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1. INTRODUCTION

Updating knowledge bases is an important issue in the area of data and knowl-
edge representation. While this issue has been studied extensively in the con-
text of classical knowledge bases (cf., e.g., Winslett [1990] and Gabbay and
Smets [1998]), attention to it in the area of nonmonotonic knowledge bases, in
particular in logic programming, is more recent. Various approaches to evalu-
ating logic programs in the light of new information have been presented. The
proposals range from basic methods to incorporate an update U , given by a
set of rules, or a sequence U1, . . . , Un of such updates, into a (nonmonotonic)
logic program P [Alferes et al. 2000; Zhang and Foo 1998; Inoue and Sakama
1999; Eiter et al. 2000], to more general methods which use an update policy to
specify, by means of update actions, how the updates U1, . . . , Un should be in-
corporated into the current state of knowledge [Marek and Truszczyński 1998;
Alferes et al. 1999; Eiter et al. 2001]. Using these approaches, queries to the
knowledge base, like “is a fact f true in P after updates U1, . . . , Un?”, can then
be evaluated.

Notably, the formulation of such queries is treated on an ad hoc basis, and
more involved queries such as “is a fact f true in P after updates U1, . . . , Un
and possibly further updates?” are not considered. More generally, reasoning
about an evolving knowledge base KB, maintained using an update policy, is
not formally addressed. However, it is desirable to know about properties of
the contents of the evolving knowledge base, which also can be made part of
a specification for an update policy. For example, it may be important to know
whether a fact a is always true in KB, or whether a fact b is never true in KB.
Problems of this form are called maintenance and avoidance, and have recently
been studied in the agent community [Wooldridge 2000b]. Other properties
may involve more complex temporal relationships, which relate the truth of
facts in the knowledge base over time. A simple example of this sort is the
property that whenever the fact message to(tom), which intuitively means that
a message should be sent to Tom, is true in KB at some point, then the fact
sent message to(tom), representing that a message has been sent to Tom, will
be true in the evolving knowledge base at some point in the future.

Main problems addressed. In this article, we aim at a framework for ex-
pressing reasoning problems over evolving knowledge bases, which are modeled
as extended logic programs [Gelfond and Lifschitz 1991] and may be maintained
by an update policy as mentioned above. In particular, we are interested in a log-
ical language for expressing properties of the evolving knowledge base, whose
sentences can be evaluated using a clear-cut formal semantics. The framework
should, on the one hand, be general enough to capture different approaches to
incorporating updates U1, . . . , Un into a logic program P and, on the other hand,
pay attention to the specific nature of the problem. Furthermore, it should be
possible to evaluate a formula, which specifies a desired evolution behavior,
across different realizations of update policies based on different definitions.

Main results. The main contributions and results of this article are sum-
marized as follows.
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(1) We introduce a formal model in which various approaches for updating
extended logic programs can be expressed. In particular, we introduce the con-
cept of an evolution frame, which is a structure EF = 〈A, EC, AC, �, ρ , Bel〉
whose components serve to describe the evolution of knowledge states of an
agent associated with the knowledge base. This structure comprises

—an alphabet A;
—a nonempty class EC of events, which are sets of rules over alphabet A com-

municated to the agent;
—an update frame 〈AC, �, ρ〉, consisting of a set of update actions AC, an up-

date policy �, and a realization assignment ρ, which together specify how
to incorporate events, which are sets of rules drawn from a class of pos-
sible events EC and communicated to the agent, into the knowledge base;
and

—a logic programming semantics, Bel, for extended logic programs P , respec-
tively sequences (P1, P2, . . . , Pm) of extended logic programs Pi, over alpha-
bet A.

In our framework, a knowledge state s = 〈KB; E1, . . . , En〉 of the agent con-
sists of an initial knowledge base KB, given by an extended logic program over
the alphabet A, and a sequence of events E1, . . . , En. The distinction between
the initial knowledge KB, representing a subset of the language generated by
the alphabet A, from the events Ei (1 ≤ i ≤ n), defined as subsets from the
given event class EC, is a convenient device for allowing different kinds of rules
for modeling purposes.

Associated with the knowledge state s is the belief set Bel(s) of the agent,
comprising all formulas which the agent believes to hold given its state of
knowledge.

The agent reacts to an event by adapting its belief state through the up-
date policy �, which singles out update actions A ⊆ AC from a set of possible
update actions AC for application. These update actions are executed, at a
physical level, by compilation, using the realization assignment ρ, into a single
logic program P , respectively a sequence of logic programs (P0, . . . , Pn), denoted
compEF(s). The belief set Bel(s) is then given by the belief set of the compiled
knowledge state, and is obtained by applying the belief operator Bel(·) for (se-
quences of) logics programs to compEF(s). Suitable choices of EF allow one to
model different settings of logic program updates, such as the approaches in-
troduced by Alferes et al. [2000], Marek and Truszczyński [1998], Inoue and
Sakama [1999], and Eiter et al. [2000].

Although we focus here on nonmonotonic knowledge bases represented as
logic programs, we stress that the applicability of evolution frames to describe
changing knowledge is not limited to languages of this form. In fact, the general
concept of an evolution frame can also be used to serve as a basis to model other
approaches to changing knowledge like belief revision or various kinds of non-
monotonic logics without much ado. We illustrate this flexibility by capturing
a nonmonotonic framework for specifying declarative revision strategies based
on default theories due to Brewka [2000].
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A benefit of our general framework is that it provides a basis for the anal-
ysis of a broad range of formalisms, abstracting from the specific aspects to
essential ingredients. From properties that are established at the abstract
level for generic classes of evolutions frames, we may be able to easily conclude
properties of specific classes of evolution frames modeling concrete update for-
malisms, as illustrated more in detail below.

(2) We define the syntax and, based on evolution frames, the semantics of
a logical language for reasoning about evolving knowledge bases, employing
linear and branching-time operators familiar from Computational Tree Logic
(CTL) [Emerson 1990]. Using this language, properties of an evolving knowl-
edge base can be formally stated and evaluated in a systematic fashion, rather
than ad hoc. For example, using the evolution quantifier A (“for all futures”) and
the linear-time operator G (“globally”), the maintenance problem from above
can be expressed as AG a, whilst the avoidance problem is represented by the
formula AG∼b; accordingly, the property about Tom’s messages is expressed by

AG(message to(tom) → AFsent message to(tom)),

where F is the linear-time operator expressing that a property finally holds.
(3) We investigate semantical properties of knowledge states for reasoning.

Since in principle a knowledge base may evolve forever, we are in particu-
lar concerned with obtaining finitary characterizations of evolution. To this
end, we introduce various notions of equivalence between knowledge states,
and show several filtration results: under certain properties of the components
of EF, evolution of a knowledge state s in an evolution frame EF can be de-
scribed by a finite transition graph G�(s, EF), which is a subgraph bisimilar
to the whole natural transition graph G(s, EF) over knowledge states that in-
cludes an arc from s1 = 〈KB, E1, . . . , En〉 to every immediate successor state
s2 = 〈KB, E1, . . . , En, En+1〉. In some cases, G�(s, EF) is constructible by exploit-
ing locality properties of the belief operator Bel(·) and increasing compilations
compEF(·), while in others it results by canonization of the knowledge states.

In a concrete case study, we establish this for evolution frames which model
policies in the EPI framework for logic program updates using the answer set
semantics [Eiter et al. 2001], as well as for the LUPS [Alferes et al. 1999,
2002] and LUPS∗ policies [Leite 2001] under the dynamic stable model seman-
tics [Alferes et al. 1998, 2000]. Similar results apply to updates under other
semantics in the literature.

(4) We derive complexity results for reasoning. Namely, we analyze the
problem of deciding, given an evolution frame EF, a knowledge state s, and
a formula ϕ, whether EF, s |= ϕ holds. While this problem is undecidable
in general, we single out several cases in which the problem is decidable,
adopting some general assumptions about the underlying evolution frame. In
this way, we identify meaningful conditions under which the problem ranges
from PSPACE up to 2-EXPSPACE complexity. We then apply this to the EPI
framework under the answer set semantics [Eiter et al. 2001, 2003], and show
that its propositional fragment has PSPACE-complexity. Similar results may
be derived for the LUPS and LUPS∗ frameworks. We also consider the com-
plexity of sequences of extended logic programs (ELPs) and generalized logic
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programs (GLPs), respectively. We show that deciding whether two sequences
P = (P0, . . . , Pn) and Q = (Q0, . . . , Qm) of propositional ELPs are strongly
equivalent under the update answer set semantics, that is, whether for every
sequence R = (R0, . . . , Rk), k ≥ 0, the concatenated sequences P + R and Q + R
have the same belief sets, is coNP-complete. This result is not immediate, since
potentially infinitely many pairs P + R and Q + R need to be checked. Thus,
testing strong equivalence between sequences of ELPs is not more expensive
than standard inference of a literal from all answer sets of an ELP (cf. Dantsin
et al. [2001]). Analogous results hold for sequences of GLPs.

To the best of our knowledge, no similar effort to formally express reasoning
about evolving nonmonotonic knowledge bases at a level as considered here has
been put forth so far. By expressing various approaches in our framework, we
obtain a formal semantics for reasoning problems in them. Furthermore, results
about properties of these approaches (e.g., complexity results) may be concluded
from the formalism by this embedding, as we illustrate for the EPI framework.
Note that Leite [2002] considers properties of evolving logic programs in a
language inspired by our EPI language [Eiter et al. 2001, 2003], and derives
some properties for dynamic logic programs similar to properties for update
programs derived in Section 7.

The rest of this article is structured as follows: In the next section, we give
some basic definitions and fix notation. In Section 3, we introduce our notion of
an evolution frame, which is the basic setting for describing update formalisms,
and in Section 4, we show how different approaches to updating logic programs
can be captured by it. In Section 5, we then define the syntax and semantics of
our logical language for reasoning about evolving knowledge bases. Section 6
is devoted to the study of equivalence relations over knowledge states, which
are useful for filtration of the infinite transition graph that arises from an
evolving knowledge base. In particular, conditions are investigated under which
a restriction to a finite subgraph is feasible. After that, we address in Section 7
the complexity of reasoning. Related work is discussed in Section 8, where we
also draw some conclusions and outline issues for further research.

2. PRELIMINARIES

We consider knowledge bases represented as extended logic programs (ELPs)
[Gelfond and Lifschitz 1991], which are finite sets of rules built over a first-
order alphabet A using default negation not and strong negation ¬. A rule has
the form

r : L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln, (1)

where each Li is a literal of form A or ¬A, where A is an atom overA. For a literal
L, the complementary literal, ¬L, is ¬A if L = A, and A if L = ¬A, for some atom
A. For a set S of literals, we define ¬S = {¬L | L ∈ S}. We also denote by LitA
the set A∪¬A of all literals over A. The set of all rules is denoted by LA. We call
L0 the head of r (denoted by H(r)), and the set {L1, . . . , Lm, not Lm+1, . . . , not Ln}
the body of r (denoted by B(r)). We define B+(r) = {L1, . . . , Lm} and B−(r) =
{Lm+1, . . . , Ln}. We allow the case where L0 is absent from r, providing B(r) 
= ∅;
such a rule r is called a constraint. If H(r) is present and B(r) = ∅, then r is
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called fact. We often write L0 for a fact r = L0 ←. Further extensions, for
example, not in the rule head [Alferes et al. 2000], may be added to fit other
frameworks.

An update program, P, is a sequence (P0, . . . , Pn) of ELPs (n ≥ 0), represent-
ing the evolution of program P0 in the light of new rules P1, . . . , Pn. We some-
times use ∪P to denote the set of all rules occurring in P, that is, ∪P = ⋃n

i=1 Pi.
The semantics of update programs can abstractly be described in terms of a be-
lief operator Bel(·), which associates with every sequence P a set Bel(P) ⊆ LA
of rules, intuitively viewed as the consequences of P. Bel(·) may be instantiated
in terms of various proposals for update semantics, like, for example, the ap-
proaches introduced by Alferes et al. [2000], Zhang and Foo [1998], Inoue and
Sakama [1999], Eiter et al. [2000], and Marek and Truszczyński [1998].

2.1 Update Answer Sets

For concrete examples, we consider the answer set semantics for propositional
update programs as introduced by Eiter et al. [2000, 2002], as well as the se-
mantics for dynamic logic programs as defined by Alferes et al. [2000] and
Leite [2002]. The former semantics defines answer sets of a sequence of ELPs,
P = (P0, . . . , Pn), in terms of answers sets of a single ELP P as follows. An
interpretation, S, is a set of classical literals containing no opposite literals A
and ¬A. A classical literal L is true under S iff L ∈ S, and a default literal
not L is true iff L /∈ S. For a set B containing classical or default literals, we
write S |= B if all elements of B are true under S. The rejection set, Rej(S, P),
of P with respect to an interpretation S is Rej(S, P) = ⋃n

i=0 Reji(S, P), where
Rejn(S, P) = ∅, and, for n > i ≥ 0, Reji(S, P) contains every rule r ∈ Pi such that
H(r) = ¬H(r ′) and S |= B(r)∪B(r ′), for some r ′ ∈ Pj \Rej j (S, P) with j > i. That
is, Rej(S, P) contains the rules in P which are rejected by unrejected rules from
later updates. Then, an interpretation S is an answer set of P = (P0, . . . , Pn)
iff S is a consistent answer set [Gelfond and Lifschitz 1991] of the program
P = ⋃

i Pi \ Rej(S, P), that is, S is a minimal consistent set of literals closed
under the rules of the reduct P S = {H(r) ← B+(r) | r ∈ P and B−(r) ∩ S = ∅}.
The set of all answer sets of P is denoted by U(P). This definition properly gen-
eralizes consistent answer sets for single ELPs to sequences of ELPs. We also
use AS(P ) to denote the set of all answer sets of a single ELP P . Moreover,
an ELP P is called inconsistent if it has no consistent answer set, that is, if
AS(P ) = ∅. Update answer sets for nonground update programs are defined
in terms of its ground instances similar as answer sets for nonground ELPs
[Gelfond and Lifschitz 1991].

Example 2.1. Consider P0 = {b ← not a, a ←}, P1 = {¬a ←, c ←}, and
P2 = {¬c ←}. Then, P0 has the single answer set S0 = {a} with Rej(S0, P0) = ∅;
(P0, P1) has answer set S1 = {¬a, c, b} with Rej(S1, (P0, P1)) = {a ← }; and (P0,
P1, P2) has the unique answer set S2 = {¬a, ¬c, b} with Rej(S2, (P0, P1, P2)) =
{c ←, a ←}.

The belief operator BelE (·) in the framework of Eiter et al. [2000] is given by
BelE (P) = {r ∈ LA | S |= r for all S ∈ U(P)}, where S |= r means that for each

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.



Reasoning About Evolving Nonmonotonic Knowledge Bases • 395

ground instance r ′ of r, either H(r ′) ∈ S, or L /∈ S for some L ∈ B+(r ′), or L ∈ S
for some L ∈ B−(r ′).

2.2 Dynamic Answer Sets

By the term dynamic answer sets, we refer to the extension of dynamic stable
models, which are defined for sequences of generalized logic programs (GLPs)
[Alferes et al. 2000], to the three-valued case. In GLPs, default negation may
appear in the head of rules, but strong negation is excluded. The definition
of dynamic stable models uses a slightly nonstandard concept of stable mod-
els, where weakly negated literals not A (A some atom) are treated like or-
dinary propositional atoms, and rules A0 ← A1, . . . , Am, not Am+1, . . . , not An
are viewed as Horn clauses. Accordingly, an interpretation I is in this context
understood as a set of atoms and weakly negated atoms such that A ∈ I iff
not A /∈ I , for each atom A. To distinguish these kinds of interpretations from
the usual ones, we refer to the former as generalized interpretations. As usual,
a set B, comprising atoms and weakly negated atoms, is true in a generalized
interpretation I , symbolically I |= B, iff B ⊆ I . Towards defining stable models,
the following notation is required:

Let, for a set of atoms A, notA stand for the set {not A | A ∈ A}. Fur-
thermore, for M ⊆ A ∪ notA, we set M− = {not A | not A ∈ M }, and, for
Z ∈ A ∪ notA, we define not Z = not A if Z = A, and not Z = A if Z = not A.
For a program P over A, the deductive closure, CnA(P ), is given by the set
{L | L ∈ A ∪ notA and P � L}, where P is interpreted as a propositional Horn
theory and “�” denotes classical derivability. A generalized interpretation S is
a stable model of a program P iff S = CnA(P ∪ S−).

Let P = (P0, . . . , Pn) be a sequence of GLPs over A, and let I be a generalized
interpretation. Alferes et al. [2000] introduce the following concepts:

Rejected(I, P) =
⋃n

i=0{r ∈ Pi | ∃r ′ ∈ Pj , for some j ∈ {i + 1, . . . , n}, such
that H(r ′) = not H(r) and I |= B(r) ∪ B(r ′)};

Defaults(I, P) = {not A |
 ∃r in P such that H(r) = A and I |= B(r)}.
A set S ⊆ A ∪ notA is a dynamic stable model of P iff

S = Cn(∪P \ Rejected(S, P)) ∪ Defaults(S, P).

We remark that Alferes et al. [2000] defined dynamic stable models of P as
projections S = S′ ∩ (A ∪ notA) of the stable models of a single GLP, P⊕,
resulting from a particular transformation (for a detailed definition, cf. Alferes
et al. [2000]), and then proved the above characterization as a result.

Alferes et al. [2000] defined also an extension of their semantics to the three-
valued case: Let P = (P0, . . . , Pn) be a sequence of ELPs over A. Then, a consis-
tent set S ⊆ LitA is a dynamic answer set of P iff S ∪ {not L | L ∈ LitA \ S} is a
dynamic stable model of the sequence P = (P0, . . . , Pn∪{not A ← ¬A, not ¬A ←
A | A ∈ A}) of GLPs. Here, the rules in {not A ← ¬A, not ¬A ← A | A ∈ A}
serve for emulating classical negation through weak negation.

