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Abstract. Multi-context systems are a formalism to interlink decen-
tralized and heterogeneous knowledge based systems (contexts), which
interact via (possibly nonmonotonic) bridge rules. Inconsistency is a
major problem, as it renders such systems useless. In addition, it is likely
that complete knowledge about all system parts is unavailable and cannot
be obtained, for instance in applications where confidentiality or trust
are prohibitive. We therefore aim at explaining reasons for inconsistency
in multi-context systems without having an omniscient view of the whole
system. To this end we propose a representation for partial knowledge
about contexts, and define over- and underapproximations for existing no-
tions characterizing inconsistency in multi-context systems. Furthermore,
we discuss query selection strategies for improving approximations in
situations where a limited number of queries can be posed to a partially
known context.

1 Introduction

In recent years, there has been an increasing interest in interlinking knowledge
bases, in order to enhance the capabilities of systems. Based on McCarthy’s idea
of contextual reasoning [1], the Trento School around Giunchiglia and Serafini has
developed multi-context systems in many works, in which the components (called
contexts) can be interlinked via so called bridge rules for information exchange,
cf. [2, 3]. Generalizing this work, Brewka and Eiter [4] presented nonmonotonic
multi-context systems (MCSs) as a generic framework for interlinking possibly
heterogeneous and nonmonotonic knowledge bases.

Typically, an MCS is not built from scratch, but assembled from compo-
nents which were not specifically designed to be part of a more complex system.
Unintended interactions between contexts thus may easily arise and cause incon-
sistency, which renders an MCS useless.

To make bridge rules defeasible, similarly as in [5], may help to avoid inconsis-
tency; this cures faults in silent service, but underlying reasons for inconsistency

? This work was supported by the Vienna Science and Technology Fund (WWTF)
under grant ICT08-020.



2 Thomas Eiter, Michael Fink, and Peter Schüller

may remain unnoticed. Therefore, to help the user analyze, understand and
eventually repair inconsistencies, suitable notions of consistency-based diagno-
sis and entailment-based explanation for inconsistency were introduced in [6].
However, an omniscient view of the system was assumed, where the user has full
information about all contexts including their knowledge bases and semantics. In
real world scenarios, full information may not be available [7]; a context may be
a black box with hidden internal knowledge base and semantics, which are not
disclosed (e.g., due to intellectual property or privacy issues). Partial behavior
of such contexts may be known, however querying the contexts might be limited,
e.g., by contracts or costs. This calls for explaining inconsistency in an MCS
with partial knowledge about contexts, which raises the following issues:

– how to represent partial knowledge about the system, and
– how to obtain reasonable approximations for explanations of inconsistency

in the actual system (under full knowledge), ideally in an efficient way.

The first issue depends on the nature of this knowledge, and a range of possibili-
ties exists. The second issue requires an assessment method to determine such
approximations. We tackle these issues and make the following contributions.

• We develop a representation of partially known contexts, which is based on
context abstraction with Boolean functions. Partially defined Boolean functions
[8, 9] are then used to capture partially known behavior of a context for specific
inputs.
• We exploit these representations to determine over- and underapproximations
of diagnoses and explanations for inconsistency according to [6] in the presence
of partially known contexts. The approximations target either the whole set of
diagnoses, or one diagnosis at a time; analogously for explanations.
• For scenarios where partially known contexts can be asked a limited number
of queries, we consider query selection strategies.
• Finally, we briefly discuss computational complexity. In contrast to semantic
approximations for efficient evaluation, our approximations provide methods for
handling incompleteness, which usually increase complexity. However, they do
not incur higher computational cost than in the case of full information.

Our results extend methods for inconsistency handling in MCSs to more realistic
settings. This allows to identify reasons for inconsistency even if it is impossible
to obtain full system knowledge, without increasing computational cost.

2 Preliminaries

A heterogeneous nonmonotonic MCS [4] consists of contexts, each composed of a
knowledge base with an underlying logic, and a set of bridge rules

A logic L = (KBL,BSL,ACCL) is an abstraction, which allows to capture
many monotonic and nonmonotonic logics, e.g., classical logic, description logics,
default logics, etc. It consists of the following components:
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– KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set of “formulas”.

– BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.
– ACCL : KBL → 2BSL is a function describing the semantics of the logic by

assigning to each knowledge base a set of acceptable belief sets.

Each context has its own logic, which allows to model heterogeneous systems.
A bridge rule models information flow between contexts: it can add information

to a context, depending on the belief sets accepted at other contexts. Let L =
(L1, . . . , Ln) be a tuple of logics. An Lk-bridge rule r over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci
, and k refers to the

context receiving formula s. We denote by hd (r) the formula s in the head of r.

Definition 1. A multi-context system M = (C1, . . . , Cn) is a collection of con-
texts Ci = (Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic,
kbi ∈ KBi a knowledge base, and bri is a set of Li-bridge rules over (L1, . . . , Ln).
By IN i = {hd (r) | r ∈ bri} we denote the set of possible inputs of context Ci

added by bridge rules, and by brM =
⋃n

i=1 br i the set of all bridge rules of M .

In addition, for each H ⊆ IN i we must have kbi ∪H ∈ KBLi
.

The following running example involves policies and trust information which
are often non-public and distributed [7], and thus demonstrates the necessity of
reasoning under incomplete information. For more examples of MCSs see [4, 6].

