Resolving Conflicts in Action Descriptions

Thomas Eiter and Esra Erdem and Michael Fink and Jan Senko
Institut fur Informationssysteme 184/3,
Technische Universit Wien
Favoritenstrae 9-11, 1040 Wien, Austria

email: {eiter, esra, michael, jd@kr.tuwien.ac.at

Abstract the transition diagram of the action description above {con
. . sisting of (1), (2), and the inertia laws) is presented inFi

We study the problem of resolving conflicts between 1g 1. @))isp 9
an action description and a set of conditions (possibly ure L.) o . .
obtained from observations), in the context of action Note that the action description above is “buggy”, since
languages. In this formal framework, the meaning of the effects of toggling the switch are not completely speci-
an action description can be represented by a transition fied. Our goal is to “repair” such descriptions taking inte ac
diagram—a directed graph whose nodes correspond to count some additional information, such as observations or
states and whose edges correspond to transitions de-
scribing action occurrences. This allows us to charac- _aX|oms "f‘bOUt the action domain, which _Can be represented
terize conflicts by means of states and transitions of the in an action query language (Gelfond & Lifschitz 1998). For
given action description that violate some given condi- example, when the light bulb is broken, toggling the switch
tions. We introduce a basic method to resolve such con- may lead to a state where the light is off; this information is
flicts by modifying the action description, and discuss possibly obtained from some observations of the agent, and
how the user can be supported in obtaining more pre- b di fi | by th
ferred solutions. For that, we identify helpful questions can be expressed Iin an action query language, e.g., by the
the user may ask (e.g., which specific parts of the action statement
description cause a conflict with some given condition), .] .
and we provide answers to them using properties of ac- possibly - Light after Toggle if Broken. ©))
tion descriptions and transition diagrams. Finally, we o))])
discuss the computational complexity of these questions Some of the additional information may conflict with the
in terms of related decision problems. action description. For instance, condition (3) does ndd ho

relative to the action description above, since at the state

: where the light bulb is broken and the light is off, toggling
Introduction the light switch is not possible. Thus, there is a conflict be-
Action languages (Gelfond & Lifschitz 1998) are a formal tween the action description and this condition.
tool for reasoning about actions, where an agent’s knowl- | this paper, we consider such conflicts, and how the
edge about a domain in question is represented by a declar-agent's action description can be modified to resolve them.
ative action description that consists of logical formulas Thijs may be accomplished in many different ways, and there
Consider for instance a light bulb with a switch. When 5 no canonical method which works satisfactorily in all
the light is off, then toggling the switch turns the light on; cgases. According to (Eitest al. 2005), one might aim at
this can be expressed in the action description language gropping a smallest set of candidate formulas to resolve the
C (Giunchiglia & Lifschitz 1998) by the formula conflict. In our example, dropping (1) would work. How-

causedLight after Toggle A ~Light. 1) ever, under further conditions, like

On the other hand, at every state, if the light bulb is broken necessarily~Light after Toggle if Light,)

then the light is off. This can be expressed by the formula {he conflict cannot be resolved just by dropping formulas:

caused-Light if Broken.) removing any of (1), (2) and inertia laws will not lead to an
edge from a state where the light is on to a state where the
Other pieces of knowledge, like laws of inertia, may be also light is off. A refined approach is needed which, semanti-
included. The meaning of such an action description can be cally, modifies the transition diagram by suitable chandes o
represented by a transition diagram—a directed graph whose the formulas to “repair” the action description such that th
nodes correspond to the states of the world and the edges togiven queries (i.e., conditions) hold.
the transitions describing action occurrences. For irgtan This paper makes two main contributions in this direction:

{};{Toggle}

—Broken
Light

185 {

—Broken Broken
- Light —Light

consists of two kinds of expressions (callegusal laws$:
static laws

causedL if G, (5)

Figure 1: Transition diagram of the action descriptiofl),

(2, (1)}

1. It provides a preciseotion of conflictbetween an action

whereL is a fluent literal ofFalse andG is a propositional
combination of fluent names; adgnamic lawof the form

causedL if G after U, (6)

whereL andG are as above, and is a propositional com-

description and a set of queries, and presents a basic algo-bination of fluent names and action names. In (5) and (6) the
rithm to resolve such conflicts. The idea is to modify the partif G can be dropped i is True.! An action descrip-

trans_ition diag_r_am of the action _deSCfiptiO_n_ by adding or tionis a set of causal laws. For instance, one formalization
deleting transitions so that all given conditions are satis of the light domain described in the introduction can be ex-

fied; such a modification of the transition diagram is pos-
sible by adding, deleting or modifying some formulas in

the action description. Based on this idea, our algorithm
calculates a repair whenever it is possible.