Example 2.2. Let, as in the previous example, P0 = {b ← not a, a ←},
P1 = {¬a ←, c ←}, and P2 = {¬c ←} over A = {a, b, c}. Then, P0 has
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the single dynamic answer set S0 = {a, not b, not c}, where Rejected(S0, P0) =
∅ and Defaults(S0, P0) = {not b, not c}; the sequence (P0, P1) has the dy-
namic answer set S1 = {¬a, c, b}, where Rejected(S1, (P0, P1)) = { a ← } and
Defaults(S1, (P0, P1)) = {not ¬b, not ¬c}; and (P0, P1, P2) has S2 = {¬a, ¬c, b}
as its single dynamic answer set, with Rejected(S2, (P0, P1, P2)) = { a ← , c ← }
and Defaults(S2, (P0, P1, P2)) = {not ¬b}. Note that in these simple examples,
update answer sets and dynamic answer sets coincide, but this does not hold
in general, however (cf. Eiter et al. [2002] for more details).

Similarly to the belief operator BelE (·), we can define a belief operator Bel⊕(·)
for dynamic stable models as Bel⊕(P) = {r ∈ LA | S |= r for all S ∈ D(P)}, where
D(P) denotes the set of all dynamic stable models of P.

Finally, we remark that while we defined answer sets and belief sets for
sequences of finite programs, they can be defined for sequences of possibly
infinite programs in an analogous way as well.

3. KNOWLEDGE-BASE EVOLUTION

We assume that the agent has an initial knowledge base, KB, in form of an
extended logic program, and a background update policy, �, describing the
update behavior of the agent, that is, how it has to react when it receives new
information from the environment. Information arrives to the agent in form of a
sequence of events, each event being a finite set of rules from a given event class.
The update policy specifies what rules or facts have to be incorporated into or
retracted from the knowledge base, depending on the content of the event and
on the belief set of the agent. The evolution of the agent’s knowledge state is
thus completely described when KB and a sequence of events E1, . . . , En are
given, provided an update policy � is specified.

3.1 Events and Knowledge States

We start with the basic formal notions of an event and of the knowledge state of
an agent maintaining a knowledge base.

Definition 3.1. Let A be some alphabet. An event class over A (or simply
event class, if no ambiguity arises) is a collection EC ⊆ 2LA of finite sets of rules.
The members E ∈ EC are called events.

Informally, EC describes the possible events (that is, sets of communicated
rules) an agent may experience. In the most general case, an event is an ar-
bitrary ELP; a plain case is that an event just consists of a set of facts, which
are formed over a subset of the alphabet. In a deductive database setting, the
latter case corresponds to an extensional database that is undergoing change
while the intensional part of the database remains fixed.

Definition 3.2. Let EC be an event class over some alphabet A. A knowledge
state over EC (simply, a knowledge state) is a tuple s = 〈KB; E1, . . . , En〉, n ≥ 0,
where KB⊆ LA is an ELP (called initial knowledge base) and each Ei (1 ≤ i ≤ n)
is an event from EC. The length of s, denoted |s|, is n. The set of all knowledge
states over A given EC is denoted by KS(EC).
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Intuitively, s = 〈KB; E1, . . . , En〉 captures the agent’s knowledge, starting
from its initial knowledge base. When a new event En+1 occurs, the current
knowledge state s changes to s′ = 〈KB; E1, . . . , En, En+1〉, and the agent should
adapt its belief set in accordance with the new event obeying its given update
policy.

3.2 Evolution Frame

The “universe” in which the evolution of an agent’s knowledge base takes place
is given by the concept of an evolution frame, which comprises different com-
ponents that parameterize the update mechanism and the semantics used on
the evolving knowledge base. This structure comprises, together with an alpha-
bet A,

—a semantics, Bel(·), for ELPs, respectively, sequences of ELPs, over A;
—a nonempty event class EC over A; and
—an update frame 〈AC, �, ρ〉, consisting of a set AC of update commands, an

update policy �, and a realization assignment ρ, which together specify how
to incorporate events into the knowledge base.

In more detail, the components of an update frame are as follows:

Update Commands. The update commands (or actions) in AC are names
for commands that are supposed to be executed on the knowledge base. Simple,
elementary update commands are insert(r) and delete(r), which add and re-
move a rule to a logic program, respectively, without a sophisticated semantics
handling potential inconsistencies (which may be delegated to the underlying
update semantics). More involved update commands have been proposed in the
literature (cf., e.g., Alferes et al. [1999] and Eiter et al. [2001]). However, several
update frameworks can be modeled using these simple commands. The seman-
tics (i.e., effects) of update actions are given by the realization assignment, ρ,
which is described below.

Update policy. The update policy �, which is a function mapping every pair
(s, E) of a knowledge state s over EC (that is, s ∈ KS(EC)) and an event E ∈ EC
into a set �(s, E) ⊆ AC of update commands, determines which actions should
be executed. Update policies allow for specifying sensible and flexible ways to
react upon incoming events. A very simple policy is �ins(s, E) = {insert(r) | r ∈
E}; it models an agent which incorporates the new information unconditionally.
More sophisticated policies may define exceptions for the incorporation of rules
from events, or the insertion of rules may be conditioned on the belief in other
rules.

Realization assignment. The realization assignment ρ assigns to each pair
(s, A) of a knowledge state s over EC and a set A ⊆ AC of update commands
a sequence ρ(s, A) = (P0, . . . , Pn) of ELPs Pi over A (0 ≤ i ≤ n). It associates
in this way a meaning with the set of actions A that must be executed on
the knowledge state s in terms of an ELP, respectively, a sequence of ELPs,
and “realizes” the update in this way. The agent’s beliefs from the updated
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knowledge base may then be given by the operator Bel(·) applied to the result
of ρ(s, A) as defined in Section 3.3 below.

Different possibilities for concrete realization assignments ρ may be used.
A simple realization assignment, ρ±(s, A), which works for sets A of actions of
form insert(r) and delete(r), and which assumes that each knowledge state s is
assigned with an ordinary ELP P (s), is given by

ρ±(s, A) = (P (s) ∪ {r | insert(r) ∈ A}) \ {r | delete(r) ∈ A},
that is, the insertion and deletion commands in A are “physically” implemented,
with no further enforcement that consistency is preserved, or, as for deletion,
that r is actually logically deleted from the knowledge base. Its restriction to
insertion commands is the realization assignment ρins = (s, A) = P (s) ∪ {r |
insert(r) ∈ A}, which may be used in contexts where data are not physically
removed, for whatever reasons.

More sophisticated realization assignments might block, at the logical level,
the applicability of rules in the knowledge base, by using a sequence (P0, . . . , Pn)
of ELPs as a representation, and aim at enforcing consistency of the knowledge
base. For instance, in the dynamic logic programming semantics of sequences
of ELPs [Alferes et al. 2000; Eiter et al. 2001], more recent rules occur later in a
sequence and override rules from programs which occur earlier in the sequence;
this mechanism is also used in the EPI framework for incorporating changes to
the knowledge base at the logical level [Eiter et al. 2001, 2003].

In summary, we formally define an evolution frame as follows. Let, for any
alphabet A, ELP∗(A) be the set of all sequences P = (P0, . . . , Pn), n ≥ 0, of ELPs
Pi over A.

Definition 3.3. An evolution frame is a tuple EF = 〈A, EC, AC, �, ρ , Bel〉,
where

—A is a finite (first-order) alphabet;
—EC is a nonempty event class over A;
—AC is a set of update commands (or actions);
—� : KS(EC) × EC → 2AC is an update policy;
—ρ : KS(EC) × 2AC → ELP∗(A) is a realization assignment; and
— Bel : ELP∗(A) → 2LA is a belief operator for sequences of ELPs.

The set of all knowledge states in EF, denoted by SEF, is given by KS(EC).

The concept of an evolution frame allows us to model various update ap-
proaches, as we discuss below in Section 4.

3.3 Compilation and Belief Set

While � determines what to do, the realization assignment ρ states how this
should be done. Informally, ρ(s, A) “executes” actions A on the knowledge state s
by producing a logic program P or, in general, a sequence of logic programs P. We
can use ρ to “compile” a knowledge state s into a (sequence of) logic programs,
by determining the set A of actions from the last event in s. The separation
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of objects used for representing incoming information from objects serving as
input for the underlying semantics, as realized by knowledge states and their
associated compilations, is to ensure the desired flexibility and generality of
our framework.

We introduce the following notation.
For any knowledge state s = 〈KB; E1, . . . , En〉 over EC, denote by πi(s) =

〈KB; E1, . . . , Ei〉 its projection to the first i events, for 0 ≤ i ≤ n. In particu-
lar, π0(s) is the initial knowledge base KB. We call πi(s) a previous knowledge
state (or simply an ancestor) of s if i < n. Dually, a knowledge state s′ over EC
is a future knowledge state (or simply a descendant) of s if s is previous to s′.
Furthermore, πn−1(s) is the predecessor of s, and s′ is a successor of s, if s is
predecessor of s′. Finally, for events E ′

1, . . . , E ′
m, we write s + E ′

1, . . . , E ′
m to de-

note the concatenated knowledge state 〈KB; E1, . . . , En, E ′
1, . . . , E ′

m〉; a similar
notation is used for the concatenation of sequences of logic programs.

Definition 3.4. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame. For
any knowledge state s = 〈KB; E1, . . . , En〉 over EC, the compilation associated
with s is

compEF(s) =
{

ρ(s, ∅), if |s| = 0, that is, s = 〈KB〉,
ρ(πn−1(s), �(πn−1(s), En)), otherwise.

Note that compEF(·) is a function which is fully determined by EF; we often
write comp· instead of compEF(·) if EF is understood.

This definition of compilation is fairly general. It first computes the actions
for the latest event En, and then requires that these actions are executed on
the predecessor state. Observe that, in view of compEF(s), we could equally well
model update policies as unary functions �̂(·) such that �̂(s) = �(πn−1(s), En).
However, we chose binary update policies to stress the importance of the last
event in s. Furthermore, � may be restricted in the compilation process, for
example, such that only the belief set Bel(πn−1(s)) of the predecessor state
is considered rather than the whole state itself; this will be considered in
Section 6.4.

Incremental Compilation. An important class of compilations are those in
which, for a future knowledge state s′, comp(s′) results by appending some
further elements to the sequence comp(s) of logic programs for the current
knowledge state s. This motivates the following notion:

Definition 3.5. Given an evolution frame EF = 〈A, EC, AC, �, ρ , Bel〉,
the function compEF(·) is incremental iff, for each knowledge state s =
〈KB; E1, . . . , En〉, compEF(s) = (P0, . . . , Pn), where ρ(〈KB〉, ∅) = P0 and
ρ(πi−1(s), �(πi−1(s), Ei)) = (P0, . . . , Pi), for 1 ≤ i ≤ n.

This definition amounts to the expected behavior:

PROPOSITION 3.6. The mapping compEF(·) is incremental iff, for each knowl-
edge state s, compEF(s) = Q if |s| = 0, and compEF(s) = compEF(π|s|−1(s)) + Q ′

otherwise, where Q , Q ′ are logic programs and “+” is the concatenation of
sequences.
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PROOF. The proof proceeds by straightforward induction on |s|.
Example 3.7. A simple incremental compilation results for

—ACins = {insert(r) | r ∈ LA};
—� = �ins as defined in Subsection 3.2; and
—ρins such that compEF(〈KB〉) = KB and compEF(s) = compEF(π|s|−1(s)) + ({r |

insert(r) ∈ A}), where A = �ins(π|s|−1(s), En), given that s = 〈KB; E1, . . . , En〉.
Note that compEF(s) is in this setting just the sequence (KB, E1, . . . , En).

While incremental compilations are natural, we stress that other com-
pilations are of course also highly relevant. In particular, the compilation
might perform optimizations (cf. Section 6.3), or output only an ordinary logic
program.

We also point out that our notion of incremental compilation should not
be confused with an iterative compilation; such a compilation would, similar
in spirit, consider the events Ei in a knowledge state s = 〈KB, E1, . . . , En〉
in their chronological order one by one and instantaneously incorporate up-
dates depending on the corresponding actions Ai = �(πi−1(s), Ei) into the result
compEF(πi−1(s)) for the previous knowledge state and return a single, ordinary
logic program as the result.

The compilation of a knowledge state into a (sequence of) ELPs is used, via
the semantics Bel(·) for sequences of ELPs, to ascribe a set of beliefs to the agent
in the respective knowledge state. More formally, the belief set emerging from
a knowledge state is as follows:

Definition 3.8. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame and s
a knowledge state. The belief set of s, denoted Bel(s), is given by Bel(compEF(s)).

This completes the exposition of evolution frames and their semantics. Before
we consider some examples, let us close this subsection with some remarks.

Remarks

(1) As mentioned earlier, our definition of an update policy, and similarly of
a realization assignment, which effectively lead to the notion of a compilation,
is very general. We may stipulate additional postulates upon them, like the
incrementability property or the iterativity property. Likewise, the concept of a
semantics Bel(P) for sequences P of ELPs is very abstract, and further axioms
and conditions could be imposed on it. An example of this is the requirement
that Bel(P) is characterized by rules of bounded length, and in particular by
rules without repeated literals; this will be the case in Section 7.

(2) Our definition does not capture nondeterministic update policies, where
�(s, E) may return one out of several possible sets of update actions. In order to
model this, the notion of a knowledge state can be extended by taking previous
actions into account, that is, a knowledge state s is then of the form

〈KB, (E1, A1), . . . , (En, An)〉,
where each Ei is an event, and Ai is the set of update commands executed at
Step i. We remark that in the general first-order setting of our framework, the
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update commands Ai might be recorded in the knowledge base, while this is not
feasible for the propositional setting (since the alphabet is finite), assuming that
duplication of literals in rule bodies is immaterial. In practice, we may assume
a suitable selection function σ , which chooses one of the possible outcomes of
�(s, E), and we are back at a deterministic update policy �σ . If the selection
function σ is unknown, we may consider all evolution frames EFσ arising for
each σ .

3.4 Examples

Let us illustrate our framework on two examples, which serve as running ex-
amples throughout the remainder of the article.

Example 3.9 (Shopping Agent). Consider a shopping agent selecting Web
shops in search for some particular merchandise. Suppose its knowledge base,
KB, contains the rules

r1 : query(S) ← sale(S), up(S), not ¬query(S);
r2 : site queried ← query(S);
r3 : notify ← not site queried;

and a fact r0 : date(0) as an initial time stamp. Here, r1 expresses that a shop
S, which has a sale and whose Website is up, is queried by default, and r2, r3
serve to detect that no site is queried, which causes ‘notify’ to be true.

Assume that an event, E, may consist of one or more of the following items:

—at most one fact date(t), for some date t;
—facts up(s) or ¬up(s), stating that a shop s is up or down, respectively;
—ground rules of form sale(s) ← date(t), stating that shop s has a sale on date t.

An update policy U may be defined as follows:

�(s, E) = {insert(α) | α ∈ {up(S), ¬up(S), date(T )}, α ∈ E}
∪ {insert(sale(S) ← date(T )), insert(track(S, T )) |

sale(S) ← date(T ) ∈ E, date(T ′) ∈ Bel(s), T ≥ T ′}
∪ {delete(track(S, T )), delete(sale(S) ← date(T )) | date(T ′) ∈ E,

track(S, T ) ∈ Bel(s), date(T ) ∈ Bel(s), T ′ 
= T }
∪ {delete(date(T )) | date(T ′) ∈ E, date(T ) ∈ Bel(s), T ′ 
= T }}.

Informally, this update policy incorporates information about future sales
only. The information about the sale is removed when the sale ends (assum-
ing the time stamps increase). To this end, facts track(S, T ) are used to keep
track of inserted sale information. Similarly, the current time stamp date(t) is
maintained by deleting the old values. The realization assignment ρ may be
chosen as ρ± from Section 3.2, which always returns a single ELP, and for Bel
we may take any function which coincides on sequences P = P0 of length one
with the standard answer set semantics for ELPs. Or, we may choose a real-
ization assignment that maps s and a set of insert(r) and delete(r) commands
to a sequence (P0, . . . , Pn) of ELPs, using as Bel the answer set semantics for
sequences of ELPs as discussed in Section 3.2.
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Example 3.10 (Mailing Agent). Consider a more complex mailing agent,
which has the following initial knowledge base KB, whose rules are instan-
tiated over suitable variable domains:
r1 : type(M, private) ← from(M, tom);
r2 : type(M, business) ← subject(M, project);
r3 : type(M, other) ← not type(M, private), not type(M, business), msg(M );
r4 : trash(M ) ← remove(M ), not save(M );
r5 : remove(M ) ← date(M,T ), today(T’ ), not save(M), T ′ > (T + 30);
r6 : found(M ) ← search(T ), type(M,T ), not trash(M );
r7 : success ← found(M );
r8 : failure ← search(T ), not success.

The knowledge base allows to express several attributes of a message and to
determine the type of a message based on these attributes (rules r1 and r2). By
means of r3, a default type is assigned to all messages which are neither private
nor business. Rule r4 implicitly states that a save operation is stronger than a
remove one. Note that in this way, once a message has been saved, it can never
be removed. By means of r5, all those messages are removed which have not
been saved and are older than thirty days. Rules r6, r7, and r8 are used to look
for all messages of a given type, which have not been sent to the trash yet, and
to signal if at least one such message has been found (success) or not (failure).

Suppose that an event E may consist in this scenario of one or more of the
following items:

—at most one fact today(d ), for some date d ;
—a fact empty trash, which causes messages in the trash to be eliminated;
—facts save(m) or remove(m), for mail identifiers m;
—at most one fact search(t), for some mail type t ∈ {other, business, private};
—zero or more sets of facts from(m, n), subject(m, s), or date(m, d ) for mail

identifier m, name n, subject s, and date d .

The update policy � may be as follows:

�(s, E) = {insert(R) | R ∈ E} ∪ {insert(msg(M )) | from(M, N ) ∈ E}
∪ {delete(today(D)) | today(D′) ∈ E, today(D) ∈ Bel(s), D′ 
= D}
∪ {delete(α) | α ∈ {trash(M ), msg(M ), type(M, T )},

empty trash ∈ E, trash(M ) ∈ Bel(s)}
∪ {delete(α) | α ∈ {from(M, N ), subject(M, S), date(M, D)},

save(M ) /∈ Bel(s), msg(M ) ∈ Bel(s),
remove(M ) ∈ E}

∪ {delete(α) | α ∈ Bel(s), α ∈ {search(T ), found(T ),
success, failure, empty trash} }.