Example 1. Consider an MCS M consisting of a permission database C1 = Cperm

and a credit card clearing context C2 = Ccc, and the following bridge rules:

r1 : (perm : person(Person)) ← >.
r2 : (cc : card(CreditCard)) ← (perm : person(Person)),

not (perm : grant(Person)),
(perm : ccard(Person,CreditCard)).

r3 : (perm : ccValid(CreditCard))← (cc : valid(CreditCard)).

Here r1 defines a set of persons which is relevant for permission evaluation in
Cperm; r2 specifies, that if some person is not granted access, credit cards of that
person have to be validated; and r3 translates validation results to Cperm.

The MCS formalism is defined on ground bridge rules, which are in the
following denoted by ri,<constants>, e.g., r2,moe,cnr2 denotes r2 with Person 7→
moe and CreditCard 7→ cnr2 . Unless stated otherwise, we assume that bridge
rules are grounded with Person ∈ {nina,moe} and CreditCard ∈ {cnr1 , cnr2}.

We next describe the context internals: Cperm is a datalog program with
the following logic: KBperm contains all syntactically correct datalog programs,
BSperm contains all possible answer sets, and ACCperm returns for each datalog
program the corresponding answer sets. The knowledge base kbperm is as follows:
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group(nina, vip). ccard(nina, cnr1 ). ccard(moe, cnr2 ).
igrant(Person) ← person(Person), group(Person, vip).
grant(Person) ← igrant(Person).
grant(Person) ← ccValid(CreditCard), ccard(Person,CreditCard).

Context Ccc is a credit card clearing facility, which typically is neither fully dis-
closed to the operator, nor can it be queried without significant cost. Ccc accepts
valid(CreditCard) for valid cards that are present as atoms card(CreditCard).
We only know the behavior of Ccc for empty input: ACCcc(kbcc) = {∅}. ¤

Equilibrium semantics selects certain belief states of an MCS M = (C1, . . . , Cn)
as acceptable. A belief state is a sequence S = (S1, . . . , Sn), s.t. Si ∈BSi. A bridge
rule (1) is applicable in S iff for 1≤ i≤ j: pi ∈ Sci and for j < l ≤m: pl /∈ Scl

. Let
app(R,S) denote the set of bridge rules in R that are applicable in belief state S.

Intuitively, an equilibrium is a belief state S, where each context Ci takes
into account the heads of all bridge rules that are applicable in S, and accepts Si.

Definition 2. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for 1 ≤
i ≤ n, the following condition holds: Si ∈ ACCi(kbi ∪{hd (r) | r ∈ app(bri, S)}).
By EQ(M) we denote the set of equilibria of M .

Example 2 (ctd). Assume that M1 is the MCS M with just person(nina) present
at Cperm. As nina is in the vip group there is no need to verify a credit card,
and M1 has the following equilibrium (we omit facts, that are present in kbperm):
({person(nina), igrant(nina), grant(nina)}, ∅). ¤

Inconsistency in an MCS is the lack of an equilibrium. No information can be
obtained from an inconsistent MCS. Therefore we analyze inconsistency in order
to explain and eventually repair it.
Explanation of Inconsistency. We use the notions of consistency-based diag-
nosis and entailment-based inconsistency explanation in MCSs [6], which aim at
describing inconsistency by sets of involved bridge rules.

Given an MCS M and a set R of bridge rules, by M [R] we denote the MCS
obtained from M by replacing its set of bridge rules brM with R (in particular,
M [brM ] = M and M [∅] is M with no bridge rules). By M |= ⊥ we denote that
M is inconsistent, i.e., EQ(M) = ∅, and by M 6|= ⊥ the opposite. For any set of
bridge rules A, heads(A) = {α← | α←β ∈ A} are the rules in A in unconditional
form. For pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset
relation A ⊆ B holds iff A1 ⊆ B1 and A2 ⊆ B2. We denote by S|A the projection
of all sets X in set S to set A, formally S|A = {X ∩A | X ∈ S}.

Definition 3. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆
brM , s.t. M [brM \D1 ∪ heads(D2)] 6|= ⊥. D±(M) is the set of all such diagnoses.
D±

m(M) is the set of all pointwise subset-minimal diagnoses of an MCS M .

A diagnosis points out bridge rules which need to be modified to restore consis-
tency; each rule can either be deactivated, or added unconditionally. We assume
that context knowledge bases are consistent if no bridge rule heads are added, so
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restoring consistency is always possible. For more background and discussion of
this notion, we refer to [6]. We next give an example of an inconsistent MCS
and its diagnoses.

Example 3 (ctd). Let M2 be the MCS M with just person(moe) present at Cperm,
and assume the following full knowledge about Ccc: all credit cards are valid.

M2 is inconsistent: moe is not in the vip group, card verification is required by
r2,moe,cnr2 , and Ccc accepts valid(cnr2 ). This allows Cperm to derive grant(moe),
which blocks applicability of r2,moe,cnr2 . Therefore, M2 contains an unstable cycle
and is inconsistent.

Two ⊆-minimal diagnoses of M2 are then as follows: ({r2,moe,cnr2}, ∅) (do
not validate cnr2 ), and (∅, {r2,moe,cnr2}) (always validate cnr2 ).1 This points
out r2 as a likely culprit of inconsistency. Indeed, r2 should intuitively contain
igrant(Person) in its body instead of grant(Person). ¤

In this work we develop an approach which is able to point out a problem in r2,
without requiring complete knowledge.