2. Intuitive repair preferences might be difficult to formal

ize (e.g., both syntactic and semantic aspects might play a

role) and thus to achieve with the basic algorithm above.
In such cases, the designer might wantsk questions
about the action description, the transition diagram, and
the extra information, whose answers could guide her
to come up with an appealing repair in an iterative re-
pair process. For that, we explore several kinds of such
questions and determine properties of action descriptions
transition diagrams, and extra information which are help-
ful in answering them. We also analyze the computational
complexity of related problems.

Preliminaries

Transition diagrams. We start with apropositional ac-
tion signatureL = (F, A) that consists of a sd of fluent
names, and a st of action names. Satisfaction of a propo-
sitional formulaG over atomsAt C FU A by an interpreta-
tion P — I(P) € {t, f} forall P € At as usual, is denoted
by I = G. An actionis an interpretation oA\, denoted by
the set of action names that are mapped to

A transition diagramof £ consists of a sef' of states a
functionV : F x S — {f,t} such that each statein S is
uniquely identified by the interpretatiaRl — V (P, s), for
all P ¢ F, and a subsek C S x 22 x S of transitions We
say thal/ (P, s) is thevalueof P in s. The states’ such that
(s, A,s') € Rare the possibleesults of the executiowf the
action A in the states. We can think of a transition diagram
as a labeled directed graph. Every state represented by
a vertex labeled with the functioR — V(P,s) from flu-
ent names to truth values; we denotedithe set of fluent
literals satisfied by this function. Each triple, A, s’) € R
is represented by an edge frano s’ and labeledd. See
Figure 1 for an example.

Action descriptions. We consider a subset of the action
description languagé (Giunchiglia & Lifschitz 1998) that

pressed in this language by the causal laws (1), (2), and the
inertia laws
inertial Light, —Light
inertial Broken,—Broken.

(@)

Here an expression of the forimertial L1, ..., L; stands for
the causal lawsausedL; if L; after L; fori € {1, ..., k}.

The meaning of an action description can be represented
by a transition diagram as follows. We say that a causal law
is applicableto a transitions, A4, s’) in a transition diagram,

e [is a static law (5), such that = G; or
e [is adynamic law (6), such that = G andsU A |= U .2

We denote byD(tr) the set of all causal laws in an ac-
tion descriptionD that are applicable to a transition; by
Hp(tr) the set of the heads of all causal lawgtr); and
by sat(Hp(tr)) the set of interpretations & that satisfy
HD (t?“).

Let D be an action description with an action signature
£ = (F,A). Then the transition diagrartS,V, R) de-
scribedby D, denotedl'(D), is defined as follows:

e Sisthe set of all interpretationsof F such that, for every
static law (5) inD, s = G D L,

o V(P,s)=s(P),

e Risthe set consisting of all transitios A, s’) such that
sat(Hp((s, A,s'))) = {s'}.

We denote byS(D) (resp. R(D)) the set of states (resp.

transitions) of7'(D). For instance the transition diagram

described by the action description consisting of (1), (2),

is shown in Figure 1.

Conditions. For expressing extra conditions, we consider
here a language with two kinds of statements (“queries”)
about an action descriptiorpossibility queriesand neces-
sity querief the respective forms

possiblyy after A if ¢ (8)

Y True (resp. False) is the empty conjunction (resp. disjunc-
tion).