This update policy (which does not respect possible conflicts of save and
remove) intuitively adds all incoming information, plus a fact msg(M ) for each
incoming mail to the knowledge base. The current date is maintained by delet-
ing the old date. As well, all old information from a previous event, relative
to a search or to the trash, is removed. If an event contains empty trash, then
all messages in the trash are eliminated. Like in the previous example, the
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realization assignment ρ may be given by ρ± from Section 3.2, or could map s
and A incrementally to a sequence of ELPs using as Bel simply the answer set
semantics for sequences of ELPs.

4. CAPTURING FRAMEWORKS FOR KNOWLEDGE EVOLUTION

To emphasize the generality of our framework, we now discuss how existing
frameworks for updating nonmonotonic knowledge bases can be captured in
terms of evolution frames. This is possible at two different levels:

(1) At an “immediate update” level, frameworks for updating logic programs
can be considered, where each event is an update program, and the update policy
is the (implicit) way in which update programs and the current knowledge
are combined, depending on the semantics of updates of each approach. For
example, the formalisms of update programs [Eiter et al. 2000, 2002], dynamic
logic programs [Alferes et al. 2000], revision programs [Marek and Truszczyński
1994, 1998], abductive theory updates [Inoue and Sakama 1999], and updates
through prioritized logic programs (PLPs) [Zhang and Foo 1998] fall into this
class.

(2) At a higher level, frameworks can be considered which allow for specify-
ing an explicit update policy in some specification language, and which offer a
greater flexibility in the handling of updates. Examples of such frameworks are
EPI [Eiter et al. 2001], LUPS and LUPS∗ [Alferes et al. 1999, 2002; Leite 2001],
KABUL [Leite 2002], and, while not directly given in these terms, PDL [Lobo
et al. 1999].

In what follows, we show how some of the above mentioned frameworks
can be expressed in evolution frames, which illustrates the generality of the
approach. We start capturing the formalisms at the update level introduced
in Section 2, that is, the answer set semantics for update programs, repre-
sented by BelE (·), and the dynamic stable model semantics for generalized
logic programs, represented by Bel⊕(·). For both semantics, we also show how
they are combined with convenient specification languages to form higher-level
frameworks: Bel⊕(·) is combined with the language LUPS [Alferes et al. 1999,
2002], which allows for more flexibility of the update process, permitting to
dynamically specify the contents of a sequence of updates by means of update
commands; and the semantics BelE (·) is employed together with the language
EPI [Eiter et al. 2001], which is more expressive than LUPS. It allows for update
statements to depend on other update statements in the same EPI policy, and
more complex conditions on both the current belief set and the actual event can
be specified. Further frameworks and semantics are also discussed here, albeit
more briefly and stressing only the main characterizations. We repeatedly use
the specific set ACins of insert commands, the insert policy �ins, and the insert
realizations ρins and ρ± from Section 3.2.

4.1 Update Programs and EPI

Update programs [Eiter et al. 2000, 2002] are captured by the following evolu-
tion frame:

EF� = 〈A, ECA, ACins, �ins, ρins, BelE〉,
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where ECA is the collection of all ELPs over A, and BelE (·) is the belief operator
defined in Section 2. The EPI framework [Eiter et al. 2001, 2003] corresponds
to the evolution frame

EFEPI = 〈A, EC, ACEPI, �EPI, ρEPI, BelE〉,
where

—ACEPI = {assert(r), retract(r), always(r), cancel(r), ignore(r),
assert event(r), retract event(r), always event(r) | r ∈ LA},

and the commands have the meaning as in Eiter et al. [2001];
—�EPI is defined by any set of update statements in the language EPI, which

are evaluated through a logic program as defined in Eiter et al. [2001];
—ρEPI realizes the translation tr(KB; U1, . . . , Un) from Eiter et al. [2001], which

compiles the initial knowledge base KB and the sets U1, . . . , Un of update
commands, in response to the events E1, . . . , En in s = 〈KB, E1, . . . , En〉,
into a sequence (P0, . . . , Pn) of ELPs. The resulting compilation compEPI(·) is
incremental.

Observe that, while tr(·) as in Eiter et al. [2001] is involved and has to
keep track of persistent update commands always[ event](r) from the past, as
shown by Eiter et al. [2003], it is possible, by encoding persistent commands in
polynomial time in the belief set, to restrict actions, without loss of expressive-
ness, to the commands assert and retract (whose meaning is the intuitive one)
and making ρ actually depend only the belief set Bel(πn−1(s)) of the predecessor
and the event En.

We remark that update statements in EPI have an event-condition-action
format, and that, accordingly, the formalism allows to model a class of active
rules under a strict formal semantics with respect to rule triggering. The rule
triggering, that is, satisfaction of the condition that qualifies an action for ex-
ecution, is specified in terms of a query to the current belief set. However, no
temporal triggers, that is, triggers which depend on the dynamic evolution (cf.
Chomicki [1995], and Sistla and Wolfson [1995]), are supported in EPI, nor is ac-
cess to past events in update policies possible (which can, however, be recorded,
to a limited extent, in the knowledge state, though). We remark that our gen-
eral definition of evolution frames would permit to model extensions of EPI that
feature temporal trigger events formulated in a language similar to the first-
order temporal logic with past temporal operators [Chomicki 1995] or to past
temporal logic [Sistla and Wolfson 1995], and its impact on complexity remains
to be analyzed. For further discussion of EPI, we refer to Eiter et al. [2003].

4.2 Dynamic Logic Programs, LUPS, and LUPS∗

Dynamic logic programming [Alferes et al. 1998, 2000] can be captured by the
following evolution frame:

EF⊕ = 〈A, ECgp, ACins, �ins, ρins, Bel⊕〉,
where ECgp is the collection of all finite sets of generalized logic program rules,
that is, no strong negation is available and weak negation can occur in the head
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of rules, and Bel⊕(·) is the semantics of dynamic logic programs as described in
Section 2.

The LUPS framework [Alferes et al. 1999] for update specifications corre-
sponds to the following evolution frame:

EFL = 〈A, ECL, ACL, �L, ρL, Bel⊕〉,
where

—ECL is the collection of all finite sets of LUPS statements (cf. Alferes et al.
[1999]);

—ACL = {assert(r), retract(r), always(r), cancel(r),
assert event(r), retract event(r), always event(r) | r ∈ LA},

where the commands have the meaning as explained in Alferes et al. [1999];
—�L is defined by

�L(s, E) = {cmd(r) ∈ ACL | E contains cmd(r) when cond
and cond ∈ Bel⊕(s)};

—ρL is as described in Alferes et al. [1999]; that is, ρL(s, A) adds for knowledge
state s = 〈KB, E1, . . . , En〉 and actions A a program Pn+1 to the sequence of
programs (P0, . . . , Pn) associated with s, returning (P0, . . . , Pn+1), where Pn+1
is computed from the persistent commands PCn valid at state s, Bel(s), and
the LUPS commands in A.

Leite [2001] slightly modified and extended the semantics of LUPS by a per-
manent retraction command. The resulting framework, LUPS∗, can be captured
by the following evolution frame:

EFL∗ = 〈A, ECL∗ , ACL∗ , �L∗ , ρL∗ , Bel⊕〉,
where

—ECL∗ is the collection of all finite sets of LUPS∗ statements (cf. Leite [2001]);
—ACL∗ = {assert(r), retract(r), assert event(r), retract event(r),

always assert(r), always retract(r), always assert event(r),
always retract event(r), cancel assert(r), cancel retract(r) |
r ∈ LA},

where the commands have the meaning as described in Leite [2001];
—�L∗ is defined by

�L∗ (s, E) = {cmd(r) ∈ ACL∗ | E contains cmd(r) when cond
and cond ∈ Bel⊕(s)};

—ρL∗ is given as in Leite [2001]; like before, ρL∗ (s, A) adds a program Pn+1
to the sequence of programs (P0, . . . , Pn) associated with s, where Pn+1 is
computed from persistent commands PC∗

n valid at state s, Bel(s), and the
LUPS∗ commands in A.

As in the case of EPI, the compilation functions compL(·) and compL∗ (·)
are incremental, and also persistent commands (viz., always(r) and
always event(r), as well as always assert(r), always assert event(r),
always retract(r), and always retract event(r), respectively) can be elim-
inated through coding into the knowledge base.
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4.3 Revision Programs

Marek and Truszczyński [1994, 1998] defined a language for revision specifi-
cation of knowledge bases which is based on logic programs under the stable
model semantics. A knowledge base is in this context a set of atomic facts,
that is, a plain relational database. Revision rules describe which elements
are to be present (so-called in-rules) or absent (out-rules) from the knowledge
base, possibly under some conditions. A fixed-point operator, which satisfies
some minimality conditions, is introduced to compute the result of a revision
program. As for stable models, there may be several knowledge bases or no
knowledge base satisfying a given revision program.

The framework of revision programs can be captured by the following evolu-
tion frame:

EFRev = 〈A, ECRev, ACRev, �Rev, ρRev, BelRev〉,
where

—ECRev is the collection of finite sets of revision rules, that is, negation-free
rules whose constituents are of the form in(B) or out(B), where B is an atom
from A;

—ACRev = {insert(B), delete(B) | B ∈ A};
—�Rev is defined by

�Rev(s, E) = {insert(B) | B ∈ I} ∪ {delete(B) | B ∈ O},
where (I, O) is the necessary change (cf. Marek and Truszczyński [1994]) for
comp(s) with respect to E;

—ρRev is defined by ρRev(s, ∅) = KB if s = 〈KB〉, and
ρRev(s, A) = (comp(s) ∪ {B | insert(B) ∈ A}) \ {B | delete(B) ∈ A}

if |s| > 0, that is, ρRev(s, A) corresponds to ρ±(s, A) where P (s) = comp(s).
Notice that ρRev(s, A)—and in particular comp(s)—is thus a set of facts.

— BelRev is such that, for each ELP P , it returns the collection of facts in P .

4.4 Abductive Theory Updates

Inoue and Sakama [1995] developed an approach to theory update which fo-
cuses on nonmonotonic theories. They introduced an extended form of abduction
and a framework for modeling and characterizing nonmonotonic theory change
through abduction. Intuitively, this is achieved by extending an ordinary ab-
ductive framework by introducing the notions of a negative explanation and an
anti-explanation (which makes an observation invalid by adding hypotheses),
and then defining autoepistemic updates by means of this framework.

The framework of extended abduction is then used in a subsequent ap-
proach [Inoue and Sakama 1999] to model updates of nonmonotonic theories
which are represented by ELPs. For theory updates, the whole knowledge base
is subject to change. New information in form of an update program has to be
added to the knowledge base and, if conflicts arise, higher priority is given to
the new knowledge. The updated knowledge base is defined as the union Q ∪U
of the new information U and a maximal subset Q ⊆ P of the original pro-
gram that is consistent with the new information (which is always assumed to
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be consistent). The abductive framework is in this context used for specifying
priorities between current and new knowledge, by choosing as abducibles the
difference between the initial and the new logic program.

The framework for updates by means of abduction can be captured by the
following evolution frame:

EFAbd = 〈A, ECA, ACAbd, �Abd, ρAbd, BelAbd〉,
where

—ACAbd = ACins ∪ ACdel, where ACdel = {delete(r) | r ∈ LA};
—�Abd is defined by

�Abd(s, E) = {insert(r) | r ∈ E} ∪ {delete(r) | r ∈ F ⊆ comp(s) \ E},
where F is, as defined in Inoue and Sakama [1999], a maximal set of rules
to be removed from the current knowledge base comp(s), which is a single
logic program. Note that, in general, F may not be unique. Hence, for a
deterministic update policy, we assume a suitable selection function σ that
chooses one of the possible outcomes for F .

—ρAbd is defined by ρAbd(s, ∅) = KB if s = 〈KB〉, and
ρAbd(s, A) = (comp(s) \ {r | delete(r) ∈ A}) ∪ {r | insert(r) ∈ A}

if |s| > 0, that is, ρAbd amounts to ρ±(s, A) for P (s) = comp(s), provided that A
does not contain conflicting commands delete(r) and insert(r) for any rule r.

— BelAbd is the belief operator corresponding to the ordinary answer set
semantics of ELPs.

4.5 Program Updates by Means of PLPs

Zhang and Foo [1998] address the update of a knowledge base of ground literals
by means of a prioritized logic program (PLP). The idea in updating the initial
program, P , with respect to the new one, Q , is to first eliminate contradictory
rules from P with respect to Q , and then to solve conflicts between the remain-
ing rules by means of a suitable PLP. The semantics of the update is thus given
by the semantics of the corresponding PLP, for which Zhang and Foo [1997] use
the one they have proposed earlier, which extends the answer set semantics.
The method is to reduce PLPs to ELPs by progressively deleting rules that, due
to the defined priority relation, are to be ignored. The answer sets of the result-
ing ELP are the intended answer sets of the initial PLP. Formulated initially
for static priorities, the method is extended to dynamic priorities as well, which
are handled by a transformation into a corresponding (static) PLP.

The framework for updates by means of PLPs is defined only for single step
updates, and a generalization to multiple steps is not immediate. We can model
a single-step update by the following evolution frame:

EFPLP = 〈A, ECA, ACins ∪ ACdel, �PLP, ρPLP, BelPLP〉,
where

—�PLP is defined by
�PLP(s, E) = {insert(r) | r ∈ E} ∪ {delete(r) | r ∈ R(s, E)},
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where R(s, E) is computed, along the procedure of Zhang and Foo [1998], as
a set of rules to be retracted from the current knowledge base;

—ρPLP is defined by ρPLP(s, ∅) = KB if s = 〈KB〉, and ρPLP(s, A) = (P1, P2) if
|s| > 0, where

P1 = comp(s) \ {r | delete(r) ∈ A} and P2 = {r | insert(r) ∈ A};
— BelPLP is the semantics for prioritized logic programs [Zhang and Foo 1997],

viewing (P1, P2) as a program where the rules of P2 have higher priority than
the ones in P1.

Thus, several well-known approaches to updating logic programs can be mod-
eled by evolution frames.

4.6 Further Approaches

We remark that further approaches, though not concerned with logic programs,
may be similarly captured. For example, to some extent, Brewka’s [2000] declar-
ative revision strategies can be captured. Brewka introduced a nonmonotonic
framework for belief revision that allows reasoning about the reliability of in-
formation, based on meta-knowledge expressed in the object language itself. In
this language, revision strategies can be declaratively specified as well. The idea
is to revise nonmonotonic theories by adding new information to the current
theory, and to use an appropriate nonmonotonic inference relation to compute
the accepted conclusions of the new theory.

The desired result is achieved in two steps. The first step consists in an exten-
sion of default systems in order to express preference information in the object
language, together with an appropriate new definition of theory extensions. In
a second step, a notion of prioritized inference is introduced, formalized as the
least fixed-point of a monotone operator, thus identifying epistemic states with
preferential default theories under this semantics.

The approach can be captured by a suitable evolution frame

EFT = 〈A, ECT , ACT , �T , ρT , BelT 〉,
which naturally models the insertion of formulas into a preference default the-
ory, that is,

—ECT is the set of all propositional formulas of the language;
—ACT = {insert( f ) | f ∈ ECT };
—�T is implicitly encoded in the current knowledge state (that is, the current

preference default theory, cf. Brewka [2000]), and is such that

�T (s, E) = �ins(s, E) = {insert( f ) | f ∈ E};
—ρT produces the new preference default theory by simply executing the in-

sertion of the new formula(s) into it, that is,

ρT (s, A) = ρins(s, A) = T (s) ∪ { f | insert( f ) ∈ A},
where T (s) = comp(s) and ρT (s, ∅) = KB if s = 〈KB〉, as usual; and

— BelT is the operator assigning to each preference default theory its set of
accepted conclusions, as defined in Brewka [2000].
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5. REASONING ABOUT KNOWLEDGE-BASE EVOLUTION

We now introduce our logical language for expressing properties of evolving
knowledge bases, called EKBL (“Evolving Knowledge Base Logic”), which we
define as a branching-time temporal logic akin to CTL [Emerson 1990], which
has become popular for expressing temporal behavior of concurrent processes
and modules in finite state systems.

5.1 Syntax

The primitive logical operators of the language EKBL are:

—the Boolean connectives ∧ (“and”) and ∼ (“not”);
—the evolution quantifiers A (“for all futures”) and E (“for some future”); and
—the linear temporal operators X (“next time”) and U (“until”).

Atomic formulas of EKBL are identified with the rules in the language LA,
given an alphabet A; composite formulas are state formulas and evolution for-
mulas, defined as follows:1

(1) Each atomic formula is a state formula.
(2) If ϕ and ψ are state formulas, then ϕ ∧ ψ and ∼ϕ are state formulas.
(3) If ϕ is an evolution formula, then Eϕ and Aϕ are state formulas.
(4) If ϕ, ψ are state formulas, then Xϕ and ϕUψ are evolution formulas.

Intuitively, evolution formulas describe properties of the evolving knowledge
base, since they use the linear-time operators “next time” and “until,” which
apply to a given infinite evolution path consisting of knowledge states which
are reached by successive events. The operator X refers to the next state of the
path, where Xϕ states that the formula ϕ is true, while ϕUψ refers to a (possibly
empty) initial segment of the path, asserting that ϕ is true in each state of this
segment and that immediately after it ψ is true.

We may extend our language by defining further Boolean connectives ∨
(“or”), ⊃ (“implies”), and ≡ (“equivalence”) in terms of other connectives in the
usual way, as well as important linear-time operators such as Fϕ (“finally ϕ”)
and Gϕ (“globally ϕ”), which intuitively evaluate to true in path p if ϕ is true
at some respectively every stage pi.

The following examples illustrate the use of the logical language EKBL for
expressing particular properties of a given evolution frame.

Example 5.1. Even for our rather simple shopping agent of Example 3.9,
some interesting properties can be formulated. For convenience, we allow in
formulas nonground rules as atoms, which serves as a shorthand for the con-
junction of all ground instances which is assumed to be finite. Recall that we
identify facts with literals.

1Note that we use the symbol ∼ for negation in composite formulas, in order to distinguish it from
the negation symbols used in atomic formulas occurring in rules.
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—There can never be two current dates:

ϕ1 = AG((date(T ) ∧ date(T ′)) ⊃ T = T ′).
—If there is a shop on sale which is up, then a query is always performed:

ϕ2 = AG((up(S) ∧ (sale(S)) ⊃ site queried).