3 Information Hiding

In this section, we introduce an abstraction of contexts which allows to calculate
diagnoses and explanations. We generalize this abstraction to represent partial
knowledge, i.e., contexts Ci, where either kbi, or ACCi is only partially known.
Context Abstraction. We abstract from a context’s knowledge base kbi and
logic Li by a Boolean function over the context’s inputs IN i (see Definition 1)
and over the context’s output beliefs OUT i, which are those beliefs p in BSi that
occur in some bridge rule body in brM as “(i:p)” or as “not (i:p)” (see also [6]).

Recall that a Boolean function (BF) is a map f : Bk → B where k ∈ N
and B = {0, 1}. Such a BF can also be characterized either by its true points
T (f) = {~x | f(~x) = 1}, or by its false points F (f) = {~x | f(~x) = 0}.

Given a set X ⊆U = {u1, . . . , uk}, we denote by ~xU the characteristic vector
of X wrt. U (i.e. ~xU =(b1, . . . , bk), where bi =1 if ui ∈X, 0 otherwise). If
understood, we omit U . Using this notation we characterize sets of bridge rule
heads I ⊆ IN i and sets of output beliefs O ⊆ OUT i by vectors ~iIN i

and ~oOUT i
,

respectively. For example, given O = {a, c}, and OUT i = {a, b, c}, we have
~o = (1, 0, 1).

Example 4 (ctd). We use the following (ordered) sets for inputs and output beliefs:
IN cc = {card(cnr1 ), card(cnr2 )}, and OUT cc = {valid(cnr1 ), valid(cnr2 )}. ¤

Definition 4. The unique BF fCi : B|IN i|+|OUT i| → B corresponds to the
semantics of context Ci in an MCS M as follows:

∀I ⊆ IN i, O ⊆ OUT i : fCi(~i, ~o) = 1 iff O ∈ ACCi(kbi ∪ I)
∣∣
OUT i

.

Example 5 (ctd). With full knowledge (see Example 3), Ccc has as corresponding
BF the function fCcc(X, Y, X, Y ) = 1 for all X, Y ∈ B, 0 otherwise. ¤

1 Other ⊆-minimal diagnoses of M2 are ({r1,moe}, ∅), ({r3,cnr2}, ∅), and (∅, {r3,cnr2}).
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If a context accepts a belief set O′ for a given input I, we obtain the true point
(~i, ~o) of f with O = O′ ∩OUT i. Similarly, each non-accepted belief set yields a
false point of f . Due to projection, different accepted belief sets can characterize
the same true point.
Consistency Checking. Context abstraction provides sufficient information to
calculate output-projected equilibria of the given MCS. Hence, it also allows for
checking consistency and calculating diagnoses and explanations.

Given a belief state S = (S1, . . . , Sn) in MCS M , the output-projected belief
state S′ = (S′1, . . . , S

′
n), S′i = Si ∩OUT i, 1 ≤ i ≤ n, is the projection of S to the

output beliefs of M . In the following, we implicitly use the prime “ ′ ” to denote
output-projection.

Definition 5 (see also [6]). An output-projected belief state S′ = (S′1, . . . , S
′
n)

of an MCS M is an output-projected equilibrium iff, for 1 ≤ i ≤ n, it holds that
S′i ∈ ACCi(kbi ∪ {hd (r) | r ∈ app(bri, S

′)})
∣∣
OUT i

.
By EQ′(M) we denote the set of output-projected equilibria of M .

Since app(br i, S) = app(br i, S
′), a simple consequence is:

Lemma 1 ([6]). For each equilibrium S of an MCS M , S′ is an output-projected
equilibrium; conversely, for each output-projected equilibrium S′ of M there exists
at least one equilibrium T of M such that T ′ = S′.

Checking consistency is therefore possible using output-projected equilibria
only. The representation of a context by a BF provides an input/output oracle,
projected to output beliefs. As only output beliefs are relevant for bridge rule
applicability, the BF is sufficient for calculating output-projected equilibria, and
due to Lemma 1 also for checking consistency.

An MCS where a context is represented by a BF f is denoted as follows.

Definition 6. Given MCS M = (C1, . . . , Cn), BF f and index 1 ≤ i ≤ n. We
denote by M [i/f ] the MCS M where context Ci is replaced by a context C(f)
which contains the set br i of bridge rules, a logic with a signature that contains
INi ∪OUTi, and kbC(f) and ACCC(f), such that fC(f) = fCi .

For instance, C(f) could be based on classical logic or logic programming, with
kbC(f) over IN ∪OUT as atoms encoding f by clauses (rules) that realize the
correspondence.

We now show that a BF representation of a context is sufficient for calculating
output-projected equilibria. We denote by M [i1, . . . , ik/f1, . . . , fk] the substitu-
tion of pairwise distinct contexts Ci1 , . . . , Cik

by C(f1), . . . , C(fk), respectively.

Theorem 1. Let M = (C1, . . . , Cn) be an MCS, and let fi1 , . . . , fik
be BFs that

correspond to Ci1 , . . . , Cik
. Then, EQ′(M) = EQ′(M [i1, . . . , ik/fi1 , . . . , fik

]).

Proof (sketch). Let M? = M [i1, . . . , ik/fi1 , . . . , fik
]. By construction M? =

(C?
1 , . . . , C?

n), such that Ci = C?
i for non-substituted contexts, and br i = br?

i for
1 ≤ i ≤ n. The latter also implies IN i = IN ?

i and OUT i = OUT ?
i , for 1 ≤ i ≤ n.
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By Definition 5, EQ′(M) = EQ′(M?) if the following condition (i) holds: for each
pair (Ci = ((KBi,BSi,ACCi), kbi, br i), C?

i = ((KB?
i ,BS?

i ,ACC?
i ), kb

?
i , br

?
i )

of contexts, and for all H ⊆ IN i: ACCi(kbi ∪H)|OUT i = ACC?
i (kb

?
i ∪H)|OUT i .

