
10

Repair Localization for Query Answering
from Inconsistent Databases

THOMAS EITER and MICHAEL FINK

Technische Universität Wien

GIANLUIGI GRECO

Università della Calabria

and

DOMENICO LEMBO

SAPIENZA Università di Roma

Query answering from inconsistent databases amounts to finding “meaningful” answers to queries

posed over database instances that do not satisfy integrity constraints specified over their schema.

A declarative approach to this problem relies on the notion of repair, that is, a database that

satisfies integrity constraints and is obtained from the original inconsistent database by “min-

imally” adding and/or deleting tuples. Consistent answers to a user query are those answers

that are in the evaluation of the query over each repair. Motivated by the fact that comput-

ing consistent answers from inconsistent databases is in general intractable, the present paper

investigates techniques that allow to localize the difficult part of the computation on a small

fragment of the database at hand, called “affected” part. Based on a number of localization re-

sults, an approach to query answering from inconsistent data is presented, in which the query

is evaluated over each of the repairs of the affected part only, augmented with the part that

is not affected. Single query results are then suitably recombined. For some relevant settings,

techniques are also discussed to factorize repairs into components that can be processed indepen-

dently of one another, thereby guaranteeing exponential gain w.r.t. the basic approach, which is

not based on localization. The effectiveness of the results is demonstrated for consistent query

answering over expressive schemas, based on logic programming specifications as proposed in the

literature.

This work has been partially supported by the European Commission PET Programme Projects IST-

2002-33570 INFOMIX and IST-2001-37004 WASP, and the Austrian Science Fund (FWF) project

P18019-N04.

Some results in this paper appeared, in preliminary form, in Eiter et al. [2003].

Authors’ addresses: T. Eiter, M. Fink, Institut für Informationssysteme, Technische Uni-

versität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria; email: eiter@kr.tuwien.ac.at;

michael@kr.tuwien.ac.at; G. Greco, Dipartimanto di Matematica, Università della Calabria, Via

Pietro Bucci 30B, I-87036 Rende, Italy; email: ggreco@mat.unical.it; D. Lembo, Dipartimento di

Informatica e Sistemistica, SAPIENZA Università di Roma, Via Ariosto 25, I-00185 Roma, Italy;

email: lembo@dis.uniromal.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/06-ART10 $5.00 DOI 10.1145/1366102.1366107 http://doi.acm.org/

10.1145/1366102.1366107

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:2 • T. Eiter et al.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query
languages; H.2.4 [Database Management]: Systems—Query processing, relational databases;

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—Answer/reason extraction, infer-
ence engines, logic programming, nonmonotonic reasoning and belief revision; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—Computational logic

General Terms: Experimentation, Languages, Theory

Additional Key Words and Phrases: Database repairs, inconsistency management in databases,

consistent query answering, stable models, logic programming, data integration

ACM Reference Format:
Eiter, T., Fink, M., Greco, G., Lembo, D. 2008. Repair localization for query answering from in-

consistent databases. ACM Trans. Datab. Syst. 33, 2, Article 10 (June 2008), 51 pages. DOI =
10.1145/1366102.1366107 http://doi.acm.org/ 10.1145/1366102.1366107

1. INTRODUCTION

A database is inconsistent if it does not satisfy the integrity constraints speci-
fied over its schema. This may happen for different reasons [Arenas et al. 2003];
for instance, when preexisting data are reorganized under a new schema that
has integrity constraints describing semantic aspects of the new scenario. This
is particularly challenging in the context of data integration, where a number
of data sources, heterogeneous and widely distributed, must be presented to
the user as if they were a single (virtual) centralized database, which is often
equipped with a rich set of constraints expressing important semantic prop-
erties of the application at hand. Since, in general, the integrated sources are
autonomous, the data resulting from the integration are likely to violate these
constraints.

One of the main issues arising when dealing with inconsistent databases is
establishing the answers which have to be returned to a query issued over the
database schema.

Example 1.1. Consider a database schema χ0 providing information about
soccer teams of the 2006/07 edition of the U.E.F.A. Champions League.
The schema consists of the relation predicates player(Pcode, Pname, Pteam),
team(Tcode, Tname, Tleader), and coach(Ccode, Cname, Cteam). The associ-
ated constraints �0 specify that the keys of player, team, and coach, are the
sets of attributes {Pcode, Pteam}, {Tcode}, and {Ccode, Cteam}, respectively, and
that a coach can neither be a player nor a team leader.

Consider the following inconsistent database D0 for χ0 (possibly built by
integrating some autonomous data sources):

playerD0 :
10 Totti RM
9 Ronaldinho BC teamD0 :

RM Roma 10

BC Barcelona 8

RM Real Madrid 10
coachD0 : 7 Capello RM

D0 violates the key constraint on team, witnessed by the facts team(RM,
Roma, 10) and team(RM, Real Madrid, 10), which coincide on Tcode but differ
on Tname. In such a situation, it is not clear what answers should be returned
to a query over D0 asking, for instance, for the names of teams, or for the pairs
formed by team code and team leader.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:3

Fig. 1. Repairs of D0.

The standard approach to remedy the existence of conflicts in the data is
through data cleaning [Bouzeghoub and Lenzerini 2001]. This approach is pro-
cedural in nature, and is based on domain-specific transformation mechanisms
applied to the data. One of its problems is incomplete information on how cer-
tain conflicts should be resolved [Staworko et al. 2006]. This typically happens
in systems which are not tailored for business logic support at the enterprise
level, like systems for information integration on-demand. Here, data cleaning
may be insufficient even if only few inconsistencies are present in the data.

In the last years, an alternative declarative approach has been investigated
which builds on the notion of a repair for an inconsistent database [Arenas
et al. 1999]. Roughly speaking, a repair is a new database which satisfies the
constraints in the schema and minimally differs from the original one. The
suitability of a possible repair depends on the underlying semantics adopted
for the inconsistent database, and on the kinds of integrity constraints which
are allowed on the schema. Importantly, in general, not a single but multiple
repairs might be possible; therefore, the standard way of answering a user
query is to compute the answers that are true in every possible repair, called
consistent answers in the literature.

Example 1.2. Recall that in our scenario, the database D0 for χ0 violates
the key constraint on team, witnessed by team(RM, Roma, 10) and team(RM,
Real Madrid, 10).

According to Arenas et al. [1999], a repair results by removing exactly one of
these facts from D0. Hence, there are two repairs only, say R1 and R2, which are
as shown in Figure 1. Accordingly, the consistent answer to the query asking
for the names of the teams is {(Barcelona)}, while the consistent answers to the
query asking for pairs of team code and team leader are {(RM, 10), (BC, 8)}.

Query answering in the presence of inconsistent data (aka consistent query
answering) has been the subject of a large body of research (for a survey on
this topic, see Bertossi and Chomicki [2003], and for a discussion on relevant
issues in the area see Chomicki [2007]), and some prototype implementations
of systems which fit the semantic repair framework are available [Fuxman
et al. 2005; Chomicki et al. 2004b; Leone et al. 2005]. Basically, these systems
differ in the kinds of constraints and queries they are able to deal with. Indeed,
depending on these two ingredients, the data complexity of consistent query
answering ranges from poynomial time over co-NP up to �P

2 [Calı̀ et al. 2003a;
Chomicki and Marcinkowski 2005; Chomicki 2007].

1.1 Contributions

In this article, we elaborate techniques for consistent query answering in highly
expressive settings. Given that in these cases query answering is unlikely to be

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:4 • T. Eiter et al.

feasible in polynomial time, our main research interest is to devise an approach
that allows to localize the “difficult” part of the computation in a small fragment
of the database at hand.

The basic intuition of this approach is that resolving constraint violations
in inconsistent databases does not generally require to deal with the whole
set of facts. For instance, in Example 1.1 inconsistency may be fixed by just
looking at the (few) tuples conflicting on the key. However, there are many
interesting cases for which devising some similar strategies is not as simple as
that and, therefore, it appears relevant to assess under which circumstances
a localization approach can be pursued and when localized repair computation
can be exploited to optimize consistent query answering. In this respect, our
overall contribution is twofold in nature.

First, we attack the problem from a theoretic point of view. We provide a
unifying view of previous approaches to query answering from inconsistent
data, we shed light on the interaction between integrity constraint violation
and the structure of repairs, and we study localization and factorization of
consistent query answering. Specifically,

1) We present a formal framework for consistent query answering which
is, to large extent, independent of a commitment to a specific definition
of repair, but is based on a common setting of repair semantics: the re-
pairs of the database are characterized by the minimal (nonpreferred)
databases from a space of candidate repairs with a preference order. Our set-
ting generalizes previous proposals in the literature, such as set-inclusion
based orderings [Fagin et al. 1983; Arenas et al. 1999, 2003; Barceló and
Bertossi 2003; Bravo and Bertossi 2003; Calı̀ et al. 2003a, 2003b; Chomicki
and Marcinkowski 2005; Greco et al. 2003], cardinality-based orderings
[Arenas et al. 2003; Lin and Mendelzon 1998], and weighted-based orderings
[Lin 1996].

2) We investigate some locality properties for repairing inconsistent databases,
aiming to isolate in the data those facts that will possibly be touched by a
repair, called the “affected part” of the database and the facts that for sure
will be not, called the “safe part” of the database. Specifically, we establish
localization results for different classes of constraints:
—The first class, C0, contains all constraints of the form ∀�xα(�x) ⊃ φ(�x),

where α(�x) is a nonempty conjunction of atoms over database relations and
φ(�x) is a disjunction of built-in literals. These constraints are semantically
equivalent to denial constraints [Chomicki et al. 2004a].

—The second class, C1, allows more general constraints of the form ∀�xα(�x) ⊃
β(�x) ∨ φ(�x), where α(�x) and φ(�x) are as above and β(�x) is a disjunction of
atoms over database relations.

—The third class, C2, has similar constraints ∀�xα(�x) ⊃ β(�x)∨φ(�x); here α(�x)
may be empty, representing unconditional logical truth, but β(�x) may have
at most one atom.

—The fourth class is the class of all universal constraints in clausal form.
Thus, semantically, this class captures all universal constraints.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:5

3) We propose a repair localization approach to query answering from inconsis-
tent databases, in which the query is first evaluated over each of the repairs
of the affected part only, augmented with the safe part, and then results are
suitably recombined. Also, we investigate techniques for factorizing repairs
into components that can be processed independently of each other. For some
relevant settings, these techniques guarantee an exponential gain compared
to the basic approach. Indeed, by looking at the actual forms of inconsisten-
cies occurring in the underlying database instance, we identify settings for
which the number of localized repairs to be considered for consistent query
answering is linear in the size of the affected part, while generic database in-
stances have data complexity from co-NP to �P

2 [Calı̀ et al. 2003a; Chomicki
and Marcinkowski 2005; Chomicki 2007; Greco et al. 2003].

Secondly, our contribution is practical. Indeed, based on the preceding
localization results, we develop strategies to consistent query answering
relying on existing technologies offered by stable model engines and rela-
tional DBMSs. Resembling several proposals in the literature, our tech-
niques make use of logic programs to solve inconsistency. However, we limit
their usage to the affected part of the data. This approach is useful to localize
the difficult part of the computation and to overcome the lack of scalability of
current (yet still improving) implementations of stable model engines such
as DLV [Leone et al. 2006] or Smodels [Simons et al. 2002]. Specifically:

4) We propose a formal model of inconsistency resolution via logic program-
ming specification, which abstracts from several proposals in the literature
[Arenas et al. 2003; Barceló and Bertossi 2003; Bertossi et al. 2002; Bravo
and Bertossi 2003; Calı̀ et al. 2003b; Greco et al. 2003]. Results obtained on
this model are applicable to all such approaches.

5) We discuss an architecture that recombines the repairs of the affected part
with the safe part of an inconsistent database, interleaving a stable model
and a relational database engine. This is driven by the fact that database
engines are geared towards efficient processing of large data sets, and thus
help to achieve scalability. In this architecture, the database engine has to
“update” the consistent answers to a certain query each time a new repair
is computed by the stable model engine. To further improve this strategy,
a technique for simultaneously processing a (large) group of repairs in the
DBMS is proposed. Basically, it consists in a marking and query rewrit-
ing strategy for compiling the reasoning tasks needed for consistent query
answering into a relational database engine.

6) Finally, we assess the effectiveness of our approach in a suite of exper-
iments. They have been carried out on a prototype implementation in
which the stable model engine DLV is coupled with the DBMS PostgreSQL.
The experimental results show that the implementation scales reasonably
well.

We observe that our results on localization extend and generalize previous
localization results that have been utilized (sometimes tacitly) for particular
repair orderings and classes of constraints, for instance, for denial constraints

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:6 • T. Eiter et al.

and repairs that are closest to the original database measured by set symmet-
ric difference [Chomicki et al. 2004a]. Also, our results can be exploited for
efficient implementation of consistent query answering techniques in general,
independent of a logic-programming based approach.

The rest of this article is organized as follows. Section 2 introduces the no-
tation for the relational data model and for logic programs used throughout
the paper. Section 3 defines the formal framework for consistent query answer-
ing from inconsistent databases. Localization properties in database repairs
and their exploitation to optimize consistent query answering are discussed
in Section 4 and Section 5, respectively. The logic specification for consistent
query answering is presented in Section 6, together with an architecture that
interleaves a DBMS and a stable model engine. Section 7 considers other ap-
proaches to consistent query answering, and Section 8 reports results of our
experimental activity. The final Section 9 concludes the paper.

Some further details of our techniques have been moved to an on-line ap-
pendix, which also contains further examples and experiments.

2. PRELIMINARIES

2.1 Data Model

We assume a countable infinite database domain U whose elements are refer-
enced by constants c1, c2, . . . under the unique name assumption, that is, differ-
ent constants denote different real-world objects.

A relational schema (or simply schema) χ is a pair 〈�, �〉, where:

—� is a finite set of relation (predicate) symbols, each with an associated pos-
itive arity.

—� is a finite set of integrity constraints (ICs) expressed on the relation symbols
in �. We consider here universally quantified constraints [Abiteboul et al.
1995], that is, first-order sentences of the form

∀�x A1(�x1) ∧ · · · ∧ Al (�xl) ⊃ B1(�y1) ∨ · · · ∨ Bm(�ym) ∨ φ1(�z1) ∨ · · · ∨ φn(�zn), (1)

where l +m > 0, n ≥ 0, the Ai(�xi) and the Bj (�y j) are atoms over �, the φk(�zk)
are atoms or negated atoms over possible built-in relations like equality (=),
inequality (�=), etc., �x is a list of all variables occurring in the formula, and
the �xi, �y j , and �zk are lists of variables from �x and constants from U .1 The
conjunction left of “⊃” is the body of the constraint, and the disjunction right
of “⊃” its head.

In the rest of the article, χ = 〈�, �〉 denotes a relational schema. Since all
variables in (1) are universally quantified, we omit quantifiers in constraints.

Note that (1) is a clausal normal form for arbitrary universal constraints on
a relational schema. However, since existential quantification is not allowed,
referential constraints such as foreign-key constraints cannot be expressed. We

1The condition l +m > 0 excludes constraints involving only built-in relations, which are irrelevant

from a schema modeling perspective.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:7

pay special attention to the following subclasses of constraints:

—Constraints with only built-in relations in the head (i.e., m = 0 in (1)). The
class of these constraints, which we denote by C0, is a clausal normal form
of denial constraints [Chomicki et al. 2004a], also called generic constraints
in Bertossi and Chomicki [2003]. This class (semantically) includes:
—key constraints p(�x, �y) ∧ p(�x, �z) ⊃ yi = zi, for 1 ≤ i ≤ n,
— functional dependencies p(�x, �y , �v) ∧ p(�x, �z, �w) ⊃ yi = zi, for 1 ≤ i ≤ n, and
—exclusion dependencies p1(�v, �y) ∧ p2(�w, �z) ⊃ y1 �= z1 ∨ · · · ∨ yn �= zn,
where �y = y1, . . . , yn and �z = z1, . . . , zn.

—Constraints with nonempty body (i.e., l > 0 in (1)). We denote the class
of these constraints, which permit conditional generation of tuples in the
database, by C1. Note that C0 ⊆ C1 (since l + m > 0). The class C1 includes,
for instance, inclusion dependencies of the form p1(�x) ⊃ p2(�x).

—Constraints with at most one database atom in the head (i.e., m ≤ 1 in (1)).
We denote the class of these constraints, which we call nondisjunctive, by
C2. Beyond denials, such constraints also allow to enforce the (unconditional)
presence of a tuple. Parts of the database may be protected from modifications
in this way. Note that C0 ⊆ C2, while C1 and C2 are incomparable.

Example 2.1. In our example, the schema χ0 is the tuple 〈�0, �0〉, where
�0 consists of the ternary relation symbols player, team, and coach, and �0 can
be defined as follows:

σ1: player(x, y , z) ∧ player(x, y ′, z) ⊃ y= y ′,
σ2: team(x, y , z) ∧ team(x, y ′, z ′) ⊃ y= y ′,
σ3: team(x, y , z) ∧ team(x, y ′, z ′) ⊃ z=z ′,
σ4: coach(x, y , z) ∧ coach(x, y ′, z) ⊃ y= y ′,
σ5: coach(x, y , z) ∧ player(x ′, y ′, z) ⊃ x �=x ′,
σ6: coach(x, y , z) ∧ team(z, y ′, x ′) ⊃ x �=x ′.

Here σ1–σ4 are key constraints, while σ5 and σ6 encode that, for any given team,
the coach is neither a player nor a team leader. Note that all these constraints
are in C0. �

For a set of relation symbols �, F(�) denotes the set of all facts r(�t), where
r ∈ � has arity n and �t = (c1, . . . , cn) ∈ Un is an n-tuple of constants from U . A
database instance (or simply database) for � is any finite set D ⊆ F(�). The
extension of relation r in D is the set of tuples r D = {�t | r(�t) ∈ D}. We denote
by D(�) the set of all databases for �. For any relation schema χ = 〈�, �〉, in
abuse of notation, F(χ) and D(χ) denote F(�) and D(�), respectively, and a
database for χ is a database for �.

A constraint σ is ground, if it is variable-free. For any such σ , facts(σ) denotes
the set of all facts p(�t) ∈ F(χ) occurring in σ , and for any set � of ground
constraints, facts(�) = ⋃

σ∈� facts(σ). For any constraint σ = α(�x), we denote
by ground(σ) the set of its ground instances θ (α(�x)), where θ is any substitution
of the variables �x by constants fromU . For any set of constraints �, ground(�) =⋃

σ∈� ground(σ).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:8 • T. Eiter et al.