Example 5.2. In order to see whether the mailing agent in Example 3.10
works properly, the first property of the previous example (formula ϕ1), stating
that there can never be two different current dates, applies with slight syntactic
modifications here as well, that is,

ϕ3 = AG((today(D) ∧ today(D′)) ⊃ D = D′).

In addition, we may consider the following properties.

—The type of a message cannot change:

ϕ4 = AG(type(M , T ) ⊃ ∼EF(type(M , T ′) ∧ T 
= T ′)).
—If a message is removed or saved (at least once), then the message is never

trashed until it is either deleted or saved:
ϕ5 = AG((msg(m) ∧ AF(remove(m) ∨ save(m)))

⊃ A(∼trash(m)U(remove(m) ∨ save(m))).

5.2 Semantics

We now define formally the semantics of formulas in our language with respect
to a given evolution frame. To this end, we introduce the following notation.

Definition 5.3. Given an event class EC, a path is an (infinite) sequence
p = (si)i≥0 of knowledge states si ∈ KS(EC) such that si is a successor of si−1, for
every i > 0. By pi we denote the knowledge state at stage i in p, that is, pi = si,
for every i > 0.

Definition 5.4. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame, let
s be a knowledge state over EC, and let p be a path. The satisfaction relation
EF, s |= ϕ, respectively EF, p |= ϕ, where ϕ is an EKBL formula, is recursively
defined as follows:

(1) EF, s |= r iff r ∈ Bel(s), for any atomic EKBL formula r;
(2) EF, s |= ϕ1 ∧ ϕ2 iff EF, s |= ϕ1 and EF, s |= ϕ2;
(3) EF, s |= ∼ϕ iff EF, s 
|= ϕ;
(4) EF, s |= Eϕ iff EF, p′ |= ϕ, for some path p′ starting at s;
(5) EF, s |= Aϕ iff EF, p′ |= ϕ, for each path p′ starting at s;
(6) EF, p |= Xϕ iff EF, p1 |= ϕ;
(7) EF, p |= ϕ1Uϕ2 iff EF, pi |= ϕ2 for some i ≥ 0 and EF, pj |= ϕ1 for all j < i.

If EF, s |= ϕ (respectively, EF, p |= ϕ) holds, then knowledge state s (respec-
tively, path p) is said to satisfy formula ϕ in the evolution frame EF, or ϕ is true
at state s (respectively, path p) in the evolution frame EF.

Notice that any evolution frame EF induces an infinite transition graph
which amounts to a standard Kripke structure KEF = 〈S, R, L〉, where S = SEF
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is the set of knowledge states, R is the successor relation between knowledge
states, and L labels each state s with Bel(S), such that s satisfies ϕ in EF iff
KEF, s |= ϕ (where |= is defined in the usual way).

As easily seen, the operators F and G are expressed by Fϕ = �Uϕ and Gϕ =
∼(�U∼ϕ), respectively, where � is any tautology; thus, AGϕ is equivalent to
∼E(�U∼ϕ), and EGϕ is equivalent to ∼A(�U∼ϕ). Other common linear-time
operators can be similarly expressed, for example, ϕBψ = ∼((∼ϕ)Uψ) (“ϕ before
ψ”), or ϕVψ = ∼(∼ϕU(∼ψ)) (“ϕ releases ψ”).

Let us reconsider our running examples.

Example 5.5. It is easily verified that the initial knowledge base KB of
the shopping agent satisfies both formulas ϕ1 and ϕ2 from Example 5.1 in the
respective EPI evolution frame EFEPI, that is, EFEPI, KB |= ϕ1 and EFEPI, KB |=
ϕ2.

As for KB as in Example 3.10 for the mailing agent, this set satisfies formu-
las ϕ3 and ϕ5 from Example 5.2 in the respective EPI evolution frame EFEPI,
while it is easily seen that it does not satisfy formula ϕ4 in EFEPI, that is, we
have that EFEPI, KB |= ϕ3 and EFEPI, KB |= ϕ5, but EFEPI, KB 
|= ϕ4.

In what follows, we are mainly interested in relations of the form EF, KB |= ϕ,
that is, whether some formula ϕ is satisfied by some initial knowledge base KB
with respect to some given evolution frame EF. In particular, we analyze in
Section 7 the computational complexity of this problem.

6. KNOWLEDGE-STATE EQUIVALENCE

While syntactically different, it may happen that knowledge states s and s′ are
semantically equivalent in an evolution frame, that is, s and s′ may satisfy the
same set of formulas for the current and all future events. We now consider how
such equivalences can be exploited to filtrate a given evolution frame EF such
that, under suitable conditions, we can decide EF, s |= ϕ in a finite structure
extracted from the associated Kripke structure KEF.

6.1 Notions of Equivalence

We start with the following elementary concepts.

Definition 6.1. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame and
k ≥ 0 some integer. Furthermore, let s and s′ be knowledge states over EC.
Then,

(1) s and s′ are k-equivalent in EF, denoted s ≡k
EF s′, if Bel(s + E1, . . . , Ek′ ) =

Bel(s′+E1, . . . , Ek′ ), for all events E1, . . . , Ek′ from EC, where k′ ∈ {0, . . . , k};
(2) s and s′ are strongly equivalent in EF, denoted s ≡EF s′, iff s ≡k

EF s′ for every
k ≥ 0.

We call 0-equivalent states also weakly equivalent. The following result is
obtained easily.

THEOREM 6.2. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame and
s, s′ knowledge states over EC. Then,
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(1) s ≡EF s′ implies that EF, s |= ϕ is equivalent to EF, s′ |= ϕ, for any formula ϕ;
(2) s ≡k

EF s′ implies that EF, s |= ϕ is equivalent to EF, s′ |= ϕ, for any state
formula ϕ in which U does not occur and the nesting depth with respect to
E and A is at most k.

PROOF. We prove Part (6.2) of the theorem by induction on the formula struc-
ture of the state formula ϕ.

Induction Base. Let ϕ be an atomic formula and assume s ≡EF s′, for knowl-
edge states s, s′. Obviously, it holds that Bel(s) = Bel(s′). Thus, it follows that
EF, s |= ϕ iff Bel(s′) |= ϕ, and therefore EF, s |= ϕ iff EF, s′ |= ϕ.

Induction Step. Assume that Part (1) of Theorem 6.2 holds for formulas ψ

of depth at most n − 1, that is, s ≡EF s′ implies EF, s |= ψ iff EF, s′ |= ψ . Let ϕ

be a formula of depth n, and consider the following cases.

—ϕ = ψ1 ∧ ψ2 or ϕ = ∼ψ1. Then, ψ1 and ψ2 are of depth n − 1, and, by the
induction hypothesis, it holds that EF, s |= ϕ iff EF, s′ |= ψ1 and EF, s′ |= ψ2,
respectively EF, s |= ϕ iff EF, s′ 
|= ψ1. Thus, again EF, s |= ϕ iff EF, s′ |= ϕ

follows.
—ϕ = Eψ or ϕ = Aψ . Then, ψ is an evolution formula of depth n−1 of the form

Xψ1 or ψ1Uψ2, where ψ1 and ψ2 have depth n− 2. Consider a path p = (si)i≥0
such that s0 = s, and define p′ = (s′

i)i≥0 with s′
0 = s′ and s′

i = s′ + E1, . . . , Ei for
si = s + E1, . . . , Ei and i > 0. Since s ≡EF s′, it clearly holds that si ≡EF s′

i, for
every i ≥ 0. Furthermore, the induction hypothesis implies that EF, p |= ψ

iff EF, p′ |= ψ . Hence, EF, s |= Eψ iff EF, s′ |= Eψ follows. Likewise, we
obtain that EF, s |= Aψ iff EF, s′ |= Aψ .

This concludes the induction and proves Part (1) of our result.
Concerning Part (2) of the theorem, observe that in order to prove a formula

ϕ in which U does not occur and the evolution quantifier depth is at most k ≥ 0,
initial path segments of length at most k +1 need to be considered. This follows
from the fact that evolution subformulas of ϕ can only be of form Xψ . Moreover,
since every evolution formula must be preceded by a quantifier E or A, at most
k nested evolution formulas can occur in ϕ and every evolution formula of the
above form, that is, Xψ , can be verified by considering the truth value of ψ in
successor states of the current state. Hence, initial path segments of length at
most k +1 suffice. Since for two knowledge states s and s′ such that s ≡k

EF s′, all
knowledge states reachable in k steps are equivalent, EF, s |= ϕ iff EF, s′ |= ϕ

holds by the same inductive argument as in the proof of Part (1) above. Thus,
Part (2) of the theorem follows.

By Part (1) of Theorem 6.2, strong equivalence can be used to filtrate an
evolution frame EF in the following way. For an equivalence relation E over
some set X and any x ∈ X , let [x]E = { y | x E y} be the equivalence class of x,
and let X /E = {[x]E | x ∈ X } be the set of all equivalence classes. Furthermore,
E is said to have a finite index (with respect to X ), if X /E is finite.

Then, any equivalence relation E over some set S ⊆ SEF of knowledge states
of EF compatible with ≡EF (i.e., such that s E s′ implies s ≡EF s′, for all s, s′ ∈ S)
induces a Kripke structure K E,S

EF = 〈S/E, RE , LE〉, where [s]E RE [s′]E iff s R s′
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and LE ([s]E ) = L(s), which is bisimilar to the Kripke structure KEF restricted
to the knowledge states in S. Thus, for every knowledge state s and formula ϕ,
it holds that EF, s |= ϕ iff K E,S

EF , [s]E |= ϕ, for any S ⊆ SEF such that S contains
all descendants of s.

In the following, we consider two cases in which S/E has finite index. Prior
to this, we introduce some convenient terminology and notation.

For any state s ∈ SEF, we denote by dsc(s) the set of knowledge states con-
taining s and all its descendants (with respect to EC in EF, which will be clear
from the context), and by T (s) the ordered tree with root s where the children
of each node s′ are its successor states according to EF, and s′ is labeled with
Bel(s′). Furthermore, for any S ⊆ SEF, we define dsc(S) = ⋃

s∈S dsc(s), and call
S successor closed, if S = dsc(S), that is, each successor of a knowledge state
in S belongs to S. Note that for any s ∈ SEF, T (s) has node set dsc(s), which is
successor closed.

6.2 Local Belief Operators

In the first case, we consider ≡EF itself as a relation compatible with strong
equivalence. We obtain a finite index if, intuitively, the belief set Bel(s) associ-
ated with s evolves differently only in a bounded context. This is made precise
in the following result.

THEOREM 6.3. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame such
that EC is finite, and let S ⊆ SEF be a successor-closed set of knowledge states
over EC. Then, the following two conditions are equivalent:

(1) ≡EF has a finite index with respect to S.
(2) ≡0

EF has a finite index with respect to S and there is some k ≥ 0 such that
s ≡k

EF s′ implies s ≡EF s′, for all s, s′ ∈ S.

PROOF. We first show that (2) implies (1). Consider, for any s ∈ S, the tree
T (s). At depth i ≥ 0, there are |EC|i different nodes, and thus up to depth k in
total

k∑
i=0

|EC|i = |EC|k+1 − 1
|EC| − 1

< 2|EC|k

many different nodes if |EC| > 1, and k + 1 many if |EC| = 1. Thus, if d =
|S/ ≡0

EF | is the number of different equivalence classes of the relation ≡0
EF with

respect to S, then there are less than c = dmax( 2|EC|k ,k+1) many trees T (s), where
s ∈ S, which are different up to depth k. Hence, there are at most c knowledge
states s1, . . . , sc, si ∈ S, 1 ≤ i ≤ c, which are pairwise not strongly equivalent.
Consequently, ≡EF has at most c different equivalence classes with respect to
S, and thus ≡EF has a finite index with respect to S.

For showing that (1) implies (2), suppose the relation ≡EF has at most n
different equivalence classes with respect to S. Then, there are at most n
knowledge states s1, . . . , sn ∈ S which are pairwise not strongly equivalent,
that is, si 
≡EF sj , for all 1 ≤ i < j ≤ n. Since strongly equivalent states are
also weakly equivalent, n is thus also a finite upper bound for the equivalence
classes of the relation ≡0

EF with respect to S.
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Now, for i, j ∈ {1, . . . , n} such that i 
= j , let l = li, j be the smallest integer for
si and sj , 1 ≤ i < j ≤ n, such that Bel(si + E1, . . . , El ) 
= Bel(sj + E1, . . . , El ),
but Bel(si + E ′

1, . . . , E ′
m) = Bel(sj + E ′

1, . . . , E ′
m), for all sequences of events

E ′
1, . . . , E ′

m, 0 ≤ m < l . Furthermore, let k = maxi, j (li, j ) be the largest such l
over all si and sj . Note that k is well defined and finite because of the finite index
of ≡EF with respect to S. It follows that if any two knowledge states s, s′ ∈ S
are k-equivalent, then they are also strongly equivalent. Indeed, suppose the
contrary, that is, suppose s ≡k

EF s′, but s 
≡EF s′. Then, there exists a sequence of
l events, l > k, such that Bel(s + E1, . . . , El ) 
= Bel(s′ + E1, . . . , El ), but Bel(s +
E ′

1, . . . , E ′
m) = Bel(s′ + E ′

1, . . . , E ′
m), for all sequences of events E ′

1, . . . , E ′
m, 0 ≤

m ≤ k < l . From the assumption that s 
≡EF s′, it follows that s ≡EF si and
s′ ≡EF sj , for some i, j ∈ {1, . . . , n} such that i 
= j . This implies that li, j > k,
which contradicts the maximality of k. Thus, s ≡k

EF s′ implies s ≡EF s′, for all
s, s′ ∈ S.

The condition that ≡0
EF has a finite index, i.e., that only finitely many knowl-

edge states s have different belief sets, is satisfied by common belief operators
if, for example, every knowledge state s is compiled to a sequence compEF(s) of
ELPs or a single ELP over a finite set of function-free atoms (in particular, if A
is a finite propositional alphabet).

We remark that, as can be seen from the proof of Theorem 6.3, Condition (1)
implies Condition (2) also for arbitrary S, while the converse does not hold in
general for an S which is not successor closed.

By taking natural properties of Bel(·) and compEF(·) into account, we can
derive an alternative version of Theorem 6.3. To this end, we introduce the
following concepts.

Definition 6.4. Given a belief operator Bel(·), we call update programs P
and P′ k-equivalent, if Bel(P + (Q1, . . . , Qk)) = Bel(P′ + (Q1, . . . , Qk)), for all
programs Q1, . . . , Qi (0 ≤ i ≤ k). Likewise, P and P′ are strongly equivalent, if
they are k-equivalent for all k ≥ 0. We say that Bel(·) is k-local, if k-equivalence
of P and P′ implies strong equivalence of P and P′, for any update programs P
and P′. Furthermore, Bel(·) is local, if Bel(·) is k-local for some k ≥ 0.

We obtain the following result.

THEOREM 6.5. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame such
that EC is finite and ≡0

EF has a finite index with respect to some successor closed
S ⊆ SEF. If Bel(·) is local and compEF(·) is incremental, then ≡EF has a finite
index with respect to S.

PROOF. Similar to the proof of Theorem 6.3, consider, for any knowledge state
s ∈ S, the tree T (s). Each node in s′ has label Bel(s′) = Bel(P + (Q1, . . . , Qn)),
where P = compEF(s) and Qi, i ≥ 1, are the increments of compEF(·) correspond-
ing to the successive events Ei in s′ = s + E1, . . . , En. Note that incrementality
of compEF(·) guarantees that the length of compEF(s′) is at most n plus the
length of compEF(s). Since Bel(·) is k-local, up to depth k, there are at most
c = dmax(2|EC|k ,k+1) many different trees, where d = |S/ ≡0

EF |. Thus, there are
at most c update programs P1, . . . , Pc, and, hence, knowledge states s1, . . . , sc,
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which are pairwise not strongly equivalent. Consequently, ≡EF has at most c
different equivalence classes, from which the result follows.

As an application of this result, we show that certain EPI evolution frames
have a finite index. To this end, we use the following lemmata.

We say that a semantics Bel(·) for sequences of propositional ELPs satisfies
strong noninterference if, for every propositional update sequence P, the follow-
ing condition holds: For every ELP P1, P2, and Q , if Q ⊆ P2 and no pair of
rules r, r ′ exists with H(r) = ¬H(r ′), where r ∈ Q and r ′ ∈ (P2 \ Q) ∪ P1, then
Bel(P, P1, P2) = Bel(P, P1 ∪ Q , P2 \ Q), that is, the rules from Q can be moved
from the last component to the penultimate one.

Recall that BelE (·) is the belief operator of the answer set semantics of update
programs [Eiter et al. 2002], as described in Section 2.

LEMMA 6.6. BelE (·) satisfies strong noninterference.

PROOF. The proof appeals to the rejection mechanism of the semantics. Con-
sider ELPs P1, P2, and Q such that

(∗) Q ⊆ P2 and no pair of rules r, r ′ exists with H(r) = ¬H(r ′), where r ∈ Q
and r ′ ∈ (P2 \ Q) ∪ P1.

If Q = ∅, the lemma holds trivially. So, let r ∈ Q , but no rule r ′ ∈ Q exists
such that H(r) = ¬H(r ′). Then, there is no such rule r ′ in P1 or P2, otherwise
Condition (∗) is not fulfilled. Hence, no rule of P1 is rejected by r. Moreover,
adding r to P1 can neither cause an inconsistency of P1, nor can r be rejected
by a rule from P2 \ Q . Thus, BelE (P + (P1, P2)) = BelE (P + (P1 ∪ Q , P2 \ Q))
holds in this case.

Now let Q also contain some rule r ′ such that H(r) = ¬H(r ′) (P1 cannot
contain such rules without violating Condition (∗)). Then, Q must contain all
rules with heads H(r) and ¬H(r) of P2, and no such rule may exist in P1, in
order to fulfill (∗). Again, no rule of P1 can be rejected by any rule of Q , and
no rule of Q can be rejected by any rule from P2 \ Q . Additionally, adding Q to
P1 makes P1 inconsistent iff P2 is inconsistent. As a consequence, also in this
case, BelE (P + (P1, P2)) = BelE (P + (P1 ∪ Q , P2 \ Q)). Since there are no other
possibilities left, the lemma is shown.

For our next theorem, we require Part (1) of the following lemma, which in
turn will be relevant in Section 7.2.