This trivially holds for non-substituted contexts. So let C?
i = C(fi) be an ar-

bitrary substituted context. By construction it holds that fC?
i = fi. Furthermore,

each fi corresponds to its respective Ci, so fi = fCi . Thus, fC?
i = fCi . Since

fCi is defined in a 1–1 relationship to ACCi(kbi ∪H)|OUT i
for all H ⊆ IN i (see

Definition 4), we obtain that (i) holds for all substituted contexts. ¤

Partially Known Contexts. As the BF representation concerns only output
beliefs, by simply using this abstraction we already hide a part of the context, while
we are still able to analyze inconsistency. Now we generalize the BF representation
to partially defined Boolean functions (pdBFs) (cf. [8, 9]), to represent contexts
where we have only partial knowledge about their output-projected behavior.

In applications, existence of such partial knowledge is realistic: for some
bridge rule firings one may know an accepted belief set of a context, but not
whether other accepted belief sets exist. Similarly one may know that a context is
inconsistent for some input combination, but not whether it accepts some belief
set for other input combinations.

Formally, a pdBF pf is a function from Bk to B ∪ {?}, where ? stands for
undefined (cf. [8]). It is equivalently characterized by two sets [9]: its true points
T (pf ) = {~x | pf (~x) = 1} and its false points F (pf ) = {~x | pf (~x) = 0}. We denote
by U(pf ) = {~x | pf (~x) = ?} the unknown points of pf . A BF f is an extension
of a pdBF pf , formally pf ≤ f , iff T (pf )⊆T (f) and F (pf )⊆F (f).

We connect partial knowledge of context semantics and pdBFs as follows.

Definition 7. A pdBF pf : Bk → B ∪ {?} is compatible with a context Ci in an
MCS M iff pf ≤ fCi (where fCi is as in Definition 4).

Therefore, if a pdBF is compatible with a context, one extension of this pdBF is
exactly fCi , which corresponds to the context’s exact semantics.

Example 6 (ctd). Partial knowledge as given in Example 1 can be expressed by
the pdBF pf cc with T (pf cc) = {(0, 0, 0, 0)} and F (pf cc) = {(0, 0, A,B) | A, B ∈
B, (A, B) 6= (0, 0)}. (See Example 4 for the variable ordering.) ¤

In the following, a partially known MCS (M, i, pf ) consists of an MCS M , where
context Ci is partially known, given by pdBF pf which is compatible with Ci.

4 Approximations

In this section, we develop a method for calculating under- and overapproxima-
tions of diagnoses and explanations, using the pdBF representation for a partially
known context Ci. For simplicity, we only consider the case that a single context
in the system is partially known (the generalization is straightforward).
Diagnoses. Each diagnosis is defined in terms of consistency, which is witnessed
by an output-projected equilibrium. Such an equilibrium requires a certain set
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of output beliefs O to be accepted by the context Ci, in the presence of certain
bridge rule heads I. This means that fCi

has true point (~i, ~o). For existence of
an equilibrium where Ci gets I as input and accepts O, no more information is
required from fCi than this single true point.

We can approximate the set of diagnoses of M as follows:

• Completing pf with false points, we obtain the extension pf with T (pf ) = T (pf ).
The set of diagnoses witnessed by T (pf ) contains a subset of the diagnoses which
actually occur in M , therefore we obtain an underapproximation.
• Completing pf with true points, we obtain the extension pf which contains the
largest set of true points in an extension of pf . The set of diagnoses witnessed by
this extension contains a superset of the diagnoses which actually occur in M ,
providing an overapproximation. Formally,

Theorem 2. Given a partially known MCS (M, i, pf ), the following holds:

D±(M [i/pf ]) ⊆ D±(M) ⊆ D±(M [i/pf ]).

Proof (sketch). D±(M [i/pf ]) ⊆ D±(M) is proved as follows: each diagnosis
(D1, D2) ∈ D±(M [i/pf ]) induces a consistent MCS M? by removing bridge rules
D1 and making bridge rules D2 unconditional. Since (D1, D2) is a diagnosis, M?

has at least one witnessing output-projected equilibrium S′. At context Ci, S′

contains a certain set of output beliefs O = S′i, furthermore the set of active
bridge rule heads at Ci is I = app(br i, S

′).
Because S′ is an output-projected equilibrium, we have that O ∈ ACCi(kbi∪

I)|OUT i , so pf has a true point at (~i, ~o). Since pf is compatible with Ci, some
extension of pf is equal to fCi . Moreover, every true point of pf is a true point
of pf , therefore every true point of pf is a true point of fCi . Consequently, Ci

accepts some S for input I where O = S ∩OUT i, which proves that (D1, D2) is
a diagnosis of M .

D±(M) ⊆ D±(M [i/pf ]) is proved similarly: no true point of fCi is a false
point of pf , and thus neither of pf . Consequently, all true points of fCi are true
points of pf . Hence, all accepted input–output “behaviors” of context Ci are
accepted in the overapproximation, and therefore each diagnosis in D±(M) is in
D±(M [i/pf ]), as well. ¤

Example 7 (ctd). The extensions pf cc and pf
cc

are as follows:

T (pf cc) = B4 \ F (pf cc), F (pf cc) = F (pf cc),

T (pf
cc

) = T (pf cc), and F (pf
cc

) = B4 \ T (pf cc).