Given D ⊆ F(�), where � = {r1, . . . , rn}, D satisfies a constraint σ , denoted
D |= σ , if σ is true on the relational structure (U , r D

1 , . . . , r D
n , cD

1 , cD
2 , . . .) where

cD
i = ci, for all ci ∈ U (i.e., each σ ′ ∈ ground(σ) evaluates to true), and violates

σ otherwise; D satisfies (or is consistent with) a set of constraints �, denoted
D |= �, if D |= σ for every σ ∈ �, and violates � otherwise. Finally, a relational
schema χ = 〈�, �〉 is consistent, if there exists a database D for χ that is
consistent with �, otherwise χ is inconsistent.

Example 2.2. Consider the constraint σ2 in �0, and its ground instance

team(RM, Roma, 10) ∧ team(RM, Real Madrid, 10) ⊃ Roma=Real Madrid.

Clearly, this instance does not evaluate true on the relational structure as-
sociated with D0, which therefore violates �0. �

2.2 Datalog∨,¬ Programs and Queries

Syntax. A Datalog∨,¬ rule ρ is an expression of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk , not bk+1, . . . , not bk+m (2)

where ai, bj are atoms in a relational first-order language L, “not” is negation
as failure, and “,” is conjunction. If k = m = 0, then ρ is a fact and “←” is omitted.
The part left of “←” is the head of ρ, denoted head(ρ), and the part right of “←”
the body of ρ, denoted body(ρ). We assume safety, i.e., each variable occurring in
ρ occurs in some bi, 1 ≤ i ≤ k, whose predicate is not a built-in relation. Built-in
relations may occur only in the body.

A Datalog∨,¬ program P is a finite set of Datalog∨,¬ rules. Important re-
strictions are normal programs, Datalog¬, where n= 1 for all rules, stratified
normal programs, Datalog¬s , and nonrecursive programs, defined as follows.
Each Datalog¬ program P has a dependency graph G(P) = 〈V , E〉, where V are
the predicates occurring in P and E contains an arc r → s if r occurs in head(ρ)
and s in body(ρ) for some rule ρ ∈ P. Moreover, if s occurs under negation, the
arc is labeled with ’∗.’ Then P is stratified, if G(P) has no cycle with an arc
labeled ’∗,’ and nonrecursive, if G(P) is acyclic.

Semantics. The semantics of a Datalog∨,¬ program P is defined via its
grounding ground (P) w.r.t. L (usually, the language generated by P), which
consists of all ground instances of rules in P possible with constant symbols
from L. Let BL be the set of all ground atoms with a predicate and constant
symbols in L. A (Herbrand) interpretation for P is any subset I ⊆ BL; an atom
p(�c) ∈ BL is true in I , if p(�c) ∈ I , and false in I otherwise. A ground rule (2) is
satisfied by I , if either some ai or bk+ j is true in I , or some bi, 1 ≤ i ≤ k, is false
in I . Finally, I is a model of P, if I satisfies all rules in ground(P).

The stable model semantics [Gelfond and Lifschitz 1991] assigns stable mod-
els to any Datalog∨,¬ program P as follows. If P is “not”-free, its stable models
are its minimal models, where a model M of P is minimal, if no N ⊂ M is a
model of P. If P has negation, M is a stable model of P, if M is a minimal model
of the reduct P w.r.t. M , which results from ground(P) by deleting (i) each rule
ρ with a literal not p(�c) in the body such that p(�c) ∈ M , and (ii) the negative
literals from all remaining rules.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:9

We denote by SM(P) the set of stable models of P. Note that for “not”-
free programs, minimal models and stable models coincide, and that positive
disjunction-free (resp. stratified) programs have a unique stable model [Gelfond
and Lifschitz 1991].

Queries. A Datalog∨,¬ query Q over a schema χ = 〈�, �〉 is a pair 〈q, P〉,
where P is a Datalog∨,¬ program such that every p ∈ � occurs in P only in
rule bodies, and q occurs in some rule head of P but not in �. The arity of Q
is the arity of q. Given any database D for χ , the evaluation of Q over D, is
Q[D] = {(c1, . . . , cn) | q(c1, . . . , cn) ∈ M , for each M ∈ SM (P ∪ D)}. Note that
as for Q , any nonrecursive P can be rewritten to a union of conjunctive queries,
that is, a set of rules (2) where n = 1 and m = 0, with the same head predicate
q which does not occur in rule bodies. For further background on Datalog∨,¬

and queries, see Abiteboul et al. [1995] and Eiter et al. [1997].

Example 2.3. In our ongoing example, we may consider a query Q that
asks for the codes of all players and team leaders, and that is formally written
as Q = 〈q, P〉 where P = {q(x) ← player(x, y , z), q(x) ← team(v, w, x)}. Q has
arity 1. Note that P is a union of conjunctive queries.

3. CONSISTENT QUERY ANSWERING FRAMEWORK

3.1 A General Framework for Database Repairs

Let us assume that χ = 〈�, �〉 is given together with a (possibly inconsistent)
database D for χ . Following a common approach in the literature on incon-
sistent databases [Arenas et al. 1999; Greco et al. 2003; Calı̀ et al. 2003a;
Chomicki 2007], we next define the semantics of querying D in terms of its
repairs. Specifically, we present a generalization of previous approaches where
the way of repairing a database is chosen according to an arbitrary preorder on
databases satisfying some conditions.

We suppose that ≤D is a (fixed) preorder (i.e., a reflexive and transitive
binary relation) on D(χ), and denote by <D the induced preference order
(i.e., an irreflexive and transitive binary relation) given by R1 <D R2, if
R1 ≤D R2 ∧ R2 �≤D R1. We call R1 <D-preferred to R2 in this case. A repair for
D is now defined in terms of a minimal element under <D.

Definition 3.1 (Repair). Let D be a database for χ = 〈�, �〉, and let ≤D be
a (fixed) preorder on D(χ). A database R ∈ D(χ) is a ≤D-repair (simply, repair)
for D w.r.t. χ , if

(1) R |= �, and

(2) R is minimal in D(χ) w.r.t. <D, i.e., there is no R ′ ∈ D(χ) such that R ′ |= �

and R ′ is <D-preferred to R.

The set of all repairs for D w.r.t. χ is denoted by repχ
≤D (D). When clear from

the context, the subscript χ may be dropped. Similarly, the superscript ≤D is
omitted.

The definition of repair relies on a general notion of preorder on databases.
The method for consistent query answering presented in the following is based

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:10 • T. Eiter et al.

on abstract properties of the induced preference order, which we refer to as set
inclusion proximity, disjoint preference expansion and disjunctive split. The
property of set inclusion proximity is as follows:

(SIP) For any databases R1, R2, and D, �(R1, D) ⊂ �(R2, D) implies
R1 <D R2,

where �(A, B) = (A \ B) ∪ (B \ A) is symmetric set difference. Informally, this
property effects that a database R satisfying the constraints can be a repair
only if there is no way to establish consistency with � by touching merely a
strict subset of facts compared to R.

The properties disjoint preference expansion and disjunctive split are as fol-
lows:

(DPE) If R1 <D1
R ′

1 and R2, D2 are disjoint from R1, R ′
1, and D1 (i.e., (R1 ∪

R ′
1 ∪ D1) ∩ (R2 ∪ D2) = ∅), then R1 ∪ R2 <D1∪D2

R ′
1 ∪ R2.

(DIS) If R1 <D R2, then for every database R it holds that either R1 ∩ R <D∩R
R2 ∩ R or R1 \ R <D\R R ′

1 \ R (or both).

Loosely speaking, (DPE) says that preference must be invariant under adding
new facts, while (DIS) says that preference must uniformly stem from disjoint
“components.”

The prototypical preorder ≤D is given by R1 ≤D R2 iff �(R1, D) ⊆ �(R2, D)
[Arenas et al. 1999, 2003; Barceló and Bertossi 2003; Bravo and Bertossi 2003;
Chomicki et al. 2004a; Greco et al. 2003; Fuxman and Miller 2007]. Intuitively,
each repair of D is then obtained by properly adding and deleting facts from
D in order to satisfy constraints in �, as long as we “minimize” such changes.
The following proposition is easy to prove.

PROPOSITION 3.1. The prototypical preorder satisfies properties (SIP), (DPE),
and (DIS).

In our examples we refer to the prototypical preorder. Notice that a vari-
ety of repair semantics are either defined in terms of a preorder satisfying
the above properties or can be characterized by such a preorder, beside those
based on the prototypical preorder previously discussed, including set-inclusion
based ordering [Fagin et al. 1983; Calı̀ et al. 2003a], cardinality-based ordering
[Arenas et al. 2003; Lin and Mendelzon 1998], weight-based orderings [Lin
1996], as well as refinements with priority levels. An interesting special case
of weight-based ordering is the lexicographic preference, where R1 is preferred
to R2 w.r.t. D if the first fact in a total ordering of F(χ) on which R1 and R2

repair D differently belongs to R2. However, we point out that our methods and
results for query answering can also be extended to other preference orderings
under certain conditions (see Section 9).

3.2 Constructible Repairs and Safe Constraints

An important aspect is that constraints might enforce that any set of facts R for
χ = 〈�, �〉 which satisfies � must be infinite, and thus χ is inconsistent, that is,
no D ∈ D(χ) satisfies �. A simple example is where � = {∀x p(x)}. Semantically,
this is commonly avoided by requesting domain-independence of constraints

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:11

[Ullman 1989], which syntactically is ensured by safety; that is, each variable
occurring in the head of a constraint must also occur in its body. Notice that
major classes of constraints including key constraints, functional dependencies,
exclusion dependencies, inclusion dependencies of the form p1(�x) ⊃ p2(�x), or de-
nial constraints fulfill safety. Together with (SIP), safety of constraints ensures
that any database D has a repair if this is possible at all. For any R ⊆ F(χ), we
denote by adom(R, χ) the active domain of R and χ , i.e., the set of constants
occurring in R and �.

PROPOSITION 3.2. Let D be a database for χ = 〈�, �〉, where all con-
straints in � are safe. Suppose that <D satisfies (SIP). Then, every repair R ∈
rep(D) involves only constants from adom(D, χ), and some repair exists if χ is
consistent.

Notice that, for an arbitrary preference order, no repair may exist, even if
χ is consistent. In the rest of this article, unless stated otherwise, we assume
safe constraints.

Finite repairs can also be ensured for unsafe constraints in which variables
violating safety are guarded by built-in relations, such as for D = ∅ w.r.t. χ =
〈{p}, {p(x)∨x>100}〉, assuming thatU are the natural numbers. As this example
shows, repairs may go beyond the active domain. However, this is prevented
if built-ins involve only equality and inequality. We have a result similar to
Proposition 3.2 (cf. Appendix A for proofs).

PROPOSITION 3.3. Let D be a database for χ = 〈�, �〉 where no built-in rela-
tions occur in � except = and �=. Suppose that <D satisfies (SIP). Then, every
repair R ∈ rep(D) involves only constants from adom(D, χ), and some repair
exists if χ is consistent.

3.3 Queries and Consistent Answers

The notion of repair is crucial for the definition of the semantics of query-
ing inconsistent databases. We conclude this section by formalizing this
aspect.

Definition 3.2. Let Q be a nonrecursive Datalog¬ query. For any database
D ∈ D(χ), the set of consistent answers to Q w.r.t. D is the set of tuples
ansc(Q , D) = {�t | �t ∈ Q[R], for each R ∈ repχ (D) }. �

Informally, a tuple �t is a consistent answer if it is a consequence under standard
certainty semantics for each possible repair of the database D. Note that in real
applications, a query language subsumed by nonrecursive Datalog¬ is often
adopted.

Example 3.1. Recall that in our scenario, repairs for the database D0 for χ0

are shown in Figure 1. For the query Q = 〈q, P〉, where P = {q(x) ← player(x,
y , z), q(x) ← team(v, w, x)}, we thus obtain ansc(Q , D0) = {(8), (9), (10)}. For the
query Q ′ = 〈q, {q(y) ← team(x, y , z)}〉, we have ansc(Q ′, D0) = {(Barcelona)},
while for Q ′′ = 〈q′, {q′(x, z) ← team(x, y , z)}〉, we have ansc(Q ′′, D0) = {(RM,
10), (BC, 8)}.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:12 • T. Eiter et al.

4. LOCALITY PROPERTIES FOR REPAIRING INCONSISTENT DATABASES

In this section, we investigate how to localize inconsistency in a given database
D, that is, how to narrow down the set of facts in D to a part which is “affected”
by inconsistency and repair, and how to obtain the repairs of D from the repairs
of this affected part. To this end, we introduce the notion of a repair envelope.
Informally, a repair envelope is a set of facts E such that the repairs of D touch
only facts in E and are given by the repairs of D ∩ E plus the “unaffected”
(“safe”) part of D, that is, the portion of D which is outside the envelope. More
formally:

Definition 4.1. Let D be a database for a relational schema χ = 〈�, �〉.
A set E of facts over � is a repair envelope for D if it fulfills the following
conditions:

�(R, D) ⊆ E, for all R ∈ repχ (D), (3)

repχ (D) = {R ∪ (D \ E) | R ∈ repχ (D ∩ E)}. (4)

The repairs of D can then be fully localized to the repairs of D ∩ E, which
in practice may be much smaller than D. In fact, as will be shown in this
section, for constraints C0 the set of all facts involved in constraint violations,
denoted C (formally defined in the beginning of Section 4.1), is always a repair
envelope, and for constraints C1 and C2, a closure C∗ of C under syntactic
conflict propagation, that is, under co-occurrence of facts in violated constraints
(cf. Definition 4.4), is a repair envelope. Such a closure, as we will explain
in detail in the following, takes care of facts that “indirectly” participate in
constraint violations. In general, however, a repair envelope needs not be a
superset of C∗ or C. Figure 2 shows the different sets.

Example 4.1. Recall that team(RM, Roma, 10) ∧ team(RM, Real Madrid,
10) ⊃ Roma = Real Madrid witnesses in Example 2.2 a violation of the key of
team; it is the only ground constraint violated by D0. Here, C = {team(RM,
Roma, 10), team(RM, Real Madrid, 10)}, and since the constraints are of type
C0, it is a repair envelope for D. The database D ∩ C = C has the two repairs
R1 = {team(RM, Roma, 10)} and R2 = {team(RM, Real Madrid, 10)}; therefore,
according to (4), D has the two repairs R1 ∪ (D0 \ C) and R2 ∪ (D0 \ C), which
are those shown in Figure 1.

The following example shows that taking only C into account is not always
sufficient.

Example 4.2. Let D = {s(a)} for χ = 〈�, �〉, where � = {s(a) ⊃ r(a), r(a) ⊃
p(a)∨q(a), r(a)∧ p(a) ⊃ a �= a}. In this case C∗ = {s(a), r(a), p(a), q(a)} and the
constraints are of type C1, hence, C∗ is a repair envelope for D. The database
D ∩ C∗ = D has the two repairs R1 = ∅ and R2 = {s(a), r(a), q(a)}. Note that
�(R2, D) = {r(a), q(a)} �⊆ {s(a), r(a)} = C. Therefore, C violates (3) and is not a
repair envelope.

Note that a repair envelope always exists, since the set of all facts is a trivial
repair envelope. As for localizing the computation of rep(D), only Condition (4)
is relevant (if E satisfies it, then so does every E ′ such that E ′ ∩ D = E ∩ D, in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:13

particular E ′ = E ∩ D). Condition (3), however, allows to bound the answer to
certain queries. In particular, for monotone queries Q , we have that Q[D\ E] ⊆
ans(Q , D) ⊆ Q[D ∪ E].

For general constraints, C∗ is not always a repair envelope. However, we
show that it is a weak repair envelope:

Definition 4.2. Let D be a database for a relational schema χ = 〈�, �〉. A
set E of facts over � is a weak repair envelope for D if it fulfills Condition (3)
and instead of (4), the relaxed equation

repχ (D) = {(R ∩ E) ∪ (D \ E) | R ∈ repχ (D ∩ E)}. (5)

That is, the repairs of D are obtained by constraining the repairs of D ∩ E to
the repair envelope. This is necessary since facts outside the envelope might
be added to such repairs (see Example 4.4). However, this can only occur in
presence of certain disjunctions.

Despite the difference that E is either a repair envelope or a weak repair
envelope, we define affected database and safe database w.r.t. E as follows.

Definition 4.3. Let D be a database for a relational schema χ = 〈�, �〉 and
E a (weak) repair envelope. Then D ∩ E is the affected part of D (w.r.t. χ), or
simply the “affected database”, and D \ E is the safe part of D (w.r.t. χ), or
simply the “safe database”. �

Note that we mostly refer to specific kinds of envelopes in the paper, namely
the conflict set C and the conflict closure C∗. We proceed as follows. After for-
mally defining C and C∗ and establishing some auxiliary results, we show that
C∗ is a weak repair envelope in general. We then prove that it is a repair enve-
lope under restrictions, in particular for C1 and C2 constraints. This envelope
may be further decreased. Indeed, we prove that C is a repair envelope for C0

constraints. In fact, the results for special constraints are stronger and estab-
lish 1-1 correspondences between repairs of D ∩ E and repairs of D. Some of
the proofs are omitted here but can be found in Appendix B.

4.1 General Constraints

Let D be a database for a relational schema χ = 〈�, �〉. The conflict set for D
w.r.t. χ is the set of facts Cχ (D) = {p(�t) | ∃σ ∈ ground(�), p(�t) ∈ facts(σ),
D �|= σ }, i.e., Cχ (D) is the set of facts occurring in the ground instances of �

which are violated by D. In the following, if clear from the context, D and/or
the subscript χ will be dropped.

Figure 2 shows that the conflict set may contain both facts in D (as in
Example 4.1) and facts in F(χ) that do not belong to D. For example, let
D = {p(a)}, and let χ contain the dependency p(x) ⊃ q(x). Then C = {p(a), q(a)}.

For defining conflict propagation, we first introduce the following notion. Two
facts p(�t), p′(�t ′) in F(χ) are constraint-bounded in χ , if there exists some σ ∈
ground(�) such that all constants occurring in facts(σ) are from adom(D, χ),
and {p(�t), p′(�t ′)} ⊆ facts(σ). (Note that by assumed safety of constraints and the
results of Section 3.2, we only need to consider adom(D, χ).) We now generalize
the notion of conflict set.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:14 • T. Eiter et al.

Fig. 2. Localization of database repair.

Definition 4.4 (Conflict Closure). Let D be a database for χ=〈�, �〉. Then,
the conflict closure for D, denoted by C∗

χ (D), is the least set A ⊇ Cχ (D) which

contains every fact p(�t) constraint-bounded in χ with some fact p′(�t ′) ∈ A.