2\We identify states with the interpretation® — V (P, s).

necessarilyy after A if ¢ 9)

where ¢ and v are propositional combinations of fluent
names, and is an action. These queries are syntactically
different from the ones presented in (Gelfond & Lifschitz
1998) and (Eiteet al. 2005); on the other hand, semanti-
cally they constitute a fragment of an extension of the actio
query languagé (Gelfond & Lifschitz 1998) (from which
we draw the term “query”) and the condition language in
(Eiter et al. 2005) (see Related and Further Work for a dis-
cussion).

A queryq of form (8) (resp., (9))s satisfied at state in
a transition diagraml’, denotedl’, s |= ¢, if eithers [~ ¢,
or for some (resp., every) transitids, A, s’) of T' s’ | ¢
holds. We say thaf’ entailsa set@ of queries (denoted
TEQ),IfT,s | qforeveryg € Q and for every state in
T'. Accordingly, an action descriptiob entails@ (denoted
DEQ)T(D) E Q.
Example 1 Let us consider the light domain described in
the introduction as our running example. U@be the action
description consisting of (2), (1), and (7); atdbe the set
of two queries: possibility query (3) and the necessity guer
(4), denoted by, andg,, respectively. Figure 1 showl¥ D)
(i.e., the transition diagram ab). Then it can be easily
verified that, at staté—Light, Broken}, since there is no
transition from this state with actiofioggle, the queryy,, is
trivially satisfied whileg,, is not satisfied.

What a query describes is different from what a causal law

queries inQ, respectively, are as follows.

e Astates of T'(D) violatesa possibility query; of form (8)
inQ@,ifT(D),s - q.

e A transitiontr = (s, A, s’) of T(D) violatesa necessity
queryq of form (9) in Q (denotedir = q), if s = ¢ and

s .

Example 2 (contd) From T (D) we can identify the
following conflicts: the single state violating the
possibility query ¢, is {-Light, Broken}, and the

single transition violating the necessity query, is

({ Light, ~Broken}, { Toggle}, { Light, -~ Broken}).

Since we suppose that states of the world are correctly
described byD, we do not need to modify the static laws in
D for a repair.

A Method for Resolving Conflicts

Under the assumption above, we can resolve conflicts be-
tween an action descriptiab and a set) of queries by the
algorithm presented in Figure 2. Before we explain how this
algorithm works, let us describe the notation used in it.

For a set() of queries, we denote b, (resp. @Q,) the
set of possibility (resp. necessity) queriegJnThen

confy,(D,Q) ={(q,8) | ¢ € Qp,s€S(D), T(D),s |~ q}
confn (D, Q) = {(q,tr) | ¢ € Qn,tre R(D),tr }~ q}.

For any tripletr = (s, A,s’), wheres and s’ are states

does: action descriptions allow us to describe a transition and A is an action, and a dynamic causal law of form
diagram, based on causal explanations (what “is caused”), | = causedL if U after G, (s,A,s') |= L if either is not
whereas queries allow us to state assertions (what “holds”) applicable tar, or s’ = L.

about transition diagrams. These assertions may, e.g., be A repair itemis an expression of forrmodify, 1,1'), or
observations or axioms about the action domain. (See (Gel- (q4dd,), wherel and!’ are dynamic causal laws. i&pair is

fond & Lifschitz 1998) for a discussion on action query lan-
guages.)

Conflicts in Action Descriptions

Given an action descriptio®® and a set) of queries, we
say that there is aonflict betweenD and Q, if D [~ Q.
Our goal is to resolve these conflicts by modifying the action
description.

a set of repair items. For an action descriptidorand a re-
pair M, we denote byl (D) the action description obtained
from D by applying the modifications specified by the re-
pair items in a repaid/: (add,l) modifiesD by adding;
(modify,1,1") modifiesD by replacing! with I; all repair
items are executed in parallel, i.e.,if comprises several
modify items for the same law all corresponding modifi-
cations!’ are generated and eventually replac€he repairs

Conflicts can be characterized, from a semantic point of used by the algorithm BSOLVE(D, Q) are as follows (in

view, in terms of states and transitions “violating” some

causal laws, a statestands for\ ; ., L, and an actiom for

queries. We assume that the states of the world are correctly Axec4 X A Axeaya =X):

described by the given action description. Thus confliats ar
existing transitions (for the violation of a necessity gyer
and non-existing transitions (for the violation of a pogsib

ity query) that cause such conflicts. The idea is then to “re-

pair” an action description by a syntactic modification,fsuc

as adding, deleting, or modifying some of its causal laws,
so that the detected conflicts are resolved by adding and/or

deleting some transitions in the transition diagram.
For an action descriptioD and a setQ of queries,
the states and transitions violating possibility and nsitgs