LEMMA 6.7. Let P and Q be sequences of ELPs. Then,

(1) BelE (P) = BelE (Q) if U(P) = U(Q), and
(2) given that P and Q are propositional sequences over possibly infinite alpha-

bets, U(P) = U(Q) if BelE (P) = BelE (Q).

PROOF. As for Part (1), if U(P) = U(Q), then BelE (P) = BelE (Q) is immediate
from the definition of BelE (·).
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To show Part (2), it suffices to prove that, given ELPs P1 and P2 over a set A
of atoms,

AS(P1) = AS(P2) if BelE (P1) = BelE (P2).

Suppose AS(P1) 
= AS(P2), and assume first that A is finite. Without loss
of generality, suppose that S = {L1, . . . , Lk} ∈ AS(P1) but S /∈ AS(P2). This
means that the constraint

c : ← L1, . . . , Lk , not Lk+1, . . . , not Lm,

where Lk+1, . . . , Lm are all the atoms from A missing in S, is in BelE (P2) but not
in BelE (P1). However, this contradicts the hypothesis that BelE (P1) = BelE (P2).
This proves the result for finite A.

For infinite A, it is possible to focus on the finite set of atoms occurring in
P ∪ Q, since, as is well known for the answer set semantics, A, ¬A /∈ S for each
A ∈ A \ A′ and S ∈ AS(P ) if P is an ELP on A′ ⊆ A.

Now we can show the following result:

THEOREM 6.8. BelE (·) is local. In particular, 1-equivalence of update pro-
grams P and P′ implies k-equivalence of P and P′, for all k ≥ 1.

PROOF. We show that 1-equivalence implies k-equivalence for propositional
update sequences P and P′ by induction on k ≥ 1. Since the evaluation of BelE (·)
for nonground update sequences amounts to the evaluation of propositional
sequences, the result for the nonground case follows easily.

Induction Base. The base case k = 1 is trivial.
Induction Step. Assume that 1-equivalence of P and P′ implies that they are

(k−1)-equivalent, for k > 1. Suppose further, that P and P′ are 1-equivalent, but
not k-equivalent. Then, there exist programs Q1, . . . , Qk′ , where k′ ∈ {2, . . . , k},
such that BelE (P + Q1, . . . , Qk′ ) 
= BelE (P′ + Q1, . . . , Qk′ ), that is, according
to Part (1) of Lemma 6.7, there exists a (consistent) answer set S ∈ U(P +
Q1, . . . , Qk′ ) such that S /∈ U(P′ + Q1, . . . , Qk′ ). We can remove every rule r
from Qk′−1 and Qk′ such that either S 
|= B(r), or r is a member of

Rejk′−1(S, P + Q1, . . . , Qk′ ) ∪ Rejk′ (S, P + Q1, . . . , Qk′ )
= Rejk′−1(S, P + Q1, . . . , Qk′ ) = Rejk′−1(S, P′ + Q1, . . . , Qk′ ).

Let the resulting programs be denoted by Q ′
k′−1 and Q ′

k′ , respectively. Note that
S ∈ U(P + Q1, . . . , Qk′−2, Q ′

k′−1, Q ′
k′ ) and S /∈ U(P′ + Q1, . . . , Qk′−2, Q ′

k′−1, Q ′
k′ )

must still hold, since these rules can neither be generating for S, that is, fire
with respect to S, nor reject other rules. Observe also that Q ′

k′−1 ∪ Q ′
k′ cannot

contain a pair of rules with conflicting heads. Otherwise, contradicting our
assumption, S would be inconsistent since both rules were generating for S.

Now we construct the program Q∗
k′−1 = Q ′

k′−1 ∪ Q ′
k′ . From the strong nonin-

terference property (Lemma 6.6), it follows that

BelE (P + Q1, . . . , Qk′−2, Q∗
k′−1, ∅) 
= BelE (P′ + Q1, . . . , Qk′−2, Q∗

k′−1, ∅).

Since, for every update sequence Q, BelE (Q + ∅) = BelE (Q), we obtain that

BelE (P + Q1, . . . , Qk′−2, Q∗
k′−1) 
= BelE (P′ + Q1, . . . , Qk′−2, Q∗

k′−1).
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This means that P and P′ are not k′ − 1-equivalent; however, this contradicts
the induction hypothesis that P and P′ are k − 1-equivalent. Hence, P and P′

are k-equivalent.

Furthermore, in any EPI evolution frame EF = 〈A, EC, ACEPI, �EPI, ρEPI,
BelE〉, the update policy �EPI is, informally, given by a logic program such that
�EPI returns a set of update actions from a finite set A0 of update actions,
which are compiled to rules from a finite set R0 of rules, provided EC is fi-
nite. Consequently, ≡0

EF has finite index with respect to any set S of knowledge
states s which coincide on π0(s), that is, the initial knowledge base KB. Fur-
thermore, compEPI(·) is incremental. Thus, from the proof of Theorem 6.5, we
obtain:

COROLLARY 6.9. Let EF = 〈A, EC, ACEPI, �EPI, ρEPI, BelE〉 be an EPI evolution
frame such that EC is finite, and let S ⊆ SEF be a successor-closed set of knowledge
states such that {π0(s) | s ∈ S} is finite. Then, ≡EF has a finite index with respect
to S. Moreover, |S/ ≡EF| ≤ d2|EC|, where d = |S/ ≡0

EF|.
Leite [2002] showed an analogous result for Bel⊕(·), that is, 1-equivalence of

dynamic update programs P and P′ implies their strong equivalence, and thus
Bel⊕(·) is local. Since for update policies over the LUPS or LUPS∗ language and
their respective compilations, the same as for their EPI counterparts holds, we
also get the following result:

COROLLARY 6.10. Let EF be either a LUPS evolution frame 〈A, EC, ACL, �L,
ρL, Bel⊕〉 or a LUPS∗ evolution frame 〈A, EC, ACL∗ , �L∗ , ρL∗ , Bel⊕〉 such that EC
is finite, and let S ⊆ SEF be a successor-closed set of knowledge states such that
{π0(s) | s ∈ S} is finite. Then, ≡EF has a finite index with respect to S. Moreover,
|S/ ≡EF| ≤ d2|EC|, where d = |S/ ≡0

EF|.

6.3 Contracting Belief Operators

Next, we discuss a refinement of strong equivalence, called canonical equiva-
lence, which also yields a finite index, provided that the evolution frame pos-
sesses, in some sense, only a “bounded history”. In contradistinction to the pre-
vious case, canonical equivalence uses semantical properties which allow for a
syntactic simplification of update programs. We need the following notions.

Definition 6.11. Let Bel(·) be a belief operator. Then, Bel(·) is called con-
tracting iff the following conditions hold: (i) Bel(P + ∅ + P′) = Bel(P + P′),
for all update programs P and P′; and (ii) Bel(P) = Bel(P0, . . . , Pi−1, Pi \
{r}, Pi+1, . . . , Pn), for any sequence P = (P0, . . . , Pn) and any rule r ∈ Pi ∩ Pj
such that i < j . An evolution frame EF = 〈A, EC, AC, �, ρ , Bel〉 is contracting
iff Bel(·) is contracting.

Examples of contracting belief operators are BelE (·) and the operator Bel⊕(·)
(see Section 2).

By repeated removal of duplicate rules and empty programs from any se-
quence P = (P0, . . . , Pn) of ELPs, we eventually obtain a non-reducible sequence
P∗ = (P∗

0 , . . . , P∗
m), which is called the canonical form of P. Observe that m ≤ n
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always holds, and that P∗ is uniquely determined, that is, the reduction process
is Church–Rosser. We get the following property:

THEOREM 6.12. For any contracting belief operator Bel(·) and any update
sequence P, we have that P and P∗ are strongly equivalent.

PROOF. We must show that P and P∗ are k-equivalent, for every k ≥ 0. The
proof is by induction on k ≥ 0.

Induction Base. We show that P and P∗ are 0-equivalent. The proof is by
induction on the reduction process, that is, on the number of required removals
of rules or empty programs from P in order to obtain P∗. For the induction base,
suppose P = P∗. Then, P and P∗ are trivially 0-equivalent. For the induction
step, assume that Bel(Q) = Bel(Q∗), for all sequences of programs Q such that
the canonical form Q∗ can be constructed using n − 1 removals of rules and
empty programs. Let P be a sequence of programs such that the construction
of P∗ requires n removing steps, and let P′ denote any sequence of programs
obtained from P after n − 1 removals. Then, Bel(P) = Bel(P′), by induction
hypothesis. Furthermore, Bel(P′) = Bel(P∗) follows trivially from Bel being
contracting. Thus, Bel(P) = Bel(P∗). We have shown that for any sequence P of
programs, if Bel(·) is contracting, then P and P∗ are 0-equivalent.

Induction Step. Suppose k > 0, and let Q = (P + Q1, . . . , Qk) and R =
(P∗ + Q1, . . . , Qk). Furthermore, let Q∗ and R∗ denote the canonical forms of Q
and R, respectively. We show that Q∗ = R∗.

Suppose P∗ is obtained from P using n reduction steps and R∗ is obtained
reducing R in m steps. We construct Q∗ as follows. We first perform n reduction
steps on the subsequence P of Q, resulting in the sequence R. Then we apply m
reduction steps on R. Since the reduction process is Church–Rosser, no further
reductions can be applied, which proves Q∗ = R∗. From the induction base, it
follows that Q and Q∗ are weakly equivalent, which proves k-equivalence of P
and P∗.

6.4 Canonical Evolution Frames

In this section, we study the relationship between an evolution frame and its
canonized form:

Definition 6.13. Given an evolution frame EF, we call knowledge states
s, s′ ∈ SEF canonically equivalent, denoted s ≡can

EF s′, iff they are strongly equiv-
alent in the canonized evolution frame EF∗, which results from EF by replacing
compEF(s) with its canonical form compEF(s)∗ (that is, compEF∗ (s) = compEF(s)∗).

Immediately, we note the following properties.

THEOREM 6.14. Let EF be a contracting evolution frame. Then,

(1) EF, s |= ϕ iff EF∗, s |= ϕ, for any knowledge state s and any formula ϕ.
(2) ≡can

EF is compatible with ≡EF, for any S ⊆ SEF, that is, s ≡can
EF s′ implies

s ≡EF s′, for every s, s′ ∈ S.
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PROOF. In order to show Part (1), we consider the Kripke structures KEF
and KEF∗ , corresponding to a contracting evolution frame EF and its can-
onized evolution frame, respectively. Since, for every s ∈ S, it holds that
Bel(compEF(s)) = Bel(compEF(s)∗) = Bel(compEF∗ (s)), equal states have equal
labels in KEF and KEF∗ . Hence, KEF and KEF∗ coincide. As a consequence,
KEF, s |= ϕ iff KEF∗ , s |= ϕ, for every s ∈ S, and hence EF, s |= ϕ iff EF∗, s |= ϕ,
for every s ∈ SEF.

As for the proof of Part (2), assume s ≡can
EF s′, for s, s′ ∈ S and some

S ⊆ SEF. Then, Bel(compEF∗ (s)) = Bel(compEF∗ (s′)). Moreover, Bel(compEF(s)) =
Bel(compEF∗ (s)) holds, as well as Bel(compEF(s′)) = Bel(compEF∗ (s′)), which im-
plies Bel(compEF(s)) = Bel(compEF(s′)), and the same is true for all correspond-
ing successor states of s and s′ due to the fact that they are canonically equiv-
alent. Thus, s ≡can

EF s′ implies s ≡EF s′, for every s, s′ ∈ S.

As a result, we may use ≡can
EF for filtration of EF, based on the following

concept.

Definition 6.15. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame and
c ≥ 0 an integer. We say that EF is c-bounded if there are functions α, f , and
g such that

(1) α is a function mapping knowledge states into sets of events such that, for
each s = 〈KB; E1, . . . , En〉, α(s) = {En−c′+1, . . . , En}, where c′ = min(n, c),
and

(2) �(s, E) = f (Bel(s), α(s), E) and ρ(s, A) = g (Bel(s), α(s), A), for each knowl-
edge state s ∈ SEF, each event E ∈ EC, and each A ⊆ AC.

This means that in a c-bounded evolution frame, the compilation compEF(s)
only depends on the belief set of the predecessor s′ of s and the last c + 1 events
in s (including the latest event). In particular, c = 0 means that only the latest
event needs to be considered.

THEOREM 6.16. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be an evolution frame where
EC is finite, and let S ⊆ SEF be successor closed and such that {π0(s) | s ∈ S}
is finite. If (i) EF is contracting, (ii) there is some finite set R0 ⊆ LA such that
compEF(s) contains only rules from R0, for every s ∈ S, and (iii) EF is c-bounded,
for some c ≥ 0, then ≡can

EF has a finite index with respect to S.

PROOF. See Appendix A.

We remark that the existence of R0 is trivial if we have a function-free (finite)
alphabet, and, as common in many logic programming semantics, repetition of
literals in rule bodies has no effect, and thus the set of nonequivalent rules is
finite. A similar remark applies to the initial knowledge bases π0(s).

7. COMPLEXITY

In this section, we investigate the computational complexity of our evolution
framework. To this end, in what follows, we assume that the alphabet A of the
evolution frames under consideration is finite and propositional. Thus, we only
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deal with finite propositional (sequences of) programs that are the result of the
state compilation comp(s).

7.1 Complexity of Reasoning over Knowledge-Base Evolution

First, we study the computational complexity of the following reasoning task:

TEMPEVO: Given an evolution frame EF = 〈A, EC, AC, �, ρ , Bel〉, a knowledge
state s over EC, and some formula ϕ, does EF, s |= ϕ hold?

In order to obtain decidability results, we assume that the constituents of
the evolution frame EF in TEMPEVO are all computable. More specifically, we
assume that

(1) EC, AC, and Bel are given as computable functions deciding E ∈ EC, a ∈ AC,
and r ∈ Bel(P), and

(2) � and ρ are given as computable functions.

Nonetheless, even under these stipulations, it is easy to see that TEMPEVO is
undecidable. Indeed, the compilation function may efficiently simulate Turing
machine computations, such that the classical halting problem can be encoded
easily in the above reasoning problem.

The results of Section 6 provide a basis for characterizing some decidable
cases. We consider here the following class of propositional evolution frames.

Definition 7.1. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be a propositional evolution
frame (that is, A is propositional). Then, EF is called regular if the following
three conditions hold:

(1) The membership tests E ∈ EC and r ∈ Bel(P) are feasible in PSPACE (for
example, located in the polynomial hierarchy), and the functions � and ρ

are computable in polynomial space (the latter with polynomial size output).
(2) Rules in compilations compEF(s) and events E have size polynomial in the

representation size of EF, denoted by ‖EF‖ (i.e., repetition of the same
literal in a rule is bounded), and events have size at most polynomial in
‖EF‖.

(3) Bel(·) is fully characterized by rules of length polynomial in ‖EF‖, that is,
there is some constant c such that r ∈ Bel(P) iff r ∈ Bel(P′) for all rules r
of length ≤ ‖EF‖c implies Bel(P) = Bel(P′), for all update sequences P and
P′.

Conditions (1) and (3) apply to the approaches of Alferes et al. [2000], Eiter
et al. [2000, 2001], Marek and Truszczyński [1994, 1998], Inoue and Sakama
[1999], and Zhang and Foo [1998], and Condition (2) is reasonable to impose;
note that none of these semantics is sensible to repetitions of literals in rule
bodies. However, we could imagine semantics where, similar as in linear logic,
literals are “consumed” in the inference process, and that repetition of literals
alludes to available resources.

Before we state our first complexity result, let us briefly recall some well-
known complexity results for the above-mentioned approaches. To begin with,
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we note that deciding whether a literal L ∈ Bel(P ), for a literal L and a finite,
propositional ELP P is coNP-complete. The complexity does not increase for
the update approaches of Alferes et al. [2000], Eiter et al. [2000, 2001], Marek
and Truszczyński [1994, 1998], and Zhang and Foo [1998], that is, deciding
L ∈ BelS(P) is coNP-complete for S ∈ {E, ⊕, Rev, PLP}, where P is a finite,
propositional sequence of (at most two in case of PLP) ELPs. However, the
complexity for abductive theory updates [Inoue and Sakama 1999], when con-
sidering all possible selection functions, increases one level in the polynomial
hierarchy. To wit, deciding L ∈ BelAbd(P) is �P

2 -complete.
The following lemma will be used several times in the sequel:

LEMMA 7.2. Given a regular evolution frame EF = 〈A, EC, AC, �, ρ , Bel〉, a
knowledge state s ∈ SEF, and a formula ϕ, suppose that ≡EF has finite index, c,
with respect to S = dsc(s). Then, there exists a deterministic Turing machine M
which checks EF, s |= ϕ in space polynomial in (q +1) · (ms + log c +‖EF‖+‖ϕ‖),
where q is the nesting depth of evolution quantifiers in ϕ, ms is the maximum
space required to store s′ ∈ S representing a class of S/ ≡EF, and ‖ϕ‖ denotes
the size of formula ϕ.

PROOF. See Appendix B.1.

We then obtain the following complexity results.

THEOREM 7.3. Deciding EF, s |= ϕ, given a regular propositional evolution
frame EF = 〈A, EC, AC, �, ρ , Bel〉, a knowledge state s, and a formula ϕ is

(1) 2-EXPSPACE-complete, if Bel(·) is k-local for some k which is polynomial
in ‖EF‖, and compEF(·) is incremental;

(2) EXPSPACE-complete, if EF is c-bounded, where c is polynomial in ‖EF‖,
contracting, and functions � and ρ are computable in space polynomial in
the size of compEF(·);

(3) PSPACE-complete, if EF is as in (2) and, moreover, all rules in the compila-
tions compEF(s′) of descendants s′ of s are from a set R0 of size polynomial
in ‖EF‖.

PROOF. See Appendix B.2.

We remark that boundedness of evolution frames in Part (2) of the above the-
orem is not enforced by the respective complexity bounds on deciding EF, s |= ϕ.
There can be contracting evolution frames with infinitely many knowledge
states which are not strongly equivalent, while paths have a very regular struc-
ture which eases the evaluation of EF, s |= ϕ.

