
TLP 7 (3): 249–300, 2007. C© 2007 Cambridge University Press

doi:10.1017/S1471068406002754 Printed in the United Kingdom

249

A knowledge-based approach for
selecting information sources�

THOMAS EITER, MICHAEL FINK and HANS TOMPITS

Institut für Informationssysteme, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria

(e-mail: {eiter,michael,tompits}@kr.tuwien.ac.at)

submitted 16 April 2004; revised 13 August 2005; accepted 21 April 2006

Abstract

Through the Internet and the World-Wide Web, a vast number of information sources has

become available, which offer information on various subjects by different providers, often in

heterogeneous formats. This calls for tools and methods for building an advanced information-

processing infrastructure. One issue in this area is the selection of suitable information sources

in query answering. In this paper, we present a knowledge-based approach to this problem, in

the setting where one among a set of information sources (prototypically, data repositories)

should be selected for evaluating a user query. We use extended logic programs (ELPs) to

represent rich descriptions of the information sources, an underlying domain theory, and user

queries in a formal query language (here, XML-QL, but other languages can be handled as

well). Moreover, we use ELPs for declarative query analysis and generation of a query

description. Central to our approach are declarative source-selection programs, for which we

define syntax and semantics. Due to the structured nature of the considered data items, the

semantics of such programs must carefully respect implicit context information in source-

selection rules, and furthermore combine it with possible user preferences. A prototype

implementation of our approach has been realized exploiting the DLV KR system and its

plp front-end for prioritized ELPs. We describe a representative example involving specific

movie databases, and report about experimental results.

KEYWORDS: knowledge representation, nonmonotonic reasoning, logic programming,

answer-set programming, information-source selection, data repositories, preference handling

1 Introduction

Through the Internet and the World-Wide Web (WWW), a wealth of information

has become available to a large group of users. A huge number of documents, files,

and data repositories on a range of subjects are offered by different providers, which

may be non-profit individuals, organizations, or companies. Such data repositories

� Part of the material in this paper has appeared, in preliminary form, in the Proceedings of the
Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR ’02),
pp. 49–60, April 22–25, Toulouse, France, 2002.

250 Thomas Eiter et al.

are currently in heterogeneous formats, but the trend is that XML becomes a future

de-facto standard for releasing data on the Web, since this eases data exchange.

Nonetheless, the quality of their contents may differ significantly with respect to

aspects such as their accuracy, coverage of certain topics and completeness for them,

or refresh cycle, to mention just a few.

Accessing and processing data on the Web calls for developing tools and methods

for an advanced information-processing infrastructure. Mediators (Wiederhold 1993)

and special information agents (“middle agents” (Decker et al. 1997)), which provide

various services including finding, selecting, and querying relevant information

sources, play an important role here. The potential of knowledge-based approaches—

and in particular of logic programming—for developing reasoning components for

intelligent information agents is recognized in the AI community and outlined, e.g.,

by Dimopoulos and Kakas (2001), Eiter et al. (2002b), and Sadri and Toni (2000).

In this paper, we pursue this issue further and present a declarative approach

for information-source selection in the following setting. Given a query by a user

in some formal query language and a suite of information sources over which this

query might be evaluated, which of these sources is the best to answer the query, i.e.,

such that the utility of the answer, measured by the quality of the result and other

criteria (e.g., costs), is as large as possible for the user? Note that this problem is in

fact not bound to information sources on the Web but is of interest in any context

where different candidate information sources (e.g., scientific databases, newspaper

archives, stock exchange predictions, etc.) are available and one of them should

be selected. Selection of a single source may be desired because of (high) cost

associated with accessing each source, for instance. Furthermore, problems arising

by integrating data from different sources (like inconsistencies between sources) can

be circumvented this way.

For a concrete example, consider the following scenario to illustrate our ideas.

Example 1

Assume that some agent has access to XML information sources, s1, s2, and s3,

about movies. Furthermore, suppose that the following XML-QL1 query is handed

to the agent, which informally asks a source for the titles of all movies directed by

Alfred Hitchcock:

FUNCTION HitchcockMovies($MovieDB:"Movie.dtd") {

CONSTRUCT <MovieList> {

WHERE <MovieDB> <Movie>

<Title> $t </Title>

<Director> <Personalia>

<FirstName> "Alfred" </FirstName>

<LastName> "Hitchcock" </LastName>

</Personalia> </Director>

</Movie> </MovieDB>

IN source($MovieDB)

CONSTRUCT <Movie> $t </Movie>

} </MovieList> }

1 For details about XML-QL, cf. Section 2.2.

A knowledge-based approach for selecting information sources 251

Here, $t is a variable into which the value of attribute Title is selected, for usage

in the resulting construction. Suppose the agent knows that s1 is a very good source

for information about directors, while s2 has usually good coverage about person

data; all that is known about s3, however, is that it is not very reliable. In this

situation, we would expect that the agent selects s1 for querying.

Obviously, a sensible solution to this problem is nontrivial and involves various

aspects such as taking basic properties of the information sources, knowledge about

their contents, and knowledge about the particular application domain into account.

These aspects have to be suitably combined, and reasoning may be needed to elicit

implicit knowledge. We stress that the general problem considered here is distinct

from a simple keyword-based search as realized by Web engines like Google,2 and

consequently we do not propose a method for competing with these tools here.3 In

fact, we are concerned with qualitative selection from different alternatives, based

on rich meta-knowledge and a formal semantics, thereby respecting preference and

context information which involves heuristic defaults.

Our approach, which incorporates aspects mentioned above, makes several con-

tributions, which are briefly summarized as follows.

(1) We base our method on the answer-set programming paradigm, in which

problems are encoded in terms of nonmonotonic logic programs and solutions are

extracted from the models of these programs (cf. Baral (2003) for a comprehensive

treatise on answer-set programming). More precisely, we use extended logic programs

(ELPs) under the answer-set semantics (Gelfond and Lifschitz 1991), augmented

with priorities (cf., e.g., Brewka and Eiter (1999), Delgrande et al. (2003), or Inoue

and Sakama (2000) for work about priorities in answer-set programming) and weak

constraints (Buccafurri et al. 2000; Leone et al. 2006), to represent rich descriptions

of the information sources, an underlying domain theory, and queries in a formal

language. We perform query analysis by ELPs and compute query descriptions. Here,

we consider XML-QL (Deutsch et al. 1999), but our approach is not committed to

semi-structured data and XML per se, and other formal query languages can be

handled as well (e.g., Schindlauer (2002) adopts our query-analysis method for the

ubiquitous SQL language for relational databases).

(2) At the heart, a declarative source-selection program represents both qualitative

and quantitative criteria for source selection, in terms of rules and soft constraints.

The rules may access information supplied by other programs, including object

and value occurrences in the query. For example, a rule r1 may state that a query

about a person Alfred Hitchcock should be posed to source s1. Furthermore, ordinal

rule priorities can be employed in order to specify source-selection preference. For

example, a priority may state that a certain rule mentioning a last name in the

query is preferred over another rule mentioning the concept person only. Rules and

priorities are of qualitative nature and are taken into account for singling out a

coherent decision for the source selection in model-theoretic terms. Quantitative

2 Google’s homepage is found at http://www.google.com.
3 Note that Google does not index XML files or databases underlying Web query interfaces, and hence

cannot be readily applied for the purposes considered here.

252 Thomas Eiter et al.

criteria (like, e.g., cost) are used to discriminate between different such options

by means of an objective function which is optimized. To this end, conditions in

terms of conjunctions of literals can be stated whose violation is penalized (e.g.,

the selection of a certain source might be penalized but not strictly forbidden), and

total penalization is minimized. Such a two step approach seems to be natural and

provides the user with a range of possibilities to express his or her knowledge and

selection desires in convenient form.

(3) We consider the interesting and, to the best of our knowledge, novel issue

of contexts in nonmonotonic logic programs, which is similar to preference based

on specificity (Delgrande and Schaub 1994; Geerts and Vermeir 1993; Geerts and

Vermeir 1995). Structured data items require a careful definition of the selection

semantics, since an attribute might be referenced following a path of indirections,

starting from a root object and passing through other objects. In Example 1, for ins-

tance, the attribute FirstName is referenced with the path Movie/Director/Personalia/

FirstName, which starts at an object of type Movie and passes through objects of type

Director and Personalia . Each of these objects opens a context in which FirstName is

referenced along the remaining path. Intuitively, a context is less specific the closer

we are at the end of the path. Thus, for example, the reference from Personalia

is less specific than from Movie, and the latter should have higher priority. Note

that such priority is not based on inheritance (which is tailored for “flat” objects).

Therefore, inheritance-based approaches such as those by Laenens and Vermeir

(1990) or Buccafurri et al. (1996) do not apply here. Furthermore, implicit priorities

derived from context information as above must be combined with explicit user

preferences from the selection policy, and arising conflicts must be resolved.

(4) We have implemented a prototype, based on the KR system DLV (Leone et al.

2006) and its front-end plp (Delgrande et al. 2001) for prioritized ELPs, which we

used to build a model application involving movie information sources. It comprises

several XML databases, wrapped from movie databases on the Web, and handles

queries in XML-QL. Experiments that we have conducted showed that the system

behaved as expected on a number of natural queries, some of which require reasoning

from the background knowledge to identify the proper selection.

The reason to use a knowledge-based approach—and in particular an answer-

set programming approach—for source selection rather than a standard decision-

theoretic approach based on utility functions is motivated by the following advant-

ages:

• Source-selection programs, which are special kinds of extended logic pro-

grams, are declarative and have a well-defined formal semantics, both under

qualitative as well as under quantitative criteria.

• The formalism is capable of handling incomplete information and performing

nonmonotonic inferences, which, arguably, is an inherent feature of the

problem domain under consideration.

• Changes in the specification of the source-selection process are easily incor-

porated by modifying or adding suitable rules or constraints, without the need

A knowledge-based approach for selecting information sources 253

for re-designing the given program, as may be the case, e.g., in procedural

languages.

• Finally, the declarative nature of the answer-set semantics formalism permits

also a coupling with sophisticated ontology tools, as well as with reasoning

engines for them, providing advanced features for the domain knowledge. In

particular, the approach of Eiter et al. (2004, 2005b), providing a declarative

coupling of logic programs under the answer-set semantics with description-

logic knowledge bases, can be integrated into our framework.

We note that while we focus here on selecting a single source, our approach can be

easily extended to select multiple information sources, as well as to perform ranked

selections (cf. Section 6.4).

The rest of this paper is organized as follows. The next section contains the

necessary prerequisites from answer-set programming and XML-QL, and Section 3

gives a brief outline of our approach. In Section 4, we consider the generation of

an internal query representation, while Section 5 addresses the modeling of sources.

Section 6, then, is devoted to source-selection programs and includes a discussion of

some of their properties. The implementation and the movie application, as well as

experimental results, are the topics of Section 7. Section 8 addresses related work,

and Section 9 concludes the main part of the paper with a brief summary and open

research issues. Certain technical details and additional properties of our approach

are relegated to an appendix.

2 Preliminaries

2.1 Answer-set programming

We recall the basic concepts of answer-set programming. Let L be a function-free

first-order language. Throughout this paper, we denote variables by alphanumeric

strings starting with an upper-case letter, anonymous variables by ‘ ’, and constants

by alphanumeric strings starting with a lower-case letter or by a string in double

quotes.

An extended logic program (ELP) (Gelfond and Lifschitz 1991) is a finite set of

rules over L of form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln, (1)

where each Li, 0 � i � n, is a literal, i.e., an atom A or a negated atom ¬A, and “not ”

denotes negation as failure, or default negation. Intuitively, a rule of form (1) states

that we can conclude L0 if (i) L1, . . . , Lm are known and (ii) Lm+1, . . . , Ln are not

known. For a rule r as above, we call the literal L0 the head of r (denoted H(r)) and

the set {L1, . . . , Lm, not Lm+1 , . . . , not Ln} the body of r (denoted B(r)). Furthermore,

we define B+(r) = {L1, . . . , Lm} and B−(r) = {Lm+1, . . . , Ln}. If B(r) = ∅, then r is

called a fact. We write r(V1, . . . , Vn) to indicate that rule r has variables V1, . . . , Vn.

To ease notation, for any program Π and any set S of literals, Π ∪ S stands for

the program Π ∪ {L ←| L ∈ S}. Finally, for a literal L, we write ¬L to denote its

254 Thomas Eiter et al.

complementary literal, i.e., ¬L = A if L = ¬A, and ¬L = ¬A if L = A, for any

atom A.

The semantics of an ELP Π is given in terms of the semantics of its ground

instantiation, G(Π), over the Herbrand universe UL of L, which is the language

generated by Π. The program G(Π) contains all instances of rules from Π, i.e., where

the variables are (uniformly) replaced with arbitrary terms from UL. Recall that a

literal, rule, program, etc., is ground iff it contains no variables. In what follows, we

assume that all such objects are ground.

An interpretation, X, is a consistent set of (ground) literals, i.e., X does not contain

a complementary pair A, ¬A of literals. A literal, L, is true in X if L ∈ X, and false

otherwise. The body, B(r), of a rule r is true in X iff (i) each L ∈ B+(r) is true in

X and (ii) each L ∈ B−(r) is false in X. Rule r is true in X iff H(r) is true in X

whenever B(r) is true in X. Finally, a program, Π, is true in X, or X is a model of

Π, iff all rules in Π are true in X. We write X |= α to indicate that an object α,

which may be either a literal, the body of a rule, a rule, or a program, is true in X.

Let X be a set of literals and Π a program. The Gelfond-Lifschitz reduct, or simply

reduct, ΠX , of Π relative to X is given by

ΠX = {H(r)← B+(r) | r ∈ Π and B−(r) ∩X = ∅ }.

We call X an answer set of Π iff X is a minimal model of ΠX with respect to set

inclusion. Observe that any answer set of Π is a fortiori a model of Π. The set of

all generating rules of an answer set X with respect to Π is given by

GR(X,Π) = {r ∈ Π | X |= B(r)}.

Example 2

Let Π = { s← not t; n←; t← n, not s; w ← t }. For the interpretation X1 = {n, t, w},
we have ΠX1 = {n← ; t← n; w ← t}. Clearly, X1 is a minimal model of ΠX1 , and

thus X1 is an answer set of Π. Note that X2 = {s, n} is another answer set of Π.

A (possibly non-ground) program Π is locally stratified (Przymusinski 1988) iff

there exists a mapping λ assigning each literal occurring in G(Π) a natural number

such that, for each rule r ∈ G(Π), it holds that (i) λ(H(r)) � maxL∈B+(r) λ(L) and

(ii) λ(H(r)) > maxL∈B−(r) λ(L). Note that Π is (globally) stratified (Apt et al. 1988)

if, additionally, for all positive (resp., negative) literals L and L′ with the same

predicate, λ(L) = λ(L′) holds. It is well-known that if a program is locally stratified,

then it has at most one answer set.

A refinement of the answer-set semantics is the admission of preferences among

the rules of a given ELP, yielding the class of prioritized logic programs. Several

approaches in this respect have been introduced in the literature, like, e.g., those by

Brewka and Eiter (1999) or Inoue and Sakama (2000); here, we use a preference

approach based on a method due to Delgrande et al. (2003), defined as follows.

Let Π be an ELP and < a strict partial order between the elements of Π (i.e., <

is an irreflexive and transitive relation). Informally, for rules r1, r2 ∈ Π, the relation

r1 < r2 expresses that r2 has preference over r1. Define the relation <G over the

ground instantiation G(Π) of Π by setting r̂1 <G r̂2 iff r1 < r2, for r̂1, r̂2 ∈ G(Π).

A knowledge-based approach for selecting information sources 255

Then, the pair (Π, <) is called a prioritized extended logic program, or simply a

prioritized logic program, if the relation <G is a strict partial order.

The semantics of prioritized programs is as follows. Let (Π, <) be a prioritized

logic program where Π is ground, and let X be an answer set of Π. We call X a

preferred answer set of (Π, <) iff there exists an enumeration 〈ri〉i∈I of GR(X,Π)

such that, for every i, j ∈ I , we have that:

(P1) B+(ri) ⊆ {H(rk) | k < i};
(P2) if ri < rj , then j < i; and

(P3) if ri < r′ and r′ ∈ Π \ GR(X,Π), then B+(r′) �⊆ X or B−(r′)∩{H(rk) | k < i} �= ∅.

Conditions (P1)–(P3) realize a strongly “prescriptive” interpretation of preference,

in the sense that, whenever r1 < r2 holds, it is ensured that r2 is known to be

applied or blocked ahead of r1 (with respect to the order of rule application). More

specifically, (P2) guarantees that all generating rules are applied according to the

given order, whilst (P3) assures that any preferred yet inapplicable rule is either

blocked due to the non-derivability of its prerequisites or because it is defeated by

higher-ranked or unrelated rules. As shown by Delgrande et al. (2003), the selection

of preferred answer sets can be encoded by means of a suitable translation from

prioritized logic programs into standard ELPs.