Delete((s, A, s')) =

(add,causedFulse if ' after A A s)}
(

(

Tr,D) =
add,causedL if s’ after AAs) |
(s,A,;s"Ye Tr,Les'}
U {(modify,l,causedL if G after U A «(Tr,1)),
(modify,l,causedL if G A LafterUAAANs) |
l=causedL if G after U,le D,
(s,A,s"ye Tr, (s,A,s"y =1}

e
{
Insert
{

Algorithm RESOLVE(D, Q) : Mod, Incon

Input: An action descriptionD, and a set of querie).
Output: A repair, Mod, and a set of queriegnucon.

Mod :=0; Incon := 0;
for all (¢, tr) € conf,, (D, Q) do
Mod := Mod U Delete(tr);
D' := Mod(D); Ins :={;
for all (¢, s) € conf,(D’,Q) do
(¢ = possibly) after A if ¢)
Cands = {(s,A,s'") | s € S(D),s' =,
(s,A,58") Eq',Vq € Qn};
if (Cands # 0) then
selecttr € Cands;
Ins := Ins U {tr};
else
Incon := Incon U {q};
return Mod U Insert(Ins, D'), Incon;

Figure 2: An algorithm to resolve conflicts.

WherEa(Tr, l) = /\(s,A,S’)GTT,(S,A,S”%l ﬁ14 V —s.

In the algorithm above, first every transition violating
the necessity queries i} is removed, by adding t® the
causal lawSelete(tr). The new action descriptiod’, en-
tails @,,. Then, for each stateviolating a possibility query
q = possiblyy after Aif ¢ in Q relative toD’, a setCands
of transition candidates- (triples of form (s, A4, s’} where
s’ € S(D)) that, when added t&'(D’), would satisfyq at s
(i.e.,s’ = v) but not violate any necessity queriesir(i.e.,
tr E ¢,Yq¢ € @), is computed. If such transition can-
didates exist (i.e.Cands # (), by introducing only one of
these candidates intB(D’), the violation ofq at s is pre-
vented; otherwise no repair @ exists forQ (i.e., Incon is
not empty, and it contains the possibility queries that con-
flict with some necessity query). The setins denotes
all the transition candidates to be introduced ift@’) so
that no possibility query is violated in any state. Addihg
to T(D’) can be achieved by adding 1o’ the causal laws
Insert(Ins, D).

Theorem 1 For any repair Mod and setincon of queries
output byRESOLVE(D, Q), the following hold:

1. D |= Qiff Mod = () and Incon = 0;
2. Incon = Qiff 3D" suchthatS(D) = S(D’) and D’ E=Q;
3. if Incon = (), thenMod(D) E Q.

The selection of a transition candidate € Cands for
repairing a possibility query constitutes a choice point of

candidates thaespect inertia conditionsr computemini-
mal modificationsi.e., repairs such that the modifications to
T(D) are minimal w.r.t. addition or deletion of transitions.

Example 3 (cont'd) Stipulating preference of transition
candidates that respect inertia, the basic method restblges
conflicts as follows. First, the only transition violating
(i.e., {s1,{ Toggle},s1), wheres; = {Light,—~Broken}) is
deleted fron'(D) by adding the law:

causedFualse if Light A—Broken after
Toggle A\ Light A—Broken.

Then, to resolve conflicts with,, the only transition can-
didate respecting inertia (i.e{(s2,{ Toggle},s2)}, where
s9 ={—Light,Broken}) is introduced intd’'(D’) by replac-
ing (1) with the laws:

caused—Light if —Light A Broken after

Toggle N—Light N\ Broken,
causedBroken if —~Light A\ Broken after

Toggle N—Light A Broken,
causedLight if Light after Toggle A—Light A\ Broken,
causedLight after Toggle A\— Light A\— Broken.