We omit D and/or the subscript χ if clear from the context. Intuitively, C∗

contains, besides facts from C, facts which possibly must be touched by repair
in turn to avoid new inconsistency with � caused by previous repairing actions.
For example, assume that χ contains the constraints p(x) ⊃ q(x) and q(x) ⊃ s(x).
Then, for D = {p(a)}, we have that C = {p(a), q(a)} and C∗ = C ∪ {s(a)}. As shown
in Figure 2, C∗ may add to C both facts inside and outside D, but may also
coincide with C, as in our example if s(a) was in D.

Towards a proof that C∗ is a weak repair envelope, we need some preliminary
technical results. For D and χ=〈�, �〉, consider the following two sets of ground
constraints:

(i) �a
χ (D) = {σ ∈ ground(�) | facts(σ) ∩ C∗ �= ∅} consists of all ground con-

straints in which at least one fact from C∗ occurs;

(ii) �s
χ (D) = {σ ∈ ground(�) | facts(σ) �⊆ C∗} consists of all ground constraints

in which at least one fact occurs which is not in C∗.

As usual, χ and/or D will be omitted. We first show that �a ∪ �s is a special
partitioning of ground(�).

PROPOSITION 4.1 (SEPARATION). Let D be a database for χ = 〈�, �〉. Then, (1)
facts(�a) = C∗, (2) facts(�s) ∩ C∗ = ∅, (3) �a ∩ �s = ∅, and (4) �a ∪ �s =
ground(�).

The separation property allows us to shed light on the structure of repairs.

PROPOSITION 4.2 (SAFE DATABASE). Let D be any database for χ = 〈�, �〉.
Then, for each repair R ∈ rep(D) it holds that R \ C∗ = D \ C∗.

Informally, the above proposition shows that D \ C∗ is a safe portion of D,
in the sense that tuples of D outside the conflict closure will not be touched by
repair.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:15

Prior to the main result of this subsection, we establish the following lemma:

LEMMA 4.3. Let D be a database for χ = 〈�, �〉, and let A = D ∩ C∗ and
χa = 〈�, �a〉. Then, for each S ⊆ D \ C∗, the following holds:

(1) for each R ∈ repχ (A ∪ S), it holds that R ∩ C∗ ∈ repχa (A);
(2) for each R ∈ repχa (A) there exists a set of facts S′ ⊆ F(χ) such that S′ ∩C∗ =

∅, and (R ∪ S′) ∈ repχ (A ∪ S).

In other words, item (1) in the lemma above shows how to obtain a repair
of the database A = D ∩ C∗ w.r.t. χa, from a repair, computed w.r.t. χ , of A
augmented with any subset S of the safe database D \ C∗. Conversely, item (2)
shows how to obtain a repair of A∪ S w.r.t. χ , from a repair of A w.r.t. χa. Notice
that repairing A w.r.t. χa, and not w.r.t. χ , is necessary for the lemma above
to hold, since for a repair R ∈ repχ (A ∪ S), it does not hold in general that
R ∩ C∗ ∈ repχ (A). Also, repairing A w.r.t. χa avoids repairing constraints in �s

not satisfied by A.
Armed with the above concepts and results, we state one of the main theo-

rems of this section.

THEOREM 4.4. Every database D for χ = 〈�, �〉 has C∗ as a weak repair
envelope.

PROOF. We first show that for each R ∈ repχ (D) then �(R, D) ⊆ C∗, as
specified by condition (3) in Section 4, where we pose E = C∗. Assume by
contradiction that there exists a fact f ∈ �(R, D) such that f �∈ C∗. By Propo-
sition 4.1 it follows that there exists no σ ∈ �a such that f ∈ facts(σ). Then,
if f ∈ R \ D, it is easy to see that R \ { f } |= �, but by property (SIP) we
have that R \ { f } <D R, thus contradicting the assumption that R ∈ repχ (D).
Analogously, if f ∈ D \ R, it is easy to see that R ∪ { f } |= �, but by property
(SIP) we have that R ∪ { f } <D R, thus again contradicting the assumption.

We now prove that repχ (D) coincides with the set defined by Equation (5) in
Section 4, where we pose E = C∗. To this aim, we show that (i) for every R ∈
repχ (D), there exists some R ′ ∈ repχ (D ∩C∗) such that R = (R ′ ∩C∗) ∪ (D \C∗),
and (ii) for every R ∈ repχ (D ∩ C∗) there exists some R ′ ∈ repχ (D) such that
R ′ = (R ∩ C∗) ∪ (D \ C∗).

(i) We first apply Item 1 of Lemma 4.3 for S = D \ C∗ and obtain R ∩ C∗ ∈
repχa (D ∩C∗) (notice that in Lemma 4.3 A = D ∩C∗, χa = 〈�, �a〉, and since we
pose S = D\C∗, we have that A∪S = D). We then apply Item 2 for S = ∅, and we
obtain that there exists S′ such that S′∩C∗ = ∅ and R ′ = (R∩C∗)∪S′ ∈ repχ (A).
Since S′ ∩C∗ = ∅, we also have that R ′ ∩C∗ = R ∩C∗, and from Proposition 4.2,
it follows that R = (R ∩ C∗) ∪ (D \ C∗). Therefore, R = (R ′ ∩ C∗) ∪ (D \ C∗).

(ii) Similarly, applying first Item 1 of Lemma 4.3 for S = ∅ and then Item 2
for S = D \ C∗, we obtain that there exists S′ such that S′ ∩ C∗ = ∅, and R ′ =
(R ∩ C∗) ∪ S′ ∈ repχ (D). Then, from Proposition 4.2, it follows that S′ = D \ C∗.
We thus easily obtain that R ′ = (R ∩ C∗) ∪ (D \ C∗).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:16 • T. Eiter et al.

For computing repairs for an inconsistent database D, we can thus proceed as
follows:

1. compute the conflict closure C∗ (w.r.t. �);

2. compute the repairs of A = D ∩ C∗ (w.r.t. �);

3. intersect each repair obtained with C∗; and

4. for each such set, take the union with D \ C∗.

In fact, as we will show, it is sufficient to consider �a in Step 2 instead of
�. We note that C∗ is polynomially computable w.r.t. data volume from C by
transitive closure computation (simply use a Datalog program over C), but omit
discussing efficient algorithms.

A drawback of the approach in general, however, is that in Step 2, facts out-
side C∗ might be included in a repair of A, which are stripped off subsequently
in Step 3.

Example 4.3. Consider D = {p(a)} for χ = 〈�, {p(a), q(a)}〉. In this case,
C = C∗ = {q(a)}, A = D∩C∗ = ∅, and D\C∗ = D. We have rep(A) = {{p(a), q(a)}}
and {p(a), q(a)} ∩ C∗ = {q(a)}; p(a) is stripped off from the repair of A.

In this example, the repair of A added a fact outside C∗ but from the safe part
of D, which doesn’t hurt. The following example shows that facts outside C∗ ∪ D
may be added.

Example 4.4. Consider D = {r(a), p(a)} for χ = 〈�, �〉, where � = {r(a) ⊃
p(a) ∨ q(a), r(a), s(a)}. Then, C∗ = {s(a)} and D ∩ C∗ = ∅ has two repairs, viz.
R1 = {r(a), s(a), p(a)} and R2 = {r(a), s(a), q(a)}. Note that if C∗ were a repair
envelope, then according to Condition (4), R2 ∪ (D \ C∗) = {r(a), s(a), p(a), q(a)}
would have to be a repair of D, which is incorrect. Note also, that this time q(a)
has been added in R2 which was neither in D nor in C∗.

We remark that in Example 4.4, � contains constraints from both the classes
C1 and C2, but not from a single class. As we show in the next subsection, the
effects in Example 4.4 can not happen under restriction to a single class, and
C∗ is always a repair envelope.

We finally provide the result below that follows from Theorem 4.4, and re-
marks that repairing basically depends on �a.

COROLLARY 4.5. Let D be a database for χ = 〈�, �〉, and let χ ′ = 〈�, �′〉 be
such that �a

χ ′ (D) = �a
χ (D). Then repχ (D) = repχ ′ (D).

Then, we can modify or prune constraints “outside” �a in arbitrary manner,
e.g., for optimization purposes. As we show in the next subsection, this makes
C∗ a repair envelope, rather than a weak repair envelope, in several cases in
which � contains general constraints.

4.2 Special Constraints

In this section, we consider the constraint classes Ci which have been intro-
duced in Section 2, and determine repair envelopes for them.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:17

4.2.1 Constraints C1 and C2. Recall that C1 constraints have nonempty
bodies, and thus cannot unconditionally enforce the inclusion of facts to a
database instance.

PROPOSITION 4.6. Let D be a database for χ = 〈�, �〉 such that � ⊆ C1.
Then, each repair R of A = D ∩ C∗ w.r.t. χ satisfies R ⊆ C∗.

PROOF. By Item 1 of Lemma 4.3, for S = ∅, each R ∈ repχ (A) gives rise to
a repair R ′ = R ∩ C∗ of A w.r.t. χa = 〈�, �a〉. By Item 2 of Lemma 4.3, for
S = ∅, R ′ in turn gives rise to a repair R ′′ of A w.r.t. χ of the form R ′′ = R ′ ∪ S′

such that S′ ∩ C∗ = ∅. Since clearly S′ |= �s, property (DPE) implies that S′

is a repair of S = ∅ w.r.t. 〈�, �s〉. Since each constraint in �s has a nonempty
body, it follows by (SIP) that S′ = ∅. Hence R ∩ C∗ is a repair of A w.r.t. χ . Now
if R �⊆ C∗ held, then �(R ′′, A) ⊂ �(R, A) would hold, which by (SIP) implies
R ′′ <D R. This is a contradiction.

Recall that C2 are the nondisjunctive constraints; that is, every constraint
has at most one database atom in the head.

PROPOSITION 4.7. Let D be a database for χ = 〈�, �〉, where � ⊆ C2. Then
(i) every repair R of A = D ∩ C∗ satisfies R ⊆ D ∪ C∗, and (ii) for every repairs
R, R ′ of A, R ∩ (D \ C∗) = R ′ ∩ (D \ C∗).

PROOF. By the argument in the proof of Proposition 4.6, every R ∈ rep(A)
gives rise to some R ′′ ∈ rep(A) of the form R ′′ = (R ∩ C∗) ∪ S′ such that S′ ∩
C∗ = ∅ and S′ is a repair of S = ∅ w.r.t. 〈�, �s〉. As each constraint in �s is
nondisjunctive, there is the least (w.r.t. ⊆) set of facts F such that F |= �s (in
essence, �s is a Horn theory), and F ⊆ S′ must hold; by (SIP), F = S′. Now if
R �⊆ C∗ ∪ D held, then �(R ′′, A) ⊂ �(R, A) would hold (F ⊆ R must hold, and
thus R ′′ ⊆ R), which by (SIP) means R ′′ <D R. This is a contradiction, and
proves (i). Item (ii) holds as R ∩ (D \ C∗) = F for each R ∈ rep(A).

The proposition above allows us to exploit Theorem 4.4 in a constructive
way for many significant classes of constraints, for which it implies a bijection
between the repairs of a database D, and the repairs of the affected part A =
D ∩ C∗.

COROLLARY 4.8. Let D be a database for χ = 〈�, �〉 where � ⊆ Ci , for
i ∈ {1, 2}. Then, C∗ is a repair envelope for D. In fact, there exists a bijec-
tion μ : rep(D) → rep(D ∩ C∗), such that for every R ∈ rep(D), R = μ(R)∪
(D \ C∗).

By this result, the repairs of a database D can be computed by avoiding Step 3
of the procedure given in Section 4.1. Note also that by the above corollary and
Proposition 4.1 and Corollary 4.5, we can make C∗ a repair envelope for an ar-
bitrary relational schema χ = 〈�, �〉, if we can modify � to constraints �′ from
C1 or C2 while preserving the affected constraints, that is, �a

χ (D) = �a
〈�,�′〉(D).

Technically, this can be exploited in different ways, for example, by dropping
constraints, adding ground instances of constraints, rewriting constraints by
modifying the built-in part (in fact, only semantic equivalence of affected ground
constraints is needed), etc.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:18 • T. Eiter et al.

We also remark that C∗ may be decreased to a smaller repair envelope, by
taking tuple generating constraints into account. For example, if p(a) belongs to
each repair (e.g., enforced by a constraint), p(a) can be removed from the repair
envelope. If there is another constraint p(x) ⊃ q(x), also q(a) can be removed.
Exploring this is left for further study.

4.2.2 Constraints C0. Recall that constraints in C0 have only built-in rela-
tions in the head. Notably, the repairs of a database with integrity constraints
from this class are computable by focusing on the immediate conflicts in the
database, without the need of computing the conflict closure set, which may be
onerous in general. Furthermore, repairs always do only remove tuples from
relations, but never include new tuples. We will next formally prove these prop-
erties, starting with the following proposition.

PROPOSITION 4.9. Let D be a database for χ = 〈�, �〉, � ⊆ C0, and let A= D∩
C∗. Then,

(1) C ⊆ D;
(2) for each R ∈ rep(A), (i) R ⊆ A, (ii) �(R, A) ⊆ C, (iii) A\C ⊆ R, and (iv) R∩C ∈

rep(C);
(3) for each R ∈ rep(C), R ∪ (A \ C) ∈ rep(A).

Note that Proposition 4.9 shows that each repair of the conflict set C just
removes tuples from C (take D = C in Item 2.(ii)). Furthermore, because C ⊆
D, we can compute C efficiently by suitable SQL statements which express
constraint violations. We are now ready to prove that under C0 constraints,
we can use C instead of C∗ as a repair envelope, and thus avoid the onerous
construction of C∗. In fact, we prove a more general result.

THEOREM 4.10. Let D be a database for χ = 〈�, �〉 where � ⊆ C0. Then,
every set of facts E ⊇ C is a repair envelope for D. Moreover, there exists a
bijection ν : rep(D) → rep(D∩ E), such that for each R ∈ rep(D), R = ν(R)∪(D\
E).

PROOF. By Corollary 4.8, there is a bijection μ : rep(D) → rep(A), where
A = D ∩ C∗, such that the repairs of D are given by μ(R) ∪ (D \ C∗), for all
R ∈ rep(A). Items 1 and 2.(iv) of Proposition 4.9 and the fact that each repair R
of C satisfies R ⊆ C, imply that all repairs of A are given by (A \ C) ∪ R, where
R ∈ rep(C). Hence, the mapping ν : rep(D) → rep(C) given by ν(R) = μ(R) ∩ C
is a bijection such that

R = μ(R) ∪ (D \ C∗)

= ν(R) ∪ (A \ C) ∪ (D \ C∗)

= ν(R) ∪ ((D ∩ C∗) \ C) ∪ (D \ C∗) = ν(R) ∪ (D \ C)

This proves the result for E = C. For general E ⊇ C, we note that D′ = D ∩ E
and D have the same conflict set; hence, there exists a bijection ν ′ : rep(D∩E) →
rep(C) such that R = ν ′(R) ∪ (D′ \ C), for each R ∈ rep(D′). This implies a
bijection ν ′′ : rep(D) → rep(D ∩ E) of the given form.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:19

Consequently, in this setting we can compute the repairs of a database D as
follows:

1. compute C,

2. compute the repairs R of C (where R ⊆ C ⊆ D), and

3. take for each such repair R the union with D \ C.

An example of application of the above procedure has been given in
Example 4.1. The fact that every E ⊇ C is a repair envelope gives convenient
flexibility to modify the SQL statements for computing C (i.e., one may sensibly
simplify conditions in the SQL statements such that they are easier to evaluate
but might infer more tuples).

5. QUERY ANSWERING THROUGH LOCALIZED REPAIRS

The localization properties discussed in the previous section may be used to
optimize consistent query answering from an inconsistent database D. Indeed,
based on them, one may conceive an optimization procedure consisting of the
following three steps:

Focusing Step. Localize inconsistency in D, and single out facts that are
affected by repair, and facts that are not, that is, compute the (weak) repair
envelope E and the affected database D ∩ E and the safe database D \ E.

Decomposition Step. Compute repairs of the affected database, and obtain
from them repairs of D (by suitably incorporating the safe database).

Recombination Step. Recombine the repairs of D for computing the consistent
query answers, i.e., evaluate the query over local repairs augmented with the
safe database and compose consistent query answers from these query results.

In situations in which the size of the affected database is much smaller than
the size of the database D, computing the repairs of the affected database is
significantly faster than the naive computation, which just aims at changing
tuples “randomly” in the database, and does not in general rely on a focus-
ing strategy. Moreover, localizing the inconsistency can be carried out easily
by evaluating the constraints issued over the schema (by means of suitable
SQL statements). Focusing and decomposition have been amply discussed in
Section 4. In this section, we address the issue of efficient recombination, by
illustrating three (increasingly elaborate) approaches for its implementation:

—A basic methodology for evaluating the query over local repairs augmented
with the safe database is discussed in Section 5.1. This methodology linearly
scales w.r.t. the number of repairs, but possibly exponentially w.r.t. the size
of the affected database. Yet, it can be applied to arbitrary queries and con-
straints.

—A more elaborate approach is then discussed in Section 5.2, based on the
concept of repair factorization. Roughly, it aims at decomposing a repair en-
velope into disjoint components such that the repairs of D can be efficiently
obtained from their repairs. Note that here two aspects are crucial:
(i) The ability to identify such components. We propose sufficient condi-

tions for factorization, based on which components can be identified in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:20 • T. Eiter et al.

polynomial time for practical relevant classes of constraints (e.g., C0

and C1).
(ii) The ability to combine the component repairs. We define in Section 5.2.1

two kinds of relevant components: singular components, which though
inconsistent can be repaired in one particular rather than in all the possi-
ble ways to compute consistent answers to a certain query Q ; and decom-
posable components, whose repairs can be processed in an independent
(parallel) manner. When all the components of a factorization fall in one
of these two categories (which can be efficiently checked by analyzing
both Q and D), consistent query answering is polynomial.

—Eventually, in Section 5.2.2 we show how to combine repair factorization with
other techniques. In particular, we present a query grounding strategy which
reduces a general query to a set of ground queries with the effect that more
components can become singular while decomposability of components is
unaffected. We thus enlarge the class of queries for which consistent answers
are computable in polynomial time, and in fact single out a purely syntactic
condition for tractability.

Towards the combined application of these techniques, we may want to im-
plement recombination via the repair factorization approach for constraints in
C0 or C1, for instance. If some nonsingular component emerges, then we may
exploit the query grounding strategy, provided that all other components are
decomposable. If some component remains neither singular nor decomposable,
then we eventually have to resort to the basic method.