While, for the propositional EPI framework, Bel(s) depends in general on all
events in s, it is possible to restrict ACEPI to the commands assert and retract,
by efficient coding techniques which store relevant history information in Bel(s),
such that the compilation in compEPI(s) depends only on Bel(πn−1(s)) and the
last event En in s (cf. Eiter et al. [2003]). Furthermore, the policy �EPI is sensible
only to polynomially many rules in events, and compEPI(s) contains only rules
from a fixed set R0 of rules, whose size is polynomial in the representation size
of EF. Thus, by Part (3) of Theorem 7.3, we get the following result:
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Table I. Complexity Results for Regular and Strongly Regular Evolution Frames

evolution frame EF regular strongly regular

(1) k-local & incremental 2-EXPSPACE-complete 2-EXPTIME-complete
(2) c-bounded & contracting EXPSPACE-complete EXPSPACE-complete
(3) (2) & |R0| polynomial PSPACE-complete PSPACE-complete

COROLLARY 7.4. Let EF = 〈A, EC, ACEPI, �EPI, ρEPI, BelE〉 be a propositional
EPI evolution frame, let s be a knowledge state, and let ϕ be a formula. Then,
deciding EF, s |= ϕ is PSPACE-complete.

The encoding of the QBF evaluation problem in the proof of Part (3) of The-
orem 7.3 has further interesting properties. The initial knowledge base used,
KB, is stratified and the resulting update policy is also stratified and factual as
defined by Eiter et al. [2001, 2003]. This means that r ∈ BelE (P) can be decided
in polynomial time for the given evolution frame. Since, moreover, the member-
ship test E ∈ EC, as well as the functions � and ρ are computable in polynomial
time, we get another corollary. To this end, we introduce the following notion:

Definition 7.5. Let EF = 〈A, EC, AC, �, ρ , Bel〉 be a propositional evolution
frame. EF is called strongly regular if the membership tests E ∈ EC and r ∈
Bel(P) are feasible in polynomial time, as well as � and ρ are computable in
polynomial time.

Now we can state the following result.

COROLLARY 7.6. Deciding EF, s |= ϕ, given a strongly regular propositional
evolution frame EF= 〈A, EC, AC, �, ρ , Bel〉, a knowledge state s, and a formula
ϕ, is PSPACE-complete, if EF is (i) c-bounded, where c is polynomial in ‖EF‖,
(ii) contracting, and (iii) all rules in the compilations compEF(s′) of descendants
s′ of s are from a set R0 of size polynomial in ‖EF‖.

Thus, concerning evolution frames according to Part (3) of Theorem 7.3, we
stay within the same complexity class if we suppose strong regularity. For
strongly regular evolution frames according to Parts (1) and (2) of that the-
orem, we can establish the following result:

THEOREM 7.7. Given a strongly regular propositional evolution frame,
EF = 〈A, EC, AC, �, ρ , Bel〉, a knowledge state s, and a formula ϕ, deciding
EF, s |= ϕ is

(1) 2-EXPTIME-complete, if Bel(·) is k-local for some k which is polynomial in
‖EF‖, and compEF(·) is incremental; and

(2) EXPSPACE-complete, if EF is c-bounded, where c is polynomial in ‖EF‖,
and contracting.

PROOF. See Appendix B.3.

The complexity results obtained so far are summarized in Table I. Further
results can be derived by imposing additional meaningful constraints on the
problem instances.
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For example, one such restriction is bounding the path-quantifier nesting
depth in the evolution formula ϕ, and, in the extremal case, to allow only one
quantifier A, respectively E, to occur in ϕ. The proofs of the hardness parts of
the results in Table I entail that for all combinations, except (3) and strong
regularity, the lower bound is already established for formulas of the form EFa,
where a is an atom. In case of (3) and strong regularity, the complexity de-
creases for quantifier nesting depth bounded by a constant k from PSPACE into
the class 	P

k+1 of the polynomial hierarchy (more precisely, to 	P
k+1[O(log n)]),

as can be seen from a variant of Lemma 7.2. In particular, for formulas EFa
where a is an atom, the complexity is in NP. Similarly, for the restriction of
ϕ to negational normal form, in which negation is allowed only to occur in
front of atoms, the results in Table I hold by our proofs. Furthermore, from
the closure of the above complexity classes under complementation and since
∼EFa is equivalent to AG∼a, we can infer lower complexity bounds for decid-
ing policy consistency, expressed by a formula AG∼a, where a stands for policy
violation.

Another interesting case is when the knowledge state s is compiled to a set of
facts (that is, a simple database) but the update policy might still be complex. By
Part (3) of Theorem 7.3, the complexity is in PSPACE then under the conditions
of Part (2). Furthermore, as shown by the proof of Part (3), PSPACE-hardness
is encountered already with very simple policies. We leave further elucidation
of syntactic restrictions for further work.

We remark that if we restrict the semantics for Bel(·) to be defined in terms
of a unique model (for example, the extended well-founded semantics for ELPs
[Brewka 1996; Pereira and Alferes 1992]), then in case of a c-bounded and
contracting regular evolution frame EF, the complexity of deciding TEMPEVO

drops from EXPSPACE to PSPACE. This can be argued by the observation
that, in case of a unique model semantics, we have only single exponentially
many different belief sets, and a knowledge state s can be represented by
storing the (unique) model of comp(s) and the last c events, which is possi-
ble in polynomial space. On the other hand, already for 0-bounded, contract-
ing, strongly regular evolution frames with polynomial-size rule set R0, the
problem TEMPEVO is PSPACE-hard, as can be shown by adapting the con-
struction in the proof of Part (3) of Theorem 7.3, for example, to evolution
frames based on stratified or well-founded semantics for ELPs [Brewka 1996,
Pereira and Alferes 1992].

The above complexity results provide us with information about the upper
complexity bound of reasoning over knowledge-base evolution, depending on
properties that the underlying evolution frame may have. It does not a priori
allow us to draw conclusions about lower bounds, however, and thus whether
one formalism for reasoning about knowledge base updates is “easier” than
another one from just this upper bound. Furthermore, whenever we can fit a
formalism involving reasoning about temporal properties in our framework, we
might be able to derive complexity results about it. This remains to be explored
for candidates such as the methods of Abiteboul et al. [1998], Lobo et al. [1999],
and Son and Lobo [2001].
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7.2 Complexity of State Equivalence

We conclude our complexity analysis with results concerning weak, strong, and
k-equivalence of two finite propositional update programs under BelE (·) and
Bel⊕(·), respectively.

We can state our first result, concerning the complexity of deciding weak
equivalence under BelE (·), as a consequence of Lemma 6.7 (cf. Section 6.2).

THEOREM 7.8. Deciding whether two given finite propositional update pro-
grams P and Q are weakly equivalent under BelE, that is, satisfying BelE (P) =
BelE (Q), is coNP-complete.

PROOF. The membership result follows from Lemma 6.7. Indeed, the prob-
lem of checking BelE (P) = BelE (Q) for finite propositional update programs P
and Q is equivalent to the task of checking whether they yield the same answer
sets, that is, whether U(P) = U(Q), which is in coNP.

For the lower bound, suppose that, without loss of generality, P has no answer
set. Then checking whether BelE (P) = BelE (Q), for an update sequence Q,
amounts to the task of testing whether Q has no answer set, which is coNP-
complete (cf. Dantsin et al. [2001]).

For deciding 1-equivalence, the following lemma is useful:

LEMMA 7.9. Let P and Q be finite propositional update programs over pos-
sibly infinite alphabets. Then, P and Q are not 1-equivalent under BelE (·) iff
there is an ELP P and a set S such that (i) S ∈ U(P + P ) but S /∈ U(Q + P ),
or vice-versa, (ii) |S| is at most the number of different literals in P + Q plus
1, and (iii) |P | ≤ |S| + 1. (Note that P has polynomial size in the size of P
and Q.)

PROOF. Intuitively, this holds since any answer set S of P + P can be gen-
erated by at most |S| many rules. Furthermore, if S is not an answer set of
Q + P , by unfolding rules in P we may disregard for an S all but at most one
literal that does not occur in P or Q. To generate a violation of S in Q + P ,
an extra rule might be needed; this means that a P with |P | ≤ |S| + 1 is
sufficient.

If part. Let P and Q be finite propositional update programs and S a set
such that Conditions (i), (ii), and (iii) hold. Then, P and Q are not 1-equivalent,
since, by Lemma 6.7, BelE (P + P ) 
= BelE (Q + P ) is a consequence of (i).

Only-if part. Let P and Q be finite propositional update programs which
are not 1-equivalent, that is, there exists an ELP P such that BelE (P + P ) 
=
BelE (Q + P ). Moreover, again by application of Lemma 6.7, there exists a set
S such that, without loss of generality, S ∈ U(P + P ) but S /∈ U(Q + P ), that is,
Condition (i) holds.

By means of P and S, we construct a program P ′ and a set S′ such that
Conditions (i), (ii), and (iii) hold for P ′ and S′: Consider the program �1 =
((P ∪ P ) \ Rej(S, P + P ))S . Then, according to the update answer set semantics,
S can be generated from the rules in �1 by means of constructing its least fixed-
point. Moreover, this still holds for the following simplification P S

0 of P S . First,
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all rules which are not applied when constructing S can be removed. Second,
among the remaining rules, we delete all rules with equal heads, except one of
them, namely the rule which is applied first in the least fixed-point construction
of S. (If several rules with equal head are applied at this level of the fixed-point
construction, then we choose an arbitrary of them.) Thus, P S

0 consists of k
positive rules, r1, . . . , rk , with k different heads, L1, , . . . , Lk , which are exactly
those literals derived by P S

0 . Hence, |P S
0 | ≤ |S|.

We will create the program P ′ from P S
0 by employing unfolding. This means

that some of the literals Li, 1 ≤ i ≤ k, will be eliminated by replacing every
rule r ∈ P S

0 such that Li ∈ B(r) by a rule r ′ such that H(r ′) = H(r) and
B(r ′) = (B(r) \ {Li}) ∪ B(ri), where ri is the (single) rule having H(ri) = Li.
Consider the program �2 = (Q∪ P \Rej(S, Q+ P ))S . Since S is not in U(Q+ P ),
it has a least fixed-point different from S. There are two scenarios:

(1) Some literal Li ∈ S cannot be derived in �2. Let

S′ = {L ∈ S | L occurs in P + Q} ∪ {Li},
and construct the program P ′ from P S

0 by unfolding, eliminating all literals
L /∈ S′.

(2) All literals Li ∈ S can be derived, as well as some literal Lk+1 /∈ S is derived
by a rule r ∈ P S \ P S

0 . Let

S′ = {L ∈ S | L occurs in P + Q} ∪ {Lk+1},
and build P ′ from P S

0 by adding the rule

rk+1 : Lk+1 ← B(r)

and eliminating all literals L /∈ S′ from the resulting program by unfolding.

Then, in both cases, S′ is not a least fixed-point of ((Q ∪ P ′) \ Rej(S′, Q +
P ′))S′

, while it is a least fixed-point of ((P ∪ P ′) \ Rej(S′, P + P ′))S′
. This proves

Condition (i). Furthermore, |S′| is at most the number of different literals in
P + Q plus 1, and |P S

0 | ≤ |S| implies |P ′| ≤ |S′| + 1. Hence, Conditions (ii) and
(iii) hold.

THEOREM 7.10. Deciding strong equivalence (or k-equivalence, for a given
k ≥ 0) of two given finite propositional update programs P and Q over possibly
infinite alphabets, is coNP-complete under BelE (·).

PROOF. For k = 0, the result is given by Theorem 7.8. Since, according to
Theorem 6.8, 1-equivalence implies k-equivalence for all k ≥ 1 under BelE (·),
it remains to show coNP-completeness for k = 1.

Membership follows from Lemma 7.9: For deciding whether P and Q are
not 1-equivalent, we guess a set S and a program P according to Conditions
(ii) and (iii) of Lemma 7.9. Then we check in time polynomial in the size of
P + Q whether P and Q are not 1-equivalent. Hence, this problem is in NP.
Consequently, checking whether P and Q are 1-equivalent is in coNP.

For showing coNP-hardness, for k = 1, we give a reduction from the problem
of tautology checking. Consider a formula F = ∨m

i=1(Li1 ∧ Li1 ∧ Li3) over atoms
A1, . . . , An, and two programs P and Q over an alphabet A ⊇ {A1, . . . , An, T }
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as follows:

P = {¬Ai ← not Ai, Ai ← not ¬Ai | i = 1, . . . , n}
∪ {T ← L j 1, L j 2, L j 3 | j = 1, . . . , m};

Q = {¬Ai ← not Ai, Ai ← not ¬Ai | i = 1, . . . , n}
∪ {T ← }.

Clearly, P and Q can be constructed in polynomial time. We show that F is a
tautology if and only if P and Q are 1-step equivalent.

If part. Suppose F is not a tautology. Then, there is a truth assignment σ

to A1, . . . , An such that F is false, that is, Li1 ∧ Li1 ∧ Li3 is false for 1 ≤ i ≤ m.
Let R be the program consisting of facts Ai ←, for every atom Ai, 1 ≤ i ≤ n,
which is true in σ . It is easily verified that the set S = {Ai | Ai ← ∈ R} ∪ {¬Aj |
Aj ← /∈ R} is the only update answer set of P + R, while S′ = S ∪ {T } is the
only update answer set of Q + R. Thus, P and Q are not 1-equivalent.

Only-if part. Suppose F is a tautology. Towards a contradiction, assume
that P and Q are not 1-equivalent. Then, by virtue of Lemma 6.7, there is a
(consistent) program R and some set S such that either S ∈ U(P + R) and
S /∈ U(Q + R), or S /∈ U(P + R) and S ∈ U(Q + R) holds. Observe that, for any
set S and every program R, the sets Rej(S, P + R) and Rej(S, Q + R) do not
differ with respect to rules in P ∩ Q . Furthermore, P S and Q S do not differ
with respect to rules in (P ∩ Q)S .

We first show that |S ∩ {Ai, ¬Ai}| = 1 holds, for 1 ≤ i ≤ n. Indeed, since S
is consistent, {Ai, ¬Ai} ⊆ S cannot hold for any 1 ≤ i ≤ n. On the other hand,
suppose that neither Ai ∈ S, nor ¬Ai ∈ S holds for some 1 ≤ i ≤ n. Then, S
entails the rules ¬Ai ← not Ai and Ai ← not ¬Ai of P ∩ Q , which also cannot be
rejected (since neither Ai ∈ S nor ¬Ai ∈ S). Thus, both ¬Ai ← and Ai ← are in
((P ∪ R)\Rej(S, P + R))S as well as in ((Q ∪ R)\Rej(S, Q + R))S . However, this
contradicts the assumption that S is a consistent answer set of either P + R or
Q + R. This proves |S ∩ {Ai, ¬Ai}| = 1, for 1 ≤ i ≤ n.

Assume first that ¬T ∈ S. Then, every rule r of P such that H(r) = T and
S |= B(r) are in Rej(S, P + R), and T ← is in Rej(S, Q + R). Since S is an
answer set of either P + R or Q + R, it is either the least set of literals closed
under the rules of

P1 = ((P ∪ R) \ Rej(S, P + R))S

or under the rules of

Q1 = ((Q ∪ R) \ Rej(S, Q + R))S .

Since P and Q coincide on all rules with head different from T , it follows that
S must be the least set of literals closed under the rules of P1 as well as of Q1.
Thus, S is an answer set of both P + R and Q + R, which is a contradiction.
Hence, ¬T /∈ S holds.

It is now easy to show that T ∈ S must hold. Indeed, if S ∈ U(P + R), then,
since F is a tautology, S |= B(r) for some rule r ∈ P such that H(r) = T .
Moreover, r /∈ Rej(S, P + R) since ¬T /∈ S, which in turn means T ∈ S. If, on
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the other hand, S is an answer set of Q + R, then T ← /∈ Rej(S, Q + R) holds,
and thus T ∈ S must hold.

Now suppose that S ∈ U(P+R). Since F is a tautology, S |= B(r) for some rule
r ∈ P such that H(r) = T . Since ¬T /∈ S, it follows that T ∈ S. Since T ← is in
Q , and P and Q coincide on all rules except those with head T , it follows that
S is the least set of literals closed under the rules of ((Q ∪ R)\Rej(S, Q + R))S).
Thus, S ∈ U(Q + R), which is a contradiction. On the other hand, suppose
S /∈ U(Q + R) first. Since ¬T /∈ S, we have T ∈ S, and thus clearly S must
be the least set of literals closed under the rules of ((P ∪ R) \ Rej(S, P + R))S).
Hence, S ∈ U(P + R), which is again a contradiction.

Hence, a program R and a set S as hypothesized cannot exist. This shows
that P and Q are 1-equivalent.

We have shown that for every k ≥ 0, deciding k-equivalence of finite proposi-
tional update sequences P and Q is coNP-complete under the BelE (·) semantics,
which proves our result.

Leite [2002] showed that two dynamic logic programs, P and Q, are not k-
equivalent, for k > 0, iff there exists a GLP P such that D(P + P ) 
= D(Q + P ).
This result, together with a corresponding version of Lemma 6.7 and complexity
results for dynamic logic programming from Leite [2002], can be used to obtain
the following analogous result.

PROPOSITION 7.11. Deciding weak, strong, or k-equivalence, for a given k ≥ 1,
of two given finite propositional dynamic logic programs P and Q, is coNP-
complete under Bel⊕(·).

8. RELATED WORK AND CONCLUSION

Our work on evolving nonmonotonic knowledge bases is related to several works
in the literature on different issues.

Clearly, our formalization of reasoning from evolution frames is closely re-
lated to model checking of CTL formulas [Clarke et al. 1999], and so are our
complexity results. The major difference is, however, that in Kripke struc-
tures the models are given implicitly by their labels. Nevertheless, since the
semantics of evolution frames can be captured by Kripke structures, it is sug-
gestive to transform reasoning problems on them into model checking prob-
lems. However, in current model checking systems (for example, the Symbolic
Model Verifier (SMV) [McMillan 1993], or its new version NuSMV [Cimatti
et al. 2000]), state transitions must be specified in a polynomial-time language,
but descriptions of these Kripke structures would require exponential space
even for evolution frames with PSPACE complexity (e.g., EPI evolution frames).
Thus, extensions of model checking systems would be needed for fruitful
usability.

