iii) all
variables not in X in r are safe. Then, all module atoms have the same or smaller input
compared to qi. If p` is concluded from q` through a chain of rules r1, . . . , rm where
p`(X) ∈ H(r1), q`(Y) ∈ B(rm), then conditions similar to (i)-(iii) must be respected
by each ri, 1 ≤ i ≤ m, taking shared atoms between B+(ri) and H(ri+1) into account.

Now when compared to a module instance, the input to calls in it is either (a) the
same or (b) smaller, the evaluation process can branch into handling these cases, and
program rewriting is applicable. For simplicity, we discuss this here for self-recursive
MLPs, i.e., module calls within module Pi (different from main) are always to Pi.
Rewrite self-recursive MLPs. For a call atom α = Pi[p].o(t) in Pi[qi], we can guess
whether case (a) applies; if so, we can replace α by o(t). The resulting rules contain
fewer module atoms (if none is left, they are ordinary and can be evaluated as usual). In
case (b), if P is psi-unstratified, we can apply Algorithm 1 (with ill i replaced by ll i) to
a rewritten program in which additional constraints ensure the decrease of the input.

More formally, let P = (m1, . . . ,mn) where mi = (Pi[qi], Ri), i ∈ {1, . . . , n}.
Let α be as above and let noc and noc be two fresh predicate names. We define two
types of rewriting functions, ν and µ, as follows:

– Let νi(p(t)) = p(t), for each predicate p ∈ P , and νi(α) = o(t). For a rule r of
form (1), let νi(r) = α1 ∨ · · · ∨ αk ← noc, νi(β1), . . . , νi(βm),not νi(βm+1), . . . ,
not νi(βn). Then, ν(Ri) = {νi(r) | r ∈ Ri}.
– For a rule r, µ(r) adds noc to B(r), and µ(Ri) = {µ(r) | r ∈ Ri}.

Let rg be noc ∨ noc ← and let Eq i(α) and Coni(α) be the following sets of rules,
where q` and p` are corresponding predicate names in the formal input list qi of Pi[qi]
and the actual input list p of α:

Eq i(α) =


fail ← p`(X), not q`(X),noc, not fail .
fail ← q`(X), not p`(X),noc, not fail .

| 1 ≤ ` ≤ |qi|
ff

,

Coni(α) =

8<:
fail ← p`(X), not q`(X),noc, not fail .
ok ← q`(X), not p`(X),noc.

fail ← noc,not ok , not fail .
| 1 ≤ ` ≤ |qi|

9=; .

Let Eq i and Coni stand for the union of Eq i(α) and Coni(α) for all module atoms
α appearing in Ri, resp. For each module mi, let τ(mi) = ν(Ri) ∪ µ(Ri) ∪ {rg} ∪
Eq i ∪ Coni. Finally, let τ(P) = (τ(m1), . . . , τ(mn)).

Proposition 4. Let P be a psi-unstratified MLP P where the input to any module call is
either equal or strictly smaller compared to the input of the module instance issuing the
call. Then the answer sets of τ(P) correspond 1-1 to those of P.

The method can be extended to non-self recursive MLPs, where calls to different
modules are allowed. Here, one needs to keep track of the module call chain, or assume
an ordering on the module names to determine input decrease; we omit the details.

Concerning complexity, using our algorithm suitably, answer-set existence of ic-
stratified MLPs is decidable in EXPSPACE, i.e., more efficiently than arbitrary MLPs
(2NEXPNP-complete [9]). Since already best practical algorithms for ordinary, call-free
programs (NEXPNP-complete) require exponential space, the algorithm has reasonable
resource bounds. A detailed complexity analysis is planned for the extended paper.

6 Related Work and Conclusion

In the ASP context, several modular logic programming formalisms have been proposed
(cf. Introduction). We already mentioned the modular logic programs of [1] and DLP-
functions [3]. For the former, a rich taxonomy of notions of stratification was given in
[1]; however, they essentially address merely the module schema level, and no specific
algorithms were described. For DLP-functions, Janhunen et al. [3, 4] developed a Module
Theorem which allows to compose the answer sets of multiple modules; however, no
specific account of stratification was given in [3, 4]. As MLPs can be viewed as a
generalization of DLP-Functions, our results may be transferred to the DLP context.

In an upcoming paper, Ferraris et al. present Symmetric Splitting [13] as a general-
ization of the Module Theorem [3, 4] allowing to decompose also nonground programs
like MLPs do. Similar to [3, 4], this technique is only applicable to programs with no
positive cycles in the dependency graph. Studying the relationship between Symmetric
Splitting and our notions of stratification is an interesting subject for future work.

Several other issues remain for further work, including extensions and refinements
of the stratification approach. For example, while we have focused here on decreasing
inputs in terms of set inclusion, the extension of the method to other partial orderings
of inputs that have bounded decreasing chains is suggestive. This and investigating
complexity issues as well as implementation are on our agenda.

References

1. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.
In: LPNMR’97. Springer (1997) 290–309

2. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94, MIT Press (1994) 23–37
3. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive

Stable Models. In: LPNMR’07. Springer (2007) 175–187
4. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for

Smodels programs. Theory Pract. Log. Program. 8(5–6) (2008) 717–761
5. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro calls and Use of Ensembles in Modular

Answer Set Programming. In: ICLP’06. Springer (2006) 376–390
6. Calimeri, F., Ianni, G.: Template programs for Disjunctive Logic Programming: An operational

semantics. AI Commun. 19(3) (2006) 193–206
7. Bugliesi, M., Lamma, E., Mello, P.: Modularity in Logic Programming. J. Log. Program.

19/20 (1994) 443–502
8. Brogi, A., Mancarella, P., Pedreschi, D., Turini, F.: Modular logic programming. ACM Trans.

Program. Lang. Syst. 16(4) (1994) 1361–1398
9. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Program-

ming Revisited. In: ICLP’09. Springer (2009) 145–159
10. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs:

Semantics and Complexity. In: JELIA’04. Springer (2004) 200–212
11. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules with

external evaluations for semantic web reasoning. In: ESWC’06. Springer (2006) 273–287
12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases.

New Gener. Comput. 9 (1991) 365–385
13. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric Splitting in the General Theory of

Stable Models. In: IJCAI’09. AAAI Press (2009) 797–803