5.1 Recombination Step

Let us now consider the problem of evaluating a query Q issued over an incon-
sistent database D for χ , i.e., to compute ansc(Q , D). Recall that according to
the definition in Section 2, a tuple �t belongs to ansc(Q , D) if �t is in the evalua-
tion of Q over every repair of D, i.e., ansc(Q , D) = {�t | �t ∈ Q[R] for each R ∈
rep(D)} = ⋂

R∈rep(D) Q[R]. The following proposition, which is immediate from
the definitions, states how we can exploit repair envelopes for localization in
query answering.

PROPOSITION 5.1. Let D be a database for χ = 〈�, �〉, and let Q be a
nonrecursive Datalog¬ query. Let E be a set of facts, and let A = D ∩ E and
S = D \ E. Then

ansc(Q , D) =
⋂

R∈rep(A)

Q[ε(R) ∪ S], (6)

where (i) ε(R) = R if E is a repair envelope for D, and (ii) ε(R) = R ∩ E if E is
a weak repair envelope for D.

By the results from above, we can always apply (ii) of (6) with E = C∗, and for
C1 or C2 constraints apply always (i) of (6) with E = C∗. Furthermore, for C0,
we can apply always (i) of (6) with E = C. Since in this case C ⊆ D, we can
rewrite (6) to ansc(Q , D) = ⋂

R∈rep(C) Q[R ∪ S].

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:21

In the light of the equations above, query answering can be carried out by
“locally” repairing the affected database, and evaluating the query over each lo-
cal repair augmented with the safe portion of the data. While this approach has
the advantage of localizing the inefficient repair computation (repair checking is
already co-NP-hard, cf. Chomicki [2007] and references therein) on a fragment
A of the database D, its implementation leads to an algorithm for consistent
query answering which linearly scales w.r.t. the number of repairs, but possibly
exponentially w.r.t. the size of the affected database. Indeed, such an algorithm
computes consistent answers to the query by one evaluation of the query per
repair, but in general the number of repairs may be exponential in the num-
ber of constraint violations, respectively in the size of the affected database.
Actually, this is the best one may asymptotically expect to achieve for gen-
eral inconsistent databases and universal constraints, unless P = NP, given
that consistent query answering is �P

2 -hard in such a setting for nonrecursive
Datalog¬ queries (cf. Chomicki [2007] and references therein).

Hence, it is particularly relevant to assess whether some smarter strategies
can be conceived for special settings, in order to have an algorithm that both
implements localized repair computation and linearly scales w.r.t. the size of the
database. More precisely, the aim is at localization strategies that, for the re-
combination step, exploit situations where the number of repairs which need to
be considered for consistent query answering is linear in the size of the affected
database. In the next subsection we formally elaborate such a strategy based
on repair factorization, whereas a logic-programming based implementation is
described in Section 6.

5.2 Repair Factorization

In this section, we present a technique that factorizes repairs into independent
components. The basic idea is to partition the affected part A = D ∩ E of the
database D w.r.t. a repair envelope E into disjoint subparts A1, . . . , Am, such
that the repairs of A are obtained by combining the repairs of A1, . . . , Am in all
possible ways. Given a repair envelope E for D and χ , a partitioning E1, . . . , Em
of E is a factorization of E for D and χ , if

rep(D) = {(D \ E) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m}. (7)

Towards sufficient conditions for factorization, we define a repair-compliant
partitioning as follows.

Definition 5.1. Let E be a repair envelope for a database D for a schema
χ = 〈�, �〉. A partitioning E1, . . . , Em of E is repair-compliant, if (1) it is
constraint-bounded, that is, constraint-bounded facts from E belong to the same
component Ei, and (2) for all R ∈ repχ (D ∩ E) and Ri ∈ repχ (D ∩ Ei), 1 ≤ i ≤ m,
R \ E = Ri \ Ei.

Example 5.1. Consider a schema with relations r(A, B) and s(B, C) which
have the keys A and B, respectively. Let D = {r(a1, b1), r(a1, b2), r(a2, b1),
r(a2, b3), r(a3, b1), s(b1, c1), s(b1, c2), s(b3, c3)}. Its conflict set is C = D \ {r(a3, b1),
s(b3, c3)}, which is a repair envelope. Note that the safe part of D is S = {r(a3, b1),
s(b3, c3)}. The partitioning Cr1

= {r(a1, b1), r(a1, b2)}, Cr2
= {r(a2, b1), r(a2, b3)}

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:22 • T. Eiter et al.

and Cs = {s(b1, c1), s(b1, c2)} of C is repair-compliant: It is easily verified that it
is constraint-bounded (constraint-bounded facts are exactly the pairs of facts
in each partition). Moreover for each repair R ∈ rep(D ∩ E) we have R \ E = ∅,
since it consists in dropping one fact of each conflicting pair. Therefore, the
same is true for each partition, i.e., R \ Cr1

= ∅ for R ∈ rep(D ∩ Cr1
), R \ Cr2

= ∅
for R ∈ rep(D ∩ Cr2

), and R \ Cs = ∅ for R ∈ rep(D ∩ Cs).

By means of a repair-compliant partitioning, we can factorize the repair of
A = D ∩ E into the repair of the (mutually disjoint) parts Ai = A∩ Ei = D ∩ Ei
of A, for i = 1, . . . , m. The repairs for each Ai are confined to F ∪ Ei for a fixed
set of facts F , and by the abstract properties (SIP), (DPE), and (DIS) of the
preference ordering, they can be easily combined with the repairs for all other
parts Aj , as shown next.

THEOREM 5.2 (FACTORIZATION). Let D be a database for χ = 〈�, �〉, and let E
be a repair envelope for D. Then, every repair-compliant partitioning E1, . . . , Em
of E is a factorization of E for D and χ .

PROOF. We need to show that rep(D) = {(D \ E) ∪ R1 ∪ · · · ∪ Rm | Ri ∈
rep(D ∩ Ei), 1 ≤ i ≤ m}. Since E is a repair envelope for D and χ , we know that
rep(D) = {(D \ E) ∪ R | R ∈ rep(D ∩ E)}. Hence, it is sufficient to prove that:

(⊆) R ∈ rep(D∩E) implies R = R1∪. . .∪Rm and Ri ∈ rep(D∩Ei) for 1 ≤ i ≤ m;

(⊇) every R ∈ {R1 ∪ . . .∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m} is a repair of D ∩ E.

(⊆) Let R ∈ rep(D∩E). Then, by repair-compliance of E1, . . . Em, R = F ∪RE ,
where F = R \ E and RE ⊆ E. Consider Ri = F ∪ (RE ∩ Ei) for 1 ≤ i ≤ m.
It remains to show that Ri ∈ rep(D ∩ Ei) for 1 ≤ i ≤ m. Towards a contra-
diction first assume that Ri �|= � for some 1 ≤ i ≤ m. Then, there exists
some σ ∈ ground(�) such that Ri �|= σ . Thus, Ri |= body(σ), which implies
R |= body(σ), and Ri �|= head(σ). However, R |= head(σ) must hold since
R |= � by hypothesis. This means that there exists a head atom B(�y) of σ

which is true in R. Since Ri �|= head(σ), none of the built-in predicates of σ is
true and therefore B(�y) is a fact such that B(�y) ∈ E j , j �= i. Since the parti-
tioning is constraint-bounded, it follows that body(σ) ⊆ F and head(σ)∩ Ei = ∅.
Thus no repair of the form F ∪ R ′

Ei
of D∩ Ei such that R ′

Ei
⊆ Ei can exist, a con-

tradiction to the repair compliance of E1, . . . , Em. This proves Ri |= � for every
i = 1, . . . , m.

Consequently, Ri ∈ rep(D ∩ Ei) iff there exists no R ′
i ∈ rep(D ∩ Ei) such that

R ′
i <D∩Ei Ri and R ′

i |= �. Assume such an R ′
i exists. Then R ′

i = F ∪ R ′
Ei

and
thus by (DIS) R ′

Ei
<D∩Ei REi . By (DPE) we would conclude for R ′

E = (R ∩ E1)∪
. . .∪ R ′

Ei
∪ . . .∪ (R ∩ Em), that R ′

E <D∩E RE , which implies R ′ <D∩E R for R ′ =
F ∪ R ′

E . Furthermore, R ′ |= �. (Otherwise there exists some σ ∈ ground(�)
such that R ′ |= body(σ) and R ′ �|= head(σ), while R |= σ . We can conclude that
body(σ) ⊆ R ′

i, and since R ′
i |= � we obtain R ′ |= head(σ), a contradiction).

Together with R ′ <D∩E R, however, this contradicts R ∈ rep(D ∩ E). Hence,
Ri ∈ rep(D ∩ Ei), for 1 ≤ i ≤ m.

(⊇) Let R ∈ {R1 ∪ . . . ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m}. We show that
R ∈ rep(D ∩ E). Towards a contradiction suppose R �|= �, that is, R �|= σ

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:23

for some σ ∈ ground(�). By definition of a repair-compliant partitioning, we
conclude that R = F ∪ (Ri ∩ Ei) . . . ∪ (Rm ∩ Em), where F = Ri \ Ei for any
1 ≤ i ≤ m. Consequently, R |= body(σ) implies Ri |= body(σ) for some 1 ≤ i ≤ m
by constraint-boundedness. However, Ri �|= head(σ) (otherwise R |= head(σ)),
which contradicts Ri ∈ rep(D ∩ Ei). Hence, R |= �.

It remains to show that there is no R ′ ∈ rep(D ∩ E) such that R ′ <D∩E R.
Assume the contrary and let F = R ′ \ E. Then by (DIS) (disjunctive split),
either (i) R ′ ∩ Ei <D∩Ei R ∩ Ei or (ii) R ′ \ Ei <(D∩E)\Ei R \ Ei holds for each
i = 1, . . . , m. Case (i) leads to a contradiction with Ri ∈ rep(D ∩ Ei), however,
since it implies F ∪ (R ′ ∩ Ei) <D∩Ei Ri and F ∪ (R ′ ∩ Ei) |= � (otherwise
R ′ �|= �). So (ii) must hold for every i = 1, . . . , m. As shown by the recursive
argument below, it follows that R ′ \ E <(D∩E)\E R \ E, which however, by
repair-compliance of E1, . . . , Em, is equivalent to F <∅ F , a contradiction. To
see this, note that we can apply (DIS) to R ′ \ Ei <(D∩E)\Ei R \ Ei w.r.t. E j
for any 1 ≤ j �= i ≤ m, and arrive in a similar situation as above: either (i′)
(R ′ \ Ei) ∩ E j <((D∩E)\Ei)∩E j (R \ Ei) ∩ E j = R ′ ∩ E j <D∩E j R ∩ E j , or (ii′)
(R ′ \ Ei) \ E j <((D∩E)\Ei)\E j (R \ Ei) \ E j . Now (i′) leads to a contradiction as
in (i), and therefore (ii′) must hold. Iterating this argument m − 1 times yields
R ′ \ (E1 ∪ . . . ∪ Em) <(D∩E)\(E1∪...∪Em) R \ (E1 ∪ . . . ∪ Em), which is equivalent
R ′ \ E <(D∩E)\E R \ E. This proves R ∈ rep(D ∩ E).

Note that Condition (2) of Definition 5.1 is trivially satisfied for C0 con-
straints. Furthermore, it is immaterial for C1 constraints under the standard
envelope E = C∗.

PROPOSITION 5.3. Let D be a database for χ = 〈�, �〉, and let E be a repair
envelope for D. If either (1) � ⊆ C1 and E = C∗ or (2) � ⊆ C0, then every
constraint-bounded partitioning E1, . . . , Em of E is repair-compliant.

Thus, for the practically important classes of constraints C1 and C0,
repair-compliant partitionings, and thus factorizations, can be obtained by a
constraint-bounded partitioning of C∗, respectively by a constraint-bounded
partitioning of any repair envelope. Consequently, for C0 and the canonical
envelope E = C, Equation (7) can be rewritten to:

rep(D) = {(D \ C) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(Ci), 1 ≤ i ≤ m}, (8)

where C1, . . . , Cm is a constraint-bounded partition of C.

Example 5.2. Let χ consist of the relation p(x, y , z) and the functional de-
pendency f : p(x, y , z)∧ p(x, y ′, z ′) ⊃ z = z ′ (which is of class C0), and consider
the database D = {p(ai, bj , ck) | 1 ≤ i ≤ m ∧ 1 ≤ j , k ≤ �}. The conflict set C
consists of all tuples in D, since each pair of facts of the form p(ai, bj , ck) and
p(ai, bj ′ , ck′) with k �= k′ witnesses a violation of f . The partitioning C1, . . . , Cm
of C, where Ci = {p(ai, bj , ck) ∈ C}, 1 ≤ i ≤ m, is constraint-bounded and thus,
by Proposition 5.3, repair-compliant, and by Theorem 5.2, a factorization. Ev-
ery Ci has � repairs, while D has �m repairs in total. In particular, the repairs
of D are of the form R1 ∪ · · · ∪ Rm, where each Ri is a repair for Ci, according
to Equation (8).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:24 • T. Eiter et al.

We finally remark that under particular preference relations, Condition (2)
for repair-compliance (see Definition 5.1) might be relaxed. For instance, in case
of the prototypical preorder ≤D, that is, set inclusion w.r.t. symmetric difference,
it is sufficient that the repairs of D ∩ Ei coincide outside Ei on a fixed part: for
all 1 ≤ i, j ≤ m, Ri ∈ rep(D ∩ Ei) and R j ∈ rep(D ∩ E j) implies Ri \ Ei =
R j \ E j .

Furthermore, we note that we can compute efficiently repair-compliant par-
titionings of arbitrary repair envelopes for C0 constraints and of the standard
envelope E = C∗ for C1 constraints, for instance, using techniques for comput-
ing the connected components of a graph. Note that each Ei is a union of con-
nected components of the graph with nodes in E and edges between each pair of
constraint-bounded facts. In this respect, point out that techniques exploiting
different graph (and hypergraph) representations of conflicts in data have been
introduced and used in Arenas et al. [2001] and Chomicki and Marcinkowski
[2005].

5.2.1 Recombination of Independent Factors. We are now in the position to
show how the notion of factorization can be used to optimize query answering
from inconsistent databases. To this end, we proceed in two directions:

—First, for a user query Q , we investigate when some of the components of a
factorization E1, . . . , Em do not entail repairs in all possible ways to answer
Q . Intuitively, this happens when a single repair of the affected part D ∩ Ei
is sufficient for answering Q .

—Second, we investigate how to improve the naive usage of Equation (7), by
discussing scenarios where consistent answers to Q can be obtained by inde-
pendently processing the different components, rather than combining their
repairs in all possible ways.

We focus here on nonrecursive Datalog queries Q = 〈q, P〉. Since they can
be effectively unfolded to a union of conjunctive queries with a single head
predicate q, we assume that queries are already in this form, i.e., P = {ρ1,
. . . , ρn}, where head(ρ j) = q(�t j). We denote by n(Q) the number of conjunctive
queries, i.e., rules in P and by v(Q) the maximal number of variables appearing
in any ρ j .

In order to understand whether for the component Ei not all repairs are
needed, we consider a rewriting of Q w.r.t. Ei. It aims at determining whether
a particular repair for Ei is sufficient to answer Q . Roughly, for each ρ j in
P a test rule ρi, j is created, which for each repair R for Ei yields a cautious
overestimate of the result of ρ j over the safe database plus R; the overesti-
mates for all ρ j are then collected into an overestimate of the result of Q .
If over all repairs R for Ei a single minimal overestimate exists, then we
can simply use the corresponding R in computing the consistent answer of Q
w.r.t. D.

To define ρi, j , we introduce three subsets of body(ρ j): a set β in
i, j of atoms that

may change value in different repairs, a set βout
i, j of non-built-in atoms unaffected

by all repairs, and a set βbin
i, j of built-in atoms that are connected to atoms in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:25

these two sets. In detail,

β in
i, j = {p(�x) ∈ body(ρ j) | ∃θ : p(�xθ) ∈ Ei},

βout
i, j = {p(�x) ∈ body(ρ j) | ∀θ : p(�xθ) /∈ E},

βbin
i, j = {φ(�x) ∈ body(ρ j) | ∀x ∈ �x∃p(�x ′) ∈ β in

i, j ∪ βout
i, j ∧ x ∈ �x ′},

where θ ranges over ground substitutions, p ∈ � (i.e., non-built-in), and φ

denotes a built-in predicate; note that βout
i, j = βout

i′, j for all Ei and Ei′ . In words,

for each ρ j in P, β in
i, j are the body atoms in ρ j that match with some fact in

Ei; βout
i, j are the body atoms of ρ j that cannot be matched with any fact in the

envelope E via ground variable substitution; and βbin
i, j are the built-in (body)

atoms in ρ j which join some atom in βout
i, j or β in

i, j .
2

Example 5.3. Consider a schema χ with a ternary relation r1, two binary
relations r2 and r3, and a unary relation r4, where the first argument for each
relation is the key. Assume also that relations r1 and r2 are disjoint, i.e., it
holds that r2(x, y) ∧ r3(x, y ′) ⊃ y �= y ′. Let D = {r1(a, b, c), r1(a, b, d), r2(c, b),
r3(c, b), r4(b)}. Its conflict set is C = D \ {r4(b)}, which is a repair envelope.
The partitioning E1 = {r1(a, b, c), r1(a, b, d)}, E2 = {r2(c, b), r3(c, b)} of C is
repair-compliant (it is indeed constraint-bounded), and therefore is a factoriza-
tion of E for D and χ . Consider the query Q = 〈q, P〉, where P = { q(x) ←
r1(x, y , z), r2(w, y), q(x) ← r1(x, y , z), r3(w, y), r4(y) }, i.e., such that n(Q) = 2
and v(Q) = 4. Then, we easily obtain β in

1,1 = β in
1,2 = {r1(x, y , z)}, β in

2,1 = {r2(w, y)},
βin

2,2 = {r3(w, y)}, βout
1,1 = βout

2,1 = ∅, βout
1,2 = βout

2,2 = {r4(y)}, βbin
1,1 = βbin

1,2 = βbin
2,1 = βbin

2,2 =
∅.