Preferred answer sets of a prioritized program (Π, <) where Π is non-ground are

given by the preferred answer sets of the prioritized program (G(Π), <G), where <G
is as above. Note that the concept of prioritization realizes a filtering of the answer

sets of a given program Π, as every preferred answer set of (Π, <) is an answer set

of Π, but not vice versa.

Besides imposing qualitative selection criteria, like assigning preferences between

different rules, another refinement of the answer-set semantics are weak constraints

(Buccafurri et al. 2000; Leone et al. 2006), representing a quantitative filtering of an-

swer sets. Formally, a weak constraint is an expression of form

⇐ L1, . . . , Lm, not Lm+1, . . . , not Ln [w : l], (2)

where each Li, 1 � i � n, is a literal (not necessarily ground) and w, l � 1 are

natural numbers.4 The number w is the weight and l is the priority level of the weak

constraint (2). Given an interpretation X, the weight of a ground weak constraint

c of the above form with respect to a level l′ � 1, weightc,l′(X), is w, if X |= Li,

1 � i � m, X �|= Lm+j , 1 � j � n, and l′ = l, and 0 otherwise; the weight of a

non-ground weak constraint c with respect to a level l, weightc,l(X), is given by
∑

c′∈G(c) weightc′ ,l(X), where G(c) denotes the set of all ground instances of c. Weak

constraints select then those answer sets X of the weak-constraint-free part of a

program Π for which the associated vector

weights(X) = (weightlmax
(X),weightlmax−1

(X), . . . ,weight0(X))

4 The part “[w : l]” is convenient syntactic sugar for the original definition by Buccafurri et al. (2000),
which merely provided a partitioning of the weak constraints in priority levels.

256 Thomas Eiter et al.

is lexicographic smallest, where lmax is the highest priority level occurring and

weightl(X) =
∑

c∈wc(Π) weightc,l(X), for each l, with wc(Π) denoting the set of all

weak constraints occurring in Π. Informally, first those answer sets are pruned

for which the weight of violated constraints is not minimal at the highest priority

level; from the remaining answer sets, those are pruned where the sum of weights

of violated constraints in the next lower level is not minimal, and so on. For

example, if we add in Example 2 the weak constraints c1 : ⇐ n, not w [3 : 1] and c2:

⇐ t, w [1 : 2], then we have weights(X1) = (1, 0) and weights(X2) = (0, 3); hence, the

answer set X1 is discarded.

The numeric lexicographic preference can be reduced by usual techniques to an

objective function HΠ(X), which assigns each answer set X an integer such that those

answer sets X for which HΠ(X) is minimal are precisely those for which weights(X)

is lexicographically smallest. In the above example, X2 is selected as the “optimal”

answer set. While the availability of both weights and levels is syntactic sugar, they

are very useful for expressing preferences in a more natural and convenient form.

In the example above, putting c2 at level 2 dominates c1 which is at level 1. Weights

within the same layer can be used for fine-tuning. For formal details and more

discussion, we refer the reader to Leone et al. (2006).

2.2 XML-QL

We next introduce basic concepts of XML-QL (Deutsch et al. 1999), a query

language for data stored in the Extensible Markup Language (XML). We assume

that the reader is familiar with XML, which has emerged as a standard for

providing (semi-structured) data on the Web. While syntactically similar to the

Hypertext Markup Language (HTML), features have been added in XML for data-

representation purposes such as user-defined tags and nested elements. Unlike

relational or object-oriented data, XML is semi-structured, i.e., it can have irregular

(and extensible) structure and attributes (or schemas) are stored with the data. The

structure of an XML document can be optionally modeled and validated against a

Document Type Descriptor (DTD). In this paper, we take a database-oriented view

of XML documents, considering them as databases and a corresponding DTD as

its database schema. For a comprehensive introduction to semistructured data and

database aspects about them, we refer to Abiteboul et al. (2000).

XML-QL is a declarative, relationally complete query language for XML data,

which can not only query XML data, but also construct new XML documents from

query answers, i.e., it can also be used to restructure XML data. Its syntax deviates

from the well-known “select-from-where syntax” of the Structured Query Language

(SQL), but can be decomposed into three syntactical units as well:

1. a where part (keyword WHERE), specifying a selection condition by element

reference and comparison predicates;

2. a source part (keyword IN), declaring a data source for the query (an external

file, or an internal variable); and

3. a construct part (keyword CONSTRUCT), defining a structure for the resulting

document.

In the latter part, subqueries can be built by nesting.

A knowledge-based approach for selecting information sources 257

XML-QL uses element patterns to match data in an XML document. Elements

are referenced by their names and are traversed according to the XML source

structure. Thus, reference paths can be identified with every matching. Variables are

in general not bound to elements but to element contents (but syntactic sugar exists

for element binding). Furthermore, elements can be joined by values using the same

variable in two matchings, i.e., theta-joins can be expressed.

Let us briefly illustrate the most basic concepts in the following example; for

further details, we refer to Deutsch et al. (1999) and Abiteboul et al. (2000).

Example 3

Throughout the paper, we consider XML-QL queries stored as XML-QL functions,

which serves two purposes. First, it allows us to efficiently query several XML

documents by dynamic bindings of data sources, and second, we can additionally

specify that a data source has to obey a certain DTD. The following query is

represented as an XML-QL function. Upon its invocation, the variable $MovieDB

is instantiated with the name of an XML document to be queried, which has to be

structured according to the DTD detailed in Appendix A.

FUNCTION ExampleQuery($MovieDB:"Movie.dtd") {

WHERE <MovieDB> <Movie> $m1 </Movie> </MovieDB> IN source($MovieDB),

<Actor> $a </Actor> IN $m1,

<MovieDB> <Movie> $m2 </Movie> </MovieDB> IN source($MovieDB),

<Actor> $a </Actor> IN $m2,

$m1 != $m2

CONSTRUCT <x2Actor> $a </x2Actor>

}

In the where part of the above query, variables $m1 and $m2 are bound to

different matchings under the reference path MovieDB/Movie. Furthermore, the two

matchings are joined by the (common) value of variable $a, referenced under element

Actor. The construct part of the query creates a new XML document by listing the

values of $a marked-up with tags <x2Actor>. Intuitively, the query returns all actors

found in a given XML document about movies which act in at least two movies.

3 Overview of the approach

Before presenting the technical details of our approach, it is helpful to give a short

overview. While the motivating example in Section 1 is simple, it shows that the

source-selection process involves different kinds of knowledge, including

• knowledge about which “interesting” information should be extracted from a

given formal query expression Q,

• knowledge about the information sources and their properties,

• background knowledge about the application domain and the ontology used

for its formalization, and

• specific rules which guide the source selection, based on preferences or generic

principles.

In our approach, this is formalized in terms of the notion of a selection base

S = (Πqa ,Πsd ,Πdom ,Πsel , <u),

258 Thomas Eiter et al.

Ont
Query Q

parsing

Selected source

Πsd Πsel <u

ΠQ <

ΠdomR(Q) ∪Πqa

Fig. 1. Using a selection base S = (Πqa ,Πsd ,Πdom ,Πsel , <u) for source selection for a

query Q.

where Πqa ,Πsd ,Πdom are ELPs, called query-analysis program, source description,

and domain theory, respectively, and (Πsel , <u) is a prioritized logic program with a

special syntax, called source-selection program. Given a selection base S as above,

the possible solutions of a query Q relative to S are determined by the selection

answer sets of the source-selection program (Πsel , <u), which are defined as preferred

answer sets of a prioritized logic program E(S, Q) = (ΠQ , <), associated with S
and Q, as shown in Figure 1.

The components of a selection base serve the following purposes:

Query-analysis program Πqa: For any query Q as in Example 1, a high-level descrip-

tion is extracted from a low-level (syntactic) representation, R(Q), given as a set of

elementary facts, by applying Πqa to R(Q) and ontological knowledge, Ont, about

concepts (types) and synonyms from the domain theory Πdom , in terms of facts

for predicates class(O) and synonym(C1, C2). Informally, the rules of Πqa single

out the essential parts of Q, such as occurrence of attributes and values in the

query, comparison and joins, or subreference paths of attributes from objects on a

reference path. For instance, in Example 1, the attribute FirstName from an object

of type Director is referenced via path Personalia/FirstName on the reference path

Movie/Director/Personalia/FirstName from the root.

Source description Πsd: This program contains information about the available

sources, using special predicates for query topics, cost aspects, and technical

aspects.

Domain theory Πdom: The agent’s knowledge about the specific application domain

(like, e.g., the movie area) is represented in the domain theory Πdom . It includes

ontological knowledge and further background knowledge, permitting (modest)

common-sense reasoning. The ontology is assumed to have concepts (classes),

attributes, and instance and subconcept information, which are provided via

class(O), class att(C,A), instance(O,C), and is a(C1, C2) predicates, respectively.

Furthermore, it is assumed to have information about concept synonyms, provided

via predicate synonym(C1, C2). The ontology may be partly established using meta-

information about the data in the information sources (e.g., an XML DTD), and

with ontology rules. Since ontological reasoning is orthogonal to our approach,

we do not consider it here and refer to Eiter et al. (2003) for a further elaboration.

Source-selection program (Πsel, <u): The information source selection is specified by

rules and constraints, which refer to predicates defined in the above programs. It

comprises both qualitative aspects and quantitative aspects in terms of optimization

A knowledge-based approach for selecting information sources 259

criteria (concerning, e.g., cost or response time), which are expressed using weak

constraints (Buccafurri et al. 2000). Furthermore, the user can define preferences

between rules, in terms of a strict partial order, <u. These preferences are combined

with implicit priorities that emerge from the context in which source selection rules

should be applied, and possible preference conflicts are resolved.

Given a query Q, the overall evaluation relative to S, then, proceeds in three

steps:

Step 1 (query description): The input query Q is parsed and mapped into the internal

query representation, R(Q), which is extended using Πqa and Ont to the full query

description.

Step 2 (qualitative selection): From R(Q), Πqa , Πsd , and Πdom , the qualitative part

of Πsel is used to single out different query options by respecting qualitative

aspects only, where explicit preferences, <u, and implicit priorities must be taken

into account. To this end, a priority relation < is computed on rules, which is then

used in a prioritized logic program (ΠQ , <). Candidate solutions are computed as

preferred answer sets of (ΠQ , <).

Step 3 (optimization): Among the candidates of Step 2, the one is chosen which is

best under the quantitative aspects of Πsel , and the selected source is output.

4 Query description

An integral feature of our approach is a meaningful description of a given formal

query expression Q in an internal format. For our purposes, we need a suitable

representation of the constituents of Q in terms of predicates and objects. Simply

mapping Q (which is represented as a string) to logical facts which encode its

syntax tree (i.e., the external format) does not serve our purposes. Rather, we need

a meta-level description which provides “interesting” information about Q, such as

occurrence of an attribute or a value in Q, related to the scope of appearance.

For example, in the query of Example 1, the value “Hitchcock” occurs in a selection

on the attribute LastName reached by the reference path Personalia/LastName from

Director . In the internal query representation, this selection will be represented by the

fact selects(o3, equal , “Hitchcock”), where o3 is an internal name for the full reference

path “Movie/Director/Personalia/LastName” (i.e., the reference path from the root),

and by a fact cref (o3, “Director”, “Personalia/LastName”, q1), where q1 is an internal

identifier for the query. Also, a fact occurs(o3, “Hitchcock”) will be present that less

specifically states that “Hitchcock” is associated with this reference path.

The general format of these three predicates, which play a vital part in our

architecture, is as follows:

• cref (O,C, P , Q) states that within the full reference path O in the syntax tree

for query Q, the path from C to the leaf is P ;5

5 Note that Eiter et al. (2003) and Fink (2002) name this predicate access , and reference paths are called
access paths.

260 Thomas Eiter et al.

• occurs(O,V) states that the value V is associated with the full reference path

O in the overall query; and

• selects(O,R, V) is similar to occurs , but details the association with a compar-

ison operator R.

In accord to the syntactical units of XML-QL, in our query-analysis method we

adopt the general view in which a query expression consists of a where part, a source

part, and a construct part. For the description of Q, we employ facts on designated

predicates, which are independent of a fixed query language. These facts are divided

into two groups, which we refer to as parser facts and derived facts, respectively.

4.1 Parser facts

The first group of facts, denoted R(Q), is generated by a query parser, and is regarded

as a “low-level” part of the query representation. The query parser scans the query

string Q for extracting “interesting” information, and assembles information about

structural information (such as about subqueries, and in which of them a reference

to a certain attribute is made). The main purpose of R(Q) is to filter and reduce the

information which is present in the syntax tree of Q, and to assemble it into suitable

facts. For that, the parser must introduce identifiers (names) for queries, subqueries,

and other query constituents—in particular, references to items (i.e., attributes or

concepts), which in a query are selected or compared to values or other items. Every

item reference is given by a maximal reference path in Q, which we call an item

reference path (IRP). The parser names each occurrence of an IRP with a unique

constant (note that the same IRP may have multiple occurrences in Q).

Example 4

In Example 1, the query is named q1. It has a subquery in the construct <MovieList>

part, identified by q2. There are three IRPs, namely

“Movie/Title”,

“Movie/Director/Personalia/FirstName”, and

“Movie/Director/Personalia/LastName”.

Their identifiers are o1, o2, and o3, respectively.

4.2 Derived facts

The second group of facts are those which are derived from R(Q) by means of a

further analysis. Compared to R(Q), these facts can be regarded as a “high-level”

description of the query. In particular, for the attribute or concept at the end of

an IRP, the contexts of reference are determined, which are the suffixes of the

IRP starting at some concept (as known from the underlying ontology). Intuitively,

instances of this concept have the referenced item as a (nested) attribute. Detaching

the leading concept from the suffix results in the notion of a context-reference pair,

defined as follows:

Definition 1

A pair (C, P), where C is a concept from the ontology and P is a path, is a

context-reference pair (CRP) of a query Q if Q contains an IRP with suffix “C/P”.

A knowledge-based approach for selecting information sources 261

Example 5

Continuing Example 1, assume that the concepts MovieDB, Movie, Director, and

Person are in the ontology, and it is known that “Personalia” is a synonym of

“Person” in the ontology. Then, from the IRP o1 = “Movie/Title”, the CRPs

(“MovieDB”, “Movie/Title”) and (“Movie”, “Title”)

are determined, and from the IRP o2 = “Movie/Director/Personalia/LastName”,

the CRPs

(“MovieDB”, “Movie/Director/Personalia/FirstName”),

(“Movie”, “Director/Personalia/FirstName”),

(“Director”, “Personalia/FirstName”), and

(“Personalia”, “FirstName”)

are obtained.

The high-level description facts are computed declaratively by evaluating a query-

analysis logic program, Πqa , to which the facts R(Q) and further facts Ont, which

provide ontological knowledge about concepts and synonyms from the domain

theory, are added as “input”. Furthermore, the program enriches the low-level

predicate subpath by synonym information and closing subpath transitively. In

summary, the query description is given by the (unique) answer set of the logic

program Ont ∪Πqa ∪ R(Q).

A detailed list of all query-description predicates, as well as the complete query-

analysis program, can be found in Appendix B.

5 Source description

Besides query information and domain knowledge, the source-selection process

requires a suitable description of the information sources to select from. This is

provided by means of meta-knowledge represented in the source-description part

of the knowledge base, given in the form of a (simple) logic program, Πsd , which

is assumed to have a unique answer set. Different predicates can be used for this

purpose, depending on the specific application. In the following, we introduce, in an

exemplary fashion, a basic suite of predefined source-description predicates, which

cover several aspects of an information source:

(i) Thematic aspects:

• accurate(S, T , V): source S , topic T , value V ;

• covers(S, T , V): source S , topic T , value V ;

• specialized (S, T): source S , topic T ;

• relevant (S, T): source S , topic T .

The first two predicates express the accuracy and coverage of a source for

a topic, using values from {low ,med , high}. The others are for stating that a

source is specialized or relevant for a particular topic, respectively.

(ii) Cost aspects:

• avg download time(S, V): source S , value V ;

262 Thomas Eiter et al.

• avg down time(S, V): source S , value V ;

• charge(S, V): source S , value V .

Costs for accessing an information source can be expressed by these predicates,

again using values low , med , high , and, for charge, also no. While charge is

used for direct costs, avg download time and avg down time are indirect costs

(taking network traffic into account).

(iii) Technical aspects:

• source type(S, T1, T2): source S , organizational type T1, query type T2;

• source language(S, L): source S , language L;

• data format(S, F): source S , format F;

• update frequency(S, V): source S , value V ;

• last update(S, D): source S , date D;

• reliable(S, V): source S , value V ;

• source(S): source S;

• up(S): source S .