We remark that algorithm BsoLVE can be implemented
to use polynomial work space, producing its output, which
is exponential in general, as a stream. After computing
ResoLvE(D,), to get a more concise description, one
may drop redundant causal laws that might have been in-
troduced (e.g., (6) wher& = Fualse), and apply some
equivalence preserving transformations (e.qg., replatvimg
lawscausedL after AAU andcausedL after AA-U with
causedL after A.) Note also, that if there exists a re-
pair for D, then there always also exists a repaift of
polynomial size. Informally speakind)’ can be obtained
by expressing all necessity queries as dynamic laws and
dispensing causality for all actions occurring in queries
(causedL if L after A, for every literal). Such a repair
is independent ofD apart from static laws and semanti-
cally it amounts to a complete transition graph w.r.t. attio
occurring in queries modulo transitions violating nedgssi
queries. Thus, it is even less appealing than solutions com-
puted by REsoLVE(D, @), which aim at making modifica-
tions as local as possible on single transitions (in order to
retain the original semantics @ as much as possible even
in case of further modifications). In most cases, however,
neither of these basic repairs will be satisfactory. Thigimo
vates the utilization of additional knowledge of certaiogr
erties for repair.

Towards User-Assisted Repairs

With the method described above we can automatically re-
pair an action descriptioD with respect to a sef) of

the algorithm, where further heuristics can be employed to queries, under the assumption that the states of the world
prune the set of repairs. We could, e.g., prefer transition are described correctly by. However, we may end up with

an action description with many causal laws, some possibly If the given set of queries is not contradictory, then she may
redundant or implausible. To get a more appealing descrip- ask:

tion most often requires respecting additional knowledge o

intuitions of thedesignerabout the action description.

Usually, this knowledge cannot be easily formalized, as

the following example illustrates:

Example 4 The designer ofD might use her knowledge
about the domain, i.e., light bulbs and switches, to infemfr
the conflict with the observation expressedjnthat the du-

D2: If D does not satisfy a particular necessity query
q in @, which dynamic causal laws iP violate ¢?

We understand violation of a query as follows:

Definition 2 A dynamic causal law € D violatesa given
necessity query, if there is a transitiontc = (s, A,s’)
in T(D) such thattc violatesg, [is applicable totc, and

ality of the toggle action has not been modeled correctly, s’ satisfies the head of

and that the conflict witly, is due to neglecting the effects
of toggling when the bulb is broken. Hence, insteadof
she might consideP’ consisting of (2), (7), and:

causedLight after Toggle A\ —Light N\ —~Broken

caused—Light after Toggle N\ Light N\ —Broken. (10)

Note that this description is more concise and plausible tha

the one generated by the basic method (see Example 3).

For (interactively) providing support to a designer repair

Once the designer finds out which causal laws violate
which queries, she may want to repair the action descrip-
tion in a way that some causal laws (e.g., the inertia laws)
are not modified at all:

D3: Can we resolve a conflict betweénand(@, with-
out modifying a sefD, of causal laws inD?

To answerD3 the following definition and proposition are
helpful.

ing an action description, we present some questions that pefinition 3 A transition diagram?” satisfiesa set D of

she may ask abo@}, D, andT'(D). Answers to these ques-

tions are obtained from useful properties of queries, actio

descriptions, and transition diagrams.

Questions about queries and causal laws. To better un-

causal laws (denoted’ = D), if, for each transitiontc =
(s, A, s")in T, for each causal lawe D, [is not applicable
to tc or ¢’ satisfies the head éf

Proposition 3 Let D be an action description, an@ be

derstand the reasons for conflicts, the designer may want to a set of queries. If there exists a transition diagrdhsuch

check the given querigg make sense with each other. Then

the question is:

D1: If Q is contradictory relative t@, which queries
in Q are contradictory?

We understand contradiction in a ggtas follows:

Definition 1 A set@ of queries iscontradictoryrelative to
an action descriptiorD, if there is no action descriptio®’
such thatS(D) = S(D’) and D’ = Q.

With an answer t®1, the designer may drop contradictory
gueries fromQ. Here are some sufficient conditions to find
these queries.