Armed with the above notions, we now define the rewriting Qi of Q w.r.t.
Ei. The body of the test rule ρi, j consists simply of all atoms in β in

i, j , βout
i, j , and

βbin
i, j . Its head contains all head variables of ρ j that occur in β in

i, j , plus further

join variables from atoms in βin
i, j to atoms in the body of ρ j outside β in

i, j ∪ βout
i, j ;

intuitively, the join variables provide additional context information. The head
of ρi, j also contains an identifier d j that marks the contribution of ρi, j to the
result of Qi; finally, since technically each head ρi, j must have the same predi-
cate, but the resulting lists of head variables for ρi, j may have different lengths,
we pad all lists to the same length using d j . In detail,

Definition 5.2. Let E1, . . . , Em be a factorization of a repair envelope E for
a database D, let Q be a nonrecursive (unfolded) Datalog query as above, and
let d1, . . . , dn(Q) /∈U be fresh constants. We define Qi, the rewriting of Q w.r.t. Ei,
as follows:

Qi = 〈qi, Pi〉, Pi = {ρi, j | 1 ≤ j ≤ n(Q)},
where

(1) head(ρi, j) = qi(d j , �ui, j , �vi, j , �d j) and body(ρi, j) = β in
i, j ∪ βout

i, j ∪ βbin
i, j (=: βi, j);

(2) the arity of qi is v(Q) + 1;

2Note that we consider safe queries. We could keep all built-in predicates if we allowed for unsafe

rules or if we added respective domain predicates, ranging over the active domain, to make the

rule safe.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:26 • T. Eiter et al.

(3) �ui, j are the variables from �t j (in any order), that is, the variables in
head(ρ j) = q(�t j), which occur in some p(�x) ∈ β in

i, j ;

(4) �vi, j are the variables (in any order) not occurring in �ui, j but in some p(�x) ∈
βin

i, j and some p′(�y) ∈ body(ρ j)\β in
i, j , unless p′(�y) ∈ βout

i, j or p′ is built-in, and

all variables from �y occur in β in
i, j ;

(5) �d j = d j , . . . , d j is a padding to the arity of qi;

Note that in Condition (2), we use v(Q) + 1 for simplicity (smaller values are
possible). In Condition (4), the join variables from β in

i, j to atoms outside β in
i, j ∪βout

i, j
are collected in �vj ; as an optimization, built-in atoms having all their variables
in β in

i, j can be omitted.

Example 5.4. In the setting of Example 5.3, we have Q1 = 〈q1, {ρ1,1, ρ1,2}〉,
with ρ1,1 = q1(d1, x, y , d1, d1) ← r1(x, y , z), and ρ1,2 = q1(d2, x, y , d2, d2) ←
r1(x, y , z), r4(y), and Q2 = 〈q2, {ρ2,1, ρ2,2}〉, with ρ2,1 = q2(d1, y , d1, d1, d1) ←
r2(w, y), and ρ2,2 = q2(d2, y , d2, d2, d2) ← r3(w, y), r4(y).

Example 5.5. Continuing Example 5.1, the partitioning Cr1
, Cr2

, Cs of C
is repair-compliant, and thus by Theorem 5.2 a factorization. The query
Q = 〈q, {q(x) ← r(x, y), s(y , z).}〉 has n(Q) = 1 and v(Q) = 3. For Cr1

and
Cr2

, we obtain β in
r1,1 = β in

r2,1 = {r(x, y)}, and for Cs, β in
s,1 = {s(y , z)}. Further-

more, βout
r1,1 = βout

r2,1 = βout
s,1 = ∅ and βbin

r1,1 = βbin
r2,1 = βbin

s,1 = ∅. We thus have Qr1
=

〈qr1
, {qr1

(d1, x, y , d1) ← r(x, y)}〉 and Qr2
= 〈qr2

, {qr2
(d1, x, y , d1) ← r(x, y)}〉,

while Qs = 〈qs, {qs(d1, y , d1, d1) ← s(y , z)}〉.
Recall that the rewriting Qi should allow to identify components for which a
single repair is sufficient to evaluate the original query Q . As we show now,
this is the case if considering all possible repairs R for a component, Qi has a
single minimal (w.r.t. set inclusion) result over the safe database plus R. We
call such components singular.

Definition 5.3. Let E1 . . . , Em ⊆ E be a factorization of a repair envelope
E for a database D. Let Q be a nonrecursive (unfolded) Datalog query, and
let Qi = 〈qi, Pi〉 be a rewriting of Q w.r.t. Ei, 1 ≤ i ≤ m. Denote by amin(Qi)
the set of the evaluations Qi[(D \ E) ∪ R], where R ∈ rep(D ∩ Ei), which are
minimal w.r.t. set inclusion. We then call Ei singular, if R \ Ei = R ′ \ Ei for all
R, R ′ ∈ rep(D ∩ Ei) and |amin(Qi)| = 1.

Example 5.6. For the setting of Example 5.4, we have D \ E = {r4(b)},
and rep(D ∩ E1) = {R1, R2}, with R1 = {r1(a, b, c)}, and R2 = {r1(a, b, d)},
rep(D ∩ E2) = {R3, R4}, with R3 = {r2(c, b)} and R4 = {r3(c, b)}. It is easy to see
that Q1[D \ E ∪ R1] = Q1[D \ E ∪ R2] = {(d1, a, b, d1, d1), (d2, a, b, d2, d2)}, and
therefore |amin(Q1)| = 1, i.e., E1 is singular. Furthermore, Q2[D \ E ∪ R3] =
{(d1, b, d1, d1, d1)}, Q2[D \ E ∪ R4] = {(d2, b, d2, d2, d2)}. Hence |amin(Q1)| �= 1,
i.e., E2 is not singular.

Example 5.7. In our Example 5.5, D ∩ Cr1
has the two repairs

{r(a1, b1)} and {r(a1, b2)}, and amin(Qr1
) = {{(d1, a1, b1, d1), (d1, a3, b1, d1)},

{(d1, a1, b2, d1), (d1, a3, b1, d1)}}. Similarly, D ∩ Cr2
has two repairs,

{r(a2, b1)} and {r(a2, b3)}, and amin(Qr2
) = {{(d1, a2, b1, d1), (d1, a3, b1, d1)},

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:27

{(d1, a2, b3, d1), (d1, a3, b1, d1)}}. Finally, D ∩ Cs has the two repairs {s(b1, c1)}
and {s(b1, c2)}, but amin(Qs) is the singleton {{(d1, b1, d1, d1), (d1, b3, d1, d1)}},
i.e., Cs is a singular component.

For a singular component Ei it is sufficient to consider a repair R that yields
the minimal evaluation w.r.t. Qi, that is, such that Qi[(D \ E)∪ R] ∈ amin(Qi).
Hence, we can pick one such repair for each singular component and add it
to the safe database, obtaining a set of facts that has not to be altered and
can safely be combined with repairs of other components without altering the
consistent answers of Q . We call such a set a query-safe part.

Definition 5.4. Let E1, . . . , Em be a factorization of a repair envelope E
for a database D, where E1, . . . , E� are singular components, and let Q be a
nonrecursive Datalog query. We call SQ = (D \ E) ∪ R1 ∪ · · · ∪ R� a query-safe
part of D w.r.t. Q , if each Ri, 1 ≤ i ≤ �, is an arbitrary repair of D ∩ Ei, such that
Qi[(D \ E) ∪ Ri] ∈ amin(Qi).

In Example 5.6, E1 is the only singular component, and R1 = {r1(a, b, c)}
is one such repair of D ∩ E1. Hence, SQ = {r1(a, b, c), r4(b)} is a query-safe
part of D. Similarly in Example 5.7, Cs is a singular component, and SQ =
{r(a3, b1), s(b3, c3), s(b1, c2)} is a query-safe part. We then have the following
result.

PROPOSITION 5.4. Let E1, . . . , Em be a factorization of a repair envelope E
for a database D, let Q be a nonrecursive Datalog query, and let SQ = (D \ E) ∪
R1 ∪ · · · ∪ R� be a query-safe part of D w.r.t. Q. Then,

ansc(Q , D) =
⋂

R�+1∈rep(D∩E�+1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[SQ ∪ R�+1 · · · ∪ Rm]. (9)

If all components Ei are singular (� = m), query answering can be carried
out by considering an arbitrary query-safe part of D. In this ideal case, the cost
for query answering amounts to checking for all 1 ≤ i ≤ m that |amin(Qi)| = 1
and that R \ Ei = R ′ \ Ei for all R, R ′ ∈ rep(D ∩ Ei) (recall that this is trivial for
C0 constraints and the standard envelope C∗ in case of C1 constraints) as well
as eventually computing Q[SQ]. Note that checking for singular components
Ei and determining a repair Ri, such that Qi[(D \ E) ∪ Ri] ∈ amin(Qi), can
be carried out by processing the components independently of each other and
is polynomial if the local repairs can be computed in polynomial time. For each
component Ei, the effort generally depends on the number of its repairs.

Moreover, irrelevant components can be easily detected by syntactic checks:
If β in

i, j = ∅ for 1 ≤ j ≤ v(Q), then trivially |amin(Qi)| = 1. In this case, if
R ⊆ (D \ E) ∪ Ei for all R ∈ rep(D ∩ Ei), we can even tolerate inconsistency,
that is, we do not need to repair the component for consistent query answering
and can skip it in the query-safe part SQ .

Example 5.8. Concluding Example 5.6, we apply Equation (9) as follows:

ansc(Q , D) =
⋂

R∈rep(D∩E2)

Q[SQ ∪ R] =
⋂

R∈{ {r2(c,b)}, {r3(c,b)} }
Q[{r1(a, b, c), r4(b)} ∪ R],

and we get ansc(Q , D) = {(b)}; this is the correct result. We can proceed anal-
ogously also for Example 5.7, where there are two nonsingular components.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:28 • T. Eiter et al.

However, we will show below that in this case a further optimization is
possible.

Even if nonsingular components are present, it may be possible to “paral-
lelize” consistent query answering without a need for recombination. A simple
case is if there is just a single atom in the body of the query such that for a set of
components this is the only atom that unifies with facts from these components.
Then, the query can be independently evaluated over these components since
there is no “interference” between the components w.r.t. the query evaluation,
like a join in the query that unifies with facts belonging to different components
in this set. We call such a set of components decomposable.

Definition 5.5. Let E1, . . . , Em be a factorization of a repair envelope E for
D. A set of components E1, . . . , E� is decomposable w.r.t. query Q , if they satisfy:

(1) β in
i,k = β in

j ,k , for every 1 ≤ i, j ≤ � and 1 ≤ k ≤ n(Q);

(2) |β in
i,k| = 1, for every 1 ≤ i ≤ � and 1 ≤ k ≤ n(Q);

(3) Ri \ Ei = R j \ E j , for every Ri ∈ rep(D ∩ Ei), R j ∈ rep(D ∩ E j), 1 ≤ i, j
≤ �.

Query answering over decomposable components can be parallelized, and
can be combined with singular components as follows.

THEOREM 5.5. Let E1, . . . , Em be a factorization of a repair envelope E for a
database D, and let Q be a nonrecursive Datalog query. Suppose that E1, . . . , E�

are singular components, with query safe part SQ , and that E�+1, . . . Ek is a set
of decomposable components w.r.t. query Q. Then

ansc(Q , D) =
⋂

Rk+1∈rep(D∩Ek+1)

· · ·
⋂

Rm∈rep(D∩Em)

k⋃
i=� + 1

(⋂
Ri∈rep(D∩Ei)

Q[SQ ∪ Ri ∪ Rk+1 ∪ · · · ∪ Rm]

)
. (10)

PROOF. We first show that

Q[X ∪ R�+1 ∪ · · · ∪ Rk] = ⋃k
i=�+1 Q[X ∪ Ri], (11)

for every R j ∈ rep(D ∩ E j), � < j ≤ k, and for every set of facts X . We have
Q = 〈q, P〉, where P = {ρ1, . . . , ρn} is a set of “not”-free rules ρ j . Consider any
ground instance ρ ′

j of ρ j , and an atom p(t̄) occurring in the body of ρ ′
j that is

satisfied by X ∪ R�+1 ∪ · · · ∪ Rk . Then either p(t̄) ∈ X or p(t̄) ∈ Rh, for some
� < h ≤ k. Furthermore, since E�+1, . . . , Ek are decomposable w.r.t. Q , in the
case where p(t̄) ∈ Rh \ (X ∪ ⋂k

i=�+1 Ri), there is no atom p′(t̄ ′) in the body of ρ ′
j

which belongs to Rh′ \ Rh, for some � < h′ �= h ≤ k. Indeed, by Condition (3),
R ′

h \ Rh = Rh′ ∩ Eh′ , and thus p′(t̄ ′) ∈ Eh′ would hold, while p(t̄) ∈ Eh holds.
Conditions (1) and (2) would imply that p(t̄) and p′(t̄ ′) are instances of the same
atom in the body of ρ j , and thus p(t̄) = p′(t̄ ′). This contradicts Eh ∩ Eh′ = ∅.

As a consequence, the body of ρ ′
j is satisfied by X ∪ R�+1 · · · ∪ Rk iff it is

satisfied by X ∪ Rh, for some � + 1 ≤ h ≤ k. Since ρ j is nondisjunctive and

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:29

“not”-free, it follows that Q (j)[X ∪ R�+1 · · · ∪ Rk] = ⋃k
i=�+1 Q (j)[X ∪ Ri], where

Q (j) = 〈q, {ρ j }〉, and that

Q[X ∪ R�+1 · · · ∪ Rk] =
n⋃

j=1

Q (j)[X ∪ R�+1 · · · ∪ Rk] =
n⋃

j=1

k⋃
i=�+1

Q (j)[X ∪ Ri]

=
k⋃

i=�+1

n⋃
j=1

Q (j)[X ∪ Ri] = Q[X ∪ R�+1] ∪ · · · ∪ Q[X ∪ Rk].

This proves (11). To conclude the proof, by Proposition 5.4 and setting X =
SQ ∪ Rk+1 ∪ · · · ∪ Rm the consistent answers to Q w.r.t. D are:

ansc(Q , D) =
⋂

R�+1∈rep(D∩E�+1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[SQ ∪ R�+1 · · · ∪ Rm]

By Equation (11), we then get:

ansc(Q , D) =
⋂

R�+1∈rep(D∩E�+1)

· · ·
⋂

Rm∈rep(D∩Em)

(
Q[X ∪ R�+1] ∪ · · · ∪ Q[X ∪ Rk]

)
,

from which the result follows by Boolean algebra (recall that for any sets A,
B1, . . . , Bk , it holds that

⋂
B∈{B1,...,Bk}(A ∪ B) = A ∪ ⋂

B∈{B1,...,Bk} B).

By this result, we can take any (but not necessarily all) singular components,
any decomposable components, and parallelize query answering. As mentioned
above, singular components can always be identified efficiently given their local
repairs. Furthermore, also a maximal set of decomposable components can be
identified efficiently given the local repairs. In fact, all maximal such sets—
which are pairwise disjoint—can be determined efficiently (note that the rela-
tion Ei1 ≡Q Ei2 iff the set Ei1 , Ei2 is decomposable w.r.t. Q , is an equivalence
relation). In particular, if the factorization stems from a repair-compliant par-
titioning, then Condition (3) is always fulfilled, and the effort depends only on
the check for (1) and (2). Roughly, in total the computational effort by exploiting
singular and decomposable components reduces from the global combination
of all local repairs of the components to taking the union of the results of local
consistent query answering.

Example 5.9. In Example 5.7, Cr1
and Cr2

are nonsingular components.
Since n(Q) = 1 and for both, Cr1

and Cr2
, we have β in

ri ,1
= {r(x, y)}, 1 ≤ i ≤ 2,

the set {Cr1
, Cr2

} is decomposable w.r.t. Q . By Theorem 5.5, the query Q =
〈q, {q(x) ← r(x, y), s(y , z).}〉 can be evaluated independently over Cr1

and Cr2
,

taking, e.g., the query-safe part SQ = {r(a3, b1), s(b3, c3), s(b1, c2)}, into account.
Specifically, for Cr1

, we must compute Q[SQ ∪ {r(a1, b1)}] ∩ Q[SQ ∪ {r(a1, b2)}],
which yields {(a3)}. For Cr2

, we must compute Q[SQ ∪ {r(a2, b1)}] ∩ Q[SQ ∪
{r(a2, b3)}], which yields {(a3), (a2)}. Therefore, ansc(Q , D) = {(a3), (a2)}. As can
be checked, this is the correct result.

Importantly, by virtue of Proposition 5.4 and Theorem 5.5, one can consis-
tently answer queries in polynomial time which do not belong to any class shown
to be tractable in the literature [Chomicki et al. [2004b, 2004a]; Fuxman et al.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:30 • T. Eiter et al.

[2005]; Grieco et al. [2005]]. We exemplify this for the scenario discussed in
the following Example 5.10. The query there contains a nonkey to nonkey join,
that is, a join between nonkey positions, and hence is not in any class shown
to be tractable (see also Section 7). Nonetheless, we will show how to compute
consistent answers for this query in polynomial time. We illustrate this in two
steps: First, we exemplify this by exploiting the techniques from above for re-
stricted inputs; it would not be clear how to do this from previous results either
(which hinge on conditions on the query and the constraints, but are insensi-
tive to the actual data). Second, we combine the factorization techniques with a
simple grounding strategy, which then yields a polynomial evaluation method
for the query over arbitrary inputs. We finally extend this approach to a class
of queries (of slightly different form) for which consistent query answering is
tractable.

Example 5.10. Inspired by a typical information system supporting uni-
versity administration, we consider a schema with the relations student(IDS,
First, Last, Address), prof(IDP, First, Last), and dean(IDD, First, Last), where
IDS, IDP, and IDD are the respective keys. As a further constraint, we have
the inclusion dependency dean(x, y , z) ⊃ prof(x, y , z).

Suppose we want to know the identifiers of professors having their last
name in common with a student. The query Q = 〈q, {q(x2) ← student(x1,
y1, z, w1), prof(x2, y2, z).}〉 extracts them; note that it involves a non-
key to nonkey join. Now let D be a database with the conflict set
C = {student(0815, johann, meier, addr1), student(0815, hans, meier, addr1),
prof(4711, markus, schmidt), prof (4711, mark, schmidt), dean(1111, egbertus,
neumann), prof(1111, egbertus, neumann))}. C is a repair envelope, which can
be readily factorized into three components, two of them containing a pair of
tuples from E with equal key value over prof and student, respectively, and one
containing the remaining facts of C. As easily verified, all these components
are singular. (This would not hold for the canonical repair envelope C∗.)

If D′ is a database yielding the conflict set C′ = {student(0815, johann, meier,
addr1), student(0815, johann, maier, addr1), student(4711, bodo, schmied,
addr2), student(4711, bodo, schmid, addr2)}, and professors called meier,
maier, schmied, and schmid, respectively, exist. Then, obviously E ′ = C′ is a
repair envelope, and we can, for example, again factorize into components con-
taining tuples with equal key values (two this time). In this case the respective
components are not singular, but decomposable.