Different kinds of sources are distinguished by their type of organization

(commercial or public) and by the type of data access provided (queryable,

downloadable, or both). Besides source language and data format (XML,

relational, HTML, text, or other), the frequency of data update (low, medium,

or high), the date of the last update, or the reliability of a source (low, medium,

or high) may be criteria for source selection. Finally, source and up are used to

identify sources and to express that a source is currently accessible, respectively.

As already pointed out, the above predicates are just a rudiment of a vocabulary

for source description, and we are far from claiming that they capture all aspects

or that they capture each one in sufficient detail or granularity (like, e.g., the three-

valued scale used). However, the user or administrator has the possibility to introduce

further predicates and define them in the source-description program Πsd . Note that

Πsd can take advantage of default rules to handle incomplete information, e.g., that

a source is accessible by default, or that the language of text items is English.

We assume here furthermore that detailed source descriptions are edited by an

administrator of an overall information system hosting the considered selection

process. This does not preclude that a preliminary or partial description is created

automatically, addressing aspects such as source language, type, data format, etc.,

nor that the information system is open for new sources entering it, advertising their

description to a source registration. However, a number of aspects for selection, such

as coverage, specialization, or relevance, might be difficult to assess automatically

and require experience gained from interaction with a source like in real-life

scenarios (think of different travel agencies offering flights, for instance). Here,

the administrator might bring in such knowledge initially, and the description might

be updated in accord to new information obtained, e.g., by performance monitoring

and user feedback. For updating an employed description, approaches such as those

discussed by Alferes et al. (2002) or Eiter et al. (2002a) may be applied. In general,

however, this is a complex and interesting issue, but is beyond the scope of this

paper.

A knowledge-based approach for selecting information sources 263

In concluding, we remark that the proviso that Πsd possesses a unique answer set

can be ensured, e.g., by requiring (local) stratification of Πsd , or by the condition

that its well-founded model is total. In principle, the case of multiple answer sets of

Πsd could be admitted as well, which would give rise to different scenarios that could

be handled in different ways; e.g., adhering to a credulous or skeptical reasoning

principle, according to which the different scenarios are considered en par or such

that only selections in all scenarios are retained, or to a preference-based approach

which discriminates between the different scenarios. However, we do not elaborate

further on this issue.

6 Source selection

We now introduce the central part of our architecture, viz. source-selection programs.

Basically, a source-selection program is a prioritized logic program (Πsel , <u) having

four parts: (i) a core unit Πc
sel , containing the actual source-selection rules, (ii) a set

Πaux
sel of auxiliary rules, (iii) an order relation <u defined over members of Πc

sel , and

(iv) an optimization part Πo
sel , containing weak constraints.

6.1 Syntax

We first make the vocabulary of source-selection programs formally precise.

Definition 2

A source-selection vocabulary, Asel , consists of the following pairwise disjoint cat-

egories:

(i) function-free vocabularies Aqd , Asd , and Adom , referred to as the query-

description vocabulary, the source-description vocabulary, and the domain-theory

vocabulary of Asel , respectively, where Aqd and Asd contain the predicates

introduced in Section 4 and 5;

(ii) the predicate query source(S, Q), expressing that source S is selected for evalu-

ating query Q;

(iii) the predicates default class(O,C,Q) and default path(O, P , Q); and

(iv) a set Aaux of auxiliary predicates.

Informally, the predicates default class(O,C,Q) and default path(O, P , Q) are

projections of cref (O,C, P , Q) and serve to specify a default status for selection

rules depending on context-reference pairs matched in the query Q. For example,

a predicate default class(O, “Person”, Q) in the body of rule r expresses that r is

eligible in case the concept Person occurs in the reference path O and there is no

other rule r′ that refers to some CRP (C ′, P ′) matched in Q. These defaults are

semantically realized using a suitable rule ordering.

The set of all literals over atoms in A�, for � ∈ {qd , sd , dom , aux , sel}, is denoted

by Lit�.

264 Thomas Eiter et al.

Definition 3

Let Asel be a source-selection vocabulary. A source-selection program over Asel is a

tuple (Πsel , <u), where

(i) Πsel is a collection of rules over Asel consisting of the following parts:

(a) the core unit, Πc
sel , containing rules of form

query source(S, Q)← L1, . . . , Lm, not Lm+1, . . . , not Ln,

(b) a set Πaux
sel of auxiliary rules of form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln,

and

(c) an optimization part, Πo
sel , containing weak constraints of form

⇐ L1, . . . , Lm, not Lm+1, . . . , not Ln [w : l],

where L0 is either a literal from Litaux or is of form ¬query source(·, ·), Li ∈ Litsel
for 1 � i � n, and w, l � 1 are integers, and

(ii) <u is a strict partial order between rules in Πc
sel .

The elements of <u are called user-defined preferences. If r1 <u r2, then r2 is said

to have preference over r1.

The rules in the core unit Πc
sel serve for selecting a source, based on information

from the domain description, the source description, the query description, and

possibly from auxiliary rules. The latter may be used, e.g., for evaluating complex

conditions. In terms of <u, preference of source selection can be expressed. As

well, the weak constraints in Πo
sel are used to filter answer sets under quantitative

conditions.

By assembling all constituents for source selection into a single compound, we

arrive at the notion of a selection base, as informally described in Section 3.

Definition 4

Let Asel be a source-selection vocabulary. A selection base over Asel is a quintuple

S = (Πqa ,Πsd ,Πdom ,Πsel , <u), consisting of the query-analysis program Πqa over

Aqd , programs Πsd and Πdom overAsd andAdom , respectively, and a source-selection

program (Πsel , <u) over Asel .

Given that the components Πqa , Πsd , and Πdom are understood, the source-

selection program (Πsel , <u) in a selection base S is the most interesting part, and

S might be referred to just by this program. Furthermore, we assume in what

follows that the source-selection vocabulary Asel contains only those constants

actually appearing in the elements of a selection base over Asel . Thus, we usually

leave Asel implicit.

Example 6

Consider a simple source-selection program, (Πsel , <u), for our movie domain,

consisting of the following constituents:

A knowledge-based approach for selecting information sources 265

• Source-selection rules:

r1 : query source(s2, Q) ← default class(O, “Person”, Q);

r2 : query source(s1, Q) ← selects(O, equal , “Hitchcock”),

cref (O, “Director”, “Personalia/

LastName”, Q);

r3 : query source(S, Q) ← default path(O, “LastName”, Q),

default class(O,T ,Q), accurate(S, T , high).

• Auxiliary rules:

r4 : high acc(T ,Q) ← cref (O,T , P , Q), accurate(S, T , high);

r5 : high cov (T ,Q) ← cref (O,T , P , Q), covers(S, T , high).

• Optimization constraints:

c1 : ⇐ query source(S, Q), high acc(T ,Q),

not accurate(S, T , high) [10 : 1];

c2 : ⇐ query source(S, Q), high cov (T ,Q), not covers(S, T , high) [5 : 1].

• User preferences:

r1(Q,) <u r3(Q, , ,).

Intuitively, r1 advises to choose source s2 if the query involves persons and no

more specific rule is eligible. Rule r2 states to choose source s1 if the query contains

an explicit select on the movie director Hitchcock. Rule r3 demands to choose a

source if, on some query reference path, “LastName” is accessed under some concept

T (with arbitrary intermediate reference path), and the source is highly accurate for

T . Rules r4 and r5 define auxiliary predicates which hold on concepts T appearing

in the query such that some source with high accuracy and coverage for T exists.

The weak constraints c1 and c2 state penalties for choosing a source that does

not have high accuracy (assigning weight 10) or coverage (assigning weight 5) for

a concept in the query while such a source exists. Finally, r1(Q,) <u r3(Q, , ,)

expresses preference of instances of r3 over r1 on the same query.

6.2 Semantics

The semantics of a source-selection program (Πsel , <u) in a selection base S = (Πqa ,

Πdom ,Πsd ,Πsel , <u) on a query Q is given by means of a selection answer set of

(Πsel , <u), which is defined as a preferred answer set of a prioritized ELP E(S, Q)

associated with S and Q. The program E(S, Q) is of the form (ΠQ , <), where

program ΠQ contains ground instances of rules and constraints in Πsel , and further

rules ensuring that a single source is selected per query and rules defining the default-

context predicates. The order relation < is formed from the user preferences <u

and the implicit priorities derived from context references in the core unit and from

auxiliary rules. Thereby, preference information must be suitably combined, as well

266 Thomas Eiter et al.

as arising conflicts resolved, which we do by means of a cautious conflict-elimination

policy.

We commence the formal details with the following notation: For any rule

r = H(r) ← B(r), its defaultization, r∆, is given by H(r) ← B(r), not ¬H(r).6 We

assume that user-defined preferences between rules carry over to their defaultizations.

Definition 5

Let S = (Πqa ,Πsd , Πdom ,Πsel , <u) be a selection base and Q a query. Then, the

program ΠQ contains all ground instances of the rules and constraints in Πaux
sel ∪Πo

sel ,

as well as all ground instances of the following rules:

(i) the defaultization r∆ of r, for each r ∈ Πc
sel ;

(ii) the structural rule

¬query source(S, Q)← query source(S ′, Q), S �= S ′; (3)

and

(iii) the default-context rules

default class(O,C,Q) ← cref (O,C, , Q),

default path(O, P , Q) ← cref (O, , P , Q).

Intuitively, the defaultization makes the selection rules in Πsel defeasible with

respect to the predicate query source, the structural rule enforces that only one

source is selected, and the default-context rules define the two default predicates.

Since our language has no function symbols, ΠQ is finite, and its size depends on

the constants appearing in Πqa , R(Q), Πsd , and Πdom .

Definition 6

For S = (Πqa ,Πsd , Πdom ,Πsel , <u) and query Q, we call any answer set of Πqa ∪
R(Q) ∪Πsd ∪Πdom a selection input of S for Q. The set of all selection inputs of S
for Q is denoted by Sel (S, Q). For Y ∈ Sel (S, Q), we define

Ydef = Y ∪ {default class(o, c, q), default path(o, p, q) | cref (o, c, p, q) ∈ Y }.

Note that, in general, a selection base may admit multiple selection inputs for a

query Q. However, in many cases, there may exist only a single selection input—

in particular, if the source description Πsd and the domain knowledge Πdom have

unique answer sets. In our framework, this is ensured if, e.g., these components are

represented by (locally) stratified programs.

Definition 7

Given a selection base S = (Πqa ,Πsd , Πdom ,Πsel , <u) and a query Q, a rule r ∈ ΠQ

is relevant for Q iff there is some Y ∈ Sel (S, Q) such that B†(r) is true in Ydef , where

B†(r) results from B(r) by deleting each element which does not contain a predicate

symbol from Aqd ∪Asd ∪Adom ∪ {default class , default path}.

In the sequel, we denote for any binary relation R its transitive closure by R∗.

6 Defaultization is also known in the literature as the extended version of a rule (Kowalski and Sadri
1990; Van Nieuwenborgh and Vermeir 2002).

A knowledge-based approach for selecting information sources 267

We continue with the construction of the preference relation <, used for inter-

preting a source-selection program (Πsel , <u) relative to a selection base S and a

query Q in terms of an associated prioritized logic program (ΠQ , <).

Informally, the specification of < depends on the following auxiliary relations:

• the preference relation �c, taking care of implicit context priorities;

• the intermediate relation �, representing a direct combination of user-defined

preferences with context preferences; and

• the preference relation <′, removing possible conflicts within the joined relation

� and ensuring transitivity of the resultant order <.

More specifically, the relation�c is the first step towards <, transforming structural

context information into explicit preferences, in virtue of the following specificity

conditions:

• default contexts for concepts are assumed to be more specific than default

contexts for attributes;

• context references are more specific than default contexts; and

• with respect to the same IRP, rules with a larger CRP (C, P) are considered

more specific than rules with a shorter CRP (C ′, P ′) (i.e., where P ′ is a subpath

of P).

The second step in the construction of < is the relation �, which is just the union

of the user preferences <u and the context priorities �c. In general, this will not

be a strict partial order. To enforce irreflexivity, we remove all tuples nr1 � nr2 lying

on a cycle, resulting in <′. Finally, taking the transitive closure of <′ yields <. The

formal definition of relation < is as follows.

Definition 8

Let S be a selection base, Q a query, and ΠQ as in Definition 5. For r1, r2 ∈ ΠQ ,

define

(i) r1 �c r2 iff r1 and r2 are relevant for Q, r1 �= r2, and one of (O1)–(O3) holds:

(O1) default path(o1, p1, q) ∈ B(r1), and either cref (o2, t2, p2, q) ∈ B(r2) or

default class(o2, t2, q) ∈ B(r2),

(O2) default class(o1, t1, q) ∈ B(r1) and cref (o2, t2, p2, q) ∈ B(r2),

(O3) cref (o, t1, p1, q) ∈ B(r1), cref (o, t2, p2, q) ∈ B(r2), and t1/p1 is a subpath of

t2/p2,

(ii) r1 � r2 iff r1 <u r2 and r1 and r2 are relevant for Q, or r1 �c r2, and

(iii) r1 <
′ r2 iff r1 � r2 but not r2 �∗ r1.

Then, the relation < is given as the transitive closure of <′.

Example 7

Reconsider (Πsel , <u) from Example 6. Suppose the domain ontology contains

the concepts “MovieDB”, “Actor”, “Movie”, “Director”, and “Person”, and that

“Personalia” and “Person” are synonymous. Assume further that the query of

Example 1 (represented by q1) has a unique selection input Y , containing the

source-description facts

accurate(s1, “Director”, high), covers(s2, “Person”, high), and reliable(s3, low),

268 Thomas Eiter et al.

together with the following facts resulting from the query description and the

default-context rules:

cref (o2, “Person”, “FirstName”, q1),

cref (o2, “Director”, “Personalia/FirstName”, q1),

cref (o3, “Person”, “LastName”, q1),

cref (o3, “Director”, “Personalia/LastName”, q1),

selects(o3, equal , “Hitchcock”),

default class(o2, “Person”, q1),

default class(o3, “Person”, q1),

default class(o3, “Director”, q1),

default path(o3, “LastName”, q1).

These elements are exactly those contributing to relevant instances of ΠQ . The

relevant instances of r1, r2, and r3 are given by the ground rules r1(q1, o2), r1(q1, o3),

r2(q1, o3), and r3(q1, s1, o3, “D”).7 Intuitively, we expect r2(q1, o3) to have highest

priority among these rule instances, since the bodies of the instances of r1 and

r3 contain default predicates while r2 references a specific context. Actually, the

order relation < includes, for the relevant instances of r1, r2, and r3, the pairs

r1(q1, o2) < r2(q1, o3), r1(q1, o3) < r2(q1, o3), and r3(q1, s1, o3, “D”) < r2(q1, o3).

Note that both r4 and r5 have two relevant instances. However, they do not

influence the above rule ordering. Informally, they are either unrelated to or “ranked

between” r2(q1, o3) and the relevant instances of r1 and r3 (since the cref predicates

of r4 and r5 refer to the same context as the context referenced in the body of r2,

or to a subpath of such a context). Hence, the relevant instance of r2 has highest

priority.

As for r1 and r3, the auxiliary relation � contains two further structural priorities,

namely r3(q1, s1, o3, “D”) �c r1(q1, o2) and r3(q1, s1, o3, “D”) �c r1(q1, o3). They are

in conflict with the user preferences r1(q1, o2) <u r3(q1, s1, o3, “D”) and r1(q1, o3) <u

r3(q1, s1, o3, “D”), respectively. This is resolved in the resultant relation < by removing

these preferences.

Note that, in Definition 8, the final order < enforces a cautious conflict resolution

strategy, in the sense that it remains “agnostic” with respect to priority information

causing conflicts. Alternative definitions of <′, such as removal of a minimal cutset

eliminating all cycles in �, may be considered as well; however, this may lead to

a nondeterministic choice since, in general, multiple such cutsets exist. Different

choices lead to different orders <, which may lead to different results of the source-

selection program. Thus, unless a well-defined specific minimal cutset is singled out,

by virtue of preference conflicts, the result of the source-selection process might not

be deterministic. Furthermore, an extended logic program component computing a

final order based on minimal cutsets is more involved than a component computing

the relations in Definition 8.

7 For brevity, we write here and in the remainder of this example “D” for “Director”.

A knowledge-based approach for selecting information sources 269

Combining Definitions 5 and 8, we obtain the translation E(·, ·) as follows:

Definition 9

Let S be a selection base and Q a query. Then, the evaluation E(S, Q) of S with

respect to Q is given by the prioritized logic program (ΠQ , <), where ΠQ and < are

as in Definitions 5 and 8, respectively.