The underapproximation D±(M2[cc/pf cc
]) yields several diagnoses, e.g., Dα =

({r1,moe}, ∅), Dβ = ({r2,moe,cnr2}, ∅), and Dγ = (∅, {r3,cnr2}).
The overapproximation D±(M2[cc/pf cc]) contains the empty diagnosis Dδ =

(∅, ∅), because M2[cc/pf cc] is consistent; it has the following two equilibria:
({person(moe)}, ∅) and ({person(moe)}, {valid(cnr1 )}). ¤
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Subset-minimality. If we approximate ⊆-minimal diagnoses, the situation is
different. Obtaining additional diagnoses may cause approximated minimal
diagnoses to become smaller. Missing certain diagnoses can make approximated
minimal diagnoses larger.

Therefore, the following holds for ⊆-minimal diagnosis approximations.

Theorem 3. Given a partially known MCS (M, i, pf ), the following hold:

∀D ∈ D±
m(M [i/pf ]) ∃D′ ∈ D±

m(M) : D′ ⊆ D (2)

∀D ∈ D±
m(M) ∃D′ ∈ D±

m(M [i/pf ]) : D′ ⊆ D (3)

D±
m(M [i/pf ])∩D±

m(M [i/pf ])⊆D±
m(M) (4)

Proof (sketch). (2) For a diagnosis D ∈ D±
m(M [i/pf ]) by definition of D±

m we
know that D ∈ D±(M [i/pf ]). From Theorem 2 we infer that D ∈ D±(M). If D
is ⊆-minimal in D±(M), then (2) follows for D′ = D, otherwise there exists a
D′ ∈ D±

m(M), such that D′ ⊆ D, which also implies (2).
(3) This is proved by analogous arguments.
(4) D ∈ D±

m(M [i/pf ]) implies D ∈ D±(M). From D ∈ D±
m(M [i/pf ]), we

infer that there is no D′ ⊆ D such that D′ ∈ D±(M [i/pf ]). Since D±(M) ⊆
D±(M [i/pf ]), it follows that there is no D′ ⊆ D such that D′ ∈ D±(M). Taking
into account that D ∈ D±(M), this proves D ∈ D±

m(M). ¤

Example 8 (ctd). Note that the diagnoses in Example 7 are in fact the ⊆-
minimal diagnoses of the under- and overapproximation, and that they are
actual ⊆-minimal diagnoses. Under complete knowledge (see Example 3), there
are additional ⊆-diagnoses which are not members of the underapproximation.

The overapproximation, on the other hand, yields a consistent system and
therefore an empty ⊆-minimal diagnosis Dδ. In Section 5 we develop a strategy
for improving this approximation if limited querying of the context is possible. ¤

We can use the overapproximation to reason about the necessity of bridge
rules in actual diagnoses: a necessary bridge rule is present in all diagnoses.2

Definition 8. For a set of diagnoses D, the set of necessary bridge rules is
nec(D) = {r | ∀(D1, D2) ∈ D : r ∈ D1 ∪D2}.

Proposition 1. Given a partially known MCS (M, i, pf ), the set of necessary
bridge rules for the overapproximation is necessary in the actual set of diagnoses.
This is true for both arbitrary and ⊆-minimal diagnoses:

nec(D±(M [i/pf ])) ⊆ nec(D±(M)), and nec(D±
m(M [i/pf ])) ⊆ nec(D±

m(M)).

Proof (sketch). We first prove nec(D±(M [i/pf ])) ⊆ nec(D±(M)): from The-
orem 2 we conclude that D±(M) ⊆ D±(M [i/pf ]). Thus, if a bridge rule is
contained in all diagnoses of the latter set, it must also be contained in all
diagnoses of the former.
2 Note that we do not consider the dual notion of relevance, as it is trivial in our

definition of diagnosis: all bridge rules are relevant in any D±(M).
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Next, we prove nec(D±
m(M [i/pf ])) ⊆ nec(D±

m(M)): towards a contradic-
tion assume r ∈ nec(D±

m(M [i/pf ])) and r 6∈ nec(D±
m(M)). Then, there exists

D = (D1, D2), D ∈ D±
m(M), such that r 6∈ D1 ∪ D2. By Theorem 3 (3), we

conclude that there exists D′ = (D′
1, D

′
2), D′ ∈ D±

m(M [i/pf ]), such that D′ ⊆ D.
Consequently, r 6∈ D′

1 ∪D′
2, a contradiction to r ∈ nec(D±

m(M [i/pf ])). ¤

While simple, this property is useful in practice: in a repair of an MCS according
to a diagnosis, necessary bridge rules need to be fixed in any case.
Inconsistency explanations. So far we have only described approximations for
diagnoses. Inconsistency explanations are a dual notion; they allow to separate
independent sources of inconsistency. We first recall the definition from [6].

Definition 9. Given an MCS M , an inconsistency explanation of M is a pair
(E1, E2) s.t. for all (R1, R2) where E1 ⊆ R1 ⊆ brM and R2 ⊆ brM \ E2, it holds
that M [R1 ∪ heads(R2)] |= ⊥. By E±(M) we denote the set of all inconsistency
explanations of M , and by E±

m(M) the set of all pointwise subset-minimal ones.

An inconsistency explanation (in short ‘explanation’) points out bridge rules E1

which suffice to ensure inconsistency, and bridge rules E2 which must not be
added unconditionally to sustain inconsistency.