Our filtration results for identifying finitary characterizations, which are
based on various notions of equivalence between knowledge states, are some-
what related to results by Pearce et al. [2001] and Lin [2002]. While we were
concerned with the equivalence of sequences of ELPs (including the case of
single ELPs), one can define two logic programs, P1 and P2, to be equivalent
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(that is, weakly equivalent in our terminology), if they yield the same answer
sets. They are called strongly equivalent, similar in spirit to 1-equivalence in
our terminology, iff, for any logic program P , programs P1 ∪ P and P2 ∪ P
have the same answer sets. Pearce et al. [2001] investigated efficient (that is,
linear-time computable) encodings of nested logic programs, a proper general-
ization of disjunctive logic programs, into QBFs. In accordance with our results,
they found that deciding whether two propositional nested logic programs are
strongly equivalent is coNP-complete. Lin [2002] established independently a
similar result, albeit only for disjunctive logic programs.

Lobo et al. [1999] introduced the PDL language for policies, which contain
event-condition-action rules, serving for modeling reactive behavior on observa-
tions from an environment. While similar in spirit, their model is different, and
Lobo et al. [1999] focuses on detecting action conflicts (which, in our framework,
is not an issue). Son and Lobo [2001] considered reasoning tasks which center
around actions. Further related research is on planning, where certain reach-
ability problems are PSPACE-complete (cf. Baral et al. [2000]). Similar results
were obtained by Wooldridge [2000b] for related agent design problems. How-
ever, in all these works, the problems considered are ad hoc, and no reasoning
language is considered.

Fagin et al.’s [1995] important work on knowledge in multi-agent sys-
tems addresses evolving knowledge, but mainly at an axiomatic level.
Wooldridge’s [2000a] logic for reasoning about multi-agent systems embeds
CTL∗ and has belief, desire and intention modalities. The underlying model
is very broad, and aims at agent communication and cooperation. It remains to
see how our particular framework fits into these approaches.

Leite [2002] introduces in his Ph.D. dissertation a language, KABUL, which
is inspired by our EPI language, but which goes beyond it, since this language
foresees also possible updates to the update policy. That is, the function �

may change over time, depending on external events. This is not modeled by
our evolution frames, in which � is the same at every instance of time. How-
ever, a generalization towards a time-dependent update policy—and possibly
other time-dependent components of an evolution frame—seems not difficult
to accomplish. Furthermore, Leite’s work does not include a formal language
for expressing properties of evolving knowledge bases like ours, and also does
not address complexity issues of the framework (cf. also Leite [2003] for more
information on KABUL).

Further Work. In this article, we have presented a general framework for
modeling evolving nonmonotonic knowledge bases. Although we focused here
on knowledge bases built over (extended) logic programs, the framework is also
suitable to capture other forms of logical knowledge bases without much ado.
We have furthermore defined a formal language, EKBL, for expressing and eval-
uating properties of a nonmonotonic knowledge base which evolves over time.
As we have shown, this framework, which results from an abstraction of pre-
vious work on update languages for nonmonotonic logic programs [Eiter et al.
2001, 2003], can be used to abstractly model several approaches for updating
logic programs in the literature. Knowledge about properties of the framework
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may thus be helpful to infer properties of these and other update approaches,
and in particular about their computational properties. In this line, we have
studied semantic properties of the framework, and we have identified several
classes of evolution frames for which reasoning about evolving knowledge bases
in the language EKBL is decidable. In the course of this, we have established
that reasoning about propositional evolving knowledge bases maintained by
EPI update policies under the answer set semantics [Eiter et al. 2001, 2003] is
PSPACE-complete.

While we have tackled several issues in this article, other issues remain for
further work. One issue is to identify further meaningful semantic constraints
on evolution frames or their components, and to investigate the semantic and
computational properties of the resultant evolution frames. For example, iter-
ativity of the compilation compEF, that is, where the events are incorporated
one at a time, or properties of the belief operator Bel, would be interesting to
explore.

Another interesting topic, and actually related to this, is finding fragments
of lower complexity and, in particular, of polynomial-time complexity. Further-
more, the investigation of special event classes, for example, event patterns,
which exhibit regularities in sequences of events, is an interesting issue.

APPENDIX

A. PROOF OF THEOREM 6.16

PROOF. We prove that ≡can
EF has a finite index with respect to S by means of

Theorem 6.3. That is, we must show that ≡0
EF∗ has a finite index with respect to

S and that there exists a k ≥ 0, such that for any two knowledge states s, s′ ∈ S,
s ≡k

EF∗ s′ implies s ≡can
EF s′.

We first show that the relation ≡0
EF∗ , that is, weak canonical equivalence, has

a finite index with respect to S.
For any knowledge state s ∈ S, compEF∗ (s) yields an update sequence P

of at most |R0| programs, that is, P = (P0, . . . , Pn) and n ≤ |R0| holds. To
see this, suppose otherwise that n > |R0|. Since compEF∗ (s) is canonical (and
thus contracting under empty updates), none of the programs Pi, 0 ≤ i ≤ n,
is empty. Furthermore, since compEF(s) only contains rules from R0, this also
holds for compEF∗ (s). Hence, there must be at least one rule r ∈ R0, which
occurs in at least two programs Pi, Pj , 0 ≤ i, j ≤ n, and i 
= j . This, however,
contradicts the fact that compEF∗ (s) is canonical (and thus contracting under
rule repetition). Hence, our assumption does not hold, which proves n ≤ |R0|.
Moreover, | ⋃n

i=0 Pi| ≤ |R0| holds for the canonical compilation P by the same
argument: If | ⋃n

i=0 Pi| > |R0|, then there must be at least one rule r ∈ R0, such
that r ∈ Pi ∩ Pj for at least two programs Pi, Pj , 0 ≤ i < j ≤ n; this contradicts
that compEF∗ (s) is contracting.

As a consequence, we can roughly estimate the number of different canonical
compilations compEF∗ (s) by

d = 2|R0|−1(|R0| + 1)! = O
(
2|R0|(log |R0|+1))

(note that (|R0| + 1)! ≤ 21+(|R0|−1) log(|R0|+1) ≤ 21+|R0| log |R0| for |R0| > 0). This
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upper bound can be explained as follows: A canonical compilation need not
contain all rules of R0, hence we add a special fact for signaling that, given an
ordered sequence of rules from R0 and the special fact, a canonical compilation
consists of all rules in the sequence up to the special fact. There are (|R0| + 1)!
permutations of such sequences, which is an over-estimate of the number of
canonical compilations consisting of different ordered sequences of rules. For
each such sequence, there are 2|R0|−1 possibilities for the rules to be grouped
into sequences of at most |R0| + 1 programs, respecting their order. To see this,
observe that if we fixed a grouping into a sequence of programs for all but
the last rule, then for the last rule there are two possibilities: It can either be
added to the last program of the sequence, or we add a new program, consisting
of the last rule only, to the sequence. Applying this argument recursively and
observing that for the first rule there is only one possibility—it has to go into
the first program of the sequence—the given bound follows. Hence, at most d
different canonical compilations compEF∗ (s) can be built for all s ∈ S. Thus, at
most d different belief sets Bel(s) exist among all s ∈ S, proving that ≡0

EF∗ has
a finite index with respect to S.

Second, we show by induction on k ≥ c, that, for any two knowledge states
s, s′ ∈ S, canonical c-equivalence s ≡c

EF∗ s′ implies strong canonical equivalence
s ≡can

EF s′, which proves our result in virtue of Theorem 6.3. More precisely, we
show for all k ≥ c, that in the canonized evolution frame EF∗, c-equivalence of
knowledge states s, s′ ∈ S implies their k-equivalence in EF∗.

Induction Base (k = c). Canonical c-equivalence of knowledge states s, s′ ∈
S trivially implies s ≡c

EF∗ s′.
Induction Step (k > c). Assume that, for any two knowledge states s, s′ ∈ S

and some k > c, s ≡c
EF∗ s′ implies s ≡k−1

EF∗ s′. We show that under this assumption
s ≡k

EF∗ s′ follows.
Consider

sk = s + E1, . . . , Ek ,
sk−1 = s + E1, . . . , Ek−1,

s′
k = s′ + E1, . . . , Ek , and

s′
k−1 = s′ + E1, . . . , Ek−1.

Since k > c, the sets α(sk−1) and α(s′
k−1) are equal and Bel(sk−1) = Bel(s′

k−1)
holds by induction hypothesis. Hence, the following equations hold:

A = f (Bel(sk−1), α(sk−1), Ek) = f (Bel(s′
k−1), α(s′

k−1), Ek), and
g (Bel(sk−1), α(sk−1), A) = g (Bel(s′

k−1), α(s′
k−1), A).

Consequently, the equality compEF(sk) = compEF(s′
k) holds, which implies that

compEF∗ (sk) = compEF∗ (s′
k), and thus Bel(sk) = Bel(s′

k). This proves canonical
k-equivalence.

We obtain that s ≡c
EF∗ s′ implies s ≡can

EF s′, for any two knowledge states
s, s′ ∈ S. Since we have also shown that ≡0

EF∗ has a finite index with respect to
S, it follows from Theorem 6.3 that ≡can

EF has a finite index with respect to S.
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B. PROOFS OF SECTION 7

B.1 Proof of Lemma 7.2

PROOF. We first show that for evaluating evolution quantifiers Eψ or Aψ ,
we may consider finite paths of length c in EF. Note that every path of length
greater than c in EF must contain at least one pair of strongly equivalent
knowledge states. While this is trivial if ψ is of form Xψ1, consider the case
where ψ is of form ψ1Uψ2.

If a path p starting at s of arbitrary length exists such that EF, p |= ψ1Uψ2,
then there exists also a path p′ starting at s and of length at most c, such that
EF, p′ |= ψ1Uψ2. To see this, note that EF, p |= ψ1Uψ2 implies that ψ1Uψ2 is
satisfied in a finite path p′′ which is an initial segment of p. We can repeatedly
shorten p′′ to obtain p′ as follows. For any pair of strongly equivalent knowledge
states s = p′′

i and s′ = p′′
j such that i < j , consider the sequence p′′

i , . . . , p′′
j of

knowledge states between them. If ψ2 is satisfied by none of them, we can cut
p′′

i+1, . . . , p′′
j and replace each state p′′

i+1, p′′
i+2, . . . by an equivalent successor

of p′′
j , p′′

j+1, such that we obtain a (finite) path in EF. Otherwise, that is, if
EF, p′′

l |= ψ2 for some l ∈ {i, . . . , j }, we can cut p′′ immediately after the first
such p′′

l . It is easily verified that the resulting path p′ has length at most c and
still satisfies ψ1Uψ2.

Now consider the case A(ψ1Uψ2). Obviously, if ψ1Uψ2 is satisfied by all finite
paths of length c starting at s, it will also be satisfied by all paths of arbi-
trary length. To see the converse direction, assume there is an infinite path p
starting at s such that EF, p 
|= ψ1Uψ2. We show that then a finite path p′ of
length at most c starting at s exists such that EF, p′ 
|= ψ1Uψ2. Observe that
either (i) ψ2 is false in every pi, i ≥ 0, or (ii) there exists some i ≥ 0 such that
EF, pi |= ∼ψ1 ∧ ∼ψ2, and EF, pj |= ψ1 ∧ ∼ψ2, for every j ∈ {0, . . . , i − 1}. In
Case (i), we can, as above, transform the initial segment p′′ = p0, p1, . . . , pc−1
of p by repeated removals of sequences between pairs of strongly equivalent
knowledge states and eventually obtain a path p′ as claimed. In Case (ii),
we start with p′′ = p0, p1, . . . , pi and again remove repeatedly sequences be-
tween pairs of strongly equivalent knowledge states to obtain a path p′ of
length at most c starting at s such that EF, p′ 
|= ψ1Uψ2. Hence, if all infi-
nite paths p starting at s satisfy ψ1Uψ2, then so do all paths of length c starting
at s.

This proves that if there are at most c strongly inequivalent descendants of
s, it suffices to consider paths of length c to prove whether EF, s |= ϕ.

Now, an algorithm for deciding EF, S |= ϕ is as follows. Starting at s, it
recursively checks the satisfiability of ϕ by checking the satisfiability of its
subformulas and evaluating Boolean connectives. For any subformula ϕ′ of form
Eψ (respectively, Aψ), guess nondeterministically, step by step, a path p in EF
starting at s in order to witness EF, p |= ψ (respectively, refute EF, p |= ψ and
exploit the equivalence Aψ ≡ ∼E∼ψ) and check this by iterating through p for
(at most) c steps, using a counter. The counter occupies space log c in a standard
binary coding. Per nesting level, the algorithm requires space for one counter
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and for one descendant of s, which is bounded by ms. Furthermore, due to the
fact that EF is regular, ϕ ∈ Bel(s) can be checked, for all s ∈ SEF and atomic ϕ,
in space polynomial in s, EF, and ‖ϕ‖. Hence, at each level, the algorithm runs
in space 	 which is polynomial in ms + log c + ‖EF‖ + ‖ϕ‖.

By applying Savitch’s Theorem in the formulation for Turing machines with
oracle access (cf. Theorem 2.27 in Balcázar et al. [1988]), we can show by in-
duction on the evolution quantifier depth q ≥ 0 of a formula ϕ, that deciding
EF, s |= ϕ is feasible on a deterministic Turing machine M using space at most
(q + 1)	2. Savitch’s Theorem states that if language A can be decided by a
nondeterministic Turing machine with oracle set B in space f (n), then it can
be decided by a deterministic Turing machine with oracle set B in space f (n)2,
providing f (n) ≥ log n. Furthermore, f (n) must be space constructible (which
is the case in our application of the lemma).

Induction Base (q = 0). Since the above algorithm operates deterministi-
cally in space 	 ≤ 	2, the existence of M is obvious.

Induction Step (q > 0). Assume that formulas of evolution quantifier depth
≤ q − 1 can be decided in deterministic space q · 	2 on some Turing machine
M ′, and let ϕ have evolution quantifier depth q. If ϕ is of form Eψ (respectively,
Aψ), then the above algorithm amounts to a nondeterministic oracle Turing
machine M ′ using work space bounded by 	 and calling an oracle for deciding
subformulas of form Eψ ′ (respectively, Aψ ′). By Savitch’s Theorem, there is a
deterministic Turing machine M ′′ using work space at most 	2 which is equiv-
alent to M ′ and which uses the same oracle set. By the induction hypothesis,
the oracle queries can be deterministically decided in space q · 	2. Hence, from
M ′′ we can construct a deterministic Turing machine M deciding EF, s |= ϕ

which operates in work space 	2 +q ·	2 = (q +1)	2. This M is easily extended
to decide all ϕ of evolution quantifier depth q within the same space bound.
This concludes the induction and the proof of the lemma.

B.2 Proof of Theorem 7.3

PROOF. We first prove the upper bounds of these results. Recall that we
assume a finite propositional alphabet A. Hence, by Condition (3) of a regular
evolution frame EF (cf. Definition 7.1), there are only finitely many different
belief sets Bel(s). Indeed, the number of rules of length L is bounded by (4|A|)L,
and hence there are O(2‖EF‖l1 ) (single exponential in EF) many rules, where l1
is some constant, which are relevant for characterizing belief sets, and there
are O(22‖EF‖l1

), that is, double exponentially many, different belief sets Bel(P).
This implies that |S/ ≡0

EF | ≤ d where d = O(22‖EF‖l1
) for any set S ⊆ SEF.

Observe also that EC is finite and |EC| = O(2‖EF‖l2 ), for some constant l2. This
follows from the finiteness of A and the fact that rules in events, as well as
events themselves, have size at most polynomial in ‖EF‖. In particular, there
exist O(2‖EF‖l2,1 ) many different rules in events, for some constant l2,1, and thus
there are O(2‖EF‖l2,1 )‖EF‖l2,2 = O(2‖EF‖l2 ) many different events in EC, for some
constants l2,2 and l2. In the following, let S = dsc(s).
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Membership, Part (1). In order to prove an upper bound for Part (1) of the
theorem, since Bel(·) is k-local, compEF(·) is incremental, and ≡0

EF has a finite
index with respect to S, which is successor closed, Theorem 6.5 can be applied,
establishing that ≡EF has a finite index with respect to S. Recall from the proof
of Theorem 6.5 that an upper bound for |S/ ≡EF | is given by d 2|EC|k , where k
is polynomial in ‖EF‖, that is, k = ‖EF‖l3 for some constant l3. Furthermore,
|EC| = O(2‖EF‖l2 ), for a constant l2. Hence, we obtain that there are at most

d (2O(2‖EF‖l2 )‖EF‖l3 ) = dO(2‖EF‖l2+l3 ) = O(22‖EF‖l1
)
O(2‖EF‖l2+l3 )

= O(22‖EF‖l

),

that is, double exponentially many knowledge states s′ ∈ S which are pair-
wise not strongly equivalent, for some constant l ; in other words, |S/ ≡EF

| = O(22‖EF‖l

). Furthermore, we can store a representative, s′, of every class
in S/ ≡EF by storing KB and at most double exponentially many events. Since
every event can be stored in polynomial space, overall double exponential space
is sufficient to store s′. By application of Lemma 7.2, EF, s |= ϕ can be verified
in space polynomial in

(q + 1) · (ms + log c + ‖EF‖ + ‖ϕ‖).

We have shown above that ms satisfies ms = O(22‖EF‖l0
), for some constant l0.

Furthermore, we have shown that the index of ≡EF with respect to S, c, satisfies
c = O(22‖EF‖l

). Hence, log c = O(2‖EF‖l ′
), for a constant l ′. Consequently, EF, s |= ϕ

can be verified in 2-EXPSPACE.