Hence, we observe that as long as violations are restricted to only one of
the relations student or prof, we end up with singular and decomposable com-
ponents such that Theorem 5.5 remains effective with a single set of decom-
posable components. The same is true for database instances where violations
affect both relations, but where all violations w.r.t. one of the relations end up
in singular components.

We also remark that, as long as violations are restricted to only one of the
relations or all components are singular, computing consistent answers to
the query in Example 5.10 is feasible in polynomial time, even if we had a
further relation staff of the same structure as prof in the schema and the

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:31

query extended to a union of conjunctive queries by adding the rule q(x2) ←
student(x1, y1, z, w1), staff(x2, y2, z). As well, we could add the exclusion depen-
dency dean(x1, y1, z1) ∧ staff(x2, y2, z2) ⊃ x1 �= x2 ∨ y1 �= y2 ∨ z1 �= z2 to the
scenario and still would obtain tractability for consistently answering the query.
Observe that in all these scenarios, in order to obtain a repair envelope, we do
not need to take the entire conflict closure into account. Rather we can restrict
the envelope to constraint bounded facts over tuples of constants occurring in
the conflict set (or simply to the conflict set, as done in Example 5.10). Further-
more, the resulting envelope can trivially be factorized into components with
identical key values.

For arbitrary violations however, conflicts may interfere w.r.t. the query. In
our student and professor example, too many nonsingular and nondecompos-
able components might emerge, such that Theorem 5.5 can not be applied to
establish tractability of the query, even if local repairs are computable in polyno-
mial time. Nevertheless, tractability of this query can be established by means
of a refined factorization strategy, as shown next.

5.2.2 Factorization and Query Grounding. Our basic factorization ap-
proach might be combined with other techniques in order to get further
tractability results. One such technique is to reduce general nonrecursive
queries Q = 〈q, P〉, where q has arity k, to ground (Boolean) queries by means of
unification: for a tuple �c = (c1, . . . , ck) of constants, unify each rule ρ ∈P with q
in the head with q(�c), that is, apply to ρ a substitution θ of constants to ρ’s
head variables such that head(ρθ) = q(�c); if no such θ exists (e.g., for
q(b, X) ← p(X , c) and q(a, b)), simply delete ρ. Denote the resulting query by
Q �c;3 then

ansc(Q , D) = {�c = (c1, . . . , ck) | c1, . . . , ck occur in D or Q , ansc(Q �c, D) �= ∅}.
(12)

That is, we can parallelize query answering for each tuple.
We can view Q �c as a refinement of Q , which is equivalently obtained by

adding equality literals x = ci in the rule bodies in Q . As for consistent query
answering, this does not affect decomposability of components Ei (since this
property does not depend on built-ins), and preserves their singularity, that is,
whenever Ei is singular w.r.t. Q , then Ei is also singular w.r.t. Q �c. Thus, the
number of singular components can only increase, and in benign cases only few
components that are nonsingular nor decomposable remain. In these cases,
we may exploit Equation (12) and Theorem 5.5 to compute consistent query
answers in polynomial time.

In the light of this important observation, we review the scenario in Exam-
ple 5.10.

Example 5.11. Reconsider the schema and Q = 〈q, {q(x2) ← student(x1, y1,
z, w1), prof(x2, y2, z).}〉 in Example 5.10. Assume that we have arbitrary vi-
olations in both the relations student and prof. Consider for the tuple �c = c1

the query Q �c = 〈q, {q(c1) ← student(x1, y1, z, w1), prof(c1, y2, z).}〉. Then, all

3Notice that if n = 0 (i.e., �c is void), ansc(Q , D) �= ∅ means that Q is consistently true, false

otherwise.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:32 • T. Eiter et al.

components in the discussed factorization for prof, except at most one, are sin-
gular w.r.t. Q �c, and all components for student are singular or (jointly) decom-
posable. Indeed, the only component for prof which may not be singular is the
one involving tuples with key c1 (if such a component exists). Using Theorem 5.5,
we can evaluate Q �c in polynomial time w.r.t. the database D. By evaluating Q �c
for each constant c1 occurring in D, we thus can compute the consistent query
answer of Q w.r.t. D as in Equation (12) in polynomial time. Hence, the query
Q is tractable.

This example illustrates that queries of the form of—and in a constraint
setting as in—our student and professor example are polynomial in data
complexity for arbitrary inputs. This will be formally established by Propo-
sition 5.6.

As a further optimization, we note here that it is possible to do even better
than evaluating query Q �c, for each possible tuple �c = (c1, . . . , ck) in the output.
In fact, rather than fixing the output of Q at all positions i to ci, we may fix them
one by one. After each step, we test whether sufficiently many components are
singular w.r.t. the modified query Q ′ (i.e., only few components are neither de-
composable nor singular, which means that Q ′ can be polynomially evaluated);
if not, then we fix the next position. This is repeated until the answer is yes or
no position remains.

The resulting query Q ′ covers all output tuples for Q that have at the respec-
tive positions the values fixed in Q ′. Similarly, we construct a modified query
Q ′′ for a possible tuple �c′ for Q that is not covered by Q ′; by repeating this
process, we will collect a list of queries Q ′, Q ′′, . . . that we can evaluate using
Theorem 5.5, such that the union of all their answers will give us ansc(Q , D).
Noticeably, the singularity tests for the modified queries can be done without
evaluating their rewritings as in Definition 5.2. A detailed study and refinement
of this strategy remains for future work.

We conclude this section by noting that the tractability result in Exam-
ple 5.10 can be generalized, and identify an entire class of queries for which we
can establish that consistent query answering is polynomial in data complexity
without looking at the inconsistencies in the actual database; that is, we single
out a purely “syntactic” condition for tractability.

Let Q1k∃ denote the class of all conjunctive queries Q (without built-in lit-
erals) over schemas that have at most one key constraint per relation, such
that except in at most one atom, key positions are always head variables or
constants in Q . Note that the query in Example 5.10 satisfies this condition.

PROPOSITION 5.6. ForQ1k∃, consistent query answering is polynomial in data
complexity.

Note that Q1k∃ does not fall into any tractable query class in the literature
(cf. Section 7).4 The class may be further generalized, e.g., by allowing between

4A dichotomy result in Fuxman and Miller [2007] would suggest that some queries in this class are

co-NP-complete (e.g., queries with only nonkey to nonkey joins). However, the proof there assumes

that queries have at least one variable in the key positions of each atom, which is not the case for

the considered queries.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:33

relations r and s, where r occurs in the query and s does not, limited exclusion
dependencies and inclusion dependencies of the form r(�x) ⊃ s(�x) or s(�x) ⊃ r(�x)
under further syntactic restrictions.

6. LOGIC PROGRAMMING FOR CONSISTENT QUERY ANSWERING

According to several proposals in the literature, consistent answers from incon-
sistent databases can be computed by encoding the constraints in the schema by
means of a Datalog program using unstratified negation or disjunction, in such
a way that the stable models of this program map to the repairs of the database.
A framework that abstracts from several logic programming formalizations in
the literature (such as Greco et al. [2003]; Arenas et al. [2003]; Barceló and
Bertossi [2003]) is introduced next.5

Definition 5.6. Let Q = 〈q, P〉 be a nonrecursive Datalog¬ query over χ =
〈�, �〉. A logic specification for querying χ with Q is a (safe) Datalog∨,¬ program
�χ (Q) = �� ∪ �Q such that, for a given D ∈ D(χ),

(1) repχ (D) � SM(�� ∪ D), and

(2) ansc(Q , D) = Q ′[D], where Q ′ = 〈q, �χ (Q)〉, that is, ansc(Q , D) = {�t |
q(�t) ∈ M for each M ∈ SM((�� ∪ �Q) ∪ D)}, where �Q is a nonrecursive
safe Datalog¬ program,

and � denotes a polynomial-time computable correspondence between two
sets.

In the above definition, �� is that portion of �χ (Q) that encodes the integrity
constraints in �, whereas �Q represents an encoding of the logic program P in
the user query Q (examples of instantiations of the above logic framework are
given in Appendix E).

Encoding repair computation by means of logic programs has some attractive
features. An important one is that Datalog∨,¬ programs serve as executable log-
ical specifications of repair, and thus provide a language for expressing repair
policies in a fully declarative manner rather than in a procedural way. In fact,
extensions to the Datalog∨,¬ language that allow, for instance, to handle prior-
ities and weight constraints [Leone et al. 2006; Simons et al. 2002], provide a
useful set of constructs for expressing also more involved criteria that repairs
should satisfy, which possibly have to be customized to a particular application
scenario (as in Arenas et al. [2003]).

However, with current (yet still improving) implementations of stable model
engines, such as DLV [Leone et al. 2006] or Smodels [Simons et al. 2002], query
evaluation over large data sets quickly becomes infeasible because of lacking
scalability. The source of complexity in evaluating the program �χ (Q) lies in the

5Other logic formalizations proposed in the data integration setting [Lembo et al. 2002; Bertossi

et al. 2002; Calı̀ et al. 2003b; Bravo and Bertossi 2003] also fit in our framework, provided that

the retrieved global database [Lenzerini 2002] is computed. Notice also that other logic-based ap-

proaches to data integration, based on abductive logic programming [Arieli et al. 2004] and ID-logic

[Nuffelen et al. 2004], do not fit this framework.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:34 • T. Eiter et al.

Fig. 3. System architecture.

conflict resolution module �� . Indeed, while �Q , which is in general a nonre-
cursive Datalog¬ program, can be evaluated in polynomial time with respect to
underlying databases (data complexity) [Dantsin et al. 2001], �� is in general
a Datalog∨,¬ program [Greco et al. 2003], whose evaluation data complexity is
at the second level of the polynomial hierarchy [Dantsin et al. 2001].

6.1 General Architecture for Repair Compilation

The localization properties discussed in Section 4 and Section 5 may be used
to optimize consistent query answering from inconsistent databases. Indeed,
computing the repairs for D may be done in practice by evaluating the program
�� only over the affected part of the database D, rather than on the whole D
as obtained by a straight evaluation of the program �χ (Q) over D (Item 1 in
Definition 6.1). We thus propose an approach to optimize query answering that
implements the strategies in Equation (6) and Equation (10). In practice, we just
need an architecture in which a stable model engine used to retrieve one repair
at a time is interfaced with a DBMS that evaluates the query over the repair
augmented with the safe part of D. Figure 3 shows a concrete architecture,
whose components have the following functionalities:

—Pruner: It takes the user query Q and the schema χ , and produces an equiva-
lent specification (w.r.t. Q), stripping off relations and constraints irrelevant
for answering Q . This is a preprocessing step, which is not discussed in detail
here.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:35

—Logic Translator: It takes the specification of χ relevant for Q returned by
the Pruner, and produces the logic program �χ (Q) = �� ∪ �Q , according to
some encoding proposed in the literature. In our tests, we used the mapping
in Calı̀ et al. [2003b] and Grieco et al. [2005].

—Constraint Violations Isolator: It is responsible of processing the program
�� to produce a set of SQL views isolating the safe and the affected parts of
the database at hand. When strategies in Section 5.2 are to be applied (cf.
Equation (10)), the affected part is in fact provided in terms of a factorization.

—Stable Models Engine: It takes as input the affected database (or, in fact,
each of the components involved in a factorization, when recombination is
going to be implemented via Equation (10)) and computes the repairs using
the program �� . In our implementation, we used the DLV system [Leone
et al. 2006].

—Engine Wrapper: It wraps the output of the Stable Models Engine, by asking
the engine for one repair at time. In our implementation, this is done with
the JAVA Wrapper module available for DLV.6 If the constraints are not in
the class C1, it also has to filter from any repair the facts that are not in the
envelope E—see condition (ii) of Proposition 5.1.

—DB Interface: It does the interfacing between the Stable Models Engine and
the DBMS, in which it stores the repair computed by the Stable Model
Engine—in fact, the safe part is not modified in this process. After a new
repair is stored, it notifies the Query Executor.

—Query Reformulator: It takes the user query and transforms it in a suitable
set of SQL statements that can be executed directly over the DBMS.

—Query Executor: It is responsible for implementing the recombination step.
As discussed in Section 5, based on the query Q and the database D, with
safe part S, it may choose to apply either the repair factorization strategy in
Equation (10), possibly with some further optimizations as the one discussed
in Section 5.2.2, or the basic approach in Equation (6). As for the strategy in
Equation (6), the module stores in the DBMS the result of the execution in a
table. When the first repair of the affected part (intersected with E), say R1,
is processed, the table is initialized with the result of the evaluation of Q over
R1 ∪ S. Then, for each other repair Ri, the table is updated by filtering those
tuples that do not occur in the answer to Q over Ri∪. After the last repair is
computed, the table is returned to the user. A similar strategy is applied for
Equation (10), with the major difference that now the process is repeated for
each component involved in the factorization rather than once for the whole
affected part. Eventually, to recombine the results of the evaluation over
each component (as to implemented Equation (10)), some further temporary
tables are used in the DBMS.

Note that in the case where D is consistent, query processing resorts to
standard query evaluation over the DBMS, with some overhead for checking
constraint violations by the Constraint Violations Isolator. In fact, in this case

6http://www.mat.unical.it/wrapper/index.html

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:36 • T. Eiter et al.

Fig. 4. The database of our running example after marking.

the Query Executor module evaluates the query directly over S = D, since no
repair is produced by the Stable Models Engine.

6.2 Grouped Repair Computation

As discussed above, the Query Executor module implements the recombination
step by executing some SQL statements, for each repair computed by the Stable
Models Engine. As a further optimization we next consider the idea of grouping
these repairs in such a way that a single SQL statement may be evaluated
over more than one repair at time. This can be done using a marking strategy,
and independently on whether recombination is implemented by means of the
basic approach in Section 5.1 or by repair factorization. Indeed, in the former
case, we may think of grouping all the repairs of the affected part, while in the
latter case, for each component Ei involved in the factorization, we may think
of grouping all the repairs of D ∩ Ei (see Equation (10)).

Let R1, . . . , Rn be the repairs which we want to simultaneously process on the
DBMS, indexed using the order in which the Stable Models Engine computes
them. In each relation s, we add an auxiliary attribute mark, leading to a new
relation sm. The values for mark are strings of bits 0, 1. To each fact s(�t) ∈ D,
we associate a mark b =′ b1 . . . b′

n such that, for every 1 ≤ i ≤ n, bi = 1 if
s(�t) belongs to Ri, and bi = 0 otherwise. The marked tuple �t, b is stored in
the corresponding relation sm. The extensions of all sm constitute the marked
database, denoted by Dm. Note that the facts in the safe database can be marked
without preprocessing: their mark is ′11 . . . 1′, since they belong to every repair
Ri. In our running example, the marked database derived from the repairs in
Figure 1 is shown in Figure 4. In a first approximation, the marked database
may be considered as having its tables altered with an extra column which
stores the mark.

A nonrecursive Datalog¬ query Q = 〈q, P〉 is reformulated into an SQL query
over Dm by first normalizing the rules in P and then converting each rule r into
a separate SQL query SQLr . Let r : h(�x0) ← B(�x) be a safe rule of form

p0(�x0) ← p1(�x1), . . . , pl (�xl), not pl+1(�xl+1), . . . , not pl+k(�xl+k), 7 (13)

and let ti, j denote the j -th term in pi(�xi) = pi(ti,1, . . . , ti,ki), where 0 ≤ i ≤ l + k
and 1 ≤ j ≤ ki. Then, we associate with r a normalized rule r ′ obtained from it
as follows:

(1) Replace each ti, j by a new variable yi, j .

(2) if ti, j is a constant c, then add the equality atom yi, j = c to the body;

(3) if ti, j is a variable x, then add the equality atom yi, j = yi′, j ′ to the body,

7For the sake of simplicity and w.l.o.g. we assume that variables occurring in �x0 are all distinct.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:37

where ti′, j ′ is the first occurrence of x in the body of r (from left to right),
except for i = i′ and j = j ′. (Note that safety of r guarantees 0 ≤ i′ ≤ l .)

Informally, SQLr selects tuples for the head predicate of r, thereby respecting
not only the join conditions given by the body of r, but also the marks of the
joined tuples. Marks corresponding to negative literals are inverted and missing
tuples (which belong to no repair) are viewed as marked by ′0 . . . 0′ (see Appendix
D for details).

Eventually, all rules, r1, . . . , r�, defining the same predicate h of arity n are
collected into a view by the SQL statement SQLh:

CREATE VIEW hm(a1, . . . , an, mark) AS

SELECT a1, . . . , an, SUMBIT(mark)

FROM (SQLr1
UNION . . . UNION SQLr�

)

GROUP BY a1, . . . an,

where SUMBIT denotes an aggregate function that, given m marks (i.e., bit
strings), returns the mark given by bitwise OR. By such a view for the query
predicate q, denoted qm, the consistent answers to the query Q are obtained
through the statement SQLQ :

SELECT a1, . . . an FROM qm WHERE mark =′ 1 . . . 1′.

It computes the consistent query answers by selecting the facts that are true
in all repairs.

Example 6.1. The query in our running example has two rules: r1 : q(x) ←
player(x, y , z) and r2 : q(x) ← team(v, w, x). Their normalized versions
are:

r ′
1 : q(y0,1) ← player(y1,1, y1,2, y1,3), y0,1 = y1,1;

r ′
2 : q(y0,1) ← team(y1,1, y1,2, y1,3), y0,1 = y1,3.

Thus, they translate into corresponding SQL statements SQLr1
and SQLr2

:

SELECT playerm.Pcode AS a1,

playerm.mark AS mark,

FROM playerm;

SELECT teamm.Tleader AS a1,

teamm.mark AS mark,

FROM teamm;

Finally, a view for the query predicate q and the final query SQLQ are expressed
as:

CREATE VIEW qm(a1, mark) AS

SELECT a1, SUMBIT(mark)

FROM (SQLr1
UNION SQLr2

)

GROUP BY a1;

SELECT a1FROM qm WHERE mark =′ 11′;

SQLQ yields on Dm the tuples (8), (9), and (10); they are the consistent answers
to Q .

The query SQLQ has the following property (the proof is given in Appendix D).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:38 • T. Eiter et al.

PROPOSITION 6.1. Let D be a database for χ = 〈�, �〉, let Q be a nonrecursive
Datalog¬ query over it, and let R1, ..., Rn be databases such that Ri = R ′

i ∩ E,
where E is a weak repair envelope for D and R ′

i is a repair for A = D ∩ E. Then,
SQLQ computes on Dm the set of tuples

⋂n
i=1{�t | �t ∈ Q[Ri ∪ S]}, for S = D \ E.