Selection answer sets of source-selection programs are then obtained as follows:

Definition 10

Let S = (Πqa ,Πsd , Πdom ,Πsel , <u) be a selection base, Q a query, and E(S, Q) =

(ΠQ , <) the evaluation of S with respect to Q. Then, X ⊆ Litsel is a selection

answer set of (Πsel , <u) for Q with respect to S iff X is a preferred answer set of the

prioritized logic program (ΠQ ∪ Y ,<), for some Y ∈ Sel (S, Q).

A source s is selected for Q iff query source(s, q) belongs to some selection answer

set of (Πsel , <u) for Q (with respect to S), where the constant q represents Q.

Example 8

In our running example, (Πsel , <u) has a unique selection answer set X with respect

to S for query q1 from Example 6. It contains query source(s1, q1), which is derived

from the core rule r2(q1, o3), having the highest priority among the applicable rules

leading to a single preferred answer set for the weak-constraint free part of Πsel . If

we replace, e.g., r1 by the rule

query source(s2, Q)← cref (O, “Person”, P , Q)

and adapt the corresponding user preference to r1(Q, ,) <u r3(Q, , ,), then

the weak-constraint free part of Πsel has two preferred answer sets: one, X1, is

identical to X (where applying r2(q1, o3) is preferred to applying r1(q1, o3), given that

r1(q1, o3)<r2(q1, o3)); in the other answer set, X2, the rule r1(q1, o2) is applied and

query source(s2, q1) is derived. Informally, the replacement removes the preference

of r2(q1, o3) over r1(q1, o2), since the corresponding cref predicates refer to different

contexts (“. . . /FirstName” and “. . . /LastName”, respectively). Thus, r1(q1, o2) has

maximal preference like r2(q1, o3).

Given that X1 has weight 5, caused by violation of c2(s1, q1, “Person”), but X2 has

weight 10, caused by violation of c1(s2, q1, “Director”), X1 is the selection answer set

of (Πsel , <u) for Q.

6.3 Properties

In this section, we discuss some basic properties of our framework.

The first property links our evaluation method of source-selection programs to

the usual semantics of prioritized logic programs. For this purpose, we introduce the

following concept: Given logic programs Π1 and Π2, we say that Π1 is independent

of Π2 iff each predicate symbol occurring in some rule head of Π2 does not occur

in Π1. Intuitively, if Π1 is independent of Π2, then Π1 may serve as an “input” for

Π2. This idea is made precise by the following proposition, which is an immediate

consequence of results due to Eiter et al. (1997) and Lifschitz and Turner (1994):

270 Thomas Eiter et al.

Proposition 1

Let Π1 and Π2 be two extended logic programs, possibly containing weak constraints,

and let X be a set of ground literals. If Π1 is independent of Π2, then X is an

answer set of Π1∪Π2 iff there is some answer set Y of Π1 such that X is an answer

set of Π2 ∪ Y .

Now, taking the specific structure of our source-selection architecture into account,

we obtain the following characterization.

Theorem 1

Suppose S = (Πqa ,Πsd ,Πdom ,Πsel , <u) is a selection base and Q a query. Let

E(S, Q) = (ΠQ,<) and ΠS(Q) = Πqa ∪ R(Q) ∪ Πdom ∪ Πsd ∪ ΠQ. Then, X is a

selection answer set of (Πsel , <u) for Q with respect to S iff X is a preferred answer

set of (ΠS(Q), <).

Proof

Let Π0 denote the program Πqa ∪ R(Q) ∪ Πsd ∪ Πdom . Recall that X is a selection

answer set of (Πsel , <u) for Q with respect to S iff X is a preferred answer set of

(ΠQ ∪ Y ,<), for some answer set Y of Π0. Since the predicate symbols occurring

in the heads of rules in a source-selection program do not occur in rules from the

query description, the source description, or the domain theory, we obviously have

that Π0 is independent of ΠQ. Moreover, it holds that X is a preferred answer set

of (ΠQ ∪Y ,<) only if X is an answer set of ΠQ ∪Y . Hence, applying Proposition 1,

we have that X is an answer set of ΠQ ∪ Y , for some answer set Y of Π0, iff X is

an answer set of ΠQ ∪Π0. From this, the assertion of the theorem is an immediate

consequence. �

We remark that from a logic programming point of view, Theorem 1 might seem

to be a more natural definition of selection answer sets. However, our approach is

motivated by providing a high-level means for specifying source-selection problems,

which is accomplished by decomposition. Note, in particular, that a user will only

need to specify the relation <u as opposed to <. Hence, the property of Theorem 1

shall rather be understood as a possibility to “compile” a selection base and selection

inputs with respect to a query into a single logic program.

Strengthening Theorem 1, the construction of E(S, Q) can itself be realized in

terms of a single logic program of the form ΠS(Q) ∪ Πobj (Q) over an extended

vocabulary, by describing preference relations directly at the object level, such that

each answer set encodes the priority relation < and is a preferred answer set of

(ΠS(Q) ∪Πobj (Q), <) if and only if its restriction to Litsel is a selection answer set

of (Πsel , <u) for Q with respect to S. More details about this property are given

in Appendix D.

Concerning the computational complexity of source selection, we note that, given

a query Q and the grounding of the program ΠS(Q) for a selection base S as

in Theorem 1, deciding whether (Πsel , <u) has some selection answer set for Q is

NP-complete (since the grounding of Πobj (Q) can be constructed in polynomial time

from the grounding of ΠS(Q)), and computing any such selection answer set is

complete for FPNP, which is the class of all problems solvable in polynomial time

A knowledge-based approach for selecting information sources 271

with an NP oracle. However, for a fixed selection base and small query size (which is

a common assumption for databases), the problems are solvable in polynomial time

(cf. again Appendix D for more details about the complexity of source-selection

programs).

One of the desiderata of our approach is that each answer set selects at most

one source, for any query Q. The following result states that this property is indeed

fulfilled.

Theorem 2

Let X be a selection answer set of (Πsel , <u) for query Q with respect to S. Then,

for any constant q, it holds that

|{s | query source(s, q) ∈ X}| � 1.

Proof

The presence of the structural rule (3) in the evaluation program ΠQ enforces that,

whenever X contains two ground atoms query source(s, q) and query source(s′, q),

X must be inconsistent, and thus X violates the consistency criterion of answer

sets. �

Lastly, the following result concerns the order of application of source-selection

rules, stating that source selection is blocked in terms of priorities as desired.

Theorem 3

Let X be a selection answer set of (Πsel , <u) for query Q with respect to S, and let

r∆ ∈ ΠQ be the defaultization of some rule r belonging to the grounding of Πc
sel for

Q with respect to S. Suppose that B(r) is true in X but H(r) /∈ X. Then, there is

some r′ ∈ ΠQ such that

(i) either r′ belongs to the grounding of Πaux
sel for Q with respect to S and

H(r′) = ¬H(r), or r′ is the defaultization of a rule from the grounding of Πc
sel

for Q with respect to S,

(ii) B(r′) and H(r′) are true in X, and

(iii) either r∆ and r′ are incompatible with respect to <, or else r∆ < r′ holds.

Proof

Given that X is a selection answer set of (Πsel , <u) for query Q with respect toS, we

have that X is a preferred answer set of the prioritized logic program (ΠQ ∪ Y ,<),

where Y is some selection input of S for query Q, and, a fortiori, that X is an

answer set of ΠQ ∪ Y . From the latter and the hypothesis that H(r) /∈ X, it follows

that r∆ = H(r) ← B(r), not ¬H(r) is not a member of GR(X,ΠQ ∪ Y). Hence, in

view of the assumption that B(r) is true in X, we get that ¬H(r) ∈ X must hold.

Since X is a preferred answer set of (ΠQ ∪ Y ,<), there is some enumeration

〈ri〉i∈I of GR(X,ΠQ ∪ Y) such that Conditions (P1)–(P3) hold (cf. Section 2). We

take r′ = r�, where � is as follows. Given that ¬H(r) ∈ X, there is a smallest index

i0 ∈ I such that ri0 ∈ GR(X,ΠQ ∪ Y) and H(ri0) = ¬H(r). If ri0 belongs to the

grounding of Πaux
sel for Q with respect to S, then � = i0. Otherwise, by the syntactic

272 Thomas Eiter et al.

form of a source-selection program, ri0 must be an instance of the structural rule (3).

By (P1)–(P3), the defaultization r̄ of a rule from the grounding of Πc
sel for Q with

respect to S must exist such that r̄ = rj0 ∈ GR(X,ΠQ ∪ Y) and j0 < i0. In this case,

� = j0.

We show that r′ satisfies Conditions (i)–(iii). Clearly, Condition (i) is satisfied.

Furthermore, Condition (ii) is an immediate consequence of the fact that r′ ∈
GR(X,ΠQ ∪ Y). It remains to show that Condition (iii) holds.

Towards a contradiction, assume that r′ < r∆. Since r′ ∈ GR(X,ΠQ ∪ Y) and

r∆ /∈ GR(X,ΠQ ∪ Y), from Condition (P3) we get that B−(r∆) ∩ {H(rk) | k < �} �= ∅,
as B+(r) ⊆ X and B+(r∆) = B+(r). Now, obviously {H(rk) | k < �} ⊆ X. Moreover,

since B−(r)∩X = ∅ and B−(r∆) = B−(r)∪{¬H(r)}, we obtain that ¬H(r) ∈ {H(rk) |
k < �}. Hence, there must be some k0 < � such that rk0

∈ GR(X,ΠQ ∪ Y) and

H(rk0
) = ¬H(r). But this contradicts the condition that i0 (� �) is the smallest index

i such that ri ∈ GR(X,ΠQ ∪ Y) and H(ri) = ¬H(r). Hence, we either have that r′

and r∆ are incompatible with respect to < , or r∆ < r′ must hold. �

6.4 Extended source selection

The semantics of source-selection programs we defined so far aims at selecting at

most one source. We can easily modify this definition, however, to accommodate

also the selection of multiple sources at a time. To this end, we only have to modify

the structural rule (3) in Definition 5 appropriately.

For example, using language elements provided by the DLV system (Leone et al.

2006; Faber et al. 2004), the simultaneous selection of up to a given number k of

sources can be accomplished by replacing (3) with the following rules:

false ← not false, query(Q), max sources(K),

#count{S ′ : query source(S ′, Q)} > K,

¬query source(S, Q) ← source(S), query(Q), max sources(K),

1 <= #count{S ′ : query source(S ′, Q)} <= K,

not query source(S, Q),

where max sources(K) holds for K = k. Here, #count{S ′ : query source(S ′, Q)} is

an aggregate expression which singles out the number of all sources S ′ for which

an instance of query source(S ′, Q) is in the answer set, and “<” and “<=” are

comparison built-ins. This modification can also be expressed with (ordinary) ELPs

as introduced in Section 2, but is more involved then.

The setting of selecting a “best” source with a single selection result can be easily

generalized to a setting with multiple, ranked selection results—in particular, to the

computation of all outcomes with a cost valuation within a given distance d to a

given value, as well as to the computation of the k best outcomes, for a given integer

k, akin to range queries and k-nearest neighbor queries, respectively, in information

retrieval. Such ranked computations can be orthogonally combined with the type of

selection outcome (i.e., single source vs. up to a number of sources). Furthermore,

they can be easily accomplished using the features of the underlying DLV system.

A knowledge-based approach for selecting information sources 273

Query

(XML−QL)

User

Agent

(XML−QL)
Query Information Agent

Capability
Source−Selection

Source 3
XML

Source 1
XML

XML
Wrapper

Source 2

Fig. 2. Architecture of a simple agent-based source-selection system.

7 Implementation and application

7.1 Implementation

We have implemented our source-selection approach on top of the DLV system

(Leone et al. 2006) and its front-end plp (Delgrande et al. 2001) for prioritized logic

programs.8 The evaluation of source-selection programs proceeds in three steps:

(i) the set of all selection inputs for a query Q is computed from R(Q), Πqa, Πsd,

and Πdom, using DLV (cf. Theorem 4 in Appendix D); (ii) a call to DLV calculates

the priority relation < from the set of selection inputs and Πsel; and (iii) the answer

sets of (ΠQ,<) are determined by employing plp and DLV. Note that this three-step

approach might appear to be overly complex, given that computing a selection

answer set is feasible in polynomial time with an NP oracle (see Section 6.3 and

Theorem 5 in Appendix D), and one might wonder why DLV (which can handle

ΣP
2 -complete problems) is called several times. The reason for proceeding in this

fashion is that it actually greatly improves the performance since, due to built-in

optimization techniques of DLV, groundings can be kept smaller.

The entire process is implemented as an ECLiPSe Prolog program, which served

as a rapid prototyping language, and is independent of the actual query language.

For XML-QL queries, however, a query parser, written in C++, for generating the

low-level representation R(Q) of a query Q has been developed. A query parser

for SQL queries is also available (Schindlauer 2002) and further languages can be

deployed in the same way.

We have also “agentized” the source-selection system using the IMPACT agent

platform (Subrahmanian et al. 2000), enabling the realization of source-selection

agents which may also issue the execution of XML-QL queries on XML data

sources. A generic agent-based source-selection setup, as implemented in IMPACT,

is shown in Figure 2. Data are stored in XML databases, and queries are posed in

an XML query-language such as XML-QL. Some of the databases may be wrapped

from non-XML data sources. A query is handed over to an information agent, which

has to pick one of several databases that comply with the same (universal) schema

to answer the query.

The architecture in Figure 2 is only one of several possible agent-based architec-

tures; others may be as follows:

• there may be multiple information agents in a system, avoiding a centralization

bottleneck;

8 Details about DLV and plp can also be found at http://www.dlvsystem.com and http://
www.cs.uni-potsdam.de/ torsten/plp, respectively.

274 Thomas Eiter et al.

• the source-selection capability may be realized not in terms of a special

source-selection agent, but being part of a more powerful mediator agent; or

• the sources may be accessed through specialized wrapper agents, which control

access and might refuse requests.

7.2 An application for movie databases

As an application domain, we considered the area of movie databases, and we have

built an experimental environment for source selection in this domain, using the

prototype implementation described above.

7.2.1 Movie sources

We used the Internet Movie Database (IMDb) as the main source for raw data, as

well as the EachMovie Database provided by Compaq Computer Corporation,9 to

generate a suite of XML movie databases. To this end, (parts of) the large databases

were wrapped offline to XML, using a DTD (provided in Appendix A) which we

modeled from a set of relevant movie concepts captured by the Open Directory

Project.10 The XML databases we constructed are the following:

RandomMovies (RM): This source contains data about numerous movies, ran-

domly wrapped from the IMDb. Besides title and language information (always

having value “English”), each item comprises, where available, entries containing

genre classification, the release date, the running time, review ratings, the names

of the two main actors, directors, and screenwriters, as well as details about the

soundtrack (listing, in some cases, the name of the composer of the soundtrack).

RandomPersons (RP): Like RM, RandomPersons is derived from the IMDb, con-

taining randomly wrapped data about numerous actors, directors, screenwriters,

and some composers. Besides names, person data comprise the date and country

of birth, and a biography, and may, as for RM, again be incomplete.

EachMovie (EM): Wrapped from Compaq’s EachMovie Database, this source

stores English movies plus ratings. For most entries, it provides genre information,

and for half of them a release date (after 1995). It has no information about

actors, directors, soundtracks, etc., however.

Hitchcock (HC): Wrapped from the IMDb, this source stores all movies directed

by Alfred Hitchcock, in the format of RandomMovies but with all involved actors

listed. For each person, it also contains information (if available) about the date

and country of birth, and a biography.

KellyGrant (KG): Similar to HC, this source stores the titles of all movies in

which either Grace Kelly or Cary Grant were actors, as well as the names of all

persons involved.

Horror60 (H60): Being the last of our databases, H60 is a collection of horror

movies from the 1960s, as found in the IMDb. Movie and person data are as

before, but almost no soundtrack or composer information is stored.

9 These two databases are available at http://www.imdb.org and http://www.research.
compaq.com/SRC/eachmovie, respectively.

10 See http://dmoz.org.

A knowledge-based approach for selecting information sources 275

The information about these databases is stored in the source-description program

Πsd, using the predicates introduced in Section 5. For illustration, we list some

elements of this program, modeling one of the sources, and refer to Eiter et al.

(2003) and Fink (2002) for a detailed account of the complete program Πsd.

Example 9

For providing information about database KellyGrant, the program Πsd contains

the following facts:

source(s KellyGrant);

up(s KellyGrant);

data format(s KellyGrant , xml);

update frequency(s KellyGrant , low);

specialized (s KellyGrant , “Kelly”);

specialized (s KellyGrant , “Grant”);

covers(s KellyGrant , “Movie”, low);

covers(s KellyGrant , c, high), for c ∈ {“ReleaseDate”, “Person”, “BirthDate”,

“Actor”};
covers(s KellyGrant , fifties , high);

covers(s KellyGrant , sixties , high);

¬relevant (s KellyGrant , p), for p ∈ {seventies , eighties , nineties , twothousands}.