Proposition 1 A set@ of queries is contradictory relative
to D, if @ includes some query (8) such that soseS (D)
satisfiesp, but nos € S(D) satisfies).

Proposition2 A set @ of queries is contradic-
tory relative to D, if @ includes a necessity query
necessarilyy’ after A if ¢’ and a possibility query (8) such
that some state irf(D) satisfiesp A ¢/, but no state in
S(D) satisfies) A1)’

Example 5In our running example (i.e., Exam-
ple 1), if Q@ had contained the quergossibly Light A
Broken after Toggle if True then, due to Proposition 1)
would be contradictory relative tb.

thatT = D andT E Q, then there exists an action descrip-
tion D’, suchthatS(D) = S(D’), D C D’ andT = T'(D’).

With this proposition, we can answBB by checking if any
transition diagram, having stat8¢D), that satisfied, also
entailsQ.

Example 6 In our running example it is possible to repair
without modifying the inertia laws: there exists an actien d
scription containing the inertia laws and satisfying thesgi
queries (cf. Example 4).

In another scenario, the designer may suspect that the def-
inition of a particular fluent causes problems, so she may
want to know whether some particular laws have to be mod-
ified in order to obtain a repair:

D4: Do we have to modify a sdb, of dynamic causal
laws in D to resolve a conflict betweeh andQ?

For this, due to the proposition below, we can check whether
none of the transition diagrams, with the same state® as
(and thus ad),), that satisfyD, entailsQ.

Proposition 4 Let Dy be an action description, an@ be a
set of queries. If there exists an action descriptionsuch
thatS(Dy) = S(D), Dy C D andD [= @, then there exists
a transition diagranil’ such thatl’ = Dy andT = Q.

Questions about states and transitions. Alternatively,
the designer may want to extract some information from
T(D). For instance, an answer to the following question
gives information about states violating a querin Q:

T1: Which states of (D) that satisfy a given formula
¢', violateq?

Example 7 In Example 1, if we just consider states where
the lightis on (i.e.¢ = Light), then the only state at which
a query ofQ is violated is{ Light, ~ Broken}.

An answer to the following question gives information
about transitions violating a necessity quetiyn Q:

T2: Given formulasvy’ and ¢’, which transitions
(s, A, s") of T(D) such thats satisfies¢’ and s’ sat-
isfiesy)’, violateq?

With such information extracted from the transition dia-
gram, the designer might decitw to modify the action
descriptionD.

Suppose thaD does not satisfy a possibility query (8)
in Q. The designer may want to learn about possible transi-
tion candidates that, when addedltoD) by modifying the
definition of some literalL in D, might lead to a repair:

T3: Given a literalL, for every states of T'(D) such
that s satisfiesp, is there some under-specified transi-
tion candidategc = (s, A, s’) for D such thats’ satis-
fiesy A L and L is under-specified relative t@? If
there is, then what are they?

Here under-specification is understood as follows:

Definition 4 A transition candidatéc = (s, A4, s’) for D
is under-specifiedif {s'} C sat(Hp(tc)). A literal L
is under-specifiedelative to a transition candidatec, if
{L,L}y N Hp(te) = 0.

With a positive answer tar'3, the designer may try to
modify the descriptionD, for instance, by adding the law
causedL if ¢ after A A ¢.

Complexity Results

In this section, we consider computational aspects of the
problems in the previous section and report complexity re-
sults for associated decision problems, respectively- exis
tence problems.

First let us remind the following result from (Eitet al.
2005): Given an action descriptidnand a sef) of queries,
decidingD E Q isTI5-complete in general. Note that, when
@ contains the single quepossibly True after A if True,
which expresses the executability of an actidrat every
state, this result conforms with the ones reported in (Turne
2002; Lang, Lin, & Marquis 2003).

In the following, we formally state two central results and,
informally discuss how to obtain further results. The first

Table 1: Complexity results (completeness) for problems
D1-D4, T1-T3.

[Problem] D1 [D2 [D3 [D4 [T1] T2 [T3]

SPINP [15 | X8 [S5] NP | I8
Q. =0 PN o[1 [35 [Sh[om |1
Q,=0 |O(1)| NP |O(1)|O(1) | NP | NP | II}

main result is about the existence of a conflict resolution be
tween an action descriptioP and) without modifying a
subsetD, of D.