Note that when R ′
1, . . . , R ′

n are all repairs for A, then the tuples computed
by SQLQ are the consistent answers to Q w.r.t. D—see, again, Equation (6).

A limitation to the scalability of the marking strategy is that all safe tuples
must be marked with ′11 . . . 1′, since they belong to each repair. However, we
can avoid this and evaluate a reformulated query on a database instance in
which only affected tuples have been marked. In more detail, with each relation
symbol r, we associate two predicate symbols rsafe and raff, which are intended
to store the tuples that occur in the safe and the affected part of r D, respectively.
Also, we construct the database instance A′ by replacing each relation symbol r
in AD with raff, and the database instance S′ by replacing each relation symbol r
in SD with rsafe, i.e., we have that raff

A′ = {�t | r(�t) ∈ A} and rsafe
S′ = {�t | r(�t) ∈ S}.

Then, given a query Q = 〈q, P〉, where P is assumed to be normalized, over a
schema χ = 〈�, �〉, we proceed as follows:

—for each rule r : h(�x0) ← B(�x) of form (13) belonging to P, we replace each
atom pj (�x j) of its positive body, i.e., 1 ≤ j ≤ l , by paff j

(�x j) ∨ psafe j
(�x j);

—we rewrite the resulting rule body into disjunctive normal form B1(�x) ∨ · · · ∨
Bn(�x);

—we replace in Bi(�x) each negative literal not pj (�x j) with a relation pj ∈ � by
the literals not paff j

(�x j), not psafe j
(�x j); let B′

i(�x) be the result;

—we replace r with the rules ri : h(�x0) ← B′
i(�x), for 1 ≤ i ≤ n;

—in the SQL statement SQLri
for ri, we replace every psafe j m

by psafe j
, and

psafe j
.mark by ′1 . . . 1′.

One can show that the SQL reformulation of the query Q as described above,
denoted SQL′

Q , yields over the partially marked database S′ ∪ A′
m the same re-

sult as SQLQ over the fully marked database Dm. That is, for the reformulation

SQL′
Q only the affected tuples have to be marked. Notice that SQL′

Q is expo-
nential in the size of Q (more precisely, in the number of atoms). However, as
commonly agreed in the database community, the overhead in query complexity
usually pays off the advantage gained in data complexity. With this approach,
the additional space depends only on the size of A but not on the size of S. For
example, for 10 constraint violations involving two tuples each, the required
marking space is 2*10*210 bits = 2.5 KB, independently of the size of D. Fur-
thermore, by allotting 5 MB (=2*20*220 bits) marking space, the technique may
scale up to 20 constraint violations, involving two tuples each.

Further optimizations concerning the marking strategy may be carried out,
in particular DBMS dependent techniques can be deployed, but are beyond the
scope of this paper.

Here we conclude by noticing that throughout this section, we have fixed
the length of the markings to coincide with the total number n of repairs of
the affected part. Thus, according to Proposition 6.1, the DBMS can be queried

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:39

just once for recombining the results of the repairs with the safe part and for
getting consistent answers. However, the length n of the marks can be fixed
independently of the actual number of repairs. Indeed, if R1, . . . , Rm are the
repairs of the affected part and if n < m, then applying Proposition 6.1 �m/n�
times (once for each group of n repairs as they are incrementally computed
by the Stable Models Engine) and intersecting the partial results is sufficient.
In the extreme case where n = 1, this approach would amount to standard
evaluation without markings. Section 8 extensively discusses benefits of this
grouping strategy and suggests appropriate values for the length of marking
strings.

7. OTHER APPROACHES TO CONSISTENT QUERY ANSWERING

Efficient computation of consistent answers to queries on inconsistent
databases has received increasing attention recently [Arenas et al. 1999;
Fuxman and Miller 2007; Grieco et al. 2005; Chomicki and Marcinkowski 2005;
Chomicki et al. 2004a]. The quoted works single out settings in which this task
is feasible with polynomial data complexity, by imposing suitable restrictions
on both the form of the constraints in the database schema and on the query
language. Briefly, they differ from our work as follows.

—Other papers, Arenas et al. [1999], Fuxman and Miller [2007], and Grieco
et al. [2005], considered only repairs according to the prototypical repair
ordering ≤D introduced in Arenas et al. [1999]. In contrast, our results cover
a generic range of repair orderings, and may be extended to repair semantics
based on preference orderings violating the properties in Section 3.1; for
example, Chomicki and Marcinkowski [2005] consider repairs in which a
smallest (in terms of inclusion) set of tuples is deleted from the database
but no tuples are added. For such repairs, Proposition 4.2, Lemma 4.3, and
Theorem 4.4 can be established similarly.

—Next, all papers above present methods for consistent query answering that
hinge on the query and the constraints, but not on the actual database.
Arenas et al. [1999]; Fuxman and Miller [2007]; Grieco et al. [2005] em-
ploy first-order query rewriting as the main approach, where the user query
q is rewritten into a new query q′ expressed in first-order logic, such that the
evaluation of q′ over every underlying databases D returns the consistent
answers to q w.r.t. D. Chomicki et al. [2005, 2004a] use a constraint viola-
tion hypergraph to reason efficiently about consistent query answers, which
also works on an arbitrary database D. In contrast, our localization approach
looks at the actual database D and exploits the structure of the data and pos-
sible repairs. In case of benign violations, consistent query answering can be
done efficiently using our approach, also when the first-order rewriting and
the hypergraph approach as presented are not applicable.

—Furthermore, our techniques can handle very general and powerful forms
of integrity constraints and/or queries that do not fall within the settings
studied previously in the literature, which usually make quite limiting as-
sumptions.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:40 • T. Eiter et al.

In the following we briefly comment on the above mentioned papers, start-
ing from those based on first-order rewriting. The first results in this direction
were given by Arenas et al. [Arenas et al. 1999]. The method proposed in that
paper was proved to be sound and complete for queries expressed in quantifier-
free first-order logic without disjunction, in the presence of binary universal
integrity constraints (a limited fragment of our constraint classes C1 and C2).
Celle at al. [2000] proposed an extension of the above technique that applies
to a slightly more general class of (still binary universal) integrity constraints,
and described an implementation of their algorithm. However, the setting con-
sidered in that work is still very restrictive.

More recently, Fuxman and Miller [2007] singled out a class of first-order
rewritable queries, called Cforest, for database schemas containing only key con-
straints (at most one for each relational predicate). Roughly speaking, Cforest
contains conjunctive queries for which joins involving nonkey positions must
satisfy a particular acyclicity condition. Furthermore, the queries must not
contain self-joins, that is, repeated relation symbols, nor nonfull nonkey-to-key
joins, that is, joins between relation symbols r and s that involve a nonkey
position in r and a strict subset of the key positions of s (and vice versa).
The given query rewriting algorithm has been adapted in the ConQuer system
[Fuxman et al. 2005] to deal directly with Select-Project-Join queries expressed
in SQL; moreover, also aggregate expressions were allowed.

Grieco et al. [2005] extended the class Cforest by allowing some forms of non-
full nonkey-to-key joins and also considered additional exclusion dependen-
cies in the database schema. They gave sufficient conditions and algorithms
for consistent query answering via first-order rewriting for this setting. To
ensure rewritability, only limited interaction between the query atoms and
every exclusion dependency between relation symbols r and s is allowed: r
and s cannot both occur in the query; if r or s occurs in the query, then the
dependency must involve subsets of the keys of r and s; other exclusion de-
pendencies between r and q and between s and p, respectively, where p and
q are (not necessarily distinct) relation symbols occurring in the query, are
forbidden.

As mentioned above, the approach of Chomicki et al. [2004a, 2005] to consis-
tent query answering is not based on first-order query rewriting, but constructs
a hypergraph that represents the conflicts in the database, and exploits this con-
flict hypergraph to reason about the consistent query answers by considering
independent sets. The technique enables consistent query answering in poly-
nomial time (in data complexity) for specific combinations of denial constraints
and queries: projection-free queries in relational algebra (each variable is an
output-variable) in presence of arbitrary denial constraints [Chomicki et al.
2004a], and closed simple conjunctive queries (where projections are allowed,
but no joins) in presence of functional dependencies over different relations
[Chomicki and Marcinkowski 2005]. For the latter queries, all components of
the natural factorization of the standard repair envelope w.r.t. any database are
clearly singular. Hence, Proposition 5.4 reestablishes that this class of queries
can be handled in polynomial time. The approach of Chomicki et al. is imple-
mented in the Hippo System [Chomicki et al. 2004a, 2004b].

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:41

These results are interesting from a practical point of view, and are often sup-
ported by experimental validations on large amounts of inconsistent data [Fux-
man et al. 2005; Chomicki et al. 2004a; Grieco et al. 2005]. However, they apply
to quite narrow settings, with a particular repair semantics and very limited
sets of constraints and/or queries.

Our optimization techniques, instead, cover a number of repair orderings
from the literature, and address large classes of queries and constraints. Our re-
pair factorization strategy can be applied, for instance, to a setting with generic
unions of conjunctive queries on database schemas that contain generic key con-
straints and exclusion dependencies (but also inclusion dependencies falling
in the class C1). It does not impose a priori restrictions on the structure of
the schema and the query, but instead conditions on the interaction between
the actual inconsistency in the database and the query. For sufficiently be-
nign violation behavior, consistent query answering in polynomial time will be
achieved; this may be good enough if nonbenign violations rarely occur. Guar-
anteed worst-case polynomial time behavior can be enforced by limiting, as in
other approaches, the structure of the query and the constraints.

Finally, we point out that our optimization techniques may be also combined
with the other approaches. For example, we can exploit factorization to single
out cases that are not first-order rewritable in general, but are so in the light
of the actual conflicts that we localize in the database. This approach seems to
be promising, as it enables the exploitation of consolidated relational database
technology also in some settings that cannot be handled by current first-order
rewriting techniques.

8. EXPERIMENTAL RESULTS

In this section, we present experimental results for evaluating the effectiveness
of our approach and, specifically, the benefits of the localization techniques
discussed in the paper.

8.1 Benchmark Databases and Compared Methods

As already mentioned, Hippo [Chomicki et al. 2004a, 2004b] and ConQuer
[Fuxman et al. 2005; Fuxman and Miller 2007] are two noticeable proto-
type systems for consistent query answering from inconsistent databases.
These systems are tailored for specific settings where this task is tractable
and manage very specific classes of queries and constraints. For this reason,
their performances have been tested on ad-hoc created benchmark databases;
Fuxman et al. [2005] mainly generated synthetic data for the TCP-H speci-
fications over a schema containing only single keys on relation symbols, and
used queries of the class Cforest, encoded into SQL, with aggregate expressions.
Chomicki et al. [2004a] considered project-free queries over ternary relations
and functional dependencies of the form p(x, y , z) ∧ p(x, y ′, z ′) ⊃ z = z ′ over
each such relation.

To assess the effectiveness of our localization approach, we need some novel
scenario as it is not directly comparable with Hippo and Conquer, whose in-
comparability similarly requested specific benchmarks and data. Indeed, our

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:42 • T. Eiter et al.

techniques are designed for and can be used also in settings more general than
those addressed by those systems (see Section 7).

On the other hand, if we focus on the classes of queries for which Hippo and
ConQuer have been designed, it will come as no surprise that our approach pays
in efficiency for its generality and expressiveness. And, in fact, we envisage an
integrated architecture that switches to these more specialized and efficient
systems whenever the query and the constraints fall in one of the classes they
are able to deal with. To test our framework and the factorization techniques
discussed in Section 5, we thus proceed as follows:

—We first present experimental results for our running example (on football
teams). The results show the advantages of focusing the computation by
making use of the techniques discussed in Section 6.2, through the system
described in Section 6.1, with respect to direct evaluating, through the DLV
system, the logic specification for querying the inconsistent database with
the query at hand.

—We then focus on a test suite over the database schema χ2
f used in Chomicki

et al. [2004a], which contains two ternary relations r1 and r2, and the func-
tional dependencies ri(x, y , z) ∧ ri(x, y ′, z ′) ⊃ z = z ′, with i = 1, 2, but we
consider queries that involve projections, so that the system Hippo is not ap-
plicable. In this experiment, we show scalability of our approach with respect
to a growing number of tuples in conflicts, and the advantage of combining
repair factorization with markings.

—We discuss the impact of the number of atoms in the query on the performance
of the localization approach, by considering the schema χ N

f which generalizes

χ2
f with an increasing number of predicates.

—Finally, we focus on a test suite that is based on the schema reported in Exam-
ple 5.10, which refers to a typical information system supporting university
administration. Experiments with this scenario aim to show the benefit of
the factorization technique and the achievable scalability, in a context that is
beyond the scope of applicability of other approaches in the literature focused
on tractable settings of consistent query answering.

For the schemas, we generated random data following the idea of tuning the
size of the safe part and the number of conflicts as in Chomicki et al. [2004a]
and Fuxman et al. [2005].

All experiments have been carried out on a 1.6GHz Pentium IV with 512MB
memory, by assessing the time needed for consistent query answering when the
DLV system computes repairs of the affected part only, plus the time required
for the recombination of the results in PostgreSQL. We always used a repair
semantics based on the prototypical preorder ≤D.

8.2 The Football Teams Example

We next discuss the performances of our approach and, specifically, its scaling
w.r.t. the size of the safe database, on a simple scenario. For our running exam-
ple, we built a synthetic data set DFT, such that tuples in coach and team satisfy
the key constraints issued on these relations, while tuples in player violate the

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:43

Fig. 5. Football Team. (a) Execution time in DLV system w.r.t. size of the affected part. (b) Com-

parison with the optimization method.

corresponding key constraint. Each violation consists of two facts that coin-
cide on Pcode but differ on either Pname or Pteam; these facts constitute the
affected part of DFT. For our experiments, we consider the query Q = 〈q, P〉
where P = {q(x) ← player(x, y , z); q(x) ← team(v, w, x)}, and we encode our
problem into a Datalog¬ program �χ0

(Q) in the line of [Calı̀ et al. 2003b; Grieco
et al. 2005] (the encoding used is the one given in Appendix E.1, in which we
get rid of the encoding for the mapping). We first measure the execution time
of the program �χ0

(Q) in DLV depending on the size of the affected part, while
the size of the safe part is fixed to the values (i) 0, (ii) 4000, and (iii) 8000,
respectively. We stress that values for the execution time of the DLV system
refer to query answering with non-ground queries.

The results for this experiment, reported in Figure 5(a), show that the DLV
system scales well w.r.t. the size of the affected part. Still the big size of the
safe part appears to be the most limiting factor for an efficient implementation.
Indeed, only 8000 facts (in absence of conflicting tuples) would require more
than 35 seconds for consistent query answering.

The performance degradation under varying database size is further stressed
in Figure 5(b), which shows a comparison (in log-scale) between consistent
query answering using a single DLV program and the optimization approach
proposed in this paper. As for the optimization approach, values on execu-
tion time include the cost of computing repairs of the affected database only,
plus marking and evaluating the associated SQL query over marked relations.
Specifically, we considered 10 violations and a marking string of 210 bits, such
that issuing one query over the database is sufficient to recombine the repairs
of the affected part with the safe part. Interestingly, the growth of the running
time of our optimization method under a varying database size is negligible.

8.3 Scalability Assessment

In the following experiments, we assessed the relevance of the strategy for
grouping repair computation by focusing on the database χ2

f . Indeed, so far,

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:44 • T. Eiter et al.

Fig. 6. Query answering over χ2
f . (a) Optimization method w.r.t. number n of grouped repairs, for

a fixed number of conflicts. (b) Optimization method w.r.t. the size of the affected part, for n = 29.

we have assumed that the marking string is sufficient for storing all repairs
for the affected part and, therefore, the DBMS has been queried just once for
recombining the results of the localized repairs with the safe part only. But the
reader may at this point wonder whether this approach is more efficient than
processing each repair sequentially (one at a time).

Figure 6(a) answers the above question positively. It reports the time
needed for answering the query Q f = 〈q f , P f 〉 where P f = {q f (y1) ←
r1(x, y1, z1), r2(x, y2, z2)} w.r.t. the number n of repairs that are grouped and
processed simultaneously on the DBMS. Specifically, we fixed 10 conflicts in
the data (each involving two inconsistent tuples). Hence, for n = 1, we sequen-
tially process each repair, while for n = 210, all the repairs are combined in the
DBMS at the same time. The advantage of grouping repairs is evident, specifi-
cally by considering the scaling of the curves for different sizes of the safe part.
Actually, we note that as the markings may grow exponentially with the size
of the affected part, processing all the repairs at the same time is generally
infeasible, since the length of the marking strings may exceed the maximum
size allowed by the DBMS. For instance, with the bit string type of the Post-
greSQL system, we may store marks up to n = 225 bits. In fact, to scale up to
a few gigabytes we may resort to the large objects facilities of the system, or
we may use well-known commercial DBMSs that provide embedded support
for dealing with large binary objects. We point out that in our experiments
we did not exploit such features, which instead may profitably be used within
an engineered version of the prototype; indeed, in the following we used an
incremental evaluation approach, eventually by grouping up to 1000 repairs
at time—which is a value we experienced to be appropriate for the use with
PostgreSQL.

In a second set of experiments over the query Q f , we measured again the
scalability w.r.t. the number of conflicts. In particular, we augmented the num-
ber of conflicts up to 100, and we fixed the marking string to 29 bits. The re-
sults shown in Figure 6(b) evidence the exponential scaling in the number of

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:45

Fig. 7. Factorization strategy. Answering Q f over χ2
f w.r.t. the size of the affected part: (a) De-

pendency on the safe part. (b) Dependency on the marking string for Q ′
f .

conflicting tuples; this is indeed the best scaling we can expect for inconsistent
databases in general, as the problem is co-NP-hard.

In fact, it is interesting to assess whether some nicer scaling can be obtained
by applying the factorization strategy discussed in Section 5.2. In this respect,
we notice that the given setting such that our factorization strategy can be
applied. Indeed, the setting we are considering is basically the one described
in Example 5.2, where each component contains only those facts witnessing
a violation of the functional dependency over each of the two relations r1 and
r2. Specifically, in our experiments, we fixed the structure of each component to
contain 20 tuples and 1000 repairs (any pair of these tuples witnesses a violation
of the dependency), and we generated some synthetic data for increasingly large
number of independent components. In addition to the factorization strategy,
we still exploit the grouping repair approach, by fixing the number of repairs
simultaneously processed to 210.

The results obtained by applying the recombination strategy in Equation (10)
are shown in Figure 7(a). Given the ability of independently processing the
components, the scaling is now linear in the number of components and, hence,
in the size of the whole affected part. In fact, query answering is feasible for a
much larger number of constraint violations.