Informally, Πsd expresses that KellyGrant is an XML source which is (currently)

up and rarely updated. It is specialized in topics “Kelly” and “Grant”, and has high

coverage about persons, especially actors, and their birth dates, but provides low

coverage about movies in general. However, it highly covers the release dates of the

stored movies, most of which are from the fifties and sixties. Further information

about KellyGrant is derived from default rules like the ones given below, stating

that English is the default language for all sources:

source language(S, “English”) ← source(S),

not ¬source language(S, “English”);

¬source language(S, “English”) ← source language(S, L), L �= “English”.

7.2.2 Domain knowledge

The ontology part of the domain knowledge, Πdom, includes the facts

class(O), for O ∈ {“MovieDB”, “Movie”, “Director”, “Actor”, “Screenwriter”,

“Composer”, “Person”, “Soundtrack”, “Review”},

as they may be extracted from the XML DTD, and the fact

synonym(“Personalia”, “Person”).

The attributes of the concept “Movie” are given by the facts

class att(“Movie”, att), where att ∈ {title, alternativeTitles , genre, releaseDate,

runningTime, language, review}.

276 Thomas Eiter et al.

For example, a concrete instance of “Movie” is given by instance(m12, “Movie”). For

further details, cf. Eiter et al. (2003) or Fink (2002).

The background part of Πdom serves to formalize “common-sense” knowledge

of the application domain, which is an important source of information for the

selection process. This part is usually quite extensive. On the one hand, it contains

rules capturing typical relationships between ontological concepts, and, on the other

hand, it comprises “well-known” instances of these concepts. For space reasons, we

only show a few rules of Πdom here. We note in passing that this part also implements

a simple form of reasoning about time, viz. reasoning about decades, by associating

every year since 1920 its corresponding decade.

Example 10

Some (typical) rules from the background knowledge are:

s1 : instance(P , “Director”) ← directed (P ,M);

s2 : involved (P ,M) ← directed (P ,M);

s3 : life period (P , B, E) ← instance(P , “Person”), not dead (P),

att val (P , birthDate, B1), current year(E),

calender year(B1, B);

s4 : possible genre(M,G) ← involved (P ,M), default genre(P ,G),

not defined genre(M).

Intuitively, rules s1 and s2 infer, from a role acted between a person and a movie,

that the corresponding person is an actor and that he or she is involved in the

movie. Rule s3 assigns a life period to a person from his or her birth date, while rule

s4 infers a possible genre for a movie, if an involved person and his or her default

genre are known.

Furthermore, the following facts are representations of specific movie-historic

incidents (actually, they model information about Grace Kelly and the movie

“Arsenic and Old Lace”):

instance(perKelly , “Actor”);

att val (perKelly , name, nameKelly);

att val (perKelly , birthDate, 1929);

att val (perKelly , dateOfDeath , 1982);

prod period (perKelly , 1945, 1960);

instance(nameKelly , name);

att val (nameKelly , firstName, “Grace”);

att val (nameKelly , firstName, “Patricia”);

att val (nameKelly , lastName, “Kelly”);

instance(m12, “Movie”);

att val (m12, title, “Arsenic and Old Lace”);

att val (m12, releaseDate, 1944);

acted (perGrant , m12).

A knowledge-based approach for selecting information sources 277

7.2.3 Source-selection program

The experimental movie source-selection program fills several pages and is too

complex to be listed and discussed here in detail. Therefore, similar as before, we

only give an informal description, highlighting the most important aspects, and refer

to Eiter et al. (2003) and Fink (2002) for more details.

Among the source-selection rules, default rules have lowest priority and are used

only in the core part. They make default suggestions for query sources in case no

other core source-selection rule is eligible. Some examples are the following default

rules:

r1: query source(S, Q) ← default path(O, P , Q),

occurs(O,V), specialized (S, P);

r2: query source(s RandomMovies , Q) ← default class(O, “Movie”, Q);

r3: query source(s RandomPersons , Q) ← default class(O, “Person”, Q).

The first rule is generic, whilst the others are specific. Informally, r1 advises to

query source S if it is specialized for P , where P is some path of a reference in the

query that is compared to some value. For example, suppose P is instantiated with

LastName. If some source is specialized for last names, then it is chosen unless a

source-selection rule with higher priority is applicable. Similarly, the specific rules r2
and r3 suggest to select RandomMovies or RandomPersons if the query entails a

reference under object “Movie” or “Person”, respectively.

Non-default core source-selection rules also appear in either generic or specific

form:

r4: query source(S, Q) ← source(S), query(Q),

high coverage(S, Q);

r5: query source(S, Q) ← source(S), query(Q), special (S, Q);

r6: query source(s Hitchcock , Q) ← cref (O1, “Person”, “LastName”, Q),

selects(O1, equal, “Hitchcock”),

cref (O2, “Person”, “FirstName”, Q),

selects(O2, equal , “Alfred”).

The generic rules r4 and r5 suggest to query any source that highly covers the

query or is special for it, respectively. The specific rule r6 advises to query the

source Hitchcock if a query selects a person named Alfred Hitchcock. Note that

high coverage and special are auxiliary predicates, defined by auxiliary rules (see

below).

Since no cref predicate and no default predicates occur in r4 and r5, there is

no (direct) structural precedence between them and rule r6, as well as between

r1, r2, and r3. The following user preferences explicitly establish preferences among

278 Thomas Eiter et al.

them:

r1(, Q, , ,) <u r4(, Q); r4(, Q) <u r5(, Q);

r1(, Q, , ,) <u r5(, Q); r4(, Q) <u r6(Q, ,);

r2(Q,) <u r5(, Q); r5(, Q) <u r6(Q, ,).

r3(Q,) <u r5(, Q);

Auxiliary rules are used to define auxiliary predicates as well as to filter irrelevant

sources:

a1: special (S, Q) ← special topic(S, Q, T);

a2: special topic(S, Q, T) ← inferred topic(Q,T), specialized (S, T);

a3: inferred topic(S, Q, T) ← matchingMovie(Q,M), involved (P ,M),

att val (P , name, N), att val (N, lastName, T);

a4: ¬query source(S, Q) ← irrelevant(S, Q);

a5: irrelevant(S, Q) ← cref (O, “MovieDB”,

“Movie/ReleaseDate/Date”, Q),

selects(O, equal , V), calender year(V , Y),

decade(Y ,D),¬relevant(S, D).

Informally, rule a1 states that a source is special for a query if a topic associated with

the query exists for which it is special. Rule a2 expresses that one way to associate a

topic to a query is to infer a topic, like, e.g., realized in terms of rule a3. Hence, if the

query accesses a movie that is known and T is the last name of a person involved

in it, then a source is concluded to be special for that query if it is specialized for

T . Rule a4 states that a source must not be queried if it is irrelevant for a query; in

view of rule a5, this is the case if the source is not relevant for the decade in which

movie has been released.

Finally, the quantitative part of the source-selection program has weak constraints

like the following:

w1: ⇐ query source(S, Q), default class(O,T ,Q),

constructs(O,C, P), covers(S1, T , high), not covers(S, T , high) [3:1];

w2: ⇐ query source(S, Q), high covered topic(S1, Q, T),

decade name(T), not high covered topic(S, Q, T) [1:1].

Intuitively, w1 assigns a penalty of 3 per concept T that is asked (resp., constructed)

by the query to any answer set which selects a source that does not highly cover

T while a source highly covering T exists. Similarly, w2 assigns a penalty of 1 per

decade that is associated to the query to any answer set which selects a source which

does not highly cover this decade while some other highly covering source exists.

7.3 Experiments

We tested the above movie-application scenario by means of a number of natural

user queries. More specifically, our tests involved 18 queries, some of which are the

following (for the complete list of queries, cf. Eiter et al. (2003) or Fink (2002)):

A knowledge-based approach for selecting information sources 279

Table 1. Experimental Results for the Movie Application

Query q1 q2 q3 q4 q5 q6 q7 q8

Candi- HC RM, H60, KG HC RM, HC, RM, HC, RM, H60, RP

dates HC, KG KG KG HC, KG

Best HC RM KG HC RM RM RM RP

q1: Which movies were directed by Alfred Hitchcock?

q2: In which movies, directed by Josef von Sternberg, did Marlene Dietrich act?

q3: In which year has the movie “Arsenic and Old Lace” been released?

q4: In which movies, directed by Alfred Hitchcock, did Marlene Dietrich act?

q5: In which film noirs did Marilyn Monroe act?

q6: In which movies did Laurel and Hardy act in 1940?

q7: Which movies where Frank Sinatra appeared in have a soundtrack composed by

Elmer Bernstein?

q8: When was James Dean born?

The formulation of these queries in XML-QL is straightforward (as a matter of

fact, q1 is expressed by the XML-QL query of Example 1; for the formulation of all

queries in XML-QL, cf. Eiter et al. (2003) or Fink (2002)).

Source selection for the considered queries was performed employing the movie

databases described above as well as variants thereof. Each process took from a

couple to up to tens of seconds, which is due to the size of the programs involved.

However, performance was not a central issue here. Since our implementation and the

used tools are unoptimized, there is a large potential for performance improvements.

Also, the underlying solvers might gain efficiency in future releases.

7.3.1 Results

The results of the source selection process for q1–q8, using the above source

descriptions, are shown in Table 1. Note that, by the semantics of source-selection

programs, per selection answer set and query, a single source is chosen. Thus,

query decomposition is not considered here, although our method for computing

a query description allows for it in principle. The entries show the sources which

are selected by the different answer sets, where the labels “Candidates” and “Best”

refer to selection with optimization part dropped (i.e., qualitative selection only) and

enabled, respectively.

The results can be informally explained as follows. For q1, a specific core source-

selection rule, r6, which has highest preference, fires and HC is chosen, as expected.

For q2, there is some background knowledge about Marlene Dietrich, but no

source can be found as being special for this query, while generic default source-

selection rules trigger for all sources. Nonetheless, RP and EM are recognized

280 Thomas Eiter et al.

Table 2. Experimental Results for an Extended Selection Base

Query q1 q2 q3 q4 q5 q6 q7 q8

Candi- HC RM, RMN, KG HC RM, RMN, RM, RMN, RM, RMN, RP

dates H60, HC, KG HC, KG HC, KG H60, HC, KG

Best HC RMN KG HC RM, RMN RM, RMN RM RP

as being irrelevant for q2 and eventually discarded: q2 asks for (resp., ranges over)

concepts these sources are not relevant for (viz. “Movie” and “Person”, respectively).

The best source among the candidates RM, H60, HC, and KG is RM, since it is the

only one highly covering the concept asked for.

For q3, since “Arsenic and Old Lace” is in the background knowledge (cf. above),

and since Cary Grant acted in it, we would expect KG to be queried. Indeed, this

is what actually happens. It is not a specific core source-selection rule that triggers

the selection (Cary Grant does not explicitly appear in the query), rather Grant is

inferred as a query topic from the background knowledge and, thus, the generic core

selection rule suggesting to query KG has highest priority.

Query q4 is a refinement of q1; the same specific core source-selection rule, r6, as

for q1 triggers.

Similar as for q2, RM is chosen for q5, q6, and q7, but for the former two,

H60 is recognized as being irrelevant on different grounds: q5 asks for film noirs,

and so H60, which contains horror movies, is eliminated by reasoning over genre

information, while q6 involves movies from 1940, and thus H60, which contains only

movies produced in the 1960s, is excluded by reasoning over decades.

Finally, RP is chosen for q8, as expected: a specific default source-selection rule

triggers for RP, which has precedence over generic default rules that would trigger

for other sources.

7.3.2 Results with modified selection bases

In a slightly different scenario, RM is designed to have high coverage about

composers and western movies, too, and a new random movie source, Random-

MoviesNew (RMN), similar to RM, but with less coverage about genres, release

dates, composers, and western movies, while having high coverage about directors,

dramas, and comedies, is introduced. Respective changes to the source descriptions

and the addition of a specific default source-selection rule for RMN (similar to

rule r2 for RM in Section 7.2.3) and corresponding user preferences to the source-

selection program yield an “extended” selection base, for which the results for q1–q8

are shown in Table 2.

The change does not influence the results for q1, q3, q4, and q8. This is intuitive,

since the suitability of the chosen sources is unaffected. For the other queries, the

new source RMN is a further candidate, as the generic default source-selection rule

A knowledge-based approach for selecting information sources 281

Table 3. Experimental Results for a Reduced Selection Base

Query q1 q2 q3 q4 q5 q6 q7 q8

Candi- HC H60, HC, KG HC HC, KG, HC, KG H60, HC, RP

dates KG KG

Best HC KG KG HC KG HC, KG KG RP

is also applicable to it. By a similar reason as before, RM and RMN are better than

the other candidates. For q2, RMN is ranked above RM: it highly covers dramas,

which is an inferred query topic, since drama is a default genre for Marlene Dietrich

in the background knowledge. RM is ranked above RMN for q7 since RM highly

covers composers, a concept occurring in the query (which asks for the composer

Elmer Bernstein). RM and RMN are ranked equal for q5 and q6: they highly cover

actors, but the background knowledge has no information about Laurel and Hardy;

and that Marilyn Monroe’s default genre is comedy has no consequence for q5, as

it explicitly asks for film noirs.

As a further modification, we considered a “reduced” selection base where RM is

down and, thus, cannot be queried. The results are given in Table 3. The candidate

sources remain the same, except that RM is missing; thus, the change has no impact

on q1, q3, q4, and q8, as one would expect. For q6, the optimization part imposes no

preference between HC and KG; interestingly, it selects KG as being best for q2,

q5, and q7. This is because the background knowledge entails information about the

productive period of Dietrich, Monroe, and Bernstein, which occur in the queries.

Thus, the 1950s and 1960s are inferred as being relevant topics for these queries,

and KG, covering both decades highly, outranks HC and H60, which highly cover

only one of the decades each.

8 Related work

The selection of data sources is a component in many information-integration

systems (cf., e.g., Arens et al. (1993), Bayardo et al. (1997), Garcia-Molina et al.

(1997), Singh et al. (1997), Genesereth et al. (1997), and Levy et al. (1996); see

also Levy and Weld (2000) and references therein). However, most center around

mappings between a global scheme and local schemes, on query rewriting, and on

query planning to optimally reconstruct dispersed information. Our work, instead, is

concerned with qualitative selection from different alternatives, based on rich meta-

knowledge and a formal semantics respecting preference and context information

involving heuristic defaults, which is not an issue there. Furthermore, no form of

query description similar as in our method is considered in these approaches.

In the following subsection, we review some of the above mentioned information-

integration systems in more detail. Afterwards, we discuss approaches bearing a

closer relation to our work.

282 Thomas Eiter et al.

8.1 Information integration systems

SIMS (Arens et al. 1993; Arens and Knoblock 1992; Arens et al. 1996), short for

Services and Information Management for Decision Systems, is a data integration sys-

tem which exploits a semantic model of a problem domain to integrate information

dispersed over various heterogeneous information sources. The latter are typically

databases, or, more generally, knowledge bases. The domain model is formulated

in the Loom knowledge-representation language (MacGregor and Bates 1987), and

comprises a declarative description of the objects and activities possible in the

specific domain. SIMS aims at providing the user a transparent access to the data,

without being aware of the underlying heterogenous data sources. It accepts user

queries in the form of a description of a class of objects about which information

is required. Any such query over the domain model is mapped to a query over the

information sources, by translating the concepts of the domain to corresponding

concepts in the data models of the information sources; if a direct translation

does not exist, a query rewriting is performed, and, if needed, multiple databases are

accessed in a query plan. SIMS strives for singling out optimal query plans, for which

aspects such as costs of accessing the different sources and combining the results

returned are taken into account. This is apparently different from the contributions

of our work, which is concerned with selecting a single information source among

a set of candidate sources. Furthermore, aspects of incomplete information and

nonmonotonic constructs to overcome it were not addressed in SIMS, nor a method

similar to query description.

The Carnot project at MCC (Singh et al. 1997; Collet et al. 1991; Huhns and

Singh 1992) was an early effort to provide a logically unifying view of enterprise-

wide, distributed, and possibly heterogeneous data. The Carnot system has a layered

architecture, whose top layer consists of semantic services providing a suite of tools

for enterprise modeling, model integration, data cleaning, and knowledge discovery.

The Model Integration and Semantics Tool (MIST) is used for creating mappings

between local schemas and a common ontology expressed in Cyc (Lenat and Guha

1990) or in a specific knowledge representation language, which is done once at the

time of integration. Besides relational databases, also knowledge-based systems (with

an extensional part containing facts and an intensional part containing rules) may

be integrated and, moreover, play a mediator role between applications and different

databases. As an important feature, local database schemas remain untouched, and

queries to them are translated to the global schema and back to (other) local

schemas for data retrieval. Similar to SIMS, Carnot aims at providing a uniform

and consistent view of heterogeneous data. A selection of information sources for

query answering, based on similar criteria and methods as in our approach, is not

evident.