Example 9. With complete knowledge as in Example 3, there is one ⊆-minimal
explanation: ({r1,moe , r2,moe,cnr2 , r3,cnr2}, {r2,moe,cnr2 , r3,cnr2}). ¤

Explanations are defined in terms of non-existing equilibria, therefore we can use
witnessing equilibria as counterexamples. From the definitions we get:

Proposition 2. For a given MCS M and a pair (D1, D2) ⊆ brM × brM of sets
of bridge rules, the following statements are equivalent:

(i) (D1, D2) is a diagnosis, i.e., (D1, D2) ∈ D±(M),
(ii) M [brM \D1 ∪ heads(D2)] has an equilibrium, and
(iii) (R1, R2) = (brM \D1, D2) is a counterexample for all explanation candidates

(E1, E2) ⊆ (brM \D1, brM \D2).

Furthermore, such pairs (D1, D2) characterize all counterexamples that can exist
for explanation candidates.

Proof (sketch). Equivalence of (i) and (ii) is a straightforward consequence of
Definition 3.

Equivalence of (ii) and (iii) follows from Definition 9. Suppose (ii) holds, and
towards a contradiction assume that (E1, E2) ⊆ (brM \D1, brM \D2) exists, such
that (E1, E2) ∈ E±(M). Let R1 = brM \D1 and R2 = D2. Then, E1 ⊆ R1 ⊆ brM

and R2 ⊆ brM \ E2, and by Definition 9 it holds that M [R1 ∪ heads(R2)] |= ⊥.
This contradicts (ii) since M [R1 ∪ heads(R2)] = M [(brM \D1)∪ heads(D2)], and
by assumption the latter has an equilibrium. Therefore, (ii) implies (iii). On the
other hand, (iii) implies that M [R1 ∪ heads(R2)] has an equilibrium, i.e., that
M [(brM \D1) ∪ heads(D2)] has an equlibrium, proving (iii) implies (ii). ¤

As a consequence, it is possible to characterize explanations in terms of diagnoses.
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Lemma 2. Given an MCS M , a pair (E1, E2) with E1, E2 ⊆ brM is an incon-
sistency explanation of M iff there exists no diagnosis (D1, D2) ∈ D±(M) such
that (D1, D2) ⊆ (brM \ E1, brM \ E2).

Proof (sketch). The only-if direction is a direct consequence of Definition 9. For
the if direction suppose that there does not exist (D1, D2) ∈ D±(M) such that
(D1, D2) ⊆ (brM \ E1, brM \ E2), and assume that (R1, R2) is a counterexample
for (E1, E2) ∈ E±(M). Then, (brM \R1, R2) ∈ D±(M), a contradiction to our
assumption since brM \R1 ⊆ brM \ E1 and R2 ⊆ brM \ E2. ¤

In fact we can sharpen the above by replacing D± with D±
m.

Using this characterization, we can infer the following: a subset of the actual
set of diagnoses characterizes a superset of the actual set of explanations. This is
true since a subset of diagnoses will rule out a subset of explanations, allowing
more candidates to become explanations. Conversely, a superset of diagnoses
characterizes a subset of the explanations. Applying Theorem 2, we obtain:

Theorem 4. Given a partially known MCS (M, i, pf ), the following hold:

E±(M [i/pf ]) ⊆ E±(M) ⊆ E±(M [i/pf ])

∀E ∈ E±
m(M [i/pf ]) ∃E′ ∈ E±

m(M) : E′ ⊆ E

∀E ∈ E±
m(M) ∃E′ ∈ E±

m(M [i/pf ]) : E′ ⊆ E

Proof (sketch). By the characterization of explanations in terms of counterex-
amples, this theorem follows from Theorems 2 and 3 and from Lemma 2 by the
following set theoretic argument: if a family of counterexamples characterizes a
family of sets by ⊆-inclusion (as in Lemma 2), a larger family of counterexamples
characterizes a smaller family of sets and vice versa. ¤

Therefore, the extensions pf and pf allow to underapproximate and overapproxi-
mate diagnoses as well as inconsistency explanations.

Example 10 (ctd). From pf
cc

as in Example 7 we obtain one ⊆-minimal explana-
tion: Eµ = ({r1,moe , r2,moe,cnr2}, {r3,cnr2}). This explanation is a subset of the
actual minimal explanation in Example 9. ¤

5 Limited Querying

Up to now we used existing partial knowledge to approximate diagnoses, assuming
that more information is simply not available. However, in practical scenarios like
our running example, one can imagine that a (small) limited number of queries
to a partially known context can be issued. Therefore we next aim at identifying
queries to contexts, such that incorporating their answers into the pdBF will
yield the best guarantee of improvement in approximation accuracy.

Given a partially known MCS (M, i, pf ), let D±
∆(M, i, pf ) = D±(M [i/pf ]) \

D±(M [i/pf ]) (in short: D±
∆(pf ) or D±

∆) be the set of potential diagnoses, which are
possible from the overapproximation but unconfirmed by the underapproximation.



12 Thomas Eiter, Michael Fink, and Peter Schüller

A large set of potential diagnoses provides less information than a smaller set.
Therefore we aim at identifying unknown points of pf which remove from D±

∆ as
many potential diagnoses as possible. To this end we introduce the concept of a
witness, which is an unknown point together with a potential diagnosis that is
supported by this point if it is a true point.