A similar experiment has been repeated for the query Q ′
f = 〈q′

f , P ′
f 〉 where

P ′
f = {q′

f (y1) ← r1(x, y1, z1)}. After fixing the safe part to 10,000 tuples, we
repeated the experiment up to a very large number of conflicts considering two
different values for the parameter n which bounds the number of simultane-
ously processed repairs. Note in Figure 7(b) the linear scaling in the number of
tuples in conflicts and the benefit from combining marking with the factoriza-
tion strategy. In fact, this linear scaling is again due to the fact that components
can independently be processed, so that the cost for query answering basically
amounts to computing all repairs for each of these components and store them
as marks into the database. As an extreme scenario, we note that the linear
behavior of these latter tasks has been confirmed up to a million of tuples, for
which the computation was about 9 hours.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:46 • T. Eiter et al.

Finally, the setting χ2
f has been generalized. We also considered the database

χ N
f and the query Q = 〈q, P〉 where P = {q(y1) ← r1(x, y1, z1), r2(x, y2, z2), . . . ,

rN (x, yN , zN)}, for 10 constraint violations per relation and 210 repairs simulta-
neously processed. In this scenario, we performed some experiments to assess
the dependence of query answering on the number of atoms N in the query. The
results are reported in Figure 8(a), which shows (as discussed in Section 6.2)
an exponential dependency.

We conclude this overview on the behavior of the localization strategies pre-
sented in this article by considering the schema in Example 5.10. As a first case,
we consider the query Q ′ = 〈q, {q(w1) ← student(x1, y1, z, w1), prof(x2, y2, z).}〉,
which is a slight modification of the query Q in such example and which asks
for addresses of those students that might possibly be involved in family rela-
tionships with professors.

Note that a full-inclusion dependency is issued over the schema (in addi-
tion to the keys), and that in Q ′ there is a join involving only nonkey posi-
tions, and also projection. Computing the consistent answers to such a query
is co-NP-hard; indeed, the reader may check that Q ′ can be used to encode
the MONOTONE-3SAT problem with minor modifications over the construc-
tion presented in [Fuxman and Miller 2007] (which is originally from Chomicki
and Marcinkowski [2005]) to prove hardness of consistent query answering for
queries over two distinct body literals.

In these experiments, the safe part is fixed to 10,000 tuples (9,850 students
and 150 professors), while the affected part has been generated according to
two different scenarios:

(S1) The components over the relation prof are singular (in total we fixed 50
such components), while the components over student are nonsingular but
decomposable (experiments have been conducted for different component
sizes). Each component consists of 10 conflicting tuples. This scenario mod-
els an information system where data pertaining to professors are man-
aged centrally, so that inconsistencies over last names may hardly emerge
(last names of professors often act in practice as an identifier). However,
data about students are assumed to be unreliable; they may, for instance,
result from naive integration of autonomous data sources residing in dif-
ferent faculties or schools;

(S2) In this scenario, five nonsingular components are associated with prof,
each one containing two tuples in conflict. Hence, this time, we assume
that prof is also the result of some integration task (e.g., data wrapped
from the Web); and, beside 50 professors in conflict over first names, five
additional conflicts over last names emerge.

In all the scenarios above, repair grouping is exploited with n = 512.
The results for this set of experiments are reported in Figure 8(b). We note

that in the lower diagram, in the case of (S1) the scaling is basically linear
in the number of conflicting tuples in the relation student and, in fact, in the
number of nonsingular components.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:47

Fig. 8. (a) Query answering over χ N
f , N > 2. (b) Results for Example 5.10.

On the other hand, processing the nonsingular components associated with
prof in (S2) causes a performance degradation depending on the number of
nonsingular components of student. Given the bound on the number of these
components, the scaling is again linear, but with faster growth rate which ex-
ponentially depends on the number of professors in conflicts over last names,
as for it emerges from the upper diagram in Figure 8(b).

For a further remark on this experiment, consider again the original query
Q introduced in Example 5.10, which asks for last name of professors possibly
involved in family relationships with students. This query does not fall in any
tractable class of queries singled out in the literature (cf. Section 7). However,
according to our discussion in Section 5.2.2, the grounding technique coupled
with factorization may indeed ensure tractability. Basically, for each possible
last name of professor, say c, we have to compute the result of the ground
query: Qc = 〈q, {q(c) ← student(x1, y1, z, w1), prof(c, y2, z).}〉. Given that now
we focus on precisely one component for prof, performances for answering Qc
are even faster than those registered for (S1). And, the global performances
for evaluating Q will linearly scale in the number of distinct last names of
professors in the data.

In closing this section, we would like to summarize the lesson learned from
our experiments, which might give some guidelines for further investigations
into consistent query answering from inconsistent database.

On the one hand, our activity has certainly provided some bad news. First, the
scalability of “pure” logic-programming based approaches for consistent query
answering is in many cases not suited for real-world applications. This is re-
lated to the intrinsic complexity of the problem, which is the prize to be paid for
the generality of these approaches. And, second, if the data can not be factor-
ized (e.g., by means of techniques in Section 5.2), then there is little chance
to answer queries over large data sets (actually, large affected databases),
even when logic-programming based approaches are used in combination with
our grouping and marking techniques. On the other hand, there are two good
news:

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:48 • T. Eiter et al.

—First, in those scenarios where the size of the affected part is not very large,
marking strategies can be very effective to support consistent query answer-
ing even if the data can not be factorized. Indeed, there are substantial
benefits w.r.t. basic approaches where safe and affected data are not dis-
tinguished in the computation. Clearly enough, if these scenarios fall in one
of the syntactically tractable classes already known in the literature, then
applying the proper rewriting is definitively the best choice. However, for
general classes of queries and constraints, our techniques represent a viable
option, given the infeasibility of directly applying logic-programming based
approaches. We point out that we experienced such kind of scenarios in appli-
cations related to data integration, and arguably they can be found in several
different contexts (e.g., re-engineering of legacy systems, semantic data re-
trieval over the web, etc). In this regard, setting up a benchmark suite of real
datasets coming from practical scenarios should be a primary goal for the
community.

—Second, localization and factorization strategies may support well consistent
query answering up to a large number of conflicts if the analysis of the data
reveals some nice structure leading to the possibility of isolating singular
and/or decomposable components. A polynomial scaling can be obtained even
in some interesting settings that cannot be dealt with by approaches only fo-
cused on limiting the form of the input queries and integrity constraints
(roughly, localization and factorization techniques can isolate easy instances
for hard problems, on the basis of data inspection). This perspective comple-
ments previous results in the literature. In particular, if all cases in which
nonsingular components are jointly decomposable, then a linear scaling can
eventually be achieved for common classes of constraints and queries. How-
ever, when nondecomposable components emerge, this nice scaling tends to
deteriorate (exponentially in the number of components). While this trend
can not be avoided in the limit (since in the extreme case where a linear
number of these components affects the data, query answering is actually
co-NP-hard), the factorization strategy might be refined, in particular when

a small number of nonsingular and nondecomposable components are in the
data. In fact, specific elaborations in this direction constitute an interesting
avenue for further research.

9. CONCLUSION

For optimizing logic-programming based query answering from inconsistent
databases, we have presented a repair localization approach. In this approach,
repairs are conceptually confined to a repair envelope, which intuitively com-
prises the part of the database affected by inconsistency, and then recombined
with the unaffected (safe) part before determining the query result. We have
investigated this approach in a generic framework accommodating different
classes of integrity constraints (including denial constraints [Chomicki et al.
2004a]), and preference orderings for repairs from the literature (see Sec-
tion 3.1). We then have discussed how this approach can be fruitfully uti-
lized for query answering using logic programming specifications, where a

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:49

logic programming engine and a DBMS are combined, such that tremendous
performance gains are achieved.

While motivated by logic programming specifications, our localization results
are not bound to such a setting and are, in fact, applicable to any realization
of consistent query answering. Furthermore, the generic form of preferences,
constraints, and repair envelopes allows us to instantiate the results to many
different concrete settings in practice.

The work presented here can be extended in different directions. As for
localization and query answering, our results may be extended to repair se-
mantics based on preference orderings violating the properties in Section 3.1;
for example, the one in Chomicki and Marcinkowski [2005]. Furthermore, for
any negation-free query Q the intersection of the answers Q[R] on all re-
pairs is equivalent to answering it only on the repairs which are minimal
under set-inclusion, that is, do not contain any other repair properly. If an
ordering ≤D fails to satisfy (SIP), (DPE), and (DIS), we may characterize the
repairs w.r.t. ≤D that are minimal under set inclusion as the repairs under
another ordering ≤′

D which satisfies these properties. An example is the or-
dering R1 �D R2 iff R1 ∩ D ⊇ R2 ∩ D [Calı̀ et al. 2003a, 2003b], which
violates (SIP). Intuitively, in such an ordering, violations are preferably re-
paired by adding tuples to D, and minimally deleting tuples, in case adding
tuples is not sufficient to repair inconsistency. We can use here the ordering
R1 �′

D R2 iff R1 �D R2 ∧ (R1 ∩ D = R2 ∩ D ⇒ R1\D ⊆ R2\D) instead for
answering Q .

Other approaches considered consistent query answering under the perspec-
tive of modifying values in the database rather than entire tuples [Wijsen 2005].
Due to the different semantics considered in these works, such repairs are not
immediately captured by our framework. A study of respective extensions is
left for future work.

Another extension of the results here is from a single database to a data
integration system I = 〈G, S, M〉, where G is the global schema, S is the schema
of the various sources, and M is the mapping establishing the relationship
between G and S [Lenzerini 2002]. As briefly discussed in Appendix E.1 and
more in detail in Eiter et al. [2005], the results developed here can be readily
adapted for a Global-As-View (GAV) setting in which M is given by stratified
Datalog queries, and for constraints on the global schema falling in the classes
considered in this paper. They can be further extended to other GAV settings,
for example, as in Lembo et al. [2002]; and Calı̀ et al. [2003b], and certain Local-
As-View (LAV) settings, for example, as in Bertossi et al. [2002] and Bravo and
Bertossi [2003].

In fact, most of the research reported here has been carried out within the EU
project INFOMIX on advanced data integration for expressive schemas using
logic programming. However, the INFOMIX system is not the implementation
of all results in this paper. For more information about the project, see [Leone
et al. 2005].

ACKNOWLEDGMENTS

We thank the reviewers for many helpful comments.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

10:50 • T. Eiter et al.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison Wesley.
ARENAS, M., BERTOSSI, L., AND CHOMICKI, J. 2001. Scalar aggregation in fd-inconsistent databases.

In Proceedings of the 8th International Conference on Database Theory (ICDT’01). Springer, 39–

53.
ARENAS, M., BERTOSSI, L., AND CHOMICKI, J. 1999. Consistent query answers in inconsistent

databases. In Proceedings of the 18th ACM SIGACT SIGMOD Symposium on Principles of
Database Systems (PODS’99). 68–79.

ARENAS, M., BERTOSSI, L., AND CHOMICKI, J. 2003. Answer sets for consistent query answering in

inconsistent databases. Theory Pract. Logic Program. 3, 4, 393–424.
ARIELI, O., DENECKER, M., NUFFELEN, B. V., AND BRUYNOOGHE, M. 2004. Coherent integration of

databases by abductive logic programming. J. AI. Res. 21, 245–286.
BARCELÓ, P. AND BERTOSSI, L. 2003. Logic programs for querying inconsistent databases. In Pro-

ceedings of the 5th International Symposium on Practical Aspects of Declarative Languages
(PADL’03). 208–222.

BERTOSSI, L. AND CHOMICKI, J. 2003. Query answering in inconsistent databases. In Logics for
Emerging Applications of Databases, J. Chomicki, R. van der Meyden, and G. Saake, Eds.

Springer, Chapter 2, 43–83.
BERTOSSI, L., CHOMICKI, J., CORTES, A., AND GUTIERREZ, C. 2002. Consistent answers from integrated

data sources. In Proceedings of the 6th International Conference on Flexible Query Answering
Systems (FQAS’02). 71–85.

BERTOSSI, L., HUNTER, A., AND SCHAUB, T., EDS. 2005. Inconsistency Tolerance (result from a
Dagstuhl seminar). Lecture Notes in Computer Science, vol. 3300, Springer.

BOUZEGHOUB, M. AND LENZERINI, M. 2001. Introduction to the special issue on data extraction,

cleaning, and reconciliation. Inform. Syst. 26, 8, 535–536.
BRAVO, L. AND BERTOSSI, L. 2003. Logic programming for consistently querying data integra-

tion systems. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03). 10–15.

BRAVO, L. AND BERTOSSI, L. 2005. Disjunctive deductive databases for computing certain and

consistent answers to queries from mediated data integration systems. J. Appl. Logic 3, 1, 329–

367.
CALı̀, A., LEMBO, D., AND ROSATI, R. 2003a. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In Proceedings of the 22nd ACM SIGACT SIGMOD
Symposium on Principles of Database Systems (PODS’03). 260–271.

CALı̀, A., LEMBO, D., AND ROSATI, R. 2003b. Query rewriting and answering under constraints in

data integration systems. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI’03). 16–21.

CELLE, A. AND BERTOSSI, L. 2000. Querying inconsistent databases: Algorithms and implementa-

tion. In Proceedings of the International Conference on Computational Logic (CL’00). 942–956.
CHOMICKI, J. 2007. Consistent query answering: Five easy pieces. In Proceedings of the 11th

International Conference on Database Theory (ICDT’07), T. Schwentick and D. Suciu, Eds. Lecture

Notes in Computer Science, Springer, 1–17.
CHOMICKI, J. AND MARCINKOWSKI, J. 2005. Minimal-change integrity maintenance using tuple dele-

tions. Inform. Comput. 197, 1-2, 90–121.
CHOMICKI, J., MARCINKOWSKI, J., AND STAWORKO, S. 2004a. Computing consistent query answers us-

ing conflict hypergraphs. In Proceedings of the 13th ACM Conference on Information and Knowl-
edge Management (CIKM’04). ACM Press, 417–426.

CHOMICKI, J., MARCINKOWSKI, J., AND STAWORKO, S. 2004b. Hippo: A system for computing consistent

answers to a class of SQL queries. In Proceedings of the 9th International Conference on Extending
Database Technology (EDBT’04). Lecture Notes in Computer Science, vol. 2992, Springer, 841–

844.
DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and expressive power of

logic programming. ACM Comput. Surv. 33, 3, 374–425.
EITER, T., FINK, M., GRECO, G., AND LEMBO, D. 2003. Efficient evaluation of logic programs for

querying data integration systems. In Proceedings of the 19th International Conference on Logic
Programming (ICLP’03), C. Palamidessi, Ed. Lecture Notes in Computer Science, vol. 2916,

Springer, 163–177.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

Repair Localization for Query Answering from Inconsistent Databases • 10:51

EITER, T., FINK, M., GRECO, G., AND LEMBO, D. 2005. Optimization methods for logic-based query

answering from inconsistent data integration systems. Tech. rep. INFSYS RR-1843-05-05, TU

Wien.
EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive Datalog. ACM Trans. Data. Syst. 22, 3,

364–418.
FAGIN, R., ULLMAN, J. D., AND VARDI, M. Y. 1983. On the semantics of updates in databases. In

Proceedings of the 2nd ACM SIGACT SIGMOD Symposium on Principles of Database Systems
(PODS’83). 352–365.

FUXMAN, A., FAZLI, E., AND MILLER, R. J. 2005. ConQuer: Efficient management of inconsistent

databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 155–166.

FUXMAN, A. AND MILLER, R. J. 2007. First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73, 4, 610–635.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Comput. 9, 365–385.
GRECO, G., GRECO, S., AND ZUMPANO, E. 2003. A logical framework for querying and repairing

inconsistent databases. IEEE Trans. Knowl. Data Engin. 15, 6, 1389–1408.
GRIECO, L., LEMBO, D., RUZZI, M., AND ROSATI, R. 2005. Consistent query answering under key and

exclusion dependencies: Algorithms and experiments. In Proceedings of the 14th International
Conference on Information and Knowledge Management (CIKM’05). 792–799.

KIFER, M. AND LOZINSKII, E. L. 1992. A logic for reasoning with inconsistency. J. Automat. Rea-
son. 9, 2, 179–215.

KOWALSKI, R. A. AND DADRI, F. 1990. Logic programming with exceptions. In Proceedings of the
7th International Conference on Logic Programming (ICLP’90). 490–504.

LEMBO, D., LENZERINI, M., AND ROSATI, R. 2002. Source inconsistency and incompleteness in data

integration. In Proceedings of the 9th International Workshop on Knowledge Representation Meets
Databases (KR’02).

LENZERINI, M. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS’02). 233–246.

LEONE, N., EITER, T., FABER, W., FINK, M., GOTTLOB, G., GRECO, G., IANNI, G., KALKA, E., LEMBO, D., LENZ-

ERINI, M., LIO, V., NOWICKI, B., ROSATI, R., RUZZI, M., STANISZKIS, W., AND TERRACINA, G. 2005. The

INFOMIX system for advanced integration of incomplete and inconsistent data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 915–917.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006. The

DLV System for Knowledge Representation and Reasoning. ACM Trans. Comput. Logic 7, 3,

499–562.
LIN, J. 1996. Integration of weighted knowledge bases. AI. 83, 2, 363–378.
LIN, J. AND MENDELZON, A. O. 1998. Merging databases under constraints. Int. J. Coop. Inform.

Syst. 7, 1, 55–76.
NUFFELEN, B. V., CORTÉS-CALABUIG, A., DENECKER, M., ARIELI, O., AND BRUYNOOGHE, M. 2004. Data

integration using ID-logic. In Proceedings of the 16th International Conference on Advanced
Information Systems Engineering (CAiSE’04), A. Persson and J. Stirna, Eds. Lecture Notes in

Computer Science, vol. 3084, Springer, 67–81.
SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model

semantics. AI. 138, 181–234.
STAWORKO, S., CHOMICKI, J., AND MARCINKOWSKI, J. 2006. Preference-driven querying of inconsistent

relational databases. In EDBT Workshops, T. Grust, et al., Eds. Lecture Notes in Computer

Science, vol. 4254, Springer, 318–335.
ULLMAN, J. D. 1989. Principles of Database and Knowledge Base Systems. Computer Science

Press.
WIJSEN, J. 2005. Database repairing using updates. ACM Trans. Datab. Syst. 30, 3, 722–768.

Received January 2007; revised September 2007, January 2008; accepted February 2008

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 10, Publication date: June 2008.