Theorem 2 Given D, @, and Dy C D, deciding if there
exists someD’, such thatS(D)=S(D’), DyCD’, and
D' E=Q, isTI5-complete.

We can showI5-hardness even fab, = (); for such D,
complexity drops only if in additiol is restricted to queries
of form (8) (to PFP—completeness, i.e., polynomial time
with parallel queries to aiNP-oracle, see, e.g., (Johnson
1990)).

The second main result is about the existence of a conflict
resolution between an action descriptibnand Q without
modifying the transition diagram described by

Theorem 3 Given D and @, deciding if there exists some
D', such thatS(D)=S(D"), D' EQ,andR(D)CR(D’),is
I15-complete.

We remark that if some repair d for @ is known to
exist, then deciding the above problentisNP-complete.

Table 1 shows complexity results for the decision prob-
lems resp. existence problems related to the questiongabov
(denotedD1-D4, resp. T1-T3) for the general case, and
when@,,=0, or Q,=0.

Deciding whether) is contradictory w.r.tD (D1) is ¥5-
complete in general. Intuitively, this is because decidirey
violation of a possibility query; is X5-complete. We have
to guess a violating state and verify, by means ofNdh
oracle, for corresponding transition candidates that they
not satisfyg. Since we can express necessity queries by dy-
namic causal laws, this source of complexity carries over to
deciding whether a set of (mixed) queri@ss contradictory.
From these observations}-completeness of the existence
version of T1 (i.e., whether such a state exists) is straight-
forward. However, ifQ,,=(), to show that) is contradictory
w.r.t. D, it is sufficient to test whether, for some query (8)
in Q,, some state satisfies but no state satisfieg. This
amounts to a Boolean combination of SAT instances, whose
evaluation is inPﬁ‘P. For Q,=0, note that a sef),, of ne-
cessity queries cannot be contradictory.

On the other hand, deciding whether a necessity query
is violated is inNP: Guess and verify in polynomial time a
transition violatingg. Thus, e.g., deciding whether a causal

law e D violatesqe@),, (i.e., D2) is NP-complete, as well agent can just add new causal laws. Some of these laws are
as the existence version o2. to “disable” some existing causal laws. In (Balduccini &
D3 is the problem considered in Theorem24 is the Gelfond 2003) and (Lifschitz 2000), the causal laws of the
complementary problem, and corresponding results have original domain description are not modified.
been discussed above. Finally, the propertyT8f fails Ongoing and future work includes an implementation of
if there exists a state satisfying ¢, such that no under- the method described above for resolving conflicts, and the
specified transition candidate = (s, A, s’) for D exists, investigation of the use of a SAT solver or an answer set
such thats’ &= 4 A L. Since for a givens, this can be solver to answer the questions discussed above (as sugigeste
checked with ailNP-oracle, failure of the property is in%. by the computational complexity results of the correspond-
ing decision problems, presented in Table 1). Furthermore,
(Eiteret al. 2005) employs a richer language for conditions,
In (Eiter et al. 2005), the authors describe a method to in which like in an extension of action query language
minimally modify an action description, when new causal (Gelfond & Lifschitz 1998), e.g., conditions on sequences
laws are added, by deleting some causal laws, so that given Of action occurrences can be expressed. However, “repair”
queries are satisfied. In the method above, we obtain an ac-©0f such conditions is not immediate (e.g., many possibili-

Related and Further Work

tion description by addlng or mod|fy|ng some causal |a.WS, tIeS eXiSt. to eliminate “t?ad” tl’aj.eCtOI‘ieS from the trarmsit
motivated by some reasons for conflicts. For some prob- diagram in general). This remains for future study.

lems, as discussed in the introduction, just dropping dausa
laws as in (Eiteret al. 2005) does not lead to a solution,
whereas our method above does.