Definition 10. Given a partially known MCS (M, i, pf ), a witness is a pair
(~x, D) s.t. ~x ∈ U(pf ) and D ∈ D±(M [i/f~x]) ∩D±

∆, where f~x is the BF with the
single true point T (f~x) = {~x}. We denote by W(M,i,pf ) the set of all witnesses
wrt. (M, i, pf ). If clear from the context, we omit subscript (M, i, pf ).

Based on W we define the set wnd(~x) = {D | (~x, D) ∈ W} of potential
diagnoses witnessed by unknown point ~x, and the set ewnd(~x) = {D ∈ wnd(~x) |
@~x

′ 6= ~x : (~x′, D) ∈W} of potential diagnoses exclusively witnessed by ~x. These
sets are used to investigate how much the set of potential diagnoses is reduced
when adding information about the value of an unknown point ~x to pf .

Lemma 3. Given a partially known MCS (M, i, pf ), and ~x ∈ U(pf ), let pf ~x:0

(pf ~x:1) the pdBF that results from pf by making ~x a false (true) point. Then
D±

∆(pf ~x:1) = D±
∆(pf ) \ wnd(~x), and D±

∆(pf ~x:0) = D±
∆(pf ) \ ewnd(~x).

Note that ewnd(~x) ⊆ wnd(~x) ⊆ D±
∆. If ~x is a true point, |wnd(~x)| many potential

diagnoses become part of the underapproximation; otherwise |ewnd(~x)| many
potential diagnoses are no longer part of the overapproximation. Knowing the
value of ~x therefore guarantees a reduction of D±

∆ by |ewnd(~x)| diagnoses.

Proposition 3. Given a partially known MCS (M, i, pf ), for all ~x ∈ U(pf ) such
that the cardinality of ewnd(~x) is maximal, the following holds:

max
u∈B

∣∣D±
∆ (pf ~x:u)

∣∣ ≤ min
~y∈U(pf )

max
v∈B

∣∣D±
∆ (pf ~y:v)

∣∣ . (5)

Proof (sketch). Given (M, i, pf ) and ~x such that |ewnd(~x)| is maximal among
~x ∈ U(pf ), (5) expresses the following: regardless of whether we obtain that ~x is
a true or a false point of context Ci, we have a guaranteed reduction of the set of
potential diagnoses, and no other ~x

′ ∈ U(pf ) can guarantee a greater reduction.
Acquiring information about unknown point ~x has two possible outcomes:

(i) ~x ∈ T (pf ) and the reduction is wnd(~x) ; or (ii) ~x ∈ F (pf ) and the reduction is
ewnd(~x) (see Lemma 3). As ewnd(~x) ⊆ wnd(~x) (Definition 10), the guaranteed
reduction in size is |ewnd(~x)|. The proposition follows, since ~x is chosen s.t.
|ewnd(~x)| is maximal. ¤

Proposition 3 suggests to query unknown points ~x where |ewnd(~x)| is maximum.
If there are more false points than true points (e.g., for contexts that accept only
one belief set for each input), using ewnd instead of wnd is even more suggestive.

If the primary interest are necessary bridge rules (cf. previous section), we
can base query selection on the number of bridge rules which become necessary
if a certain unknown point is a false point. Let nwnd(~x) = nec(D± \ ewnd(~x)) \
nec(D±), where D± = D±(M [i/pf ]), then |nwnd(~x)| many bridge rules become
necessary if ~x is identified as a false point.
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Another possible criterion for selecting queries can be based on the likelihood
of errors, similar to the idea of leading diagnoses [10]. Although a different notion
of diagnosis is used there, the basic idea is applicable to our setting as follows: if
multiple problematic bridge rules are less likely than single ones, or if we have
confidence values for bridge rules (e.g., some rules were designed by an expert,
others by a less experienced administrator), then we can concentrate on trying
to confirm or discard diagnoses that have a high probability. If we have equal
confidence in all bridge rules, this amounts to using cardinality-minimal potential
diagnoses for determining witnesses and guiding the selection of queries.

Example 11 (ctd). In our example, the set of potential diagnoses is large, but
the cardinality-minimal diagnosis is the empty diagnosis, which has the following
property: bridge rule input at Ccc is {card(cnr2 )}, and Ccc either accepts ∅
or {valid(cnr1 )} (the unrelated credit card). Therefore, points (0, 1, 0, 0) and
(0, 1, 1, 0) are the only witnesses for Dδ, and querying these two unknown points
is sufficient for verifying or falsifying Dδ. (Note that pf cc has 12 unknown
points, the four known points (one true and three false points) are (0, 0, X, Y )
s.t. X, Y ∈ B.)

After updating pf with these points (false points, if all credit cards are valid),
the overapproximation yields the ⊆-minimal diagnoses; this result is optimal. ¤

So far we considered membership queries which check whether O ∈ ACC(kb ∪ I)
for given (~i, ~o). Alternatively, one could use stronger queries that provide the
value of ACC(kb∪I) for a given~i. On the one hand this allows for a better query
selection, roughly speaking because combinations of unknown points together
witness more diagnoses exclusively than they do individually. On the other hand,
however, considering such combinations increases computational cost.

Another possible extension of limited querying is the usage of meta-informa-
tion, e.g., monotonicity, or consistency properties, of a partially known context.