Membership, Part (2). An upper bound for Part (2) of the theorem can be
obtained as follows: The fact that ≡0

EF has a finite index with respect to S
implies that ≡0

EF ∗ has a finite index with respect to S, too. And, as we have
shown in the proof of Theorem 6.16, canonical c-equivalence implies strong
canonical equivalence in a c-bounded, contracting evolution frame. Thus, by
Theorem 6.3, ≡can

EF has a finite index with respect to S. Furthermore, according to
Theorem 6.14, ≡can

EF is compatible with ≡EF. Hence, we may represent Bel(s′), s′ ∈
S, by the canonical compilation compEF ∗ (s′), together with the last c events in s′,
where c is polynomial in ‖EF‖. The polynomial size bound for rules in compEF(s′)
also holds for compEF ∗ (s′) and thus, since EF is contracting, ‖compEF ∗ (s′)‖ is
bounded by the number of different rules, which is O(2‖EF‖l

), for some constant
l . Recalling the bound of O(2|R0|(log |R0|+1)) for the number of different canonical
compilations from the proof of Theorem 6.16, we obtain that there are

O(22‖EF‖l ′ ·(log 2‖EF‖l ′ +1)) = O(22‖EF‖l ′′
),

that is, double exponential many different canonical compilations, where l ′ and
l ′′ are suitable constants. Multiplied with the number of possibilities for the
last c events, |EC|c, which is single exponential, and since

|EC|c = O(2‖EF‖l2 )c = O(2‖EF‖h
),

for some constant h, we obtain again that there are at most double exponentially
many knowledge states s′ ∈ S which are pairwise not strongly equivalent.
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However, since

‖compEF ∗ (s′)‖ ≤ |A|‖EF‖l1 = O(2‖EF‖h′
),

for some constant h′, we can represent every strongly inequivalent descendant
s′ ∈ S of s, using compEF ∗ (s′) together with the last c events in single exponential
space. Thus, EXPSPACE membership follows from Lemma 7.2.

Membership, Part (3). Next, we prove PSPACE membership for Part (3) of
the theorem. The additional condition on compEF(s′) that all rules are from a
set R0 of size polynomial in ‖EF‖ guarantees that ‖compEF ∗ (s′)‖ is polynomial
in the size of EF, for any s′ ∈ S. Using the same estimate as above, we thus
obtain at most single exponentially many different canonical compilations, for
states s′. Multiplied with the exponential number of possibilities for the last c
events, we now obtain at most single exponentially many strongly inequivalent
descendants of s. For storing them, we use again compEF ∗ (s′) together with the
last c events, requiring the space of ‖compEF ∗ (s′)‖ plus c times the space of an
event. Since ‖compEF ∗ (s′)‖, c, and the size of an event are all polynomial in the
size of EF, overall polynomial space is needed for representation, establishing
PSPACE membership in virtue of Lemma 7.2.

Hardness. We show the lower bounds by encoding suitable Turing machine
computations, using padding techniques, into particular evolution frames. In
order to obtain a lower bound for Part (1), consider a regular evolution frame
EF, where

A = {Ai | 1 ≤ i ≤ n} ∪ {accept},
hence, |A | = n + 1, and Bel(P), defined below, is semantically given by a set
of classical interpretations, where not is classical negation and repetition of
literals in rule bodies is immaterial. Then, there exist 2n+1 classical interpre-
tations yielding 22n+1

different belief sets B0, . . . , B22n+1 −1. We assume an enu-
meration of interpretations I0, . . . , I2n+1−1, such that I0 does not contain accept.
Moreover, we consider a single event E = ∅. Let l = 22n

. The number of events, i,
encountered for reaching a successor state s′ of s0 in i < l steps serves as an
index of its belief set, that is, Bel(s′) = Bi. For i < l − 1, Bi is obtained using
interpretations I0 and I j as models, such that the j th bit, 1 ≤ j ≤ log l = 2n, of
index i is 1. Thus, the belief sets B0, . . . , Bl−2 are pairwise distinct and under
classical model-based semantics, accept /∈ Bi holds for 0 ≤ i ≤ l − 2.

In state sl−1, we simulate in polynomial time the behavior of an 2-EXPSPACE
Turing machine M on some fixed input I . To this end, we use an action a and
an update policy �, such that �(s, E) = a for |s| = m · l + l − 1, m ≥ 0, if M
accepts I , and �(s, E) = ∅ otherwise. For all other knowledge states, that is, if
|s| mod l 
= l −1, �(s, E) = ∅. The realization assignment ρ(s, A) is incremental
and adds an empty program, ∅, if A = ∅, and the program {accept ← } in case
of A = {a}. The semantics Bel(P1, . . . , Pk) is as follows. If k mod l 
= l − 1, then
Bel(P1, . . . , Pk) = Bj , where j = k mod l . Otherwise, if Pk = {accept ← }, then
Bel(P1, . . . , Pk) = B, where B is a fixed belief set containing accept, and, if
Pk 
= {accept ← }, then Bel(P1, . . . , Pk) = Bl−1, where Bl−1 is defined as Bi for
i < l − 1, that is, accept /∈ Bl−1. As easy to see, there are at most l + 1 states
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s0, . . . , sl which are not 0-equivalent, and 1-equivalence of two states s and s′

implies strong equivalence of s and s′. To see the latter, observe that s ≡1
EF s′

iff |s| mod (l + 1) = |s′| mod (l + 1). Thus, Bel(·) is local. Furthermore, it is
easily verified that the functions � and ρ can be computed in polynomial time.
The same is true for deciding r ∈ Bel(P), P = (P1, . . . , Pk), where we proceed
as follows. We first compute j = k mod l . If j 
= l − 1, then we scan the bits
b1, b2, . . . , blog j of j , and for every bit bj ′ such that bj ′ = 1, we compute its index,
j ′, in binary (which occupies at most n bits), and extend its representation to
length n by adding leading zeros if necessary. The resulting binary string is
regarded as representation of the interpretation I j ′ , where the bits encode the
truth values of the atoms A1, . . . , An and accept is false. Hence, each model J of
P can be computed in polynomial time; checking whether J |= r is easy. Thus,
deciding r ∈ Bel(P) is polynomial if j 
= l − 1. Otherwise, that is, if j = l − 1,
depending on Pk , r ∈ B (respectively, r ∈ Bl−1) can be similarly decided in
polynomial time.

Summarizing, Bl−1 contains accept iff M accepts I iff EF, s0 |= EFaccept.
Note that the dual formula ϕ = AGaccept can be used if every B0, . . . , Bl−2
contains accept (and Bl−1 contains accept iff M accepts I ). Furthermore, the
membership tests E ∈ EC and r ∈ Bel(P), as well as the functions � and ρ,
are computable in PSPACE (in fact, even in polynomial time), thus deciding
TEMPEVO in EF is 2-EXPSPACE-hard.

Let us now prove a lower bound for Part (2) of the theorem. Again, we consider
a regular evolution frame EF over a finite alphabet

A = {Ai | 1 ≤ i ≤ n} ∪ {accept}.

Moreover, we consider the single event E = ∅. Let compEF(·) be an incremental
compilation function that compiles a knowledge state s, |s| < 2n, into a sequence
of programs, P = ({r0}, , . . . , {r|s|−1}), consisting of |s| programs each consisting of
a single positive, non-tautological rule, such that all rules are pairwise distinct
and do not contain accept. Furthermore, let the semantics Bel(·) be given by
Bel(P0, , . . . , Pn) containing all rules which are true in the classical models of
Pn. Note that under these assumptions, all states of length less than 2n have
mutually different belief sets, and compEF(·) = compcan

EF (·).
In state s, with |s| = 2n, we simulate in polynomial time the behavior of an

EXPSPACE Turing machine M on input I . To this end, �(π2n−1(s), E) returns
A = {a}, where a is an action that causes accept to be included in the belief set
B2n iff M accepts I ; otherwise, �(π2n−1(s), E) = ∅. For all knowledge states s′,
such that |s′| mod 2n 
= 0, �(π|s′|−1(s′), E) = ∅. Thus, M accepts I iff EF, s0 |=
EFaccept. Since EF is contracting and 0-bounded, and since the membership
tests E ∈ EC and r ∈ Bel(·), as well as the functions � and ρ are computable in
PSPACE, it follows that deciding TEMPEVO in EF is EXPSPACE-hard.

Finally, we give a proof for the lower bound of Part (3) of the theorem, by
encoding the problem of evaluating a quantified Boolean formula (QBF), which
is well known to be PSPACE-hard, in the EPI framework.

Let ψ = Q1x1 · · · Qnxnα be a QBF and let ϕ = PQ1x · · · PQnxα, where PQi = A
if Qi = ∀, and PQi = E if Qi = ∃, 1 ≤ i ≤ n, be its corresponding state formula.
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Consider the following evolution frame EFEPI, where A = {xi, ci | 1 ≤ i ≤ n} ∪
{0, 1}, the initial knowledge base KB = {xi | 1 ≤ i ≤ n}∪ {c1}, EC = {{0}, {1}}, and
the update policy �EPI is given by the following actions:

�EPI(s, E) = {assert(ci+1) | ci ∈ Bel(s), 1 ≤ i ≤ n − 1}
∪ {retract(ci) | ci ∈ Bel(s), 1 ≤ i ≤ n}
∪ {assert(¬xi) | ci ∈ Bel(s), 0 ∈ E, 1 ≤ i ≤ n}
∪ {retract(xi) | ci ∈ Bel(s), 0 ∈ E, 1 ≤ i ≤ n}.

Intuitively, a counter for events is implemented using atoms ci, 1 ≤ i ≤ n, and
each event, which may be 0 or 1, assigns a truth value to the variable encoded
by literals over atoms xi, 1 ≤ i ≤ n. Hence, �EPI creates a truth assignment in
n steps. Thus, it is easily verified that EFEPI, KB |= ϕ iff ψ is true. Note that
after n steps, that is, for all knowledge states |s| ≥ n, �EPI(s, E) is always empty.
This implies that EFEPI is n-bounded. Moreover, � is factual, that is, it consists
only of facts (of update commands), yielding a contracting compilation function
compEPI(·) which uses only facts over A. Thus, and since the membership tests
E ∈ EC and r ∈ BelE (·), as well as the functions � and ρ, are computable in
PSPACE, it follows that TEMPEVO under the conditions of Part (3) is PSPACE-
hard.

B.3 Proof of Theorem 7.7

PROOF. We first prove 2-EXPTIME membership for Part (1) of the theorem.
We do so by constructing a Kripke structure K ′ = 〈S′, R ′, L′〉 in double ex-

ponential time in ‖EF‖, such that K ′, s |= ϕ iff EF, s |= ϕ, and S′, R ′ are of
size at most double exponential in the size of EF. This proves 2-EXPTIME
membership by a well known result from model checking [Clarke et al. 1999],
stating that there is an algorithm for determining whether ϕ is true in state s
of K ′ = 〈S′, R ′, L′〉, running in time O(|ϕ| · (|S′| + |R ′|)), where |ϕ| denotes the
evolution quantifier nesting depth of ϕ.

The Kripke structure K ′ = 〈S′, R ′, L′〉 results from the Kripke structure
K E,S

EF = 〈S, R, L〉, where E = S/ ≡EF, by restricting the labeling L to atomic
subformulas of ϕ. Let Aϕ denote the set of all atomic subformulas in ϕ. Then,
S′ = S, R ′ = R, and L′ is the labeling function assigning to every s ∈ S′

a label L′(s) = Bel(s) ∩ Aϕ . It is well known that K ′, s |= ϕ iff K E,S
EF , s |= ϕ,

which in turn holds iff EF, s |= ϕ. Recall from the proof of Lemma 7.2 that
in order to prove EF, s |= ϕ, paths need to be considered only up to length
c, where c = |E| is the maximum number of strongly inequivalent descen-
dants of s. Moreover, we can use one knowledge state as a representative for
every equivalence class in E, thus c strongly inequivalent knowledge states
are sufficient. Recall also from the proof of Part (1) of Theorem 7.3 that for
the given evolution frame EF, c is double exponential in ‖EF‖, and that
there are at most single exponentially many different events, that is, |EC| =
O(2‖EF‖l

). We construct K ′ using a branch-and-bound algorithm that proceeds as
follows.

The algorithm maintains a set O of open knowledge states, as well as the sets
S′, R ′, and L′ of K ′. Initially, O = {s}, S′ = {s}, R ′ = ∅, and L′(s) = Bel(s) ∩ Aϕ .
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For every knowledge state s ∈ O, the algorithm removes s from O and generates
all possible (immediate) successor states s′ of s. For every such s′, it is checked
whether it is strongly inequivalent to every s ∈ S. If so, s′ is added to O and S,
the tuple 〈s, s′〉 is added to R, and L′(s′) = Bel(s′) ∩Aϕ is computed. Otherwise,
if s′ is strongly equivalent to a knowledge sate s′′ ∈ S′, then the tuple 〈s′, s′′〉 is
added to R ′. The algorithm proceeds until O is empty.

Since there are at most c strongly inequivalent descendants of s, the algo-
rithm puts into O at most c, that is, double exponentially many knowledge
states, each of which has size at most double exponential in ‖EF‖. Further-
more, since there exist at most single exponentially many different events, in
every expansion of a node in O, at most exponentially many successors are
generated, each in polynomial time. Since Bel(·) is polynomial and k-local, we
can detect s ≡EF s′ in single exponential time by comparing the trees T (s)
and T (s′) up to depth k, respectively. On levels 0, 1, . . . , k, T (s) and T (s′)
contain |EC|2k = O(2‖EF‖l

)2k = O(2‖EF‖l ′
) many nodes each, where l ′ is some

constant. For each pair s1 and s′
1 of corresponding nodes in T (s) and T (s′), we

must check whether Bel(s1) = Bel(s′
1) holds. Condition (3) of a regular evolu-

tion frame EF implies that single exponentially many tests r ∈ Bel(comp(s1))
iff r ∈ Bel(comp(s′

1)) (for all rules r of length polynomial in ‖EF‖) are suffi-
cient. Strong regularity implies that deciding r ∈ Bel(s1) = Bel(comp(s1)) and
r ∈ Bel(s′

1) = Bel(comp(s′
1)) are polynomial. Hence, deciding Bel(s1) = Bel(s′

1) is
feasible in single exponential time in ‖EF‖.

Summing up, testing for (at most) double exponentially many knowledge
states s times single exponentially many successor states s′ whether s ≡EF s′

can be done in

O(22‖EF‖l1 · 2‖EF‖l2 · 2‖EF‖l3 ) = O(22‖EF‖l

)

time, for constants l1, l2, l3, and l . Thus, the overall algorithm proceeds in
double exponential time, that is, K ′ can be computed in in double exponen-
tial time. This proves 2-EXPTIME membership of EF, s |= ϕ.

Hardness follows from a suitable encoding of 2-EXPTIME Turing machines
M . To this end, a similar construction as in the hardness proof of Part (1) of The-
orem 7.3 can be used, where the update policy �(s, E) simulates a 2-EXPTIME
Turing machine rather than a 2-EXPSPACE Turing machine; note that the
components of EF there have polynomial-time complexity.

We prove Part (2) of the theorem by showing that the lower bound does
not decrease when demanding strong regularity. To this end, we encode the
computations of an EXPSPACE Turing machine, M , into a strongly regular
evolution frame EF, such that EF is c-bounded, where c is polynomial in ‖EF‖,
and contracting.

Assume that M has binary tape alphabet {0, 1} and runs in space 2l , where l
is polynomial in ‖EF‖. Let us consider the following strongly regular evolution
frame EF, where

A = {Ai | 1 ≤ i ≤ l } ∪ {Pi | 1 ≤ i ≤ l } ∪ {Qi | 1 ≤ i ≤ m} ∪ {Qaccept},
hence, |A | = 2l + m + 1 = k. Then, there exist 2k classical models, which we
use to represent the configuration of M as follows: Atoms Qi, 1 ≤ i ≤ m, and
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Qaccept encode the state of M . Literals over atoms Ai and Pi, 1 ≤ i ≤ l , are
used to represent an index of M ’s tape in binary format. We use a “disjunctive”
semantics as follows. Observe that we could use conjunctions of literals over
atoms Qi and Pi to encode the current state of M and the position of M ’s head,
and conjunctions of literals over atoms Ai to encode the fact that the tape cell
at the encoded index contains 1. By building the disjunction of a set of such
conjunctions, we get a formula in disjunctive normal form (DNF) describing by
its models the current configuration of M . We can make use of this observation
by stipulating that we use rules to describe anti-models, that is, interpretations
which are not models of the current knowledge base KB. By defining Bel(·), tak-
ing the negation of the conjunction of all rules, we get a DNF, describing the
models of KB, as intended, and r ∈ Bel(KB) can be computed in polynomial
time (by checking whether r is entailed by every disjunct), as required. Fur-
thermore, the semantics for sequences of programs Bel(P1, . . . , Pn) is defined
by the semantics of their union Bel(P1 ∪ · · · ∪ Pn).

We simulate in polynomial time the behavior of the EXPSPACE Turing ma-
chine M on input I as follows: Without loss of generality, we assume that the
leftmost cell of M ’s tape (the cell at index 0) is always 1, that M is initially
in state Q0 and its head is in Position 0, and that M uses the first steps to
write I to the tape (without accepting). Hence, the initial configuration can be
represented by the single disjunct:

Q1 ∧ ¬Q2 ∧ · · · ∧ ¬Qm ∧ ¬Qaccept ∧ ¬P1 ∧ · · · ∧ ¬Pl ∧ ¬A1 ∧ · · · ∧ ¬Al .

Thus, the initial knowledge base KB consists of the single constraint:

← Q1, ¬Q2, . . . , ¬Qm, ¬Qaccept, ¬P1, . . . , ¬Pl , ¬A1, . . . , ¬Al .

We use a single event E = ∅ as the tick of the clock and let �(s, E) imple-
ment M ’s transition function. That is, �(s, E) is a set A of actions insert(r) and
delete(r ′), where r and r ′are constraints over A. Furthermore, we use ρ± (cf.
Section 3.2) for adding (respectively, removing) the constraints to (respectively,
from) the knowledge base KB, which amounts to the addition (respectively, re-
moval) of corresponding disjuncts to (respectively, from) the DNF representing
the current configuration of M . Since for every transition of M at most |KB|+1
rules need to be inserted and at most |KB| rules need to be removed, � and ρ±
are polynomial in the representation size of the belief set. Moreover, M accepts
I iff EF, K B |= EFQaccept. Since EF is contracting and 0-bounded, and since
the membership tests E ∈ EC and r ∈ Bel(·), as well as the functions � and
ρ, are computable in time polynomial in the size of EF, deciding TEMPEVO is
EXPSPACE-hard.
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MAREK, V. AND TRUSZCZYŃSKI, M. 1994. Revision specifications by means of programs. In Proceed-
ings of the 4th European Workshop on Logics in Artificial Intelligence (JELIA’94), C. MacNish,
D. Pearce, and L. Pereira, Eds. Lecture Notes in Artificial Intelligence, vol. 838. Springer-Verlag,
New York, 122–136.
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