InfoSleuth (Bayardo et al. 1997; Fowler et al. 1999; Nodine et al. 2003), which

has its roots in Carnot, is an agent-based system for information discovery and

retrieval in a dynamic, open environment, broadening the focus of database research

to the challenge of the World-Wide Web. It extends the capabilities of Carnot to an

environment in which the identities of the information sources need not be known

A knowledge-based approach for selecting information sources 283

at the time of generating the mapping. In this approach, agents are the constituents

of the systems, whose knowledge and their relationships to each other are described

in an InfoSleuth ontology. Decisions about user-query decompositions are based on

a domain ontology, which is selected by the user and describes knowledge about

the relationships of the data stored in the sources that subscribe to the ontology.

As for selection of information sources, special broker agents provide, upon request,

information about which resource agents (i.e., information sources behind them)

should be accessed for specific information sought. The broker performs a semantic

matchmaking of the user request with the service descriptions of the provider agents

(which may be viewed as an advanced yellow-pages service), aiming at ruling out,

by means of constraints (e.g., over the range of values, existing attributes, etc.), all

sources which will return a nil result. To this end, it must reason over explicitly

advertised information about agent capabilities to determine which agent can provide

the requested services. The broker translates KIF statements into queries in the

LDL++ deductive database language, which are submitted to an LDL++ engine

for evaluation. In this way, rule-based matching is facilitated. Our approach differs

significantly from InfoSleuth, and is in fact to some extent complementary to it.

Indeed, the descriptions of constraints and other semantic criteria in InfoSleuth

for selecting an information source are at a very low level. Even if the LDL++

language, which can emulate non-stratified negation via choice rules, is used for

rule-based matchmaking, there is no special support for dealing with contexts, user

preferences, or optimization constructs as in our approach. Furthermore, it is not

evident that InfoSleuth agents are programmed using a declarative language which

provides similar functionalities for discriminating among different sources compliant

with the constraints. Instead, our formalism might be mapped to LDL++ by a

suitable transformation and thus provide a plug-in module for realizing semantically

richer and refined brokering in InfoSleuth with a well-defined, formal semantics and

provable properties.

The Information Manifold (Kirk et al. 1995; Levy et al. 1995; Levy et al. 1996)

is a system for browsing and querying multiple networked information sources. Its

architecture is based on a rich domain model which enables the description of

properties of the information sources, such as their addresses, the protocols used

to access them, their structure, etc., using a combination of the CLASSIC description

logic (Borgida et al. 1989), Horn rules, and integrity constraints. An external inform-

ation source is viewed as containing extensions of a collection of relations, on which

integrity constraints may be imposed, and which are semantically mapped by rules

to the relations in the global knowledge base. Information sources may be associated

with topics, allowing to classify the former along a hierarchy of topics in the domain

model. This mechanism can be used for deciding retrieval of a source for related

queries. Like in SIMS, the user may pose queries in a high-level language on the

global schema, which are mapped to queries over the local sources. The Information

Manifold focuses on optimizing the execution of a user query, accessing as few

information sources as necessary, where relevance is judged on criteria involving the

(static) semantic mapping, and on combining the results. However, no qualitative

selection similar to the one in our approach is made, and, in particular, no user

284 Thomas Eiter et al.

preferences or nonmonotonic rules (including default contexts) can be expressed by

constructs in the language.

Infomaster (Genesereth et al. 1997) provides integrated access to multiple distrib-

uted heterogeneous information sources on the Internet, which gives the illusion

of a centralized, homogeneous information system in a virtual schema. The system

handles both structural and content translations to resolve differences between

multiple data sources and the multiple applications for the collected data, where

mappings between the information sources and the global schema are described by

rules and constraints. The user may pose queries on the virtual schema, which are first

translated to queries over base relations at the information sources and then further

rewritten to queries over site relations, which are views on the base relations, by

applying logical abduction. The core of Infomaster is a facilitator that dynamically

determines an efficient way to answer the user’s query employing as few sources as

necessary and harmonizes the heterogeneities among these sources. However, like

in the other information systems above, neither rich meta-data about the quality of

information sources is considered, nor preferences or context information is used to

heuristically discriminate between optional choices.

8.2 Other work

More related to our approach than the methods in the previous subsection is

the work by Huffman and Steier (1995), which outlines an interactive tool for

information specialists in query design. It relieves them from searching through

data-source specifications and can suggest sources to determine trade-offs. However,

no formal semantics or richer domain theories, capable of handling incomplete and

default information, is presented.

Remotely related to our work are the investigations by Fuhr (1999), presenting

a decision-theoretic model for selecting data sources based on retrieval cost and

typical information-retrieval parameters.

Goto et al. (2001) consider a problem setting related to ours, where source

descriptions include semantic knowledge about the source. In contrast to our work,

however, a query is viewed merely as a set of terms, and a source description

is a thesaurus automatically constructed from the documents of the source. A

further thesaurus, WordNet (Fellbaum 1998), is used for the source evaluation

algorithm, which is based on the calculation of weighted similarity measures. The

main differences to our approach are that the selection method is not declarative

and just numeric, semantic knowledge is limited to a thesaurus, and no further

background knowledge, reasoning, or semantic query analysis is involved.

Semantic analysis of queries has been incorporated to document retrieval by

Wendlandt and Driscoll (1991). Starting from conventional information-retrieval

methods that accept natural-language queries against text collections and calculate

similarity measures for query keywords, semantic modeling was introduced by trying

to detect entity attributes and thematic roles from the query to the effect of a

modified similarity computation. While richer ontological knowledge than thesauri

is used, source descriptions have no semantic knowledge. Again, the approach is not

A knowledge-based approach for selecting information sources 285

declarative but numeric in nature, and neither rich domain theories nor automated

reasoning is involved.

FAQ FINDER (Burke et al. 1995) is a natural-language question-answering sys-

tem that uses files of frequently-asked questions (FAQ) as its knowledge base. It uses

standard information-retrieval methods to narrow the search to one FAQ file and

to calculate a term-vector metric for the user’s question and question/answer pairs.

Moreover, it uses a comparison of question types in a taxonomy derived from the

query, and a semantic similarity score in question matching. The latter is calculated

by passing through the hypernym links, i.e., is-a links, through WordNet.

Recent proposals for Web-based information retrieval built on ontology-based

agents which search for, maintain, and mediate relevant information for a user

or other agents are discussed by Luke et al. (1997), Sim and Wong (2001), and

Chen and Soo (2001). More specifically, Sim and Wong (2001) describe a society of

software agents where query-processing agents assist users in selecting Web pages.

They search for URLs using search engines and ontological WordNet relations

for query specialization or generalization to keep the number of located, relevant

URLs within given limits. An architecture for ontology-based information-gathering

agents appears also in the work of Chen and Soo (2001), but here special domain

search engines and Web documents are used as well. Ontologies are represented in

a usual object-oriented language, and queries are partial instances of ontological

concepts.

9 Conclusion

In this paper, we have presented a knowledge-based approach for information-source

selection, using meta-knowledge about the quality of the sources for determining

a “best” information source to answer a given query, which is posed in a formal

query language (as considered here, XML-QL). We have described a rule-based

language for expressing source-selection policies in a fully declarative way, which

supports reasoning tasks that involve different components such as background and

ontological knowledge, source descriptions, and query constituents. Furthermore,

the language provides a number of features which have proven valuable in the

context of knowledge representation, viz. the capability of dealing with incomplete

information, default rules, and preference information.

We have developed a novel method for automated query analysis at a generic level

in which interesting information is distilled from a given query expression in a formal

query language, as well as an approach to preference handling in source selection,

which combines implicit rule priorities, given by the context of rule applications, and

explicit user preferences. As pointed out previously, context-based rule application

is a different concept as inheritance-based reasoning—to the best of our knowledge,

no similar approach for handling default-context rules has been considered before.

We presented a formal model-theoretic semantics of our approach, which is based

on the answer-set semantics of extended logic programs. Furthermore, we analyzed

semantical and computational properties of our approach, where we showed that

source-selection programs possess desirable properties which intuitively should be

286 Thomas Eiter et al.

satisfied. We emphasize that for other, related approaches no similar results are

evident, since lacking a formal semantics makes them less accessible to reason about

their behavior.

The results that we have obtained in the implementation of the experimental

movie application are encouraging, and suggest several directions for further work.

One issue concerns the supply of rich background and common-sense knowledge.

The coupling with available ontology and common-sense engines via suitable inter-

faces is suggestive for this purpose. Extensions of logic programs under the answer-

set semantics allowing such a coupling have been realized, e.g., by Eiter et al.

(2004, 2005b, 2005a). Also, other recent efforts aim at mapping description logics

underlying different ontology languages to logic programs (Grosof et al. 2003; Motik

et al. 2003; Swift 2004.

Another direction for further work involves the application of our results in

the context of information integration and query systems. They might be valuable

for enriching semantic brokering in open agent-based systems, but also for more

traditional closed systems in which information sources must be manually registered.

In particular, the advanced information-integration methods, employing extended

logic programming tools, developed within the INFOMIX project is a natural

candidate for incorporating a heuristic source-selection component.11

Our results are also relevant for adaptive source selection which is customized,

e.g., by user profiles. This subject is important for realizing personalized information

systems in a dynamic environment, which, to a large extent, involve user preferences

and reasoning with incomplete information and defaults, as well as dynamic updates

of source descriptions.

Acknowledgments

We would like to thank the referees for their helpful and constructive comments

which helped improving the presentation of this paper. This work was partially

supported by the Austrian Science Fund (FWF) under grants P13871-INF and

Z29-INF, as well as by the European Commission under projects FET-2001-37004

WASP, IST-2001-33570 INFOMIX, and the IST-2001-33123 CologNeT Network of

Excellence.

Appendix A The XML DTD for the movie databases

<!ELEMENT MovieDB (Movie|Actor|Director|Screenwriter|

Composer|Person|Award|Filmfestival)*>

<!ELEMENT Movie (Title,AlternativeTitle*,ReleaseDate?,

RunningTime?,Culture?,LeadingRole*,Role*,Actor*,

Director*,Screenwriter*,Soundtrack*,Review*,Award*)>

11 See http://sv.mat.unical.it/infomix/ for details about INFOMIX.

A knowledge-based approach for selecting information sources 287

<!ATTLIST Movie

Genre (Action|Animation|Classic|Comedy|CowboyWestern|

CultMovie|Documentary|Experimental|FilmNoir|

Horror|Romance|SciFiFantasy|Series|Silent|Travel|Other)

#IMPLIED Language CDATA "English">

<!ELEMENT Person (FirstName*,LastName,BirthDate?,Country?,Biography?)>

<!ATTLIST Person ID ID #REQUIRED Gender (male|female) #IMPLIED>

<!ELEMENT Award (AwardTitle,Date,AwardType?,AwardCategory?)>

<!ELEMENT Character (#PCDATA)>

<!ELEMENT Filmfestival (#PCDATA)>

<!ELEMENT Actor (Award*)>

<!ATTLIST Actor Personalia IDREF #REQUIRED>

<!ELEMENT Director (Award*)>

<!ATTLIST Director Personalia IDREF #REQUIRED>

<!ELEMENT Screenwriter (Award*)>

<!ATTLIST Screenwriter Personalia IDREF #REQUIRED>

<!ELEMENT Composer (Award*)>

<!ATTLIST Composer Personalia IDREF #REQUIRED>

<!ELEMENT Soundtrack (Title,Composer*,Award*)>

<!ELEMENT Biography (#PCDATA)>

<!ELEMENT AlternativeTitle (#PCDATA)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT FirstName (#PCDATA)>

<!ELEMENT LastName (#PCDATA)>

<!ELEMENT BirthDate (Date)>

<!ELEMENT Date (#PCDATA)>

<!ELEMENT Country (#PCDATA)>

<!ELEMENT AwardCategory (#PCDATA)>

<!ELEMENT AwardType (#PCDATA)>

<!ELEMENT AwardTitle (#PCDATA)>

<!ELEMENT ReleaseDate (Date)>

<!ELEMENT RunningTime (#PCDATA)>

<!ELEMENT LeadingRole (Character,Award*)>

<!ATTLIST LeadingRole Actor IDREF #REQUIRED>

<!ELEMENT Role (Character,Award*)>

<!ATTLIST Role Actor IDREF #REQUIRED>

<!ELEMENT Review (ReviewText,Rating?)>

<!ELEMENT ReviewText (#PCDATA)>

<!ELEMENT Rating (#PCDATA)>

<!ELEMENT Culture (#PCDATA)>

Appendix B Query description

In what follows, we provide details about the query description predicates and the

query-analysis program.

288 Thomas Eiter et al.

B.1 Low-level predicates

The query and its syntactic subqueries are named by constants (e.g., q1, q2, . . .). The

facts R(Q) are formed using the following predicates:

• sub query(Q′, Q): Q′ is a structural subquery of query Q (possibly itself a

subquery);

• query cand (Q): identifies the overall query;

• source(S, Q): query Q accesses source S;

• db name(S): source S is a database;

• whereRef (O,T , P , Q): an IRP O references an item under element T and

remaining path P in the where part of query Q;

• subpath(O,T1, P1, T2, P2): the path T1/P1 is a direct subpath of T2/P2 in the

IRP O;

• whereRefCmp(O1, R, O2): the items of IRPs O1 and O2 are compared using

operator R;

• whereCmp(O,R, V): the item of IRP O is compared to value V using opera-

tor R;

• consRef (O,T , P): the item of IRP O is constructed under element T and

remaining path P in the (answer) construction part of query Q.

R(Q) must respect that query languages may allow for nested queries. However,

in a query expression, an outermost query as the “root” of nesting should be

identifiable, as well as structural (syntactic) subqueries of it. They are described

using query cand and sub query , respectively.

Along an IRP, item references relative to a position are captured by the whereRef

predicate, and suffix inclusions for this IRP are stored as subpath facts. The

predicates whereRefCmp and whereCmp mirror the comparison of two items and the

comparison of an item with a value, respectively. Items that occur in the construction

part of a query are also identified by an IRP and stored using consRef .

Example 11

The low-level representation R(Q) of the query in Example 1 contains

sub query(q2, q1), query cand (q1), source(“MovieDB”, q2), and

db name(“MovieDB”),

and, e.g., for the third IRP, o3, which references “LastName”, the facts:

whereRef (o3, “LastName”, “ ”, q2);

whereRef (o3, “Personalia”, “LastName”, q2);

whereRef (o3, “Director”, “Personalia/LastName”, q2);

whereRef (o3, “Movie”, “Director/Personalia/LastName”, q2);

whereRef (o3, “MovieDB”, “Movie/Director/Personalia/LastName”, q2);

subpath(o3, “LastName”, “ ”, “Personalia”, “LastName”);

subpath(o3, “Personalia”, “LastName”, “Director”, “Personalia/LastName”);

subpath(o3, “Director”, “Personalia/LastName”, “Movie”,

“Director/Personalia/LastName”);

A knowledge-based approach for selecting information sources 289

subpath(o3, “Movie”, “Director/Personalia/LastName”, “MovieDB”,

“Movie/Director/Personalia/LastName”);

whereCmp(o3, equal , “Hitchcock”).

The complete low-level representation R(Q) of the query is given in Appendix C

(cf. also Eiter et al. (2003) or Fink (2002)).

B.2 High-level predicates

The following high-level description predicates are defined:

• query(Q): identifies an “independent” (sub-)query Q (i.e., Q is executable on

some source), which is, moreover, not a purely syntactic subquery (i.e., which

is not embraced by a sourceless query Q′ merely restructuring the result of Q;

for details, cf. the explanation of rules qa8–qa12 of Πqa below);

• cref (O,C, P , Q): states that (C, P) is a CRP for Q via IRP O in the where-part

of Q;

• occurs(O,V): the value V is associated with an IRP O in the overall query;

• selects(O,R, V): like occurs , but details the association with a comparison

operator R;

• constructs(O, I, P): states that the item of IRP O, by use of a variable, also

appears in the construct-part of the global query, as an item I under path P

(which may be different from the path in the where-part);

• joins(O1, O2, R): records (theta-)joins of (or within) queries between IRPs O1

and O2 under comparison operator R.

Example 12

For the query in Example 1, we have query(q1) but not query(q2), since the embracing

query q1 has no source and merely structures the result of q2. The following cref

facts result from o1 and o3:

cref (o1, “MovieDB”, “Movie/Title”, q1);

cref (o1, “Movie”, “Title”, q1);

cref (o3, “MovieDB”, “Movie/Director/Personalia/LastName”, q1);

cref (o3, “Movie”, “Director/Personalia/LastName”, q1);

cref (o3, “Director”, “Personalia/LastName”, q1);

cref (o3, “Person”, “LastName”, q1).