6 Discussion

Approximation Quality. In the previous section, we related unknown points
to potential diagnoses. This correspondence allows to obtain an estimate for the
quality of an approximation, simply by calculating the ratio between known and
potential true (resp., false) points: a high value of |T (pf )|

|T (pf )|+|U(pf )| indicates a high
underapproximation quality, while a low value indicates an underapproximation
distant from the actual system. This is analogous for overapproximation, exchang-
ing T (pf ) with F (pf ). These estimates can be calculated efficiently and prior to
calculating an approximation; a decision between under- and overapproximation
could be based on this heuristic.

Even if nothing is known about the behavior of some context C, the overap-
proximation accurately characterizes inconsistencies that do not involve C.
Complexity and Computation. Since our approximation methods deal with
incomplete knowledge, it is important how their computational complexity com-
pares to the full knowledge case. For the latter setting, the following results were
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established in [6], depending on the complexity of output checking for contexts Ci,
which is deciding for Ci, I ⊆ INi and O ⊆ OUTi whether O ∈ ACC(kbi∪I)|OUTi

.
With output checking in P (resp., NP, ΣP

k ), recognizing correct diagnoses is in
NP (resp., NP, ΣP

k ) while recognizing minimal diagnoses and minimal explana-
tions is in DP (resp., DP, DP

k ); completeness holds in all cases.
Let us first consider the case where some contexts Ci are given by their

corresponding BF fi (in a representation such that fi(~i, ~o) can be evaluated
efficiently). As we know that context Ci accepts only input/output combinations
which are true points of f , we simply guess all possible output beliefs Oi of
all contexts and evaluate bridge rules to obtain Ii; if for some Ci as above,
fi(~ii, ~oi)=0 we reject, otherwise we continue checking context acceptance for
other contexts. Overall, this leads to the same complexity as if all contexts were
total. Thus, detecting explanations of inconsistency for an MCS M , where some
contexts are given as BFs, has the same complexity as if M were given regularly.

Approximations are done on an MCS where a pdBF pf is given instead of
a BF f , in a representation such that the value of pf (~i, ~o) can be computed
efficiently. This implies that the extensions pf and pf can be computed efficiently
as well. Hence, approximations of diagnoses and explanations have the same
complexity as the exact concepts. Dealing with incomplete information usually
increases complexity, as customary for many nonmonotonic reasoning methods.
Our approach, however, exhibits no such increase in complexity, even though it
provides faithful under- and overapproximations.

Learning. To learn a BF seems suggestive for our setting of incomplete infor-
mation. However, explaining inconsistency requires correct information, therefore
pac-learning methods [8] are not applicable. On the other hand, exact meth-
ods [11] require properties of the contexts which are beneficial to learning and
might not be present.3 Furthermore, contexts may only allow membership queries,
which are insufficient for efficient learning of many concept domains [11]. Fur-
thermore, partially known contexts may not allow many, even less a polynomial
number of queries (which is the target for learnability).

Most likely it will thus not be possible to learn the complete function. Hence
learning cannot replace our approach, but it can be useful as a preprocessing
step to increase the amount of partial information.

7 Related Work and Conclusion

To the best of our knowledge, explaining inconsistency in multi-context systems
with partial specification has not been addressed before. Weakly related to
our work is [12], who aimed at approximating abductive diagnoses of a single
knowledge base. They replaced classical entailment with approximate entailment
of [13], motivated by computational efficiency. However, there is no lack of
information about the knowledge base or semantics as in our case.

3 Note that, even if a context’s logic is monotonic (resp., positive) this does not imply
that the BF corresponding to the context is monotonic (resp., positive).
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Our over- and underapproximations of D± and E± are reminiscent of lower
and upper bounds of classical theories (viewed as sets of models [14]), known as
cores and envelopes. The latter also were used for (fast) sound, resp. complete,
reasoning from classical theories.

The limited querying approach is related to optimal probing strategies [15].
However, we do not require probing to localize faults in the system, but to obtain
information about the behavior of system parts, which have a much more fine
grained inner structure and more intricate dependencies than the systems in [15].
(Those system parts have as possible states ‘up’, and ‘down’, while in MCSs each
partially known context possibly accepts certain belief sets for certain inputs.)

Ongoing further work includes an implementation of the approach given in
this paper, and the usage of metainformation about context properties to improve
approximation accuracy. The incorporation of probabilistic information into the
pdBF representation is another interesting topic for future research.

References

1. McCarthy, J.: Notes on formalizing context. In: IJCAI. (1993) 555–562
2. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do

without modal logics. Artificial Intelligence 65(1) (1994) 29–70
3. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI.

(2007) 268–273
4. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context

systems. In: AAAI. (2007) 385–390
5. Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient

computing. In: Ambient Intelligence. (2008) 308–325
6. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency

in nonmonotonic multi-context systems. In: KR. (2010) 329–339
7. Bonatti, P.A., Olmedilla, D.: Rule-based policy representation and reasoning for

the semantic web. In: Reasoning Web. (2007) 240–268
8. Valiant, L.G.: A theory of the learnable. Commun. ACM 27 (1984) 1134–1142
9. Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially

defined boolean functions. Annals of Operations Research 16 (1988) 299–326
10. de Kleer, J.: Focusing on probable diagnoses. In: AAAI. (1991) 842–848
11. Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319–342
12. ten Teije, A., van Harmelen, F.: Computing approximate diagnoses by using

approximate entailment. In: KR. (1996) 256–265
13. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelli-

gence 74(2) (1995) 249–310
14. Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. J.

ACM 43(2) (1996) 193–224
15. Brodie, M., Rish, I., Ma, S., Odintsova, N.: Active probing strategies for problem

diagnosis in distributed systems. In: IJCAI. (2003) 1337–1338