Similar to (Eiteret al. 2005), (Sakama & Inoue 2003)

Acknowledgments

We thank anonymous referees for comments and sugges-
tions on a draft of this paper. This work is supported by

discusses how to minimally update a logic program syntac- the Austrian Science Fund (FWF) grant P16536-N04.

tically so that given observations are satisfied. A seman-
tical approach to updating a logic program by changes to
Kripke structures (which are related to transition diagsam

is given in (Sefanek 2000), but no conditions are consid-
ered. In (Zhang, Foo, & Wang 2005) the authors describe
how to resolve conflicts between a logic program and a set
of constraints by “forgetting” some atoms in the program;
in (Zhang & Foo 2005), they describe how logic programs
can be updated following this approach.

That an action description can be transformed into a
logic program (resp. a propositional theory) (Lifschitz &
Turner 1999) might suggest applying update approaches for
logic programming mentioned above (resp. for proposi-
tional logic (Winslett 1990; Katsuno & Mendelzon 1991)),
when applicable (there is no given condition, the action de-
scription is inconsistent, etc.), and then obtaining afoact
description from the respective output. However, suctstran
formations (to and from action descriptions) may lose infor
mation about the causal structure of the action domain and
yield large and unintuitive action descriptions. In our tor
we aim at preserving the causal structure, and keeping the
action description intuitive and concise.

In (Balduccini & Gelfond 2003), the authors extend an
action description, encoded as a logic program, with “con-
sistency restoring” rules, so that when the action desoript
and given observations are incompatible, these rules can be
“applied” to get some consistent answer set. This, however,
is more geared towards handling exceptions. Lifschitz de-
scribes in (Lifschitz 2000) an action domain in languége
such that every causal law is defeasible (by means of an ab-
normality predicate). Then, to formulate some other varia-
tions of the domain (e.g., to satisfy some observations), th

References

Balduccini, M., and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. Working notes of AAAI
Spring Symposiun®-18.

Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2005. Up-
dating action domain descriptions. Rroceedings of the
19th International Joint Conference on Atrtificial Intelli-
gence(IJCAI-05), 418-423.

Gelfond, M., and Lifschitz, V. 1998. Action lan-
guages.Electronic Transactions on Atrtificial Intelligence
3(16):195-210.

Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
Proceedings of the 15th National Conference on Atrtificial
Intelligence(AAAI-98, 623-630. AAAI Press.

Johnson, D. S. 1990. A catalog of complexity classes. In
van Leeuwen, J., eddandbook of Theoretical Computer
Sciencevolume A. MIT Press, Cambridge, MA. chapter 2,
67-161.

Katsuno, H., and Mendelzon, A. O. 1991. On the differ-
ence between updating a knowledge base and revising it.
In Proc. KR 387-394.

Lang, J.; Lin, F.; and Marquis, P. 2003. Causal theories
of action: A computational core. IRroc. of IJCA| 1073—
1078.

Lifschitz, V., and Turner, H. 1999. Representing transitio
systems by logic programs. Proc. LPNMR 92-106.
Lifschitz, V. 2000. Missionaries and cannibals in the chusa
calculator. InPrinciples of Knowledge Representation and

Reasoning: Proceedings of the 7th International Confer-
ence 85-96.

Sakama, C., and Inoue, K. 2003. An abductive framework
for computing knowledge base updat&ieory and Prac-
tice of Logic Programmin@(6):671-713.

Sefranek, J. 2000. A Kripkean semantics for dynamic logic
programming. IfiProceedings of the 7th International Con-
ference on Logic for Programming and Automated Reason-
ing (LPAR 2000, volume 1955 of_ecture Notes in Com-
puter Science469-486. Springer.

Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. IrProc. of Eighth European Conf.
on Logics in Artificial Intelligence (JELIA'020111-124.

Winslett, M. 1990. Updating Logical DatabasesCam-
bridge University Press.

Zhang, Y., and Foo, N. 2005. A unified framework for
representing logic program updates.Aroceedings of the
20th National Conference on Atrtificial Intelligence and the
17th Innovative Applications of Atrtificial Intelligence &0
ference(AAAI-05, 707-713. AAAI Press.

Zhang, Y.; Foo, N.; and Wang, K. 2005. Solving logic
program conflicts through strong and weak forgettings. In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence(1JCAI-05), 627—-632.