Here, “MovieDB”, “Movie”, “Director”, and “Person” are concepts given by the

ontology, and “Personalia” is known to be a synonym of “Person” (cf. Appendix B.3

for further discussion).

The fact occurs(o3, “Hitchcock”) states that value Hitchcock is associated with o3.

This is detailed by selects(o3, equal , “Hitchcock”), where equal represents equality.

For the constructs predicate, the fact constructs(o1, “Movie”, “ ”) is included. There

are no joins facts since the query has no join. The complete high-level description is

given in Appendix C (cf. also Eiter et al. (2003) or Fink (2002)).

290 Thomas Eiter et al.

B.3 Query-analysis program

The query-analysis program Πqa is composed of the following groups of rules. The

first rules enlarge the low-level predicate subpath as follows:12

qa1 : subpath(O,T1, P1, T3, P3) ← subpath(O,T1, P1, T2, P2),

subpath(O,T2, P2, T3, P3);

qa2 : subpath(O,T , P1, T2, P2) ← subpath(O,L, P1, T2, P2), synonym(L,T);

qa3 : subpath(O,T1, P1, T , P2) ← subpath(O,T1, P1, L, P2), synonym(L,T).

Rule qa1 expresses transitivity for elements occurring in paths, and qa2 and qa3

deal with synonyms, which is imported ontological knowledge; synonym applies to

all pairs of synonymous element names (e.g., names of IDREF attributes13).

The following two rules define useful projections of low-level predicates:

qa4 : has source(Q) ← source(, Q);

qa5 : is sub query(Q) ← sub query(Q,).

Using them, an auxiliary predicate iquery cand is defined for candidates which

may satisfy the query predicate; these are the overall query and subqueries having a

database or a document as its source:

qa6 : iquery cand (Q) ← query cand (Q);

qa7 : iquery cand (Q) ← is sub query(Q), source(Z,Q), db name(Z).

Concerning the high-level predicates, independent, separate queries are specified

by respecting the nesting structure:

qa8 : query(Q) ← top query(Q,Q);

qa9 : top query(Q,Q) ← iquery cand (Q), not is sub query(Q);

qa10 : top query(Q,Q) ← iquery cand (Q), sub query(Q, S), source(Z, S);

qa11 : top query(S, Q) ← sub query(S, Z), iquery cand (S), top query(Z,Q),

not has source(Z);

qa12 : top query(S, Q) ← sub query(S, Z), not iquery cand (S),

top query(Z,Q).

Rule qa8 expresses the property that a query is considered to be independent

if it is the topmost independent query of itself. This is the case if the query is

a candidate for a separate query and it is either the outermost query (dealt with

by Rule qa9) or a direct structural subquery of a query to a source (expressed

by Rule qa10). Moreover, qa10 intuitively states that a candidate query nested

within another query is viewed as a separate query only if the nesting was not for

purely syntactic reasons, i.e., it has its own source. In case of a purely syntactic

subquery, or if a nested query is not a candidate for a separate query, its topmost

12 In a clean separation of R(Q) and the high-level description, a fresh predicate would be in order here.
However, it is convenient and economic to re-use the predicate subpath , as it is only enlarged.

13 If in a DTD an attribute is declared of type IDREF, this means that its value is the identifier of
another element.

A knowledge-based approach for selecting information sources 291

independent query is the one of the embracing query, as taken care of qa11 and qa12,

respectively.

The next rules define the remaining high-level description predicates. The auxiliary

predicate has constructs guarantees that at least one constructs fact is generated for

each context reference constructed in the query answer.

qa13 : cref (O,T , P , Q) ← whereRef (O,T , P , S), class(T),

top query(S, Q);

qa14 : cref (O,T , P , Q) ← whereRef (O,L, P , S), synonym(L,T),

class(T), top query(S, Q);

qa15 : constructs(O,T , P) ← consRef (O,T , P), class(T);

qa16 : constructs(O,T , P) ← consRef (O,L, P), synonym(L,T), class(T);

qa17 : has constructs(O) ← consRef (O,T , P), class(T);

qa18 : has constructs(O) ← consRef (O,L, P), synonym(L,T), class(T);

qa19 : constructs(O, “ ”, “ ”) ← consRef (O, ,), not has constructs(O);

qa20 : occurs(O,V) ← whereCmp(O,C, V);

qa21 : selects(O,C, V) ← whereCmp(O,C, V);

qa22 : joins(O1, O2, C) ← whereRefCmp(O1, C, O2).

Note that some rules reference the ontology predicate class . A fact class(e) should

exist in (or being entailed by) the domain ontology for all elements e that are

considered to be concepts.

When queries are joined over CRPs, then some of the occurrence, selection, and

construction information of one CRP is also valid for the other. Hence, we can build

a form of a closure over joined CRPs, which is expressed by the following rules:

qa23 : constructs(O1, T , P) ← joins(O1, O2, equal), constructs(O2, T , P);

qa24 : constructs(O2, T , P) ← joins(O1, O2, equal), constructs(O1, T , P);

qa25 : occurs(O1, V) ← joins(O1, O2, C), occurs(O2, V);

qa26 : occurs(O2, V) ← joins(O1, O2, C), occurs(O1, V);

qa27 : selects(O1, C, V) ← joins(O1, O2, equal), selects(O2, C, V);

qa28 : selects(O2, C, V) ← joins(O1, O2, equal), selects(O1, C, V);

qa29 : selects(O1, notequal , V) ← joins(O1, O2, notequal), selects(O2, equal , V);

qa30 : selects(O2, notequal , V) ← joins(O1, O2, notequal), selects(O1, equal , V).

We remark that, as easily seen, the rules of Πqa form a locally stratified logic

program, and thus Ont ∪Πqa ∪ R(Q) has a unique answer set.

Example 13

Let us consider how the high-level fact cref (o3, “Person”, “LastName”, q1) is derived

in Πqa , given R(Q) of the query in Example 1.

Since query cand (q1) is in R(Q), we obtain, by qa6, iquery cand (q1). Since the fact

is sub query(q1) is not derivable, qa10 yields top query(q1, q1) (i.e., stating that q1

is independent). Next, we can derive is sub query(q2) by means of qa5, and thus

292 Thomas Eiter et al.

iquery cand (q2) in view of qa7, given that R(Q) includes the facts sub query(q2, q1),

source(“MovieDB”, q2), and db name(“MovieDB”). Since q1 has no source (i.e.,

has source(q1) is not derivable), we can derive top query(q2, q1) from qa9. The

fact cref (o3,“Person”,“LastName”, q1) is now derived by means of qa14, making

use of whereRef (o3,“Personalia”,“LastName”, q2) from R(Q), together with the facts

synonym(“Personalia”,“Person”) and class(“Person”) from the ontology, and the

derived fact top query(q2, q1). Note that cref (o3,“Personalia”, “LastName”, q1) is not

derivable, as class(“Personalia”) /∈ Ont.

Appendix C Query-representation for Example 1

The low-level representation R(Q) of the query in Example 1 comprises the following

facts:

db name(“MovieDB”);

query cand (q1);

sub query(q2, q1);

source(“MovieDB”, q2);

whereRef (o1,“Title”,“ ”, q2);

whereRef (o1,“Movie”,“Title”, q2);

whereRef (o1,“MovieDB”,“Movie/Title”, q2);

subpath(o1,“Title”,“ ”,“Movie”,“Title”);

subpath(o1,“Movie”,“Title”,“MovieDB”,“Movie/Title”);

whereRef (o2,“FirstName”,“ ”, q2);

whereRef (o2,“Personalia”,“FirstName”, q2);

whereRef (o2,“Director”,“Personalia/FirstName”, q2);

whereRef (o2,“Movie”,“Director/Personalia/FirstName”, q2);

whereRef (o2,“MovieDB”,“Movie/Director/Personalia/FirstName”, q2);

subpath(o2,“FirstName”,“ ”,“Personalia”,“FirstName”);

subpath(o2,“Personalia”,“FirstName”,“Director”,“Personalia/FirstName”);

subpath(o2,“Director”,“Personalia/FirstName”,“Movie”,

“Director/Personalia/FirstName”);

subpath(o2,“Movie”,“Director/Personalia/FirstName”, “MovieDB”,

“Movie/Director/Personalia/FirstName”);

whereRef (o3,“LastName”,“ ”, q2);

whereRef (o3,“Personalia”,“LastName”, q2);

whereRef (o3,“Director”,“Personalia/LastName”, q2);

whereRef (o3,“Movie”,“Director/Personalia/LastName”, q2);

whereRef (o3,“MovieDB”,“Movie/Director/Personalia/LastName”, q2);

subpath(o3,“LastName”,“ ”,“Personalia”,“LastName”);

subpath(o3,“Personalia”,“LastName”,“Director”,“Personalia/LastName”);

subpath(o3,“Director”,“Personalia/LastName”,“Movie”,

“Director/Personalia/LastName”);

A knowledge-based approach for selecting information sources 293

subpath(o3, ”Movie”,“Director/Personalia/LastName”;

“MovieDB”,“Movie/Director/Personalia/LastName”);

whereCmp(o2, equal ,“Alfred”);

whereCmp(o3, equal ,“Hitchcock”);

consRef (o1,“Movie”,“ ”);

consRef (o1,“MovieList”,“Movie”).

The high-level description, except for auxiliary predicates and the completion of

the subpath predicates, is given by the following facts:

query(q1);

cref (o1,“MovieDB”,“Movie/Title”, q1);

cref (o1,“Movie”,“Title”, q1);

cref (o2,“MovieDB”,“Movie/Director/Personalia/FirstName”, q1);

cref (o2,“Movie”,“Director/Personalia/FirstName”, q1);

cref (o2,“Director”,“Personalia/FirstName”, q1);

cref (o2,“Person”,“FirstName”, q1);

cref (o3,“MovieDB”,“Movie/Director/Personalia/LastName”, q1);

cref (o3,“Movie”,“Director/Personalia/LastName”, q1);

cref (o3,“Director”,“Personalia/LastName”, q1);

cref (o3,“Person”,“LastName”, q1);

occurs(o2,“Alfred”), occurs(o3,“Hitchcock”);

selects(o2, equal ,“Alfred”);

selects(o3, equal ,“Hitchcock”);

constructs(o1,“Movie”,“ ”).

Appendix D Further properties of source-selection programs

In order to realize the construction of E(S, Q) in terms of a single logic program,

we introduce a set N of constants serving as names for rules, and a new binary

predicate pref(·, ·), defined over N, expressing preference between rules. The extended

vocabulary Asel ∪ {pref(·, ·)} ∪ N is denoted by Āsel . We furthermore assume an

injective function n(·) which assigns to each rule r ∈ ΠQ a name n(r) ∈ N. To ease

notation, we also write nr instead of n(r). Finally, Litpref denotes the set of all literals

having predicate symbol pref. Note that Litpref ∩ Litsel = ∅.

Theorem 4

Let S = (Πqa ,Πdom ,Πsd ,Πsel , <u) be a selection base, Q a query, and E(S, Q) =

(ΠQ,<). Furthermore, let ΠS(Q) = Πqa ∪R(Q)∪Πdom ∪Πsd ∪ΠQ. Then, there exists

a logic program Πobj (Q) over a vocabulary Â ⊇ Āsel such that every answer set X

of ΠS(Q) ∪Πobj (Q) satisfies the following conditions:

1. X ∩ Litpref represents <, i.e., pref(nr, nr′) ∈ X iff r < r′; and

2. X ∩ Litsel is a selection answer set of (Πsel , <u) for Q with respect to S iff X

is a preferred answer set of the prioritized program (ΠS(Q) ∪Πobj (Q), <).

294 Thomas Eiter et al.

Proof

We give a description of Πobj (Q) but omit a detailed argument that it satisfies the

desired properties. Informally, Πobj (Q) consists of two parts: the first, Πrel , is derived

from ΠS(Q) and takes care of computing the relevant rules for Q, by utilizing weak

constraints; the second part, Πpref , is a (locally) stratified logic program determining

the relations of Definition 8. We start with the construction of Πrel .

For each predicate p ∈ Asel and each r ∈ ΠQ, we introduce a new predicate pr of

the same arity as p. In addition, we introduce a new atom rel r , informally expressing

that rule r is relevant. If α is either a literal, a set of literals, a rule, or a program,

then by �α�r we denote the result of uniformly replacing each atom p(x1, , . . . , xn)

occurring in α by pr(x1, . . . , xn).

For each r ∈ ΠQ, we define a program Πr containing the following items:

1. each rule in �Πqa ∪ R(Q) ∪Πsd ∪Πdom�r;
2. the rule rel r ← �B†(r)�r ; and

3. the extended default-context rules

default class r(O,C,Q) ← cref r(O,C, , Q),

default pathr(O, P , Q) ← cref r(O, , P , Q).

As easily checked, r is relevant for Q iff Πr has some answer set containing rel r .

Now, Πrel is defined as the collection of each of the programs Πr , together with

weak constraints of form

⇐ not rel r [1 : m + 1], (D 1)

for every r ∈ ΠQ, where m is the maximal priority level of the weak constraints

occurring in Πo
sel . Since, for any r1, r2 ∈ ΠQ with r1 �= r2, the programs Πr1 and

Πr2 are defined over disjoint vocabularies, and given the inclusion of the weak

constraints (D 1) in Πrel , we obtain that Πrel satisfies the following property:

(∗) for every answer set X of Πrel and every r ∈ ΠQ, r is relevant for Q iff rel r ∈ X .

These answer sets are used as inputs for the program Πpref , which is defined next.

Let pr(n ,m) and pr ′(n ,m) be new binary predicates, where n, m are names. Then,

Πpref consists of the following rules:

1. pr(nr1 , nr2) ← rel r1 , rel r2 , for every r1, r2 ∈ ΠQ such that either r1 <u r2 or r1, r2
satisfy Conditions (O1) or (O2) of Definition 8;

2. pr(nr1 , nr2) ← rel r1 , rel r2 , subpath(o, t1, p1, t2, p2), for every r1, r2 ∈ ΠQ such that

cref (o, t1, p1, q) ∈ B(r1) and cref (o, t2, p2, q) ∈ B(r2); and

3. the rules

pr ′(N1, N2) ← pr(N1, N2),

pr ′(N1, N3) ← pr ′(N1, N2), pr(N2, N3),

pref (N1, N2) ← pr(N1, N2), not pr ′(N2, N1),

pref (N1, N3) ← pref (N1, N2), pref (N2, N3).

Obviously, Πpref is a (locally) stratified program. Moreover, in view of Condi-

tion (∗), and since Πrel is independent of Πpref and ΠS(Q) is independent of Πobj (Q),

A knowledge-based approach for selecting information sources 295

for every answer set X of ΠS(Q) ∪ Πobj (Q) = ΠS(Q) ∪ Πrel ∪ Πpref , we have that

(i) pr(nr1 , nr2) ∈ X iff r1 � r2, (ii) pr ′(nr1 , nr2) ∈ X iff r1 �∗ r2, and (iii) pref (nr1 , nr2) ∈ X

iff r1 < r2. This proves Condition 1 of the theorem.

As for Condition 2, consider some answer set X of ΠS(Q)∪Πobj (Q). Since ΠS(Q)

is independent of Πobj (Q), X is of form Y ∪ Y ′, where Y is an answer set of

ΠS(Q) and Y ′ is a set of ground literals disjoint from Litsel . Hence, X ∩ Litsel = Y .

According to Theorem 1, Y is a selection answer set of (Πsel , <u) for Q with respect

to S iff Y is a preferred answer set of (ΠS(Q), <). But it is easily seen that the

latter holds just in case Y ∪ Y ′ is a preferred answer set of (ΠS ∪Πobj (Q), <). This

proves the result. �

We note the following comments. First, Πrel can be simplified by taking independ-

ence of subprograms of ΠS(Q) and possible uniqueness of answer sets for them

into account. For example, if Πsd has a unique answer set, then we may use in each

program Πr simply �α�r = α, for each literal over Asd . In particular, if the program

Πqa ∪ R(Q) ∪ Πdom ∪ Πsd has a unique answer set (e.g., if this program is locally

stratified), then we may simply take as Πrel the program Πqa ∪ R(Q) ∪Πdom ∪Πsd

together with all rules rel r ← B†(r), for r ∈ ΠQ.

Second, the program ΠS(Q) ∪ Πobj(Q) in Theorem 4 represents, via preferred

answer sets for a dynamic rule preference given by the atoms over pref, the selection

answer sets of (Πsel , <u) for Q. It can be easily adapted to a fixed program Π′S such

that, for any query Q, the dynamic preferred answer sets of Π′S ∪R(Q) represent the

selection answer sets of (Πsel , <u) for Q (cf. Delgrande et al. (2003) for more details

on dynamic preferences).

As for the complexity of source-selection programs, we can derive the following

result as a consequence of Theorem 1.

Theorem 5

Given a query Q and the grounding of ΠS(Q) = Πqa ∪ R(Q) ∪ Πdom ∪ Πsd ∪ ΠQ,

for a selection base S = (Πqa ,Πdom ,Πsd ,Πsel , <u), deciding whether (Πsel , <u) has

some selection answer set for Q with respect to S is NP-complete. Furthermore,

computing any such selection answer set is complete for FPNP.

Proof

Obviously, the groundings of the programs Πrel and Πpref in the proof of Theorem 4

are constructible in polynomial time from Q and the grounding of ΠS(Q), and so

is the ground program Π′, consisting of the groundings of ΠS(Q), Πrel , and Πpref .

Furthermore, the preferred answer sets of (Π′, <) correspond to the selection answer

sets of (Πsel , <u). Since deciding whether a prioritized logic program (with no weak

constraints) has a preferred answer set is NP-complete (Delgrande et al. 2003), it

follows that deciding whether (Πsel , <u) has a selection answer set for Q with

respect to S is in NP. Note that the presence of weak constraints has no influence

on the worst-case complexity of deciding the existence of (preferred) answer sets.

Moreover, NP-hardness is immediate since the auxiliary rules can form any standard

logic program.

From any answer set X of Π′, an answer set of (Πsel , <u) is easily computed.

Computing such an X is feasible in polynomial time with an NP oracle, sketched

296 Thomas Eiter et al.

as follows. First, compute the minimum vector of weak-constraint violations, v∗, i.e.,

the sum of weights of violated constraints at each level, using the oracle, performing

binary search at each level, asking whether a violation limit can be obeyed. Then,

build atom by atom an answer set X whose violation cost matches v∗ using the NP

oracle. Overall, this is possible in polynomial time with an NP oracle, hence the

problem is in FPNP.

The hardness for FPNP follows from a reduction given by Buccafurri et al. (2000),

which shows how the lexicographic maximum truth assignment to a SAT instance,

whose computation is well-known to be complete for FPNP (Krentel 1988), can be

encoded in terms of the answer set of an ELP with weak constraints. �

Note that under data complexity, i.e., where the selection base S is fixed while

the query Q (given by the facts R(Q)) may vary, the problems in Theorem 5 are in

NP resp. FPNP, since the grounding of ΠS(Q) is polynomial in the size of S and

Q in this case. If, moreover, the size of Q is small and bounded by a constant, then

the problems are solvable in polynomial time, since then the number of rules in the

grounding of ΠS(Q) is bounded by some constant as well.

References

Abiteboul, S., Buneman, P. and Suciu, D. 2000. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, Los Altos.

Alferes, J., Pereira, L., Przymusinska, H. and Przymusinski, T. 2002. LUPS – A Language

for Updating Logic Programs. Artificial Intelligence 138, 1–2, 87–116.

Apt, K., Blair, H. and Walker, A. 1988. Towards a Theory of Declarative Knowledge. See

Minker (1988), 89–148.

Arens, Y., Chee, C., Hsu, C. and Knoblock, C. 1993. Retrieving and Integrating Data from

Multiple Information Sources. International Journal of Cooperative Information Systems 2, 2,

127–158.

Arens, Y. and Knoblock, C. 1992. Planning and Reformulating Queries for Semanti-

cally-Modeled Multidatabase Systems. Proceedings of the First International Conference on

Information and Knowledge Managements. 92–101.

Arens, Y., Knoblock, C. and Shen, W. 1996. Query Reformulation for Dynamic Information

Integration. Journal of Intelligent Information Systems 6, 2–3, 99–130.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving with

Answer Sets. Cambridge University Press.

Bayardo, R., Bohrer, B., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap,

V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea, R.,

Unnikrishnan, C., Unruh, A. and Woelk, D. 1997. InfoSleuth: Semantic Integration

of Information in Open and Dynamic Environments (Experience Paper). Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’97).

195–206.

Borgida, A., Brachman, R. J., McGuinness, D. L. and Resnick, L. A. 1989. CLASSIC:

A Structural Data Model for Objects. Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD ’89), J. Clifford, B. G. Lindsay, and D. Maier,

Eds. ACM Press, 58–67.

Brewka, G. and Eiter, T. 1999. Preferred Answer Sets for Extended Logic Programs. Artificial

Intelligence 109, 1–2, 297–356.

A knowledge-based approach for selecting information sources 297

Buccafurri, F., Leone, N. and Rullo, P. 1996. Stable Models and their Computation

for Logic Programming with Inheritance and True Negation. Journal of Logic Programm-

ing 27, 1, 5–43.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing Disjunctive Datalog by

Constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Burke, R., Hammond, K. and Kozlovsky, J. 1995. Knowledge-Based Information Retrieval

from Semi-Structured Text. Working Notes of the AAAI ’95 Fall Symposium, Series on AI

Applications in Knowledge Navigation and Retrieval, Cambridge, MA. 19–24.

Chen, Y.-J. and Soo, V.-W. 2001. Ontology-Based Information Gathering Agents. Proceedings

of the First Asia-Pacific Conference on Web Intelligence (WI 2001), N. Zhong et al., Ed.

LNCS, subseries LNAI, vol. 2198. Springer, 423–427.

Collet, C., Huhns, M. and Shen, W.-M. 1991. Resource Integration using a Large Knowledge

Base in Carnot. IEEE Computer 24, 12, 55–62.

Decker, K., Sycara, K. and Williamson, M. 1997. Middle-Agents for the Internet.

Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI

’97). Vol. 1. Morgan Kaufmann, 578–583.

Delgrande, J. and Schaub, T. 1994. A General Approach to Specificity in Default

Reasoning. Proceedings of the Fourth International Conference on Principles of Knowledge

Representation and Reasoning (KR ’94). 146–157.

Delgrande, J., Schaub, T. and Tompits, H. 2001. plp: A Generic Compiler for Ordered

Logic Programs. Proceedings of the Sixth International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2001), T. Eiter, W. Faber, and M. Truszczyński,

Eds. LNCS, subseries LNAI, vol. 2173. Springer, 411–415.

Delgrande, J. P., Schaub, T. and Tompits, H. 2003. A Framework for Compiling Preferences

in Logic Programs. Theory and Practice of Logic Programming 3, 2, 129–187.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. 1999. A Query Language

for XML. Computer Networks 31, 11–16, 1155–1169.

Dimopoulos, Y. and Kakas, A. 2001. Information Integration and Computational Logic.

Computational Logic, Special Issue on the Future Technological Roadmap of Compulog-Net ,

105–135.

Eiter, T., Fink, M., Sabbatini, G. and Tompits, H. 2002a. On Properties of Update Sequences

Based on Causal Rejection. Theory and Practice of Logic Programming 2, 6, 721–777.

Eiter, T., Fink, M., Sabbatini, G. and Tompits, H. 2002b. Using Methods of Declarative

Logic Programming for Intelligent Information Agents. Theory and Practice of Logic

Programming 2, 6, 645–719.

Eiter, T., Fink, M. and Tompits, H. 2003. A Knowledge-Based Approach for Selecting

Information Sources. Tech. Rep. INFSYS RR-1843-03-14, 2003, Institut für Informations-

systeme, Technische Universität Wien.

Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive Datalog. ACM Transactions on

Database Systems 22, 3, 364–418.

Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. 2005a. A Uniform Integration

of Higher-Order Reasoning and External Evaluations in Answer-Set Programming.

Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI

2005). Morgan Kaufmann.

Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. 2005b. Nonmonotonic

Description Logic Programs: Implementation and Experiments. Proceedings of the

Twelfth International Conference on Logic for Programming, Artificial Intelligence and

Reasoning (LPAR 2004), F. Baader and A. Voronkov, Eds. LNCS, vol. 3452. Springer,

511–517.

298 Thomas Eiter et al.

Eiter, T., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2004. Combining Answer-Set

Programming with Description Logics for the Semantic Web. Proceedings of the Ninth

International Conference on Principles of Knowledge Representation and Reasoning (KR

2004), D. Dubois, C. Welty, and M.-A. Williams, Eds. Morgan Kaufmann, 141–151.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive Aggregates in Disjunctive Logic

Programs: Semantics and Complexity. Proceedings of the Ninth European Conference on

Logics in Artificial Intelligence (JELIA 2004), J. J. Alferes and J. A. Leite, Eds. LNCS,

subseries LNAI, vol. 3229. Springer, 200–212.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.

Fink, M. 2002. Declarative Logic-Programming Components for Information Agents. Ph.D.

thesis, Institut für Informationssysteme, Technische Universität Wien, Austria.

Fowler, J., Perry, B., Nodine, M. H. and Bargmeyer, B. 1999. Agent-Based Semantic

Interoperability in InfoSleuth. SIGMOD Record 28, 1, 60–67.

Fuhr, N. 1999. A Decision-Theoretic Approach to Database Selection in Networked IR.

ACM Transactions on Information Systems 17, 3, 229–249.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,

J., Vassalos, V. and Widom, J. 1997. The TSIMMIS Approach to Mediation: Data Models

and Languages. Journal of Intelligent Information Systems 8, 2, 117–132.

Geerts, P. and Vermeir, D. 1993. A Nonmonotonic Reasoning Formalism using

Implicit Specificity Information. Proceedings of the Second International Workshop on Logic

Programming and Nonmonotonic Reasoning (LPNMR ’93), L.-M. Pereira and A. Nerode,

Eds. LNCS, subseries LNAI. Springer, 380–396.

Geerts, P. and Vermeir, D. 1995. Specificity by Default. Proceedings of the European

Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty

(ECSQARU ’95). LNCS, subseries LNAI, vol. 946. Springer, 207–216.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 3–4, 365–386.

Genesereth, M., Keller, A. and Duschka, O. 1997. Infomaster: An Information Integration

System. Proceedings of the ACM SIGMOD International Conference on Management of Data

(SIGMOD ’97), J. Peckham, Ed. ACM Press, 539–542.

Goto, S., Ozono, T. and Shintani, T. 2001. A Method for Information Source Selection

using Thesaurus for Distributed Information Retrieval. Proceedings of the Pacific Asian

Conference on Intelligent Systems 2001 (PAIS 2001). 272–277.

Grosof, B. N., Horrocks, I., Volz, R. and Decker, S. 2003. Description Logic

Programs: Combining Logic Programs with Description Logics. Proceedings of the Twelfth

International World Wide Web Conference (WWW 2003). ACM Press, 48–57.

Huffman, S. B. and Steier, D. 1995. A Navigation Assistant for Data Source Selection and

Integration. Working Notes of the AAAI ’95 Fall Symposium Series on AI Applications in

Knowledge Navigation and Retrieval, Cambridge, MA. AAAI Press, 72–77.

Huhns, M. and Singh, M. 1992. The Semantic Integration of Information Models.

Proceedings of the AAAI Workshop on Cooperation among Heterogeneous Intelligent Agents.

Inoue, K. and Sakama, C. 2000. Prioritized Logic Programming and Its Applications to

Commonsense Reasoning. Artificial Intelligence 123, 1–2, 185–222.

Kirk, T., Levy, A., Sagiv, Y., and Srivastava, D. 1995. The Information Manifold. Proceedings

of the AAAI 2001 Spring Symposium on Information Gathering in Distributed Heterogeneous

Environments. AAAI Press, 85–91.

Kowalski, R. A. and Sadri, F. 1990. Logic Programs with Exceptions. Proceedings of the

Seventh International Conference on Logic Programming (ICLP ’90). MIT Press, 598–616.

A knowledge-based approach for selecting information sources 299

Krentel, M. 1988. The Complexity of Optimization Problems. Journal of Computer and

System Sciences 36, 490–509.

Laenens, E. and Vermeir, D. 1990. A Logical Basis for Object-Oriented Programming.

Proceedings of the Second European Workshop on Logics in Artificial Intelligence (JELIA

’90). LNCS, subseries LNAI. Springer, 317–332.

Lenat, D. B. and Guha, R. V. 1990. Building Large Knowledge-Based Systems: Representation

and Inference in the Cyc Project. Addison-Wesley.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. 2006.

The DLV System for Knowledge Representation and Reasoning. ACM Transactions on

Computational Logic. To appear.

Levy, A., Rajaraman, A. and Ordille, J. 1996. Querying Heterogeneous Information Sources

using Source Descriptions. Proceedings of the Twentysecond International Conference on

Very Large Data Bases (VLDB ’96), T. Vijayaraman, A. Buchmann, C. Mohan, and

N. Sarda, Eds. Morgan Kaufmann, 251–262.

Levy, A., Srivastava, D. and Kirk, T. 1995. Data Model and Query Evaluation in Global

Information Systems. Journal of Intelligent Information Systems 5, 2, 121–143.

Levy, A. and Weld, D. 2000. Intelligent Internet Systems. Artificial Intelligence 118, 1–2,

1–14.

Lifschitz, V. and Turner, H. 1994. Splitting a Logic Program. Proceedings of the Eleventh

International Conference on Logic Programming (ICLP ’94). MIT Press, 23–38.

Luke, S., Spector, L., Rager, D. and Hendler, J. 1997. Ontology-Based Web Agents.

Proceedings of the First International Conference on Autonomous Agents (Agents ’97),

W. L. Johnson, Ed. 59–66.

MacGregor, R. and Bates, R. 1987. The LOOM Knowledge Representation Language.

Tech. Rep. RS-87-188, Information Sciences Institute, University of Southern California.

Project Web page http://www.isi.edu/isd/LOOM/.

Minker, J., Ed. 1988. Foundations of Deductive Databases and Logic Programming. Morgan

Kaufman, Washington DC.

Motik, B., Volz, R. and Maedche, A. 2003. Optimizing Query Answering in Description

Logics using Disjunctive Deductive Databases. Proceedings of the Tenth International Work-

shop on Knowledge Representation meets Databases (KRDB 2003), F. Bry, C. Lutz, U. Sattler,

and M. Schoop, Eds. CEUR Workshop Proceedings, vol. 79. RWTH Aachen University, 39–

50. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-79/.

Nodine, M., Ngu, A., Cassandra, A. and Bohrer, W. 2003. Scalable Semantic Brokering

over Dynamic Heterogeneous Data Sources in InfoSleuth. IEEE Transactions on Knowledge

and Data Engineering 15, 5, 1082–1098.

Przymusinski, T. C. 1988. On the Declarative Semantics of Deductive Databases and Logic

Programs. See Minker (1988), 193–216.

Sadri, F. and Toni, F. 2000. Computational Logic and Multi-Agent Systems: A Roadmap.

Computational Logic, Special Issue on the Future Technological Roadmap of Compulog-Net ,

1–31.

Schindlauer, R. 2002. Representation of SQL Queries for Declarative Query Analysis. M.S.

thesis, Institut für Informationssysteme, Technische Universität Wien, Austria.

Sim, K. M. and Wong, P. T. 2001. Web-Based Information Retrieval using Agent and

Ontology. In Proceedings of the First Asia-Pacific Conference on Web Intelligence (WI 2001),

N. Zhong et al., Ed. LNCS, subseries LNAI, vol. 2198. Springer, 384–388.

Singh, M., Cannata, P., Huhns, M., Jacobs, N., Ksiezyk, T., Ong, K., Sheth, A., Tomlinson,

C. and Woelk, D. 1997. The Carnot Heterogeneous Database Project: Implemented

Applications. Distributed and Parallel Databases 5, 2, 207–225.

300 Thomas Eiter et al.

Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F. and Ross, R. 2000.

Heterogeneous Agent Systems: Theory and Implementation. MIT Press.

Swift, T. 2004. Deduction in Ontologies via ASP. Proceedings of the Seventh International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), I. Niemelä

and V. Lifschitz, Eds. LNCS, subseries LNAI, vol. 2923. Springer, 275–288.

Van Nieuwenborgh, D. and Vermeir, D. 2002. Preferred Answer Sets of Ordered Logic

Programs. Proceedings of the Eighth European Conference on Logics in Artificial Intelligence

(JELIA 2002), S. Flesca, S. Greco, G. Ianni, and N. Leone, Eds. LNCS, subseries LNAI,

vol. 2424. 432–443.

Wendlandt, E. B. and Driscoll, J. R. 1991. Incorporating a Semantic Analysis into a

Document Retrieval Strategy. Proceedings of the Fourteenth Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, A. Bookstein,

Y. Chiaramella, G. Salton, and V. V. Raghavan, Eds. ACM Press, 270–279.

Wiederhold, G. 1993. Intelligent Integration of Information. Proceedings of the ACM

SIGMOD Conference on Management of Data (SIGMOD ’93). 434–437.